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SUMMARY

In the Stripa mine, situated in the central part of

Sweden, a pilot heater test has been carriec out at 348 m
level. The type of rock is a granite with a rather high
frequency of fractures. A central main heater with a

length of 3 m, a diameter of 30 cm and a total power of

6 kW was placerd at the bottom of a 10 m deep borehole.

At different radial distances, varying from .85 m up to 2.95
m frum the heater, stress and temperature changes were
monitored. Additional measurementc of movements along
major fractures on the surface and changes of water in-

flow in borsholes were carried out.

In order to simplify the toundary conditions in a FEM-
analysis, the in situ, three-dimensional, principal
stresses were determined, using the lLeeman over-coring
method in a 20 n long borehole close-to the test site.
Based on the results from these measuremernts, all holes
were drilled parallel to Uy i.e.,all stress- and
temperature measurements were taken in the 01'cz—plane.
Heating of the rock lasted for a period of 68 days, when
the power was turned off to monitor the cooling

effects of the rock.

The results of the heater test can be summarized as

follows:

® The mpasured temperature distribution compares
fairly well with the predicted. A maximum tem-
perature of 333.97C was measuced on the hsater
just before it was turned off. The maximum
temperature in the rock, as measured 0.85 m
from the axis of the heater, was 102.7°C.

@ The thermal isotropy is affected very little
by fractures in the rock.
® By using data from the cooling period &f the

experiment, the thermal conductivity of the
rock mass has been calculated to A=4.8 wW/m°C



® The thermally induced stresses in the rock
mass do not correspond well with the pre-
dicted values.The predicted stresses are
much higher than the measured, normally a
a factor of 3 to B. A stress anisotrcpy is
fournd to be prominent close to the heater.

® Results of measurements in boreholss of the
in situ modulus are found to be about half
of the laboratory determinations. No change
in modulus is observed in either non-~heated
or heated rock.

® Displacements of major fractures on the floor
of the test drift are very small. A maximum
change inaperture of 14 x 10" %m has been

measured.

® Water inflow in boreholes is measured to be
lower for the duration of the heater test.



1 INTROOUCTION

In order to solve the problems with nuclear waste
storage, the Swedish nuclear power industry organized
the Nuclear Fuel Safety Company (XKBS) during the late
fall of 1976, Some of the research was performed at
Stripa, an abandoned iron ore mine in the central part
of Sweden. Adjacent to ihe abandoned ore is a large
granite body in which all experiments have been carried
out. The studies presented in this report are made for
the KBS project., A cooperative program was developed
when a contract between US ERDA and SKBF (Swedish
Nuclear Fuel Supply Company) was signed during the
spring of 1977. The Swedish part of the program was
developed by KBS and the US part is carried out by

LBL (Lawrence Berk:ley Laboratdry). i

The research program is concentrated on two major tasks:

a fuill scale heater test and a time-scaled heater test.

In both cases cylindrical canisters containing electrical
heater elements are used to simulate the heat output by
radicactive decay of nuclear waste canisters. For a period
of two years, temperature, stress and displacements will be
measured in the rock. Jn connection with the heater tests,
an extensive geophysical and hydrological program will be

carried out.

A pilot heater test has been accomplished by the
Division of Rock Mechanies, University of Luled for

the KBS project. The purpose eof the test was to deter-
mine stress- and temperature changes around a cylind-
rical heater in the rock. Measurements of displacements

along major fractures were also perfarmed.

The pilot hester test was scheduled for a test period of
five months, where two months were planned for heating

and three for cooling.

This report iontains three appendixes. The first is an
analytical solution to the problem of heat distribution



from a cylindrical heater in rock, written by Géran
Bickblom. Appendix II deals with the stress distribution
in the rock mass surrounding a heater, written by Bengt
Leijon. The third appendix, also written by Bengt Leijon,
is about the in situ determination of thermal conductivity

of tha Stripa granite.



2 LOCATION AND GEDLDGICAL DESCRIPTICGN DF THE
TEST SITE

The Stripa test site is located in a granite which is
representative for the serorogenic Precambrian granites

in the Central part of Sweden.

A schematic picture of the test site is shown in Fig. 2.1.
All drifts have been excavated using a smooth wall blasting
technique in order to minimize damage t~ the rock. The
dimensions of the drift where the Swedish heater test was
performed is 10 m x 7 m x 4 m, and its longest axis is
orientated almost in the east-west direction (Fig. 2.1).

The Swedish Geological Survey (SGU) has been responsible
for most of the geological investigations in the Stripa
area. According to the investigations [4], the reddish
type of the Stripa Granite consists of 44% guartz, 39%
plagioclase, 12% microcline, 3% chlorite and 2% muscovite.
The grain size is in averags approximately 3 mm and

varies between 1 and 5 mm.

On the southern wall of the Swedish test drift is a "lens"
of syenite a few meters wide, consisting mainly of plagio-
clase and microcline. Accessory minerals such as chlorite,

quartz and muscovite can also be observed.

In the west rear wall of the test drift is a diabase

dike with a strike of NNW, The dip is steep towards the east.
In order to avoid the influence of the dike to the sub-
sequently induced thermal stresses and displacements,

the borehole configuration of the heater test was moved
closer to the entrance of the drift.

Results from the fracture mapping of the main tunnel
which connects the different test drifts are shown in
Fig. 2.2, As can be seen in the figure, the fractures

have a more or less random orientation.
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Fig. 2.1 The test site in the Stripa granite (after
Witherspoon et al).



XBL 788-10151

Fig 2.2 Stereographic projection of joint surfaces
from the main tunnel of the test site.
(Data from Olkiewicz, et al., 1978).



A fracture map of the floor of the Swedish test drift
is shown in Fig 2.3. The major fractures have a strike
varying from N-5 to NSOE. Those fractures with a strike
of NE to ENE are dipping 60°-70° towards north while
the fracturss with a strike in north-south are parallzl
to the diabase dike and the dip is essentially steep

towards E.

The drill cores from drilling in the test drift show
occasional highly fractured zones with mainly chlorite
and calcite fillings of the joints. Open fractures can
also be observed in the cores. These joints have normally
a calcite ar chlorite coating. In some cases epidot
coating is observed. The TV~ and borehole-periscope
logging of the holes shows that the open fractures are
very few and normally have a width of 0.2-0.6 mm. Occa-
sionally the width reaches 1 mm. The results of the log-
ging are described in detail in a consultant report of

Hageonsult [ 2].
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Fig 2.3 Fractures in the floor of the heater test
site.



3 MECHANICAL AND PHYSICAL PROPERTIES OF ThE
STRIPA GRANITE

The mechanical properties of the Stripa granite have

been determined by the Division of Rock Mechanics,
University of Luled. The results are described in

detail in a report for the KBS project [7]. Below a
summary is given of Young”s Modulus, Poisson’s Ratio

and the failure load in uniaxial compression at different

temperatures.

Table 3.1 Mechanical and elastical properties of Stripa

Granite

Uniaxial

Temp Young”s Poisson”s Compressive
Modulus Ratio Strength
1°c [GPa) {MPa}
20 69.4 0.21 207 .6
50 71.2 0.21 208.2
100 62.4 D.20 221.3
150 57.2 0.16 205.0
200 50.8 g.13 148.0

As shown in Table 3.1, the values of the parameters

are lowered as the temperature is raiced.

The thermal properties of the Stripa granite have been
determined by Terra Tek, Salt Lake City, USA as descri-
bed in [5]:

Thermal conductivity, A = 3.80 - 0.3745 « 10727 IW/mDC).
(see Fig 3.1,

Coefficient of thermal expansion, ¢ = 1.11 - 10°501/%)
(see Fig 3.2)

Specific heat: T = 1139 - 31°% 0.197 cal/g °C
T = 157° - 35% 0.197 cal/g %c
T = 230° - 43°% D.200 cal/g °C
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Other properties of the Stripa granite are:

Density 2.600 g/cm®
Porasity 1.7 %
Permeability < 17 + 107 %md;

laboratory determination see [5]

4 « 10" m/5 at rock temp ~ +10°C
2 - 10" m/s at rock temp ~ +35°C;

0.
0.
in situ determination, sea [3]
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4 TECHNICAL DESCRIPTION OF THE PTLOT HEATER
TEST
4.1 General design of the heater test

A schematic picture of the hole configuration for the
heater test is shown in Fig. 4%.1. Temperature and stress
changes were monitored at a minimum radial distance of
0.85 m and a maximum radial distance of 2.95 m from a
main heater, surrounded by three peripheral heaters.®
Measurements of displacements of major fractures on the

floor surface of the test drift have also been performed.

In order to determine the site isotropy of the thermal
and mechanical properties, measurements of stress and
temperature changes have been made in three separate
radial directions from the axis of the main heater.

To facilitate further discussions in this report the
different directions are hereafter referred to as A,

B and C respectively (see Fig 4.1).

1.2 Determination of in-situ stresses

In order to facilitate the boundary conditions in the
numerical calculations, it was decided to orient the
heater test so that all measurements were performed in
the in situ 0,70, plane, i.e. ail boreholes should be
drilled parallel to the least principal stress o3
Furthermore, it was dscided to locate all measurement
points in the midplane of the heater. The in situ
stresses were determined by the Division of Rock
Mechanics, University of Luled&. The measuremegnts were
based upon the Leeman three dimensional overcoring
principle. A 20 m, subhorizontal borehole (see Fig 4.2)
was used to determine the stress tensor at 19 data
points along the hole. A detailed description of the

results is given in [1].

—
The purpose of the peripheral heaters is to heat a
greater volume of the rock.
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Fig 4.1 Principal arrangement of the heater test

in Stripa. Figure 5.1 relates the heater test
location to the test drift and fracture network.
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In summary, the following stresses were obtained:

e The main principal stress 04 has a magnitude
of 20,0 MPa and is dipping 317 in the
direction of 568°W

e The medium principal stress o, has been
computed to be 11.4 MPa and the dip is 13°
in the direction of 532%

® The minimum principal stress Oy has a
magnitude of 5.4 MPa and is dipping 56° in
the direction of N28°E

The derived principal stresses are plotted in Fig 4.3,

The measured vertical component is 8.8 MPa. With an
overburden of 348 m and a density of 2.61 g/em?, a
theoretical valug of 9.1 MPa is obtasined, i.e. the
measured vertical component is pf the same order of
magnitude as predicted by theory.

4.3 Detailed design of the heater test

As mentioned earlier the heater test hole configuration
was oriented with respect to the in situ stresses,

so that all holes were drilled parallel to Ogs and all
measurement points were located in the midplane of the
heaters. Since the maximum vertical depth was limited
for practical reasons to 7.5 m, the minimal depth turned
out to be 5.5 m {(hole 14, see Fig 4.4). The influence
of the secondary stresses caused by the drift itself

is negligible at this depth. A schematic picture of the
hole configuration is shown in Fig 4.4. The measured
orientation and magnitude of the in situ stresses is

also shown in the figure.

Detailed data about the hole configuration is given in
Table 4.1,
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Fig 4.3 Principal stresses and their directions
for the test site. Stripa mine, 348 m level
(Carisson, 1977).
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Fig 2.4 Orientation of heater test in the test drift.
The numbers refer to the boreholes.
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After the drilling, holes 1-4% were TV-logged
and the remaining holes were logged with a borehols
periscope. The results are describsd in [2] and will
together with the results from the core logging be
used in the ovaluation and interpretation of the in-
duced stress and temperature changes. The heaters

Table 4.1 Test drift drilling data

Hole | Method of | Diamster| Drill} Ospth to Vertical depth| Radial distance
no drilling depth | data point| te data point | Lo main heater
hole
[rm] [m] Im] [m] [m]
1 Percussion 300 10.88 8.88 6.80 -
drilling
2 Diamond 65 10.66 8.65 6.E3 0.85
drilling
3 " 66 10.85 8.6b 5.63 0.65
4 " 66 11.43 9.43 7.22 0.65
5 " 38 10.17 9.47 7.02 0.85
B " 38 10.41 9.41 7.21 1.55
7 ” 38 10.55 9.65 7.39 2,25
8 " 38 10.89 g8.88 7.58 2.95
9 " 38 16.17 3.17 7.02 D.85
10 " 38 10.41 9.41 7.21 1.55
11 " 38 10.585 9.B5 7.39 2,25
12 " 38 8.17 8.17 6.26 0,85
13 * 38 8.58 7.58 5.91 1.55
14 " 38 8.00 7.00 5.36 2.25

were constructed so that the power output of the main
heater was 6 kW and for the peripheral heatesrs 1 kW.
According to the Swedish proposal for nuclear waste
storage a maximum temperature aof 100°C is predicted on
the surface of the waste canisters whan placed in rock
after thirty years of cooling. Therefore the decision
was made to limit the skin temperature of the heaters
to the predicted maximum temperature 100°c. sand i1
was used to properly position the heaters in the holes.
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4,4 Construction of the heaters

The main heater had a length of 3 m, a diameter of
273 mm and a maximum power output of 6 kW at 380vV. In
Fig 4.5 the construction cf the main heater is shown

in detail.

The heater was placed at a depth of 10.4 m in a 300 mm
percussion dril~ed hole, It was centered in the hole

by means of three centeringdevices mounted on the circum-
ference at 120° intervals. Three thermocouples were
mounted at the midplane of the heater and attached to

the heater skin inside the centering devices. In

addition the heater was oriented in the borehole so that
the thermocouples measured in A, B and [ directions

respectively (see Fig. 4.1),

The accuracy of the thermocouples over the temperature
range generated during this experiment was +0.1%,
Figure 4.6 shows the installation ‘of the main heater.

XBB 788-39878
Fig 4.6 Installation of main heater.



After installation of the heater the hole was back-
filled with insulation pellets. The conductivity of
the pellet fill as presented by the wmanufacturer is
D.23 w/m°C.

An air gap existed in the annular space between the ieater
and the walls of the drill hole (~ 13 mm).

The peripheral heaters also had a length of 3 m. The
diameter was 63 mm, and the maximum power ocutput at
220 V¥ was 1 kW. The temperature was monitored by a

thermosouple on the heater midplane.

Figure 4.7 shows the installation of one o1 the peri-

pheral heaters.

XBB 788-9879
Fig 4.7 Installation of a peripheral heater.



22

4.5 Stress measuring device

The gages that were used for measuring stress changes
for the duration of the heater test were vibrating

wire stressmeters, manufactured by the American company
IRAD [9].

The gage consists of a hollow steel cylinder which is
loaded diametrically in the borehole by means of a
wedge and platen assembly (see lig. u4.8). Stress
changes in the rock cause changes in the natural
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Vibrating Wire Stressmeter.
(Section View Through Body)

XBL 788-10160

Fig 4.8 Vibrating wire stressmeter.

frequency of a highly tensional steel wire stretched
diametrically across ihe cylinder walls in the pre-
loaded dirs.tion. By calibration, changes in the wire
period can be related to the magnitude of stress
change in the rock. Figure 4.9 shows a gage mnunted
in the setting tool.
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Since the gage is unidirectional, sets of three gages
at specific angles to each other are needed to evaluate

the stress change in the plane of a borehole.

XBB 788-9880

Fig 4.8 Gage mounted in the setting tool.

In case of a heat source in an elastic rock mass, the
induced principal stress directionswill be radial and
tangential. €ince the direction is known, only 2 gages
set at the radial and tangential direction with respect
to the heat source will Ye needed. In order to check
the assumption of known principal stress directions,
three gages were used in each hole in the Swedish heater
test. The gages were positioned in each hole with their
loading directions radial, tangential and 45° counter-
clock wise (looking down hale} fraom radial with respect
to the main heater axis. For further details aboul the

predicted stresses see Appendix II.

A calibration of the gages set in a bleck of the Stripa
granite has been carried out for different applied
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stresses and temperatures. The calibration has been
done by TerraTek in Salt Lake City, Utah and the cali-
bration curves are shown in Fig 4.10.

The following approximations have been done for the
evaluation of the induced thermal stresses:
® The thermal coefficient of expansion is the
same for the gage (11.7 - 10-%) as for the
Stripa granite (11.1 < 107°¢)

® QOne set of calibration curves has heen used
for all gages (according to recommendations

from the IRAD company)

The following equation has been used for the evaluation

of stress changes:

1

Ao = C1 TETEET? + C2 (4.1}
where
Ao = change in stress (MPa)
P = period of the pretensioned wire {x 10" "sec)
AP = period offset (see Fig 4.10) (x 107 7sec)
C1 = constant varying with temperature according to
C,(T) = 1.56 - 10%(T) - 2.076 - 10°
C2 = constant varying with temperature according to

CZ[T] = -0.0528(7) + B9.76

The stress changes derived by using equation 4.1
deviate by about 8% compared with hand derivation
from the calibration curves directly.

In this way it is possible to calculate Acr, AU45 and
Acp as if the gage were set in the direction of a uni-
axial stress.
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For calculating the thermally induced principal stresses

q1 and 02,the following equations have to be used

(Hawkes and Bailey, 1973):

_ 3 3
0, = 5a + ?b (4.2)
_3. .3
g, = 3a Zb (4.3)
where
Ao_ + Ao
a=—ZL 5 4 (4.4)
b = [(do, - a)? + (Ao - 5)2]]/2 (4.5)
45 r ‘ )

The angle, y, between the gage in the radial direction
witl respect to the main heater and the maximum princi-

pal stress o4 is given by

a - Ao
sin 2y = —__~E_£§ (4.8}
and
Aar - a
cos 2y = —F - (4.7)

From the principal stresses o, and Gor the thermally
induced radial and tangential stresses, o, and o can

be derived as
oy = c1coszy + azsinzy (4.8)
og = 015in2y + ozcoszy. (4.9)
If the derived angle hetween the radial gage and the

maxinum principal stressis zero,theno1 is equivalent

to 9. and o, is equivalent to oy, respectively.
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Fig 4.10 Calibration curves for the IRAD vibrating
wire stressmeters, gage H 3-18.



27

4.6 Temperature measuring device

All vibrating wire stressmeters were equipped with
thermistors so that all temperature measurements
were carried out at the same "point” as the stress
measurements. The tolerance of the thermistors used

were 0.5%.

In order to prevent convection, though the measurements
were carried out under water, all bore holes were
scaled off with injection packers, pusiticred directly

above the gages.

4.7 Displecement measuring device

In order to check displacements of major fractures on
the floor of the test site, displacement gapes were

Nl

XBB 788-9881

Fig 4.1 Displacement gages mounted on the floor
in the test site.
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used (see Fig 4.11). 1In principle, these gages work
in the same way as the stressmeters. A steel wire

is stretched across a fracture. A change in aperture
of the fracture causes a change in the length of the
wire and hence a change in the natural frequency of
vibration. The displacement of the fracture is derived
by calibration. The accuracy of the device is

1.5 » 10" %m.

The temperature on Lthe floor surface was monitored by
a thermocouple with a accuracy of +0.1°C.



5 ACCOMPLISHMENTS OF THE HEATER TEST
5.1 General comments

The KBS heater test start.d in October 1977 and was
completed in April 1978. As mentioned in chapter 4.3,
the skin temperature of all heaters wes set to reach

a maximum value of 100°C. This created certain problems
in operating the peripheral heaters. The heaters were
nct capable of keeping the holes dry since the

water inflow was too great for the power cut-

put per square centimeter of the heater surface.

This resulted in drastically lowered temperatures. The
decision was made to control all heaters by maximum
power. The higher temperature reached was then expected
to dry out the holes. This change in controlling the
heaters was made B days after the heaters had been
turned an. Although the temperature on the peripheral
heaters reached a maximum of 175°, this was still not
enough to keep the holes dry. Practical problems also
made it impossible to measure the amount of water in-
flow in the holes. In order to have a satisfactory check
of the power used to heat the rock, it was decided to
turn the peripheral heaters off and to use these three
hules to measure the water inflow during the duration
of the test. rhe peripheral heaters were turned off 18
days after the start of the heater test.

As meniioned earlier, there was no water inflow in the

main heater hole, although the heater hole and the peri-
pheral heater holes were intersected by mutually indepen-
dent fractures (see Fig 5.1). This absence of water can
possibly be explained by the fact that the main heater hole
was percussion drilled while the peripheral heater holes
were diamend drilled. This implies that the percussion
drilling might have caused sealing of open fractures,

as has been established elswhere (personal communication -
J. Gale, University of Waterloo).
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6 MEASURED TEMPERATURE RISE OF THE MAIN HEATER

6.1 Temperature as a function of time

The total power output given to :he rack was 6 kW after
day 19. As shown in Fig 6.1, a steady state phase is
reached after approximately 30 days, when the heater
temperature was 324%C. A tem 'rature of 333.90C was
reached 6B days after the heater was turned on. After

69 days the heater was turned off and allowed to

coal in order to check the ceoling properties of the
rock mass. As shown in Fig B.1, the cooling temperatures
of the heater were monitored from day 69 to day 155 when
the in gitu experiment was finished. The last reading of
the heater temperature was 14,7°C and the temperaturv at

that time was decreasing at a rate of ~0.19C per day.

In Table 6.1 the heater temperature is given for certain

days.
Table 6.1 Measured temperatures of the main heater
Day # Temp °cy Day # Temp °c)
8} 3.248 60 330.7
2 938.0 70 128.5
6 99.5 80 42.7
20 316.9 30 239.1
30 324.1 110 20.6
40 329.2 130 16.9
50 322.4 155 14.7
6.2 Comments on measured data

The maximum temperature of the heater skin was 333.97%C.
Variation of the voltage supply caused fluctuatian in
heater temperature. For instance, the temperature was
lowered from329°C on day 4C t0321.1°¢C on day 55.The tempe-
rature was then raised to the maximum 333.9°C which was
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reached 69 days after the heater was turned on. These
fluctuations were very clearly marked in the stress-
and temperature measurements in the rock mass as will

be shown in a forthcoming chapter.

The predicted temperature of the heater is slightiy lower
than the one measured, as shown in Figures 7.6 and 7.7.
This could be explained by the annular air gas between
the heater and the rock. In the analysis it is assumed
that the heater is in perfect contact with the rock.

and a low conductivity material such as air, would cause
the heater temperature to increase. Spalling, caused

by very high stress and temperature gradients, might

also have occurred in the walls of the borehole, which

then lowered the conductivity.
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7 MEASURED TEMPERATURE CHANGES IN THE GRANITE
741 General comments

As mentioned sarlier the temperature change in the rock
has been monitcred by thermistors. The tolerance was
D.5% and all measurements havae besn carried out under
water. The distance from the thermistors to the center
of the main heater was 0.85 m, 1.55 m and 2.25 m repec-
tively. In order to check ‘he thermal isotropy of the
Stripa granite, measurements have been carried out along
three different directions spaced at 120°% with raspect
to the main heater. Additional stress and temperature
measurements have been carried out at 2.95 m along the

A-direction (see Fig 4.1).

7.2 Temperatures as a function of time

Figures 7.1 - 7.5 show the measured temperatures as a
function of time along the A-direction of the test =ite.

In the same Figures are cshown the predicted temperatures
from a single 6 kW heater, assuming a conductivity of

3.4 W/m°C for the rock mass. In the analysis it has been
assumed that the conductivity is independent of tempe-
rature, the heater is in perfect contact with the rock, and
the surrounding rock is homogenous and isotropic.
Furthermore, the ground water flow has not been taken

into account. For further details about predicted tem-

peratures, see rnpendix 1.

7.3 Temperature as a function of radius from the

main heater

Figures 7.6 and 7.7 show the temperature as a functian
of radius from the main heater along the A-direction of
the test site (see Fig 4.1) after 9. 14, 20 and 68 days.
In the same figures are shown the calculated temperatures
according to the equations presented in Appendix I.
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7.4 Temperatures in the peripheral heater holes

Additional temperature measurements were also carried
out in the peripheral heater holes, Fig 7.8. The
distance to the main heater is 0.65 m. A rod with a
thermocouple attached to it was lowered down to the
bottom of the hole. When stable readings were taken the
rod was lifted 0.5 m for new recordings of temperature.
Due to convection it was not paossible to get stable
readings above the water leval in the holes.

The measurements were carried out 55 days after the

heater was turned on.

7.5 Calculation of the heat conductivity, A

As already indicated and as shown in Fig 6.1, it is
not suitable to use the heating period between day QO
and day 68 for calculation of heat conductivity of the
rock mass. Instead, looking at the curves that repre-
sent the cooling of the rock, a much nicer course is

observed.

According to Carslaw and Jaeger, 1973 [10], the tempera-
ture T(r, t) where r denotes radius from the heater and

t demotes time, is supposed to satisfy

%% = % g;(K(1—%T)%% where

k and Y are constants.

The following basic assumptions have been made:

® The heater is a cylinder of infinite length
and the heat flow is radial only
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® The heater is in perfect thermal contact
with the rock;

® The relation between thermal conductivity
and temperature is a straight lines

® There is no flow of water in the reock;

¢ The surrounding rock is homogenecus and iso-

tropic.
The calculations, which are shown in deteil in Appendix
III, give a value of the thermal conductivity for the
Stripa granite of

A = 4.8 wm'C.

7.8 Comments on _measureil data

So far, only the temperatures measured along the A-
direction of the borehole configuration have been
presented. For comparative purposes, the measured tem-
peratures along the B- and C-directions are listed in
Table 7.1. As shown in the table, the highest tempera-
tures are measured along the A-direction and the lowest
are measured along the C-direction. According to the
core logs and the logging with the borehale periscope
the holes in the C-direction have the highest frequency
of fractures. Furthermore, the boreholes at distances
0.85 m and 1.55 m along the B-direction and the bore-
holes at distances 1.55 and 2.25 along the C-direction
have a very high water inflow compared to the holes in
the A-direction. This implies that the water has a
cooling effect on heating of the rock mass.

The predicted temperatures compare fairly well with the
measured, although the water leakage and the peripheral
heaters affected the temperature distribuiion in the

rock mass. At distances far away from the heater(»1.55 m),
the predicted temperatures coincide with the measured

{see Figs 7.3 and 7.4).
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Table 7.1

Measured temperatures in the rock at
different distances from the main heater
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Day Direction Measured temperatures (°n)
* r=0.85 m r=1.55m r=2.25m r=2.95m
A 3.28 9.3% 9,35 8.90
0 B 9.38 9.00 9.18 -
C 9.27 39.20 9.00 -
A 18.78 10.80 9,50 A.00
2 B 20,57 0.78 9.27 -
’ C 14,73 9.75 9.10 -
A 27.43 15.38 11.00 1.28
5 B 37.33 15,658 11.03 -
[ 24.82 14,05 10.40 -
A 55,60 23.78 13.60 10.33
9 B 58.63 20.70 13.80 -
o 42.82 17 .80 12,00 -
A 87.50 41.78 20.50 13.20
14 8 34.67 34.00 20.15 -
C 70.03 2B8.70 18.35 -
A 92.80 51.05 26.70 17.E5
20 5 910,33 42.45 26.25 -
C 30.20 39.10 24.95 -
A 98,40 60.10 37.50 26.44
40 B 94.43 50.00 34.95 -
C 87.73 49.78 33.78 -
A 100.37 62.30 40.09 28.23
6D B 97.17 52.02 37.43
C 89.54 49.99 36.40 -
A 56.90 49,50 38.60 30.45
75 B 55,50 40.05 37.320 -
C 54.88 44.10 36.35 -
A 28.66 27 .59 25.67 23.53
30 B 28,07 26.83 25.18 -
C 28,25 %6.70 25.22 -
A 20.40 19.91 19.51 18.74
110 3 20.39 19.90 18.31 -
C 20.28 20,01 19.39 -
A 15,16 14.91 15,04 14.83
155 B 15,16 15.02 14.82 -
c 15.089 15.32 15,11 -
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8 MEASURED STRESS CHANGES IN THE GRANITE
8.1 General comments

The vibrating wire stressmeters that were used for moni-
toring the thermally induced stresses have never been
used in an environment of both high temperature and
flowing water. Although rhe gages were constructed in
such a way that they were supposed to be high temperature
resistent and waterproof, they did not fulfill these
demands. TFor instance, leakage occurred through the
teflon mantled cable the by allowing water to come in
contact with the wire anc destroy the measurements. This

leakage had no effect on ~he tempsrature monitoring.

Since only 50% of the gag'!s workea properly after 25

days of the experiment, the decision was made to sub-
stitute new, modified ga; s for the first installed set

of gages. The leakage pr »blem did not recur to the same
extent, and at the end of the test 90% of all new, modified
gages worked properly.

If the rock mass is regarded as an infinite continuum, then
the thermally induced str:sses should not create dis-
placements of the borahol: so tha:r the gages will loosen

in the hole. Unfortunctel!,;, this assumption did not

hold in the Stripa granite. In all of the holes located
close to the heater (r=0.85); at least one of the three
gages loosened as the rock was heated. Since, for precise
calculation, all three gzges are needed for calculation of
op and Oy accurate derivations of radial and tangential
stress changes could not be evaluated from these measure-
ments. However, in some cases the graphs can ke aextrapolated
if the assumption is made that the hole direction is in the
line of maximum principal stress. This assumption has been
made when appropriate, ar | these results are shown as a
dashed curve in the follcwing figures. The errors caused by
this assumption are small and within a few percent.
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8.2 Stress changes as a function of time

Figures 8.7 - 8.9 show the measurec changes of stresses
op and g, as a function of time at different radial
positions along the A-, B- and C-directions of the test.

Figures 8.10 - 8.12 show the measured radial and .
tangential stresses along the A-direction of the test.

In the same figures are tha radial and tangential stresses
shown based on the predicted temperature distribution
around the heater. A detailed description of the calcu~

lations is praesented in Appendix II.

8.3 Stress changes at a function of radius from

the main heater

Figures 8.13 - B8.29 show the measured o and oy as a
function of radius from the main heater. When a dashed
curve occurs in the figures the stressmeter reading
Agp or Agy, calculated as if the gages were set in the
direction of an uniaxial stress, have been plotted to

complete the curves.

Figures 8.30 - 8.37 show the measured redial and tan-
gential stress along the A-direction. In the same figure
are shown the predicted stress changes as a function of

radius from the 6 kW heater.

8.4 Thermally induced principal stresses

The principal stresses o4 and o5, have been derived
from the thermally induced stresses Ao, Ags5 and Aoy,
according to the theory developed in section 4.5. The
results are shown in Figures 8.38 - B.48, In the same
Figures are shown the in situ stresses previously
measured by using the overcoring technique.
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Fig B8.21

The thermally induced radial (op) and
tangential (o) stresses as a function of
radius from the 6 kW heater at 5 days
(B-direction).
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Fig B.23

The thermally induced radial (op) and
tangential (op) stresses as a unction of
radius from the B kW heater at 2 days
(C-direction).
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Fig B.25

The thermally induced radial (op) and
tangential (op) stresses as a function of
radivs from the 6 kW heater at 89 days
(C-direction).
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9 MEASUREQ OISPLACEMENTS OF MAJOR FRACTURES
9.1 General comments

Measurements of displacements of major fractures, as
described in chapter 4.7, were carried out at five dif-
ferent places on the floor of the test site. The arrange-
ment of the gages is shown in Fig 9.1. '

9.2 Displacements as a functior of time

Figures 9.2 and 9.3 show the displacements as a function
of time. A positive sign is equal to contraction of the

fracture and a negative sign is equal to dilatation.

9.3 Comments on measured data

As shown in Figs. 9.2 and 9.3, the measured displacements
are extremely small. The maximum value measured is a
dilatation of 13.5 + 10~®m. Furthermore, no contraction

of fracturec has been observed.

Altnough the measured displacements are very small,

a similar appearance of the curves from all gages can
be observed. This is especially true for gage 2, 4 and
5. As can also be observed, the apertures of some of
the fractures do not close to the same width as they

were in the original state.
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10 MEASURED WATER INFLOW IN THE PERIPHERAL
HEATER HOLES

10.1 General comments

As mentioned in chapter 5 the three peripheral heater
holes were used for measuring the water inflow to the
test site. The measurements started 19 days after the
heaters were turned on and continued throughout the
duration of the test.

The measurements were carried out su that when ane aof
the holes became filled with water to the collar, all

holes were blown dry and the measurements restarted.

10.2 Water inflow as a function of time

In Fig 10.1 the water inflow in hole number 2 is shawn

as a function of time, (Fig 4.4). The radial distance

to the main heater is 0.65 m. As can be observed in the
figure the first set of measurements gives an inflow

of 0.99 l/day. The water inflow is then reduced succesive-
ly to 0.69 1/day as calculated from measurements between
day no 140 and 155.

10.3 Comments on measured data

The data presented in Fig 10.1 refers to borehold no. 2.
The data from the peripheral heater holes nos. 2 and 3
give the same appearance of the curves although the

magnitude of the water inflow is lower.

The lower inflow of water as a function of time im-
plies that the fractures are closing during the test.
After the heater was turned off the same cppearance

is observed. The explanation for this is somewhat un-
clear. A possible explanation is that the rock behaves
in a visco-elastic manner, i.e., the closure of the

apertures is time dependent.
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1 INTRODUCTION

The aim of this werk has been to theoretically calcu-
late the temperature distribution in rock with respect
to KBS' heater test at the Stripa mine.

A complete calculation which takes into account all
factors that arise is extremely difficult. Hence to
deal effectively with the problem same assumptions and
appraximations have basen stated. If it is necessary to
adopt more complicated assumptions than thcse of the
present analysis, a wholly numerical method is prefer-
able. Associate Prof. Torbjdrn Hedberg, University of
Luled, is acknowledged for his participation in the

theoretical development.

101
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2 CALCULATION OF TEMPERATURES
2.1 Assumptions

In the present analysis the cylinder is approximated
by a finite line source. The approuximation is very good
at large distances from the heater.

Hodgkinson [1] has studied a cylinder with r.xponential
decaying heat generation. In order to svaluate the dis-
crepancy between a2 line source and a cylinder, accurate
temperatures with respect to a cylinder geometry from
the calculations of Hodgkinson [1] were obtained.

The input data used are given in Table I and the actual
ditferences in temperature between a cylinder and a

finite line source are preseanted in Table II. From Table
II it becomes svident that the geometrical simplifications

affect the results only to a slight extent.

Table I Input to temperature calculations
(after Hodgkinson [1])

Radius of cylinder 0.25 m

Ltength 2.0

Initial heat generation 1000 W

Nacay canstant 30 yrs

Thermal capacity 879 1/kg, °C

Thermal conductivity 2.51 w/m, °c

Density 2600 kg/m?

The relevant physical j.roperties of the Stripa rock
has been supplied by Terra Tek [3]. The thermal con-
ductivity is, according to experimental studies

A= -3.745 - 1072 - T + 3.B0
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where
» = thermal conductivity W/m, °c
T = temperature °c
Table II Differences in temperature between a cylinder
and a finite line source
Differences in temperature °c
Time Distanue from center of heater [m]
yrs 0.25 0.50 1.0 2.0 4.0
0.01 D.410 0.336 0.169 0.017 -
0.1 0.229 0.182 0.093 0.027 0.005
0.2 0.224 0.177 0.080 0.024 0.005
8.5 0.220 0.175 0.087 0.023 0.004
1.0 0.218 0.171 0.085 0.022 0.004

Table III presents the assigned values of the other

necessary parameters.

Table III Input calculaticp of temperature by means
of thecry for a finite line source

L Length of the line source 3 m

c Thermal capacity 824.8 17kg, °c
p Density 2600 kg/m?

q Heat generation 6000 W

Tq Initial temperature 9.12 °c

The present analysis assumes that the thermal condustivity
is independent of temperature. The calculation has been
restricted to estimate the temperature field for some

different values of the conductivity.

Further assumptions made are:

® The heater is in perfect contact with the

rock
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® Thersz is no groundwater flow.

® The surrounding rock is homogeneous and

isotropic.

2.2 Theory

A continuous point source [ 2] gives the temperature
distribution:

T = —8— erfe (2= (1
49 Ar |rve Vit

where

= temperature °C

= distance from point source m
thermal conductivity W/m,°C

= tharmal diffusivity = A/Pc m?/s

0 A > 4 -
"

= heat generation W

The function erfc (x) is the complementary error
function

a0

erfo (x} =1 - erf (x) = 2 e_uz du (2)
vT

X

If the equation (1) is integrated over the length 27, the
temperature T can be obtained in the equatorial plane of the

the line source as:

A
2q erfc () dx
Tr—t T (3)
an A X2 412
o
where
x = variable of integration m

half the length of the source m
g, = effect per unit of laength W/m

Equation (3) is solved by means of numerical quadrature.
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2.3 Results

The temperatures around a line source with continuocus

and constant heat generation is calculated for distances
between 0.15 m to 15 m from the source and for times
between D0 and 50 days. The calculations have been made
using three different values of conductivity. They have
been 2.85 (Figs A.1.1 - A.1.2), 3.41 (Figs A.1.3 - A.1.4)
and 4.12 W/m,9%C respectively (Figs A.1.5 - A.1.8).

For some specific points, e.g., at distances »f 0.85 m,

1.55 m, and 2,95 m from the heat source, higher temperatures
of 16 °C, 7 °C and 1 °C respectively are obtained if
canductivity is 2.85 W/m, O instead of 4.12 W/m, °C.

This comparison applies if heat has been generated for

50 days and the parameters have values according to

Table III.
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Fig A.I.1 Plot of temperature vs time; r = radial distance
to main heater, A = 2.85 W/m OC,
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Fig A.I.3 Plot of temperature vs time: r = radial
distance to main heater, A = 3.41 W/m c.
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PREDICTED RDCK STRESSES FOR THE PILOT HEATER
AT THE STRIPA MINE

Bengt Leijon
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GENERAL

In order to predict the stresses caused by increased

temperature in the rock mass surrounding the heater,

two theorstical analyses have been carried out:

1. An analytical calculation based on the theory

of elasticity.

2. A two-dimensional, finite-element calculation.

In both cases, the following basic assumptfions were

made:

1. The rock mass is a limear elastic,

and isotropic medium

hom 'geneous

2. The rock properties are constant and not

temperature dependent

3, The following rock properties.were choosen:

Young”s Modulus
Poisson”’s Ratio
Thermal expansiaon
Thermal conductivity

£
v
[
A

: 69.4 GPa

0.21
11.1+ 0-%/9%
3.4 w/mC

4, Temperature distributions were calculated

according to Appendix I

Since all temperature and stress measurements were

carried out in the midplane of the heater, the stress
analyses also refer to this plane, The strains, per-
pendicular to this plane, i.e., parallel to the long
axis of the heater, should by symmetry be zero.

the plane strain condition has been assumed.

Thus,

The two analyses will be presented in two separate

sections together with some results.
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A. ANALYTICAL CALCULATION

Consider a plane, thin, circular plate with infinite
outer radius and with a central hole of radius rj (peri-
pheral heater holes and measuring holes are not taken
into account). The plate is loaded by the temperature
load T(r, t), where r and t denote radius from center,
and time respectively. With symbols according to Fig
A.2.1, the radial and tangential stresses - and also

principal stresses - are given by the eguaticns

r
sp-8 . B
AT T Oy H /r-T(r)-dr
1—‘D
r
P M T
9y A+P2+(1_v)[rz /r-T(rJ-dr~T(rJ
1-‘G

where A and B are constants determined from the
boundary conditions. Utilizing the boundary conditions:

g =0 for r=r and
r o
01_‘,47qJ -+ 0 Tfor r>ow we get
r
UP = _EE_ . J_ . v+ T{r} : dr 1)
(1-v) *
r
o
r
Eo 1

g = - e | - r o T(r) « dr ~ T(r) (2)
© ( -v) [rz ]

r

o

At the time to, with a specific temperature load T(r, tg),
the state of stress in the plates is a function of radius
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' Temperature load Tlr,t)

b/ -

Fig A.2.1

XBL 788-10236

Theoretical madel of thermal stress
distribution in the plane perpendicular
to the heater: a) Viewed along the
heater axis; b) Viewed perpendicular

to the heater axis.
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and material properties only. Notice that it is not the
total state of stress that is calculated, since the in
situ stresses are not considered. The absoclute stresses
could easily be determined by superposition of thermal

stresses and in situ stresses.

Since the temperature is known only for discrete arbitrarily
chosen points, the integral in eqguation (1) and (2)

had to be calculated numerically. This was carried nut
using a fourth crder method and a radial steplength,

small enough to prevent the influence of numerical
truncation errors.

Results

Stresses have been calculated using predicted temperatures
after 2, 5, 9, 14, 20, 35, 50 and 68 days of heating.

The results are presented in chaper 8 of the main re-
port, together with measured stresses, and will not be

repeated here.
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B. FINITE ELEMENT CALCULATION
The finite element analyses were performed using the
computer program system FLMFAB III, developed at Chalmers
Institute of Technology by {enneth Axelsson and Mats
Fridier. The program is intended for stress analyses of
homogeneous, elastic, two- or three-dimensional structures
loaded with temperature loads, volume forces and boundary

forces.

The structure used for these analyses (shown in Fig A.2.2)
has the shape of a semicircular plate loaded with tempe-
rature loads and boundary forces. It is assumed to be a
model of the heater's midplane. The temperature loads are
applied as temperatures in the nodal points. The polar
geometry is chosen to facilitate the temperature loading.
Boundary forces are provided by the in situ measured
stresses g4 = 20.0 MPa and vy = 11.4 MPa in the test site
of the Stripa mine. The stresses are cunverted into
equivalent forces attacking in the nodal points along

the boundaries.

Due to symmetry, it is possible to reduce the structure

to a semicircular plate with all tangential displacements
long the symmetry line prescribed to zero (see Fig A.2.2).

The structure was made very large (radius 15 m) in order

to prevent disturbance from boundary loads into its

inner, temperature-loaded parts.

Results
Two main load cases were considered:

Load case 1: Temperature loads and boundary
loads in form of in situ
stresses o4 and o, are applied
to the structure

Load case 2: Only temperature loads are
applied
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Load case 1

Figures A.2.3 - A2.6 show the principal stresses 9, and

gy for some points on the central part of the left half

of the structure; the stress pattern on the right half is
symmetrical. It can easily be seen that the stress distri-
bution is a result of radial and tangential thermal
stresses, in couperation with the in situ stresses. Figures
A.2,7 - A.2.10 show the principal stresses 04, 0y and oy

as a function of radius for a chosen direction (see Fig

A.2.2).

Load cass 2

The principal stresses after 2 and 35 days are shown in
Fig A.2.11 and A.2.12 respectively. The orientation of
the two principal stresses parallel to the midplane of
the heater is close to radial and tangential. These
stresses are the thermally induced stresses, comparable
with the analytically determined stresses in section A.
Hence, the stresses from section A have been drawn in
the same plots for comparison. As can be seen in the

figures, the agreement is very close, as would be expected.
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Fig A.2.3
to the heater after 2 days heating.
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Fig A.2.4 Principal, absolute stresses perpendicular
to the heater after 9 days heating.
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Fig A.2.5 Principal, absolute stresses perpendicular
to the heater after 35 days heating.

126




APPENDIX II 127

80m

>

STRESS SCALE: _1 50 MPa
COMPRESSIVE STRESSES

XBL 788-10241

Fig A.2.6 Principal, absolute stresses perpendicular
to the heater after 50 days heating.
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Fig A.2.7 Principal, absolute stressses as a function
of radius after 2 days heating.



STRESS (MPa)

80

70 4

60 4

o
(=]

&~
o
2

30

0

APPENDIX II 129

TIME =9 DAYS

Fig A.2.8

RADIUS (m]
XBL 788-10243

Principal, absolute stresses as a function
or radius after 9 days heating.
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Principal, absolute stresses as a function
of radius after 50 days heating.




STRESS (MPa)

804

70

60 1

N
o

~
(=]

30

APPENDIX II 132

TIME = 2 DAYS

—  stresses from finite element
calculations

- = — stresses trom analytical calculations

-104

— T T

1 2 3
RADIUS {m} XBL 788-10246
Fig A.2.11 Thermally induced, principal stresses after

N 2 days heating.
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INTRDBUCTION

When the main heater was turnea off after 6B days of
heating at the test site in the Stripa mine, the decision
was made to continue the temperature readings in order tc
study the cooling lapse. All measurements were cut off
after 155 days since *the cooling was almost complete.

The temperature readings during the initial part of the
cooling have been used with the intention of determining
the in situ thermal conductivity of the Stripa granite. A
mathematical model of the cooling lapse was set up, and
the model parameters were varied so that hest agreementi

with measured temperatures was obtained.

Laboratory tests on specimens, in order to determine the
thermal conductivity, have been performed by Terra Tek,[U4].
The main purpose of this study has therefore been

to compare the laboratory tests with the in situ tests.
Unfortunately, the decision to carry out the in situ
gvaluation of conductivity was made in a late stage of

the test program. Hence, the way the temperature
measurements were performed did not quite suit the
purpose of determing thermal conductivity.

The mathematical and numerical work for this study has
mainly been performed by Lennart Andersson and Leif
Kussoffsky at the University of Luleé&, Sweden.
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1 THEQRY

From the above mentioned laboratory tests, the relation-
ship between thermsl conductivity, X, and temperature, T,

is known to be a straight line. That is:
A o= d - T where
A = conductivity at temperature T
A_ = conductivity at temperature T =0

o = constant

The existence of such a linear relationship hetween
temperature and thermal conductivity has been used as
a fundamental assumption. Furthermcre the following

assumptions have been made:
1. The rock mass is homogeneous and isotropic

2. The specific heat of the rock is constant
(c = 825 I/kg °C, from [4])

3. The main heater is of infinite length. This
approximation is discussed in more detail in

a later section

4. Cooling is due to heat conduction only. No
convection of ground water is considered in

the analysis

5. The air-filled spacing between rock and heater
is not considered. That is, perfect thermal
contact between rock and heater is assumed--
which means that there is no temperature
difference between the heater surface and
the hole wall. (The temperature readings
at v = 0.15 m are taken at the heater surface.)
However, the observed steady-state solution
indicates that the thermal contact is not
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vary good. Hence, the effect of this
assumption on the final results will be
examined later

6., The heat transfer betwesn the heater and the
rock is assumerd to be negligible after the
heater has been turned off. This assumption

will also be discussed later

7. teady~state conditions are prevalent by the
time of turning off the heater

8. The heater is turned off at exactly 06.00 a.m.
day 69. This time is denoted as t = 0. The
true time is not known since the turn off
was partly uncontrolled and not well docu-
mented. However, it is reasonable to believe
that the error is less than two hours

Mathematical model (see [3])

In a cylindrical coordinate system (r, 6, z) a cylindrical,
electric heater is situated at

r<r

D <6 <a2m

The tempesrature T = T(r, t), where t denctes time, for
rpsrsr, and z = 0 is supposed to satisfy

3

et

T) ) (1)

3 -
- (e (1

af
]

w'w
=
1
Hi~
|~

where k and y are constants. The initial condition is
supposed to be the steady-state solution with T specified
at r = r, and v = r_. At t = 0 the boundary conditions
are changed according to
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3T (rg, t)
ar

and

Tlr,, t) = f(t)

where f (t) is the observed temperature r = r_ at time t.

The substitution
1
= (1 - =T
u [ 5 )

gives the standard equation

@
c
-t
(=

) (2}

]
-B—I: (ru

I
)
FI

@
|
@)

r

The solution of this equation is known, [1] for certain
boundary and initial conditions and obtained by the method
of similarity variables. This method, however, does not
seem to be appropriate for the present conditions.

The steady-state solution of (2) is

u = c, v elnr (3)
In principle, the unknown constant ¥ in (1} can be deter-
mined from the observed steady-state solution (at t = 0).

Model errors

Equation (1) is valid only for a cylindrical heater of
infinite length, (a + «). A crude estimate of the error
due to the finite value of a 1is easily obtained for the
steady-state solution for the case when the material

properties are independent of the temperature.

For a line source with constant spurce density, 1c»
between z = -a and 2z = a and with zero temperature at

infinity we get for z = 0O
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= ar Nr ral
Ta(r) = g 1n

On the other hand, for n infinitely long line source

we get

T,(r) = 7¢ In

isls}

whare the constanc © = ’a. The two expressions agree

for r + 0. Of course, "he zero temperature condition cannot
be satisfied in the la..er case. The relative error at

r = ka is then

2
T, (ka) - 1, (ka) 1n 1—-*—-—‘);——*—1
TT%e) PR P
k

In

From this we obtain:

k ‘elative errar (%)
2 100
1 21
0.5 4

The true nature of the bounuiry condition at r = r, is
not known. The metal heater has much higher heat con-
ductivity than the sur ounding rock so that the cooling
at the ends of the cylinder may be important for the
temperature at r = 0, z = 0. Thus we do not know whether
heat is leaving or ent:ring the cylinder at r = r, and

z = 0. We have chosen to suppg$E the heat transfer at

this point to be negli:ible, 57 ° a.

Numerical approximation

The differential equation is approximated by using a
finite methad, [2]. We have
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du _ 1% du, _ 1, Bu, 3u du 8’y

T VI TRV Caroar Y
r <r<r, t =0
g LTIl

duirg, L)

ar S
ulr, ) = f(£) .
Let u,, bz an approximate valuw four ulrgt, ik, jk), where

13
h = (r, - ry}/N is the steplength in r and k is the step-

length in t. Further, let Ay, BxSx and §2 be difference
operators defined by
Bg Uij = Vi, 5er T Yig

Sx Uiy T Uisq,j T Ui-q,j

23

2 = -
8% Uiy T Ui-1,3 T 2Uij * Uis1,j

The difference approximation used is

Lk Yij .3 L3 0y
B vy 57 h—[TGZ/h‘TT Sxy, ser * 785 G vy g0y

2 . .
MR “i.j+1] » 021N 320
& ugs =0, iz,

Unj = fjk), Jj=>1

v

This is a simple linear implicit scheme requiring the
solution of a tridiagonal linear system of equations for

each time step.

+
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The initial solution is taken tn be of the form (33},
where the constants are chosen so that the soluticen
matches the observed temperatures at the three inner-

most points.

142
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2 RESULTS

Mean values of temperatures at radii 0.15 m, 0.85 m and
1.55 m were used as input data for the initial solution.
As outer boundary conditions the temperature at actual
time (mean of directions A, B and C) at radius 1.55 m
was used. That is, only the three innermost points were

taken into account.

The best agreement between computed temperature values

and in situ measured values occured for 4.70 < Ay < 4.95
(W/m °C). This value should be compared to the value from
laboratory tests on rock specimens, Ay = 3.63 W/m °C. Dus
to lack of temperature readings during the initial part of
the cooling, it has not been possible to do any deter-
mination of the temperature dependency of A. However it
can be estimated that 3.1 » 107 < o < 5.2 « 1073 (W/m
{a-value from laboratory tests is a = 3.75 - 1073 (W/m
A variation of o within this interval does not influence

the computed value of Ay very much.

),
).

UCZ
UC2

In order to estimate the error due to temperature diffe-

rences between heater and reck, the temperature at

r = 0.15, used in the initial solution, was varied within
a wide range. No serious influence on computed A, -values

occurred. The computed values and values from laboratory

tests are shown in Fig A.3.1.
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3 CONCLUSION

It is reasonable to believe that the thermal conductivity
of the rock mass will be volume dependent, since fractures
will obstruct the heat conduction throughout the rock mass
and decrease the conductivity. Thus, the rather high
values, svaluated for conduction in situ can not be ex-
plained as a volume effect. The deviation seems too large
to be explained as errors due to the mathematical model

and the way it is used.

A possible explanation for the discrepancy is that heat

is transferred due to convection of ground water. The
numerical model does not include convection and the heat
transport will thus appear as a false increase of thermal
conductivity. However, the laboratory determined value,

A~ 3.4 W'm OC, used in Appendix I for prediction of
temperatures during the heating phase, gave quite good
agresment with in situ temperature readings. This indicates
that the heating cycle has caused an increase of either
thermal conductivity or water permeability.
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Laboratory tests

“

1

T T 1
1] 100 200 300

TEMPERATURE (°C}

XBL 788-10248

Fig A.II1.1 Thermal conductivity from laboratory tests
and in situ tests. The same temperature de-
pendency has been assumed for both cases.
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