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APPLICATIONS OF MAXENT TO QUANTUM MONTE CARLO
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Los Alamos, New Mexico 87545

Mark Jarrell!
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ABSTRACT: We consider the application of maximum entropy methods to the analysis of data
produced by computer simulations. The focus is the calculation of the dynamical properties of
quantum many-body systems by Monte Carlo methods, which is termed the “Analytic Coutinuation
Problem.” For the Anderson model of dilute magnetic impurities in metals, we obtain spectral
functions and transport coefficients which obey “Kondo Universality.”

Introduction

A new area for the application of maximum entropy and Bayesian methods is in computer simu-
lations. We will provide an example of how data produced by stochastic methods for solving the
many-particle Schrodinger equation may be analyzed by the maximum entropy method. Specifi-
cally, we will calculate the excitation spectra and transport coefficients of an important many-body
system, the Anderson model (Anderson, 1961) for dilute magnetic impurities in alloys. This is
an extremely ill-posed inverse problem similar to numerically inverting a Laplace transform from
incomplete and noisy data. In our case, the data are computer generated, they are not statistically
independent, and they are not necessarily Gaussian distributed. We will discuss how Classic Max-
Ent (Gull, Skilling, 1989) noise scaling, error estitnates on integrated quantities, and the choice of
informative default mode! are all essential for obtaining good results.

Our work is the first example of what we expect will develop into a wide range of applica»‘

tions of maximum entropy and Bayesian methods to ¢computer simulations of quantum many-body
systems. These systems include normal and superfluid *He, nucleons in nuclet and nuclear matter
in neutron stars, quantum chromodynamics in elementary particle physics, and strongly correlated
electronic systems, e.g. high temperature superconductivity, magnetism, the quantum hall effect,
heavy fermion materials, etc. What all these diverse systems have in common is that quantum
effects are essential, the systems must be described by many-particle wave functions of the appro-
priate Bose or Fermi symmetry, and the interaction potentials between the particles are very strong.
The strong potential implies that there is little hope for conventional theoretical approaches based
on a perturbation expansion in powers of the potential starting from the noninteracting limit, e.g.

t Permanent address: Dept. of Plysics, University of Cincinatti, ML 11, Cincinatti, OH 45221.
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Feynman diagram expansions. The “small parameter” needed to justify such expanéions does not

exist for these systems. The essential physics often corresponds to an infinite power resummation of |

the perturbation expansion, Usually, it is feasible to calculate only a few terms in the perturbation
expansion.

There are many alternatlves to perturbation theory, each with its own domain of success.
The most common approach is phenomenological; that is, one eschews a first principles (ab initio)
understanding and, instead, one builds a model for the behavior with parameters determined from
experiment. An example is the Fermi liquid theory for metals. An ab initio approach'is to hypoth-

esize approximate wave functions; which by a variational principle can be made to approach the

ground state wave functions of the system. This has many successes for the static properties such
as pair-correlation functions and momentum distributions, but it cannot describe the dynamical
behavior such as collective modes and transport coefficients. The renormalization group approach
focuses on properties, such as critical phenomena at phase transitions, which do not depend on

details of the potential.

However, with the advent of supercomputing power in the last few years, another ab initio

- approach has emerged which makes use of a stochastic solution of the Schrodinger equation for the

many-particle wave function. The methods (see, e.g., Negele, Orland, 1988) are described by names
such as Green’s Function Monte Carlo and Path Integral Monte Carlo. The approach is based on
a trick: any desired property of an interacting quantum system may be represented as a functional

integral of a non-interacting quantum system over a set of fictitious fields, to be discussed further

below. This integral is then sampled by Monte Carlo integration methods. The central limit theorem
guarantees that for sufficient samples, N, the errors will be Gaussian distributed and the variance
on the integral will decrease like O(N~!/2). To make the calculation feasible, importance sampling
is used to reduce the variance. That is, in Bayesian language, the integrals are sampled according to
a probability distribution which incorporates our prior knowledge of the important configura..ons
of the fields. For example, prior knowledge may be described by an approximate wave function,
such as that generated by the variational methods discussed earlier. In the Metropolis algorithm,
an ergodic Markov chain is defined which samples the integral according to the thermodynarnic
probabilities of the fields. In the end, the result of the computer simulation is data with statistical
errors much like any experiment. Maximumn entropy and Bayesian methods may then be used to
make inferences based on these data.

Quantum Monte Carlo and the Anulytic Continuation Problem

In this section, we present a brief introduction to the quantum Monte Carlo (QMC) methods, and
we motivate the actual problem solved using maximum entropy. Suppose, for example, we wish to
calculate the partition function of a quantum many-body. system

Z=Tr(e_‘m), ‘ ‘ (1)

where H is the Hamiltonian, § = 1/T where T is temperature, and Tr denotes the expectation
value (trace) over a complete set of quantum states which describe the system. The Hamiltonian
can be written as a sum of kinetic K and potential V energy terms, # = K + V, where K and V are
non-commuting operators. The quantity inside the trace in Eq. (1) is the time-evolution operator
in imaginary time r. It can be broken up into an L step Feynman path integral

- - L - - L
e—'rH — [e"‘ATH] ~ [E_ATKC“ATV] +O(AT‘2) ) (2)

where LAT = 3. The Trotter correction term O(Ar?) due to the non-commutativity of A and V
can be ignored for sufficiently small Ar.

In general, the kinetic energy K is quadratic in creation and annhilation operators for the
partxcles in the system, and the potential V is quartic in the operators for two-body interactions.
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For example, for the Anderson model we will discuss later, the potential encrgy is the Coulomb
_interaction for having two electrons on the same impurity, V= U"Tnl' where nT = d+dT is the

number operator for having an up spin electron on the impurity site. We can transform exponentxals

of quartic operators into exponentials of quadratic operators by the analogue of completing the -

square. For example, consider the transformation

2”2 T o)
exp|— \/—a 577 x| . (3)

An exponential of 4% has been transformed into an exponentlal of b at the expense of mtroducms an
integration over a:dummy variable, £. Analogously exp (~ ~ArV) for each time slice in Eq. (2) can be
transformed into expouentials of i1, at the expense of introducing integrations over (time-dependent)
~auziliary fields. This is termed the Hubbard-Stratcnovich transformation. Hamiltonians which are
quadratic in creation and annhilation operators are non-interacting, and they may be solved exactly.
In this fashion, the calculation of the partition function is reduced to an L dimensional integral over
L auxiliary fields of a non-interacting system of particles moving in time-dependent auxiliary fields.
Monte Carlo methods are then used to sample this [ dimensional integral. A similar argument holds
for the calculation of any other observables of the quantum system. Details of the QMC algorithms
are discussed elsewhere (Loh, Gubernatis, 1990).

We consider using QMC to calculate the dynamical properties of many-electron systems such
as excitation spectra, transport coefficients, magnetic susceptibility, etc. To be specific, we consider
the Anderson model for dilute magnetic impurities interacting with conduction electrons in a metal.
The dynamical properties can be obtained from the impurity (retarded) Green’s function, which is
simply the Fourier transform of an autocorrelation function describing the amplitude for creating
an electron on an impurity at time 0 and destroying it at time ¢t. This is written

Gd(u))‘z /dte 2 Z <{d d+ ]+>'— / dw! w—wl-’?—zs' (4)

The nolation is that dj(O) is a creation operator for putting an electron on the impurity of spin ¢
at time 0, <> denotes the thermodynamic expectation value, and [, denotes an anticommutator
appropriate to Fermions. In the second part of this equation, A{w) is termed the spectral function,
which is a positive additive distribution function. Peaks in A(w) correspond to the characteristic
excitation energies for electrons on the impurity.

Due to the need for weighting many-particle quantum states by their thermodynamic proba-
bility, the QMC algorithm is formulated in imaginary time 7 [Eqs. (1- 3)]. This is fine for calculating
static properties, such as the partition function, which can be formulated as integrals in imaginary
time. However, we cannot calculate dynamic properties such as the real frequency quantity, Ga(w )
directly from QMC. Rather, QMC enables us to calculate an imaginary time (Matsubara) Green's
function

ov
—

1 . ;

G(r) = 3 > <dy(r)d(0) > | | (
which is defined only in the range of 0 < 7 £ . The relationship of this quantity to the spectral
function is given by the spectral representation

80

G(r) = / dw A(w) -

+ e—-ﬁw '

- TW
; (6)

— 00

" T R [ U " . ey " n Voo v AN IT o W

ey



i w [T I TR . W o . A il

4 ‘ ‘ ' Silver, Sivia, G ubernatis, Jarrell

The determination of the real frequency spectral functipns from imaginary time Green's func-
tion data is termed the analytic continuation problem. Fig. 1 shows typical data generated by a
QMC calculation. The data are generally smooth and featureless, whereas the spectral function
may have several sharp features. As discussed earlier, the data produced by QMC about G{r) are
subject to statistical errors. In the figure the errors are at the .01% level of the peak datum, so that
the data appear smooth. Eq (6) is similar in many respects to a Laplace transforrn particularly
because a very small amount of noise on G() can result in very large changes in the A(w) obtained
by trying to numerically invert this transform. The analymc contmuauon problem is eztremely
l-posed. :

Because of the 1mportance of dynamical properties to all of many-body physms there have
been many attempts to solve the analytic continuation problem, Unfortunately, the developments
have been a series of ad hoc procedures. Of course, almost all methods for solving inverse problems
will work with sufficiently good data, such as a mock data set. The test should be the quality of
information extracted from feasible QMC data.

The earliest attempt was to use Pade approxxmcmts (Vidberg, Ser\,ne 1977; }llrsch 1987).
Writing the discrete frequency Fourier transform of G(r) in the range 0 < 7 < 8 as G(iwm), with
wm = mn/fh, one fits the data to the form :

G(iw‘ )‘__ an(iwm)n*"un—l(iwm‘)n_l+"-+ao ‘ (7)
m = b1 (lwm) ¥ + .+ bo) ! ‘

and then analytically continues to real frequencies. This approach ignores statistical errors. There-
fore, it tends to fit the noise as well as the signal, and it can propagate noise into the resulting
estimate of the spectral function. . For feasible QMC data one obtains extremely noisy nonposi-
tive images. This failure is not surprising, considering that the method does not enforce even the
minimal prior knowledge about the positive and additive nature of the spectral function.

i T T |l 1 } T T T ‘T .‘ T_

| U=381,T=.58=25

u=U/nl = 2.42 .

T/T¢ = 1.66 ]
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NG ]
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T

F lg 1. A typical Matsubara Creen’s function, G(7), calculated by QMC for the Andersbn model
with the parameters indicated.

" e [T RN e w1 i [ w " s " B I R ,‘“”. -



"APPLICATIONS OF MAHENT TO QUANTUM MONTE CARLO 5

The next approach was to use constrained least square fitting (Schuttler, Scalapino, 1985).
One assumnes that the QMC data are Gaussian distributed and statistically independent

Gome(r) = G(n) £ 00 . 1 = 0,Ar,2Ar,...,5 . ‘ (8)
Then one functionally varies A(w), constrained by positivity, to minimize

2 . 1 ~ 2
o= Z ‘}?[OF‘I’I‘(Tz) Gome(m)]” | (9)
where Gpir(m:) is the G(7) generated by a given choice of A(w) in Eq. (6). The result of this
procedure is a very small X2, but very noisy positive A(w).

This was followed by constrained least squares fitting with smoothing (White, et al., 1989).

One minimizes
2
QEX2+b/dw<?—g£—w) : ' (10)

This has an adjustable parameter, b, to control the degree of smoothing. The choice of b is essentially
intuitive (ad hoc). This tends to produce reasonable A(w), but there is alsc a tendency to produce
spurious structure. In particular, there is great difficulty in accommodating both sharp and broad
structure in A(w). Nor does the method provide any error estimates, since it is not founded on
probability theory. An artificial dynamics with smoothing, which has similar behavior, was also
proposed (Jarrell, Biham, 1989). ‘

The most recent attempt is the average spectrum method (White, 1990). One calculates

DA(w)A(w) e~ X'/
L [():)( We— i AW 20, )

where the DA(w) represents a Monte Carlo integration over all positive A(w). This is a computer
* intensive method which produces reasonable A(w) without smoothing. The method will also produce
error estimates, i.e. simply calculate the quantity < (A(w))? > —(< A(w) >)?. However, there is
a tendency to produce spurious tails where A(w) should be zero, and the choice of representing the
image as an average spectrum violates the MaxEnt disiderata. For example, the average spectrum
method will produce 1/12 for the number of blue eyed-left handed kangaroos in the Kangaroo
argument (Gull, Skilling, 1984), rather than the preferred answer of 1/9.

< A(w)‘>

None of these approaches regarded analytic continuation as an image reconstruction (or sta-

tistical inference) problem. The true character of the statistical errors in the QMC data was'also
overlooked, i.e. the QMC data are not statistically independent and Eq. (8) is invalid.

QMC Data Treatment and the Maximum Entropy Approach

A maximum entropy approach to the analytic continuation problem was first discussed by Silver, et
al. (1990). The method was illustrated by using MEMSYS3 (Gull, Skilling, 1989) to analyze mock
data in which the errors were taken to be Gaussian distributed and statistically independent. We
then proceeded to analyze real QMC data for the Anderson model (Silver, et al., 1990; Jarrell, et al.,
1990). The data were generated with a QMC algorithm (Hirsch, Fye, 1986) based on a Metropolis
method. The first step in the maximum entropy approach to real QMC data is to calculate the
Likelihood function.

As discussed earlier, the Metropohs procedure generates G(r;) data as an average over a
Markov chain. Correlations in the values of the auxiliary fields are removed by binning the data
over Monte Carlo times much longer than the characteristic correlation times. The binned G(r;)
distributions become Gaussian distributed only at sufficiently large total Monte Carlo time, and

M”‘ o . ' "o oo " o ' ' oo [ ' " ]

the
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for-smaller Monte Carlo times there was signiﬁcant“kurtosis in" the G(r;) distributions. If N is the
number of bins, and Gn(7;) is the average of G(r;) for the n'th bin, the covariance matrix for the
data can be estimated from ‘

' 1 N )
Clrn) = =Ty }:1 8Gn(1)6Gn(T5) | | (12)
where
1 N ) . .
6Ga(r) = Ga(r) = 5 2 Gnlr) = Gaare(r) . - (13)
. n=1

We. found ‘that the covariance matrix is not diagonal, unlike the assumptions in all previous ap-
proaches to the analytic continuation problem. Rather, the covariance matrix is dense. The elements
g0 to zero only where required by the symmetry of the problem. The eigenvalues of Cij = C(7i,7j)
typically spanned 4 to 6 orders of magnitude, as shown in Fig. 2.

To generalize the Likelihood function to covariant data, we first write the Green's function in
vector notation: '

- 00
- . Paallatt .
©Gn = 6m) = [ daw = (14)
—00
Defining
§G = Gprr - Game ‘ (15)
T T T T v H ¥ { 1 T 1 T
o | | |
1 u = U,/nl‘.= 2.42
f T/T¢ = 1.66
o 0.1
RS
< ' 0.01
0.001 &
O‘Oool ‘l L1 IA 1 . ] I ] 1 ] L } Il L
0 20 40 60

Index

Fig 2. Eigenvalue spectrum of the covariunce matrix for the data in Fig. 1.
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the generalization of the Log-Likelihood function for covariant data is (Silver, et al., 1990)

. 2 ' - — - '
X? = 6GT. . CTV.6G . (16)
However, the \/IEMSYQS code requires statistically independent data. To create this, we rotate the
spectral representation by an orthonormal transformation calculated by singular value decomposi-

tion of the covariance matrix, i.e.

¢=0.5.07 an
and
(D) = (UT G(MC)i = Z (18)

Here U is the orthonormal matnx which dlagonallzes the covarlance matrix, D are the dats used

in the MEMSYS3 code, and 5] is a diagonal matrix whose elements are the squares of che errors

on the data..We do not know of any physical significance to the rotated data space. Eq. (18) is the
image-io-data-transformation used in the MEMSYS3 code.

Our calculation used the features of Classic Automatic MaxEnt. Although we did our best to
produce Gaussian distributed data, the actual distributions showed some kurtosis. Consequently, it
was important to use the automatic noise scaling which can compensate for non-Gaussian distributed
data. We typically found that the errors were rescaled upwards by less than 20%. The transport
coefficients of the Anderson model can be calculated by certain integrals over th~ spectral functions.
Classic MaxEnt provides the errors on these integrals, and as we shall show this is very important
for proving certain physical properties of the Anderson model.

Finally, we found that it is crucial to use an informative default model for such an ill-posed
problem, We used a perturbation theory prediction (Horvatic, et al., 1987) for the spectral function

~of the Anderson model. This choice significantly reduced the variance of the spectral functions

and transport coefficients obtained. Spectral functions and transport coefficients obtained with
uninformative default models had much larger errors. The perturbation theory can be expected to
get the high frequency properties correctly, but it cannot be expected to correctly describe the low
frequency many-body behavior. Fortunately, a Likelihood function analysis (Silver, et al., 1990) of
Eq. (6) shows that the QMC data provide the most information about low frequency properties.
The maximum entropy procedure therefore provides a complementary combination of computer
simulations with analytic theory.

The Anderson and Kondo Models

The properties of a metal with a dilute concentration of magnetic lmpuntles has been an enduring
problem in condensed matter physics. Anomalies are found experimentally in the resistivity, ther-
mal conductivity, thermopower, specnﬁc heat and magnetic susceptibility. The resistivity anomaly
is the best known: as the temperature is lowered the resistivity displays a minimum, then increases,
and finally saturates as the temperature goes to zero. The qualitative understanding of this re-
sistivity mirimum is well understood in terms of the Kondo Hamiltonian (Kondo, 1964). This
describes a spin one-half impurity interacting with the conduction electron spins via an antiferro-
magnetic coupling constant J. As the temperature is lowered toward a characteristic energy scale,
Tk, the scattering rate of electrons from the impurity calculated by perturbation theory in J begins
to diverge logarithmically. The increasing impurity resistivity overwhelms the decreasing phonon
resistivity, and the resistivity begins to rise. The behavior as the temperature approaches zero is
infinite in any finite order in perturbation theory, and in general it requires a non-perturbative treat-
ment. The understanding which has developed from renormalization group calculations (Anderson,
et al,, 1970: Wilson, 1975) is that the conduction electrons begin to screen the magnetic irapurity.
This decreases the effective impurity moment toward zero forming a local singlet composed of the
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impurity spin and a compensating electron cloud. The resistivity saturates For the spin one-half
impurity, no theories explain the resistivity behavior over the entire range of interest, T & Ty, to
T>»Tk.

The Anderson model is a more general description of magnetnc impurities in metallic alloys,
“which includes the possibility of charge fluctuations (changes in the number of electrons) on the
impurity, The model consists of a half-filled conduction band interacting with an impurity via a
hybridization matrix element V. The Hamiltonian of the (symmetric) model can be written

= Y exdf,dre + y V(af,do +dfars) +U(ny — 1/2) (3 - 1/2) . (19)
ko ko '

Here, d, is an annhilation operator for an eléctron on the impurity, @, is an annhilation operator
for a conduction electron of energy ey and spin o, and 1, = d d, is the number operator for a
spin ¢ electron on the impurity site. There is a Coulomb energy U for two electrons to be on the
same impurity. In the limit of large U charge fluctuations on the impurity are suppressed, and the
Anderson model should reduce to the Kondo model.

To develop our expectations for the spectral function, we consider some limits. First, if the
hybridization is taken to zero, the energy levels of the impurity are E = 0 for one electron on the
impurity and E = U/2 for zero or two electrons on the impurity. We, therefore, expect single-electron
excitations at w = = U/2. If now we turn on the hybridization, we expect these excitations to be
Lorentzian broadened by a hybridization width T' = N(0)rV?2, where N(0) is the conduction band
density of states at the Fermi level derived from e;. The limit of large U/ provides another, much
smaller, energy scale for single particle excitations, Then, a transformation (Schrieffer, Wolff, 1066)
of the Anderson model yields the Konde Hamiltonian with antiferromagnetic coupling constant,
J = —8I'/rN(0)U. Using high temperature perturbation theory (Haldane 1978) in J coupled with
numerical results (Jarrell, et al., 1990), the Kondo temperature is given by Tk ~ 0.515(1+1/2u)l'\/u
exp(-m%u/8), where u = U/n['. By the particle-hole symmetry of the symmetric model we expect a
Kondo peak in the spectral function centered at w = 0 of width comparable to Tx. To discuss scaling
properties, we first remove an arbitrary energy scale by dividing all energies by T', and we discuss
a scaled spectral function w[4(w). If U is sufficiently large compared to T such that there are no
significant charge fluctuations on the impurity site, the only energy scale at low frequencies is the
Kondo temperature, Tx. We expect the scaled spectral function to be a universal function of w /Ty
and T/Tk for w small compared with U. We refer to a lack of dependence on U as untversality.

In the dilute impurity limit for the Anderson model the single-particle spectral function may
‘be related directly to the transport coefﬂcients (Bickers, et al.,-1987). The resistivity is given by

0 dw -1 2
£R = / ATV w) (20)

where f(w) is the Fermi function, 1/(1 + exp(—pfw)). At sufficiently low temperatures the Fermi
factor. df/8w, in the resistivity ensures that only the low frequency part of the scaled spectral
function contributes. Therefore the transport coefficients can also be expected to be universal
functions of T/Tk . At sufficiently high temperatures, the Fermi factor will mix in the high frequency
peaks at w = :£ //2 resulting in non-universal behavior.

Horvatic et al. have developed a perturbation expansion for the spectral function with u as the
small parameter. While their expansion is in principle absolutely convergent, in practice only a few
diagrams in the expansion can be calculated, Their results should be valid at small u and become
increasingly poor at large u. While they recover the main features of the spectral function discussed
above, the w = 0 peak in their spectral function is not a universal functic  nor is the resistivity
calculated using their spectral function in Eq. (20). A critical question we \:ish to address is how
high must u be in order to obtain universality. ‘
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- The Kondo limit at large u leads to several expectations for the spectral functions and transport
coefficients. The detailed shape of the spectral function at zero temperature has been predicted to
be (Domach Sunjlc 1970)

Ty
w+ il
although they did not predict the value of 'y, Wilson (1976) carried out a famous numerical
renormalization group study of the Kondo model. He defined a low temperature energy scale, T, -
by TgX(0) = upg®, where X(T') is the magnetic susceptibility. He found that T = 2.4 Ty, where
1/2.4 is refered to as the Wilson number. Based on Wilson’s study, Nozieres (1974) predicted that
at low temperatures the resistivity would show Fermi liquid behavior with

lim E_(I_)_ ~ l—cr(%:) . o | (22)

T A(w)r=0 = Re

(2

(Note, that « is different from the statistical regularization parameter in MaxEnt.) Nozieres sug-
gested that o is determined by the Wilson number to have the value 1.03. At temperatures high
enough to apply perturbation theory in J, the resistivity is expected to be given by (Hamann, 1967;
Nagaoka, 1965; Suhl, 1965) ‘

for  o(T) _ 1{1_ InT/TJY ]
TRTZ o(0) WP T/TY + 372/

Here T:,‘(Y is the “Nagaoka” Kondo temperature defined by where the resistivity goes through one-
half its peak value. One goal of our calculations is to test these predictions and to determine the
parameters ['g,«, and T,’}’ along with their relation to Tk. In addition, we wish to obtain the
universal resistivity over the entire range from T &« Tk, to T > Tk. ’

(23)

Results

Figure 3 shows typical results (Silver, et al, 1990) for the scaled spectral function 7['A(w). The
spectral function obtained from the QMC data using maximum entropy is labeled QMC-ME. The
perturbation theory prediction of Harvatic et al., is labeled H. The ratio of the two results is labeled
QMC-ME/H. While the H prediction has the qualitatively correct structure, the QMC-ME Kondo
peak is depressed and broadened compared to H and the U/2 peaks are slightly enhanced. This
preserves the sum rule on the spectral function. In general, we find that QMC-ME and H agree for
u < 1.2, However, with increasmg 1 the QMC-ME Kondo peaks becomes increasingly depressed and
broadened compared to H, anu the QMC-ME U/2 peaks become increasingly enhanced compared
to H.

In Fig. 4 the QMC-ME spectral functions are plotted (Silver, et al., 1990) against w/Tk at fixed
T/Tx = 1.5 and for a variety of u. The semilog scale emphasizes the behavior at low frequencies.
One can see that the QMC-ME spectral density is approximately universal (independent of u) for
w/Tx S 20, although the high frequency behavior around the U/2 peak is non-universal. While
error estimates at individual w/Tk points are very large, the error estimates on integrals of the
spectral function are small and meaningful. The inset in Fig. 4 shows that the average of 7 {"d(w)
for w/Tx 520 is universal for u > 1.25 within statistical error. In contrast, the H predictions are
distinctly non-universal in the same frequency range. Only for u S 1. 2 where both H and QMC-ME
agree within statistical errors is QMC-ME non-universal,

Figure 5 shows (Silver, et al, 1990) the evolution of the universal Kondo peaks as a function
of T/Tk at fixed u 2.0. At T/TKZ 10 the Kondo peak is absent. With decrcasing T/Tk the Kondo
peak grows and narrows until at T/Tx < 0.2 the height of the central peak has almost approached

" o . [N L T ' I " no
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1 1 i T ] T T T ] ‘ T T T
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=k u=U/al =242
F 0.5 H ]
L | U/er ]

0.0 - :

0 2 4 6

Fig. 3. QMC-ME labels the quantum Monte Carlo and maximum-entropy results for the spectral
density of the symmetric Anderson model for the parameters indicated. H is the prediction of the
self-consistent second-order perturbation theory of Horvatic et al. for the self-energy. QMC-ME/H
labels the ratio of the two calculations. ‘

the Freidel sum rule value of 1.0. The inset in Fig. 5 shows the screened local moment calculated by
QMC, TX(T)/g*, plotted versus T/Tk for u = 2.0. The growth of the Kondo peak with decreasing
T/Tk is correlated with the screening of the impurity local moment by the conduction electrons.
Plotted as the dashed line labeled DS in this figure is the Doniach-Sunjic prediction for the shape
of the Kondo peak at zero temperature, We find that a best fit to the T/Tx = 0.2 QMC-ME curve
is obtained with I'x = 2.5 Tk, which is remarkably the inverse of the Wilson number.

Figure 6 shows (Jarrell, ef al., 1990) the resistivity ratio, o(T)/e (0), plotted vs. u for T/Tx =

1.5. Universality is demonstrated by the fact that for 4 > 1.5 the value of the resistivity saturates to a
constant, whereas the Horvatic et al. perturbation theory prediction continues to rise monotonically.
We wish to emphasize that the error bars on our resistivity come from our estimates of the covariance
matrix of the QMC calculation, and the errors are propagated by our classic MaxEnt code into
integrals over the spectral function. The increasing error bars with increasing u are due to several
factors. The QMC statistical errors become larger with increasing u because the representation
we are expanding about becomes worse. The perturbation theory, when used as a MaxEnt default
model, diverges from the QMC data with increasing u. The error estimates are much larger when
uninformative default models are used, making it more difficult to prove universality.

In Fig. 7 the resistivities are plotted versus In(T/Tk) for several values of u (Jarrell, et al.,
1990). One can see that these define a universal resistivity curve (independent of u) over the desired
range from T &« Tk to T > Tk. Since at I' € Tk the resistivity ratio is very close to one, it is
difficult to determine reliably the difference between the resistivity ratio and one. The dotted line
in Fig. 7 is the Fermi liquid result, Eq. (22), with o an adjustable parameter. We found a best, fit
for (T/Tk)? < 0.1 of a = 0.83 & 0.06. The quoted error reflects only statistical sources of error,
but there is also a potential for systematic error. A subtle point of the maximum entropy method
is a built-in bias toward the default model of approximately one standard deviation. The default
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model was the Horvatic et al,
QMC-ME calculation (

perturbation theory which had a larger resistivity ratio than the
Alternatively, it had a smaller a, although the Horvatic et al. calculation
does not show Kondo universality.) For (T/Tk)? <0.1 the Noazieres
standard deviation above the QMC-ME results for each T/Tk valu

The solid iine in Fig. 7 is the Hamann et al. prediction, Eq. (
for T > Tk by adjusting T§ so that the curves agree when o(T)/e (0) = 0.5. We find TY Tk
= 2.5, which is remarkably again the inverse of the Wilson nu
results agree well with Eq. (23) at high tem
However, for the highest temperatures simul
and the resistivity ratio falls below the Hamann result,
is thermally reduced due to occupation of the zero electr
whereas the moment in Hamann’s calculation is fixed
impurity moment which scatters the electrons is reduce

Conclusions and Discussion

We have verified all of our expectatidns about the d

model.
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]

pectral density at fixed 7'/Tx = 1.5 and for the values of
aximum entropy results. They are
for w/Tk less than 20, and they are nonuniversal
peaks. Inset: Average of m ['A(w) for w/Tx < 20
u, with higher

prediction is approximately one
e. ‘ ‘
23), obtained by fitting the data

mber for the Kondo problem. Our
peratures, but they diverge as expected for 7" < Tx.
istivity shows some slight non-universality
In this limit the Anderson model moment
on and two electron states on the impurity,
at one-half.- For finite u and T > T the
d and so is the resistivity,

ynamical properties of the symmetric Anderson
For u < 1.2 we obtain universal Kondo scaling for low frequency properties including the
y. We find agreement with the Doniach-Sunjic
pe of the spectral function and with the Hamann-Nagoaka-
> Tk. Our results are consistent with Nozieres prediction
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Fig 5 OMC-ME labels the quantum Monte Carlo and maximum entropy results for fixed u = 2.0
and varying T/Tk as indicated. The Kondo peak is approximately independent of u for w/Tx <
20. DS labels the Doniach-Sunjic expression, Eq. (21), for the zero temperature shape of the Kondo
peak. We find a best fit for [x = 2.5 Tx. Inset: Screened local moment, T'X(T)/g?, plotted vs.
T/Tk. ‘ A ‘

of Fermi liquid behavior for the resistivity at T < Tk, although the coefficient a of the (T/Tk)?
term may be slightly smaller than Nozieres value. Moreover, we find a remarkable convergence for
the numerical parameters of these theories, summarized in the following equation,

T =Tk =Ty = 25Tk . (24)

Here, T is the Nagaoka Kondo temperature defined by where the resistivity ratio goes through one-
half; Tk is the width in the Doniach-Sunjic expression for the zero temperature spectral function;
T is Wilson's Kondo temperature determined by numerical renormalization group calculations; 2.5
is approximately the inverse of the famous Wilson number; Tk is the Kondo temperature determined
by high temperature perturbation theory in the impurity-conduction electron spin coupling constant
J. The remarkable simplicity and convergence between the parameters of these theories certainly
deserves an explanation. ’ ‘

- Perhaps most significantly for the long term, we have established a general methodology (Sil-
ver, et al., 1990) for the ab initio calculation of the dynamical properties of many-body systems.
This combines quantum Monte Carlo to generate Matsubara Green's functions in imaginary time, -
the maximum entropy method to solve the extremely ill-posed problem of numerically inverting
the spectral representation, and perturbation theory and other forms of prior knowledge to provide
informative default models needed to minimize the variance of the maximum entropy results. Our
method provides for full error propagation from the raw QMC data all the way to integrated prop-
erties of the spectral function, such as the transport voefficients. Moreover, the maximum entropy
method provides a natural combination of analytic theory.to cotain high frequency properties with
quantum Monte Carlo to obtain low frequency (many-body) properties.

TR TR T e ' e e " L L T R



APPLICAT IONS OF MAKENT TO QUANT UM MONTE CARLO | 13

L T ! T T l T T T T ]
, h,' ‘ ‘ .- o -
0,8 '_" T/TK = 1.5 ‘ —
- o H. ' .
= r © QMC-ME o 4
Q. nd . -
N 07k | —
@) - -
< s ° E -
- 9 ‘S "y $ .
0.6 — : —
L -l L 4 L l Il Il ul i | 7

1 2 3

Fig 6 The resistivity ratio o(T")/¢ (0) plotted vs. u = U/n[" when T'/Tx = 1.5. The open circles
are from the perturbation theory of Horvatic et al. For u < 1.2 there was no significant difference
‘between the perturbation theory and the Monte Carlo results. Universality of the Monte Carlo data
Is indicated by the fact that for u > 1.5 the value of the ratio saturates to a constant within MaxEnt
statistical errors, whereas the perturbation theory continues to rise monotonically.

Our method has already been applied to several oth.. problenis in computational condensed
matter physics. These include verifying the Haldane conjecture about Heisenberg spin chains (Deisz,
ct al., 1990), calculating gap states in superconductors induced by magnetic impurities (Jarrell, et
al., 1990) and determining the density of states of the Hubbard models (Silver, White, 1990) which
are perhaps relevant to high T, superconductivity. We are currently applying the method to the
calculation of the dynamical magnetic susceptibility of the Anderson model, to the asymmetric
Anderson model to better compare with experimental data, and to the X-ray edge singularity
problem. ' - ‘

We would like to emphasize a number of technical features of the application of MEMSYS3
to QMC. The analytic continuation of QMC data is an extremely ill-posed problem. The number
of good measurements defined by Classic MaxEnt is typizally 5-8. The posterior distribution of
the statistical regularization parameter in MaxEnt, «, is not sharply peaked. While in principle
we should have marginalized over the distribution of a, we have not yet done so. Recently a new
MaxEnt algorithm has been proposed (Bryan, 1990) which marginalizes over a for such over-sampled
inverse problems. Nor have we as yet implemented pre-blur (intrinsic correlation functions), as is
currently suggested to overcome the tendency of classic MaxEnt to overfit data (Skilling, 1990).
Rather, we have minimized the variance of the MaxEnt images and integrated quantities by relying
on perturbation theory for the Anderson model to provide an informative default model. For other
QMC applications such high quality default models may not exist. Sometimes prior knowledge
of sum rules and moments may be used to construct a reasonable default model according to the
principle of maximum entropy. However, for most future QMC problems we expect marginalizing
over a, and perhaps implementing pre-blur, to become more important.

" ' o Ve " [ T .
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Fig % o(T)/g (0) vs. T/Tk at different values of u. The solid line is from the self-consistent high
temperature calculation of Hamann et al,, Eq. (23). It is fit to our results by varying T,‘}’ so that
the curves agree when o(T§)/e (0) = 0.5. We find TR = 2.5 Tk. As expected, this prediction fails
at low temperatures. The dotted line is the Fermi liquid result due to Nozieres, Eq. (22), with a
best fit of a = 0.83 & 0.06. The resistivity is roughly logarithmic for 0.5 < T/Tx < 4.0. ‘

Classic MaxEnt error estimates on integrated quantities were essential to the proof of Kondo
universality. We have found these estimates to be reliable. Repeating the QMC calculation with
a different random number seed produced resistivities within one standard deviation of equivalent
runs. A longer QMC run reduced the error, and the new resistivity was inside the error estimates
of the shorter QMC run. Automatic noise scaling was also essential to our success. Without it, the
Classic MaxEnt spectral functions are ringing and clearly overfitting. We found the noise scaling was
typically less than 20%, or it could be reduced to less than 20% by a longer QMC run. Presumably,
the longer runs produce data which are more Gaussian distributed. Because of the 4-6 orders of
magnitude range of the eigenvalues of the covariance matrix, we had to report the QMC data to
6-7 digits and to run the MEMSYS3 code in double precision. We found that failure to do so
would result in large noise scalings. The data could be processed using MEMSYS3 in 5-10 minutes
of Sun Sparcstation time, whereas generating the raw QMC data took from 1 to 4 hours on a
CRAY Y-MP for each set of Anderson model parameters. This CRAY time is, nevertheless, orders
of magnitude smaller than would be required by direct methods of analytic cortinuation, such as
simple Padé approximants. The use of maximum entropy and Bayesian methods for data analysis
can dramatically reduce the cpu time required for computer simulations.
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