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ABSTRACT

The stability of the ideal and resistive m = 1 internal modes is investigated
for tokamak equilibria having a variety of different g¢{r) profiles, including non-
monotonic ¢{r) with multiple ¢ = 1 surfaces. Detailed comparisons between ana-
lytic theory and numerical results from a linear toroidal MHD code are presented.

Particular attention is paid to the study of equilibria near marginal stability.



1. INTRODUCTION

Theoretical investigations of the internal disruptions (sawtooth behavior) ob-
served in most tokamak discharges have concentrated on three separate aspects of
the phenomenon:

1. the reconnection occurring!—® during the nonlinear phase of the m = 1,

n = 1 kink instability,

2. the simulation by transport codes®* of the slow evolution of the dis-
charge that returns it to a kink-unstable state, resuiting in the cyclic
behavior observed,

3. the establishment of marginal stability criteria for the internal kink
mode (resistive as well as ideal) and studies of linear growth’~!% near
to marginal stability.

Without the third ingredient, the transport simulations lack credibility because
they assume that the plasma reconnects when some arbitrary criterion is satisfied,
and the nonlinear reconnection studies lack credibility because they start from a
strongly unstable equilibrium.

Recent sawtooth simulations!3:!'4 have employed reduced fluid equations that
follow both the fast Alfvénic time scales and the transport time scale. The equations
include electron thermal transport both along and across the magnetic field, as well
as resistivity. These simulations extend the earlier work of Sykes and Wesson® and
have been very successful in producing cyclical reconnecting behavior. However, the
geometry is cylindrical, and the stability properties of the internal kink mode are
quite different in cylindrical and toroidal geometry.? The conditions under which
each thermal collapse is triggered may therefore be rather different in this simulation
from those holding in a real tokamak discharge.

Another difficulty encountered in sawtooth simulations concerns the very fast
collapse time frequently observed in large tokamaks (100 us in JET). As noted by
Wesson,’ this collapse time is at variance with the estimate given by Kadomtsev,
and it is difficult to reconcile with any mechanism involving a transport-induced
evolution through a linear stability boundary, be it of an ideal or a resistive mode.
If such a mechanism is responsible for the temperature collapse, an exceedingly
sharp stability boundary must be involved: sharp, that is, in the sense of large
growth rates being possible for equilibrium parameters close to marginality.

1



2 Introduction

A knowledge of linear stability criteria and linear growth rates near marginal
stability is therefore an important ingredient in understanding sawtoothing in toka-
maks. An important contribution in this field is the toroidal calculation of the
ideal MHD energy 6W by Bussac et al.® (subsequently presented in more detail in
refs. 15-17). From a later paper by Bussac et al.,!° one can obtain analytic expres-
sions for the linear growth rate of the internal kink mode in a resistive plasma as
well as in the ideal limit S — oo (where S is the magnetic Reynolds number). These
results are limited in several ways, all of which may be relevant to understanding
sawtoothing,

1. The analysis assumes an aspect ratio expansion of the equilibrium, and
orders B ~ €2, where ¢ is the inverse aspect ratio.

2. Only g(r) profiles (where g is the safety factor) having a single ¢ = 1
radius are considered.

3. In the inner region, r < r;, where g(r;) = 1, the ordering |¢ — 1| > ¢ is
assumed.

It is the purpose of this paper to remove these limitations and to establish the
internal kink stability properties of tokamaks for a variety of ¢(r) profiles, including
nonmonotonic ¢(r), at finite as well as large aspect ratio. We devote particular
attention to identifying marginally stable equilibrium configurations and to evalu-
ating growth rates close to marginality, for both the ideal and resistive internal kink
modes. Detailed quantitative comparisons are made between the computational re-
sults obtained from a linear toroidal resistive MHD code (FAR)!®:19 and analytic
results.

The structure of the paper is as follows. Section 2 summarizes the analytic
theory for ideal internal kink modes when a single ¢ = 1 surface is present in the
plasma and extends it to cases for which two ¢ = 1 radii are present. In Sect. 3,
results from analytic theory are compared with numerical growth rates obtained
from the FAR code. Section 4 presents numerical results for tight-aspect-ratio
devices, strong shaping, and very low shear profiles. These calculations include
examples that model the measured g profiles in ASDEX?° and in TEXTOR.?! Many
of the calculations are for equilibria consistent with JET. These cases are strictly
beyond the regime of validity of the analytic theories. Section 5 summarizes the
results, and conclusions on the nature of the sawtooth collapse are drawn.



2. ANALYTIC THEORY OF
INTERNAL KINK STABILITY

2.1 CASES WITH A SINGLE ¢g=1 SURFACE

The ideal MHD toroidal stability problem was considered for a large-aspect-

ratio torus by Bussac et al.,® and the effect of shaping was analyzed by Edery et

al.?2 Shaping effects decouple from toroidal effects in the large-aspect-ratio limit, so

that the combined effects are additive. For an equilibrium of circular cross sc.tion,

the energy integral 6W, after minimization, is given by
oW =2n’RB3 |¢l" 2 kit L swT
where

oWwT = [Bs(b -c)+ g(b - 1)1 -¢c)—6(b—1)(c+3)(Bp + 3)

—4(c+ 3)(b+3)(Bp + 3)2] x [16(h — c)]‘l

=[EE) G
By = - Bz(rl)/ndp( ) ’

with B, the poloidal field strength and r, the radius at which ¢(r)
quantities b and ¢ in W7 are the values of the logarithmic derivatives

.

¢ r d¢
€ dri, _

b= -
§ dr ri+

;oe=

obtained by integrating the m = 2 Euler equation,

d 1 d 1 2
ar '3(3‘2) df] e =1) (- 7) re=o.

3
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(2)

(3)

(4)

= 1. The

(5)
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4 Analytic Theory of Internal Kink Stability

from the axis (with regular boundary conditions there) to give b and from the ¢ = 2
surface (or the plasma boundary, if there is no ¢ = 2 surtace within the plasma) to
give c.

An important consequence of the toroidal geometry® is that the cylindrical
contribution to 6W is identically cancelled out for an n = 1, m = 1 mode. It follows
that if the value of the ideal MHD energy, 6W, is important in determining the
trigger for internal disruption and reconnection, cylindrical simulations must give
incorrect results.

To obtain the linear growth rate of either the ideal MHD mode or the resistive
kink mode, the calculation of §W must be supplemented by a theory of the singular
layer.

In the case of the ideal mode, the growth rate may be obtained by equating the
kinetic energy,

2
K=2Lo [ 16 d"s, (7)

to the potential energy available for instability, (—6W).?2 Because of the inertial
layer at ry, K is dominated by the contributions from &3 and &3 in the inertial
layer, where

. d§,
§op ~ —1 df
r 8)
o dEr (
£¢~25m0—27 ’

while the discontinuity at the singular layer is resolved by the inertia, and one finds

d '72 1 2 dfr _

with wy = V4/R and V4 the Alfvén velocity.

The factor 3 appearing in Eq. (9) is the inertial enhancement factor M =~ 1+ 2432
found by Glasser, Greene, and Johnson?* in toroidal geometry. To obtain the correct
linear growth, one must add the field line bending modification to the potential
energy that comes from the layer. This is given by

aﬁf‘—l/ﬂ B2(X-1 2
T2 750 q dr

At marginal stability this contribution vanishes; however, when Eq. (9) is used to
give the layer solution, a finite contribution is obtained.

2

dér (10)




Analytic Theory of Internal Kink Stability 5
Finally, equating K = — (6W + 6W ), one obtains the linear growth rate

-1

[/ . = --dewt, @
oo 3R+ (4 1) ’

where z = (r — r1) /ry is the local radial variable.
Several cases can now be distinguished.

1. Monotonic g(r), with g(r1) = 1 and ¢’ (r;) # O (solid line in Fig. 1),

y 1 m
J oo T (swTy I 12
T AR (12)
2. Nonmonotonic ¢(r), with a minimum at r;, ¢(r;) = 1 and ¢’ (r;) = O (dashed
line in Fig. 1),
2/3 2 2/3
J T - (—lstﬂ) : (13)
wa V3 (il \ B2

3. Nonmonotonic ¢(r), with ¢ (ry) # 1 and ¢’ (r1) = O (dot-dashed line in Fig. 1),

_ 5q 1/3 B 1 r¥ - 2/8
¥ (1 + —g') = W —ﬂ-ﬁ; oW ) (14)

where 5 = [372/w} + (6g)?] /2 ond 6q = ¢ (r1) - 1 < 1. Equation (14) is valid
for both positive and negative values of 6g, provided that when 6¢ < 0, |6g| does
not become large enough for the inertial layer to separate into two layers at the
different ¢ = 1 radii. For positive §¢g, there is a strong stabilizing effect from
the field line bending at r;, and an equilibrium that is unstable when gnj, = 1
(i.e., for which 6W7T is negative) is marginally stable for

11 r? i3
= —r—LswT

The ideal growth rate peaks for negative §q at Ymax = 1.0970, with Yo the
6q = 0 growth rate. As §q becomes more negative, the growth rate decreases,
but the single-layer theory eventually becomes invalid. These analytic results
are compared with computed growth rates in the next section.

4. Monotonic ¢(r), with a point of inflection at r;, ¢(r;) =1 and ¢’ (r1) = ¢"

() =0,
v 1 6 \V%/ on r? T 3/8
w-vilge) v o o



6 Analytic Theory of Internal Kink Stability
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Fig. 1. Profiles of the safety factor ¢(r) for which ideal MHD growth
rates are calculated in Eqs. (12) (solid line), (13) (dashed line), and (14)
(dot-dashed line).

The presence of a point of inflection of ¢ at ry, therefore, enhances the ideal MHD
growth rate [‘7a (r1/ R)e/ 5] when §W7T < 0. For 6WT > 0 the resistive stability of
such g¢(r) profiles is investigated in Sect. 4.

2.2 THE ROLE OF RESISTIVITY

In the foregoing estimates of growth rates, it has been assumed that §W7T < 0,
that is, that energy is available to drive the ideal MHD instability. However, even
when this is the case, it does not follow that the ideal growth rates calculated
above are correct. Resistivity may dominate the layer behavior. To estimate the
magnitude of resistive effects, we compare the inductive contribution to the parallel
electric field, yA||, with tae resistive term in the layer nj o nc’AH /d?, where d is
a measure of the layer width.



Analytic Theory of Internal Kink Stability 7

From this we find that resistivity is negligible if the condition
2 d?\ . -1
- — 7
() (7)> o

Here, S = w7, with 7, = n¢?/r%, and « is the minor radius of the device.
Estimating the layer width d from Eq. (9) and the growth rates from Egs. (12)
and (13), we find that for ¢’ (r1) # 0, Eq. (17) becomes

is satisfied.

ry

571 < f/—; [F1g (r1)] ™ (E)e ("5WT)3 ) (18)

while for the nonmonotonic case, with gmin = 1, it becomes

< noV/af3 [ (r)] T () 2 oWy (19)

where the layer width is

R riq"

2/3
dir) ~ \/27rl/3 <11- ——1——) (—GW"")I/3 .

Inequality (18) gives the familiar result that resistivity (even with S in the range
from 10° to 10°) tends to dominate the linear growth of m = 1 modes. Inequality
(19), however, shows that because of the broader inertial layer and larger ideal
growth rate, the internal kink becomes an essentially ideal mode when the shear
vanishes at the ¢ = 1 surface.

When 6WT > 0, no ideal instability is possible and a resistive layer theory
is required. Coppi et al.° have given this theory in cylindrical geometry (with
¢’ (r1) # 0) and Bussac et al.!° have extended this to toroidal geometry. The
dispersion relation is given in ref. 10 with diamagnetic and toroidal coupling effects .
inclnded. In single-fluid resistive theory, neglecting coupling to the ¢ = 2 tearing
mode, it reduces to

1/4
L n3/2 [ 31 p—1T{(u+5)/4
W -
BT+ (nd) wAS) p Tia+3) /4= (20)

with

u:

3
‘_/—_31 e & S1/2
rq' w4 "



8 Analytic Theory of Internal Kink Stability
This yields the ideal MHD growth rate when éW7 < 0 and S — oo, and the familiar

~ o« §~1/8 gecaling when

1 GWT

S < Rz

For very large S, very tight aspect ratio, or small shear [¢/(r;) — 0], the scaling
of v is modified to the S~2/8 of conventional tearing modes. No theory of the
resistive layer appears to have been done when ¢’ (r;) = 0, but, as we shall see from
the numerical results, no unstable m = 1 resistive mode is found when ¢(r) > 1
everywhere, provided the rippling modes are excluded.

2.3 EQUILIBRIA WITH TWO ¢=1 SURFACES

The analytic estimate of the growth rate given by Eq. (14) breaks down when
the characteristic layer width d becomes less than the separation of the two ¢ = 1
radii when ¢min < 1.

The analytic minimization of §W for two ¢ = 1 radii is similar to the origi-
nal analysis of Bussac et al. The analysis is outlined in the appendix, where the
following expression for 6W is obtained:

§W =2rn%RB? [(e 5)2 ri L sW, + e’ i L 5W,
(21)
FEe-D O awa] ,

with r; the radius of the first and r, the radius of the second ¢ = 1 surface, £ t*e
amplitude of the “top hat” m = 1 eigenfunction in [0,r;], and € the amplitude in
[r1,7r2). The expressions for §W;, 6W,, and 6W; are given in the appendix. They
depend on the quantities

TE G
Sy = ———1 ’ =1,2 22
=[5 G) (@) (22)

=g | () o i=1a, )

which are obvious generalizations of the single-surface case.

and
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The ideal growth rates and eigenfunctions (ratio of ¢ to €) of the two possible
ideal modes are also calculated in the appendix. The results are

_l=

\—;’.— T [(AE +CD) + {AE + CD)? + (B? — 4AC’)DE] (24)

and

gfE=1+2 FE \~(AE - CD) + \/TAE + CD)? + (B? - 14C)DE| , (26)

where

A=Tisw, po_T
R2 2 27 Ry

. 6W3a C= Rz 5W11 D= "'24' (r2)|$ E = lrlq' (rl)l ‘

ey
STl .



3. COMPARISON OF ANALYTIC
AND NUMERICAL RESULTS

In this section we demonstrate the very close agreement between the aspect
ratio expansion analytic techniques presented in Sect. 2 and computational results
obtained using a modified version of the FAR code.!® The modified FAR code!®
solves the linear compressible (or incompressible) resistive MHD equations in full
toroidal geometry, with no ordering assumptions. The double equations of state,
dp/dt =0 and V. (v/R?) = 0, employed in the original FAR code'® have therefore
been replaced by the adiabatic equation of state or, in the incompressible case, by
V -v = 0. As a result, the localized resistive-pressure-driven modes that appeared
in earlier m = 1 simulations using the original FAR code,!® and in simulations with
reduced equations using the RST code,?® do not appear at finite beta.

In all other respects, the new varsion of FAR is identical to the original code as
described in ref. 18. As input to the FAR code, the flux coordinates are computed
from numerical solution of the Grad-Shafranov equation.

3.1 MONOTONIC ¢(r)

Figure 2 shows the variation of ideal MHD growth rate with beta for monotonic
g(r) = 0.9 (1 + r?). The aspect ratio A = 10?, and the pressure profile is a parabolic
function of r, the flux coordinate used in ref. 8. For this comparison the logarithmic
derivatives b and c of Eq. (5) were evaluated numerically and found to be 1.15 and
—2.02, respectively. The code was run incompressibly with resistivity set to zero. As
predicted analytically, v o« 82, and close agreement exists between computational
and analytic results.

Figure 3 shows the growth rate of the resistive mode as a function of the mag-
netic Reynolds number S for the equilibrium of Fig. 2, but at zero beta. The
comparison is now with the analytic prediction taken from Eq. (20). Within the
range of S values investigated, the dispersion relation is effectively u = 1, so that
W T plays no role. The growth rate scales as S—/2, At even higher S, a transition
to S~/ behavior should ‘occur (probably beyond § = 10!? for this case). This
transition is demonstrated for an equilibrium of tight aspect ratio in Sect. 4.

10



Comparison of Analytic and Numerical Results 11
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Fig. 2. Comparison of analytic [Eq. (12)] and computed growth rates
for the ideal MHD mode, as functions of peak fo = 2p(0)/B3. A =103,

g(r) = 0.9(1 +r2), p(r) = po(1 — r?).
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for the resistive kink ingtability, as functions of magnetic Reynolds num-
ber §. A=10%, 8, =0, ¢ = 0.9(1 + r3).



12 Comparison of Analytic and Numerical Results

3.2 NONMONOTONIC g(r)

In Fig. 4 we compare the ideal MHD growth rates computed from the FAR code
with those calculated analytically for the nonmonotonic profile,

¢ = @min + 0.2 (1 - 47'2)2 ’

at zero beta and A = 10.

The solid curve is that given by Eq. (24), which should be valid whenever two
separate inertial layers are present. The dashed curve is evaluated from Eq. (14),
which should apply when only one inertial layer is present. A striking feature is the
very sharp stability boundary close to ¢;ijn = 1. Results from the compressible FAR
code are also shown in Fig. 4. At zero beta, the sound waves no longer propagate in
a compressible formulation, and the inertial enhancement factor M =~ 1 (as opposed
to M =~ 1+2¢? when the sound waves propagate faster than the mode grows). Thus,
the compressible and incompressible growth rates si:ould and do differ by the factor
VI +2¢%) = V.

The spatial dependence of the radial displacement eigenfunction is shown in
Fig. 5 for various values of gnj,. The transition from one inertial layer, when
dmin = 0.99, to two separate layers, when gni, < 0.97, is apparent. In the cases
with two distinct layers, the ratios of the constant values for the eigenfunction in
[0,71] and [r),r3] are in good agreement with the analytic prediction in Eq. (25).
Figure 6 shows the variation of growth rate with aspect ratio for this case with
gmin = 1.0, again with close agreement between analytic and computed results.

The nonmonotonic class of profiles studied here includes a marginally stable
equilibrium (for ideal MHD modes). This remains true when finite resistivity is
introduced and will be demonstrated for JET-like equilibria in Sect. 4.

Figure 7 shows a comparison of analytic [Eq. (13)] and computed growth rates
as functions of beta, for the nonmonotonic ¢{r) = 1+Ag[1—(r/r1)?)* with Ag = 0.1,
r1 = 0.33, and an aspect ratio A = 10. In this case, the term in 6W that is linear in
beta is weakly stabilizing but is rapidly dominated by the quadratic term as beta
is increased. Thereafter, the growth rate ~ scales as §4/3.

The remarkable quantitative agreement found in the foregoing comparisons
demonstrates that the analytic, large-aspect-ratio theory provides an extremely
valuable framework for understanding the varied scalings of linear growth rate with
S, B, €, etc., which emerge when different equilibrium ¢(r) profiles are investigated.
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14 Comparison of Analytic and Numerical Results
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4. NUMERICAL RESULTS

In this section we extend the results of Sect. 3 by computing growth rates of
ideal and resistive MHD modes in various equilibria for which the analytic theory
should be expected to break down; namely, equilibria of small aspect ratio (A < 3),
strongly shaped cross section, very flat g(r) within [0,r,], or very low shear at the
q = 1 surface.

Figure 8 shows the transition from resistive kink behavior (- oc $~1/2) to the
more slowly growing tearing mode (reconnecting mode,!? v &« S~3/8) at high values

of S, for the profile ¢(r) = 0.9 [1 + (r/0.65)4] e at A = 1.4, {We are forced to use
this very tight aspect ratio to recover tearing mode behavior even for the high
S values (~ 10®) used.| In the high-S, or tearing, regime, this mode ehould be
sensitive to the stabilizing effect of favorable average curvatures.?4 This effect is,
however, rather weak at the ¢ = 1 surface, since the Dg of ref. 24 is much reduced
there.

Figure 9 contrasts the resistive kink mode eigenfunction corresponding to Fig. 3
with the very localized tearing mode eigenfunction corresponding to Fig. 8 (at
5 =107).

Figure 10 shows the growth rate of the m = 1 mode at the JET aspect ratio
of A = 2.5 for the nonmonotonic ¢(r) = gmin + 0.1 (1 — 8r% 4 16r*) and several
values of S. The equilibria in this case have a circular boundary. The behavior
of 7 is qualitatively the same as that found at large aspect ratio (Fig. 4), and a
notable feature is again the sharp staLility boundary. In this case, when g, 2 1,
the growth rates are almost independent of S, with very weak resistive. damping
when gmin > 1 (Fig. 11). As noted in the previous section, this shows that the non-
monotonic profile considered is marginally stable to both ideal and resistive m =1
instability when gp;, is slighly above unity. For gmiz < 1, the usual v o« S—1/3
scaling of resistive kink modes is also displayed in Fig. 11.

Figure 12 shows the destabilizing effect of beta for the previous case with gmin =
1, while Fig. 13 shows a new important destabilizing effect from triangular shaping.
This last result is in qualitative agreement with analytic theory. Previous results??
have indicated that triangular, quadrangular, and high-order shaping is stabilizing
for internal kink modes, but in these calculations monotonic ¢(r) was assumed.

16
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The present result shows that this stabilizing effect is profile-dependent and can be
reversed for nonmonotonic ¢(r).

Recently, Wesson” has suggested a sawtooth model that is quite different from
the original Kadomtsev model and has as its crux the assumption of an “ultra-flat”
q(r) profile for 0 < r < r;. This assumption is supported both by the measurements
on ASDEX? and by transport code simulations, which, once such a flat g is estab-
lished, tend to show very small deviations from it. Figure 14 shows the growth rate

as a function of ¢ on axis for an “ultra-flat” profile,

q=qo [1 + (0;'62) 12] 1/6 |

at the JET aspect ratio A = 2.5 for a central beta of 2%. Various values of S are
shown, but it is clear that the unstable mode is essentially ideal near gg ~ 1. For
go > 1.02, the m = 2 tearing mode becomes unstable: the transition fromanm =1
to an m = 2 mode is clear in the energy spectra of the eigenmodes. The sharp ideal
stability boundary similar to that found for nonmonotonic ¢(r) is again evident.
Growth rates calculated from the compressible FAR ¢ode are also shown in Fig. 14.
For this finite beta, equilibrium sound propagation along the magnetic field is faster
than mode growth, so that the compressible and incompressible results are in good
quantitative agreement. 4

In Fig. 15 the dependence of the linear growth on beta is shown for the case in
Fig. 14 (S = 10°), and in Fig. 16 the eigenfunctions are compared for various values
of B and go. In all cases, the eigenfunctions extend out to a significant radius; in
addition, those closest to marginal stability show the rounded feature observed in
the experimentally reconstructed flows using soft X-ray data.2®

Figure 17 shows a similar plot of 4 vs go for a somewhat less flat profile,

q(r) = g0 [1 + (arzé)4] v ,

with all other parameters identical to Fig. 14. The increasingly sharp ideal stability
boundary as the shear within the ¢ = 1 radius decreases is evident when Figs. 14
and 17 are compared.

Experimental measurements on TEXTOR?! have produced evidence of some-
what different profiles of the safety factor and longitudinal current. In TEXTOR,
measurements of the poloidal magnetic field indicate an axial value of the safety



Numerical Results 23

ORNL-DWG 86-2912 FED

2
o
: s——
g
\
0 5=107,I=5/3 \ \
\
Q
0 [ | l | |
0.96 0.98 1.00 1.02
Rlo)

Fig. 14. Computed growth rate as a function of ¢y, for 4 = 2.5,
Po = 2%, q = go[1 + (r/0.462)'3])1/8, p(r) = po(1 — ¥/¥,4)?, and various values
of S. Open circles are growth rates obtained using the compressible FAR
code at S =107,

ORNL-DWG 86-2944 FED

.96 0.98 1.00 1.02

Fig. 15. Computed growth rate as a function of ¢go for various values
of fo and the equilibrium of Fig. 14. S = 108.



24 Numerical Results
ORNL- DWG 86-2923  FED

4y 0.95 94°0.98 qq=1.01
| |

J STABLE

ﬁo=O°/n
z N |
z

O —— —

= I |
2
5 I | |
s
>

Bo= 2%

o) = L —

I I I
0 0.5 10 © 0.5 1.0 O 0.5 1.0
P

Fig. 16. Comparison of m = 1 eigenfunctions, V,(r) for various values
of fo and ¢o and the equilibrium of Fig. 14. § = 108.

ORNL-DWG 86-2921 FED

I |

Y/wy (x1073)

Fig. 17. Computed growth rates of m = 1 kink mode for A = 2.8,
(r) = go[1 + (r/0.48)4)*/3, p = po(1 — ¥/¥,)?, and various values of fo and



Numerseal Results 25

factor go < 0.7, with a point of inflection in the current J||(r) and somewhat reduced
shear at the ¢ = 1 surface. For such an equilibrium, the original theory of Bussac
et al. for ideal® and resistive!© stability is valid. This theory predicts that, at large
aspect ratio, the ideal MHD mode should be stable below some critical beta values,
while the resistive m = 1 mode should be unstable (whatever the beta).

Since the effective A’ for driving the resistive m = 1 mode in toroidal geometry!'°
is (¢’ (r1)]* / (26WT) for a large-aspect-ratio device, it is of interest to investigate
what might be gained by modifying the current profile to remove the shear com-
pletely at r; (¢’ (r1) — 0] in a tight-aspect-ratio torus. To study the general prop-
erties of profiles of this class, we adopt the simple parameterization

g=0.6+22r%-22 (7'2 - T?) exp [-100("2 - "f)z] )

with r; = 0.426 so that
¢ (r) =¢"(r) =0
with ¢ (r;) = 1.

Results from the FAR code for this equilibrium profile (with 8 = 0) are shown in
Fig. 18, where a strong stabilizing trend is evident as A is reduced. Surprisingly, for
a force-free equilibrium, the mode becomes overstable at small aspect ratio. Over-
stability may (as in the favorable curvature stabilization?* of conventional tearing
modes) be symptomatic of a stabilizing mechanism within the layer, which could

yield absolute stability below some critical value of A. This is difficult to establish
computationally and remains a conjecture.
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5. DISCUSSION AND CONCLUSIONS

A key ingredient in understanding, and possibly controlling, internal disruptions
in tokamaks is an understanding of the stability boundary that is crossed at the
instant of the fast temperature crash. An important clue is provided by the ex-
perimental observation that the phase inversion radius of the temperature collapse,
which is usually interpreted as the radius of the ¢ = 1 surface, is not small. The
marginal ¢(r) profiles therefore appear to pass through, or close to, unity at a finite
distance r; from the axis of the discharge.

As a result of the calculations presented here, we can distinguish three distinct
classes of g(r) profile that possess this property and can be marginally stable to
m = 1 modes:

1. nonmonotonic ¢(r) with a minimum value close to unity at r = ry,

2. ASDEX-like, or ultra-flat, ¢(r) profiles that are close to unity over the
whole region (0, r;],

3. monotonic ¢(r) profiles for which ¢o is well beiow unity, ¢(r;) = 1, and
r1 is a point of inflection for ¢, or at least a point of weak shear.

Examples of these profiles have been analyzed for ideal and resistive growth close
to marginal stability, and earlier analytic theory® has been extended to provide a
framework for understanding computational results from the initial value code FAR.
Remarkable agreement has also been found in comparing analytic and computed
growth rates.

Among the new results presented here are the following observations.

e Very sharp stability boundaries can be found when a critical ¢ value deter-
mines stability. Examples are given for “ultra-flat” and non-monotonic ¢
profiles.

e S—1/3 gcaling of linear growth rates is not found close to marginal stability
for any of the three classes of profiles just described.

e Triangular shaping of the plasma cross section can be destabilizing. Its
effect is dependent on the ¢(r) profile.

e Equilibria with axial ¢ values well below unity have been found and may
be stable to resistive as well as ideal MHD m = 1 modes, in a tight-aspect-
ratio torus. Overstability of the mode makes the determination of a stability
boundary in A difficult.

27



28 Discusston and Conclusions

Many of the features of the sawtooth in smaller tokamaks were explained by the

model of Jahns et al.,?7

which invoked island growth of the resistive kink mode. In
particular, the precursor oscillations and their growth rates agreed with the model
proposed. In larger tokamaks, such as JET, however, precursor oscillations are not
usually observed?®® in conditions of constant current. In addition, the initial plasma
displacement in the sawtooth collapse is too fast (100 us in JET)?® for the model of
ref. 27. This suggests that the steep, ideal MHD, stability boundaries apparent in
Figs. 4 and 10 might be involved. We can calculate the initial time dependence to be
expected as an equilibrium evolves resistively through such a boundary. Assuming
a time dependence of the g profile such that

with

and using Eq. (14) for the growth rate [for a nonmonotonic ¢(r) with (gmin — 1) =
6q|, we find that the mode growth is initially given by exp(t/ 7_”)3/ 2 with the hybrid
time 7y defined by

TH = (3TAZTn/6Qc)1/3 ’ (26)

where 6¢q. is the value of 6¢q at the stability boundary. Thus, even though the mode
is an ideal MHD instability, the resistive evolution of ¢ introduces /3 into the time
scale. Estimating this hybrid growth time for JET parameters, we find 74 ~ 300 us,
which is still a little too long to account for the experimental observations. To
understand the fast time scales involved, it therefore appears that theory must look
to nonlinear, or kinetic theory, phenomena.

To understand the nature of the internal disruptions in tokamaks, it is necessary
to study the nonlinear evolution of the m = 1, n = 1 kink mode. The present paper
suggests a number of equilibrium g(r) profiles that could be marginally stable in
linear studies. Because of the considerable differences in these ¢ profiles, a wide
variety of nonlinear behavior is to be expected, with the classic Kadomtsev recon-
nection as one possibility. Such studies are under way using a nonlinear version of
the FAR code and will form the basis of a future paper.
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APPENDIX

The ideal MHD theory of Bussac et al.! can be readily extended to the case
with two distinct radii at which ¢ is unity. Denoting these by r, and rz, we follow
refs. 1 and 2 in expanding the ideal energy integral 6W in powers of the inverse
aspect ratio, for a large-aspect-ratio equilibrium with circular plasma cross section
and poloidal beta of order unity. Using the straight-field-line coordinates of refs. 1
and 2, (r,0,9),

Vg
r? = 2R, / 2dv, (A.1)
o 1
o—f/e at (A.2)
—q o RzBp’ )

and ¢ is the axisymmetric angle. In Eqs. (A.1) and (A.2), ¥ is the poloidal flux
function, the magnetic field is given by

B=V¥ xV¢+I(¥)Ve,

and ¢ measures arc length w.ong B.

In lowest order of the aspect ratio expansion, one finds §W, = 0, provided & is
chosen to satisfy

2 2
3 (rér0) + 55500 =0, (A.3)

where £ o e!mi-n¢) withm=n = 1.

In second order, ¢ . is also required to satisfy Eq. (A.3) and

1 2 2
W, = 21r2ROB3/rdr [(; - 1) r ] . (A4)

This is minimized by the choice

dfro
dr

an 051’(1’1
fro=14 &, rn<r<r (A.5)
0, ra<r<a

when §W, = 0. The relative magnitudes of the “top-hat” solutions ¢ and &, are
arbitrary at this stage.
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32 Appendiz

In fourth order, after minimizing with respect to '§2, the second-order correction
to the m = 1 component, and with respect to the m = 0 part of El, one obtains

W,y = oW, (0,7‘1) + oWy (rlar2) + §W, ("2;'1) ’

where
oW, (0,r1) r1 1 0 g
3 1 :
+ 3606 () (31 + By - Z) +inag]
6W4 (fl,fg) -2 f; 1 3 2 9 9
——~————2sz033 =£0 1—2‘2' —82 - Z (82 +ﬂp2) - g (82 + ﬂpz) + 6_4
—2rt 1 3
folTl ["31 3 (s1 +ﬂp1) -z (-!1 + Bp1) + 64]
(A.7)
373 1 3r3_
+“—!f €,(r2) | 82+ Bp2 — = —=-LE.€ (r1)
2 R P 4 9 R So%1
1 1 = = 1 - =
X ("1 + Bp1 — Z) + Z"gflfl " Zr?€l€l| o
Wy (rz,a) 1 5z,
2nRoBE 4 2ol (A.8)

Here

i y3dr (1 .
5= _r?_(q—’"‘)’ 7= bE
2 Ti dp\ r? X
ﬂ:———/ d"(_"_')"—’ J=1s2’
P B2 (r;) Jo dr r?

and &, (r), &,(r), £,(r) are all solutions of the homogeneous, m = 2 Euler equation,

d 1 d¢, 1 1\*,
a[”'(ri) d,] - (3-3) @=o. (4.9)

Since the full m = 2 solutions in the three regions are given by
&(r) —&(A'+3 )  in [0,y

6("‘:2) = El (r) - EO (A’ + % %) in [rl’rZI ’
&:(r) in [rz,a]
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continuity of £(™=2) requires that

1 (r1) — & (A' + %é—) . =€, (r1) - & (A' + % I%)n (A.10)
and .
gl (r2) = &5 (r2) — & (A’ + 2 %) . (A.11)

In addition, &;(r) must be regular as r — 0, and £(r) must be small at the g = 2
surface if that falls within the plasma, or gl(a) must vanish if ¢, < 2.
In these equations, A(r) is the Shafranov shift, so that

r 1
Allr)) == (s + Bp1+ =),
R 4

T2 1
A'(rg) = ﬁ (82 + ,sz + Z) .

To proceed with the minimization of 6W,, we choose to represent El (r), which
is a solution of Eq. (A.9), by a linear superposition of £;(r) and &,(r), the solutions
for which are regular at r = 0 and at the ¢ = 2 surface.

Thus, writing

£1(r) = a&a(r) +B&(r)

the two continuity relations (A.10) and (A.11) are used to eliminate a and §. The
energy integral may now be expressed in terms of &y, &,, and two quantities char-
acterizing the magnitude of the &;(r) and El(r) solution {£1(r) and %l(rz), say|,
together with six quantities that characterize the solutions £; and El,

b= ﬂl). o= r2$i (rg) d= rlzi (1‘1)
51 (Tl) fl (rz) - El (7‘1)
=] —-———rggi (1"2) f = ———:él (rl) g= 51 (r2)
€1 (r2) &1 (r2) é1(r1) -

Thus

6W4 =6W4 [&0’ Eo' fl(rl)’ El("z); b’ ¢, d’ ¢, fa g, 3j$ ﬂPj] *
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The next step is to minimize §W, with respect to £, and El. These minimizations

are algebraic but tediously complicated. The final result is

6W4 = 27I'2R Bg [(fo - 60) 6W1 + 60 6W2

(A.12)
+E (60~ Bo) o aws] ,
with
oW, =§{231+(b+3) (ﬁp1+31)2+g(b"1)(ﬁpl +31)+1_96(b_1)
. . , (A.13)
-1 ((;:3 [(b+3) (51 + Bp1) + 5 (6 1)] } ,
oWz = 5 {202~ (e +3) (Bpa + 02)? [1 + (e + 3) ] - > (e+3) (By2 + 02)
(A.14)
X [1+ (e = 1)/o] + 1 1—e)[1+(e—1)/a]}
6Wa =3 {261 = 3(8p + 1) - [(e +3) (Bra+92) + 5 (e - 1)] [(6+3) (By1 +21)
3 1 ry [(d=b)f + (e —c)gr3/r?]
#30-n] g 2RSSR
(A.15)
_(e—¢o)fg 113 (1-fg) [(d=b)f (e—c)g r3]?
“==je) 4 @d-He [ 79 T =19 é] - e

The necessary and sufficient condition for ideal MHD m = 1 stability can now

be expressed as
W; >0,

Ws >8 0, (A.17)
(?) (5W2)% — 46W, 6W5 <0 .
1

If any one of these three inequalities is violated, an ideal m = 1 mode is unatable
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The appropriate ideal growth rates and eigenfunctions of unstable modes are
obtained by equating Eq. (A.1?2) to the energy contributions from the two inertial
layers at r; and r;, in a way analogous to that discussed in the main text for a
single inertial layer. The single-surface result [Eq. (11)] now becomes

(fo-%0)" , & _ _6Wi(to,ko)
L(v) LM (272R Bf) '

o dx
500 = | s e
and 6W, (&, &,) is given by Eq. (A.12).
On solving for 7/w4 and extremizing with respect to the ratio &g/ €,, we obtain
the growth rates and eigenfunctions of the ideal modes. It is these results [Eqgs. (24)
and (25) of the main text] that have been used in the comparison of analytic growth
rates with those obtained from the FAR code.

(A.18)

where
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