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ABSTRACT 

Tne stability of the ideal and resistive m = 1 internal modes is investigated 
for tokamak equilibria having a variety of different q ( r ) profiles, including non-
monotonic q ( r ) with multiple q = 1 surfaces. Detailed comparisons between ana-
lytic theory and numerical results from a linear toroidal MHD code are presented. 
Particular attention is paid to the study of equilibria near marginal stability. 

v 



1. INTRODUCTION 

Theoretical investigations of the internal disruptions (sawtooth behavior) ob-
served in most tokamak discharges have concentrated on three separate aspects of 
the phenomenon: 

1. the reconnection occurring1"6 during the nonlinear phase of the m = 1, 
n = 1 kink instability, 

2. the simulation by transport codes3'4 of the slow evolution of the dis-
charge that returns it to a kink-unstable state, resulting in the cyclic 
behavior observed, 

3. the establishment of marginal stability criteria for the internal kink 
mode (resistive as well as ideal) and studies of linear g rowth 7 - 1 2 near 
to marginal stability. 

Without the third ingredient, the transport simulations lack credibility because 
they assume that the plasma reconnects when some arbitrary criterion is satisfied, 
and the nonlinear reconnection studies lack credibility because they start from a 
strongly unstable equilibrium. 

Recent sawtooth simulations13'14 have employed reduced fluid equations that 
follow both the fast Alfvenic time scales and the transport time scale. The equations 
include electron thermal transport both along and across the magnetic field, as well 
as resistivity. These simulations extend the earlier work of Sykes and Wesson5 and 
have been very successful in producing cyclical reconnecting behavior. However, the 
geometry is cylindrical, and the stability properties of the internal kink mode are 
quite different in cylindrical and toroidal geometry.8 The conditions under which 
each thermal collapse is triggered may therefore be rather different in this simulation 
from those holding in a real tokamak discharge. 

Another difficulty encountered in sawtooth simulations concerns the very fast 
collapse time frequently observed in large tokamaks (100 fis in JET). As noted by 
Wesson,7 this collapse time is at variance with the estimate given by Kadomtsev, 
and it is difficult to reconcile with any mechanism involving a transport-induced 
evolution through a linear stability boundary, be it of an ideal or a resistive mode. 
If such a mechanism is responsible for the temperature collapse, an exceedingly 
sharp stability boundary must be involved: sharp, that is, in the sense of large 
growth rates being possible for equilibrium parameters close to marginality. 

1 



2 Introduction 

A knowledge of linear stability criteria and linear growth rates near marginal 
stability is therefore an important ingredient in understanding sawtoothing in toka-
maks. An important contribution in this field is the toroidal calculation of the 
ideal MHD energy 6W by Bussac et al.8 (subsequently presented in more detail in 
refs. 15-17). From a later paper by Bussac et al.,10 one can obtain analytic expres-
sions for the linear growth rate of the internal kink mode in a resistive plasma as 
well as in the ideal limit S —• oo (where S is the magnetic Reynolds number). These 
results are limited in several ways, all of which may be relevant to understanding 
sawtoothing. 

1. The analysis assumes an aspect ratio expansion of the equilibrium, and 
orders ~ e2, where e is the inverse aspect ratio. 

2. Only g(r) profiles (where q is the safety factor) having a single q = 1 
radius are considered. 

3. In the inner region, r < r i , where q ( r i ) = 1, the ordering — 1 | c is 
assumed. 

It is the purpose of this paper to remove these limitations and to establish the 
internal kink stability properties of tokamaks for a variety of q(r) profiles, including 
nonmonotonic q(r), at finite as well as large aspect ratio. We devote particular 
attention to identifying marginally stable equilibrium configurations and to evalu-
ating growth rates close to marginality, for both the ideal and resistive internal kink 
modes. Detailed quantitative comparisons are made between the computational re-
sults obtained from a linear toroidal resistive MHD code (FAR)18*19 and analytic 
results. 

The structure of the paper is as follows. Section 2 summarizes the analytic 
theory for ideal internal kink modes when a single q = 1 surface is present in the 
plasma and extends it to cases for which two 9 = 1 radii are present. In Sect. 3, 
results from analytic theory are compared with numerical growth rates obtained 
from the FAR code. Section 4 presents numerical results for tight-aspect-ratio 
devices, strong shaping, and very low shear profiles. These calculations include 
examples that model the measured q profiles in ASDEX2 0 and in TEXTOR. 2 1 Many 
of the calculations are for equilibria consistent with JET . These cases are strictly 
beyond the regime of validity of the analytic theories. Section 5 summarizes the 
results, and conclusions on the nature of the sawtooth collapse are drawn. 



2. ANALYTIC THEORY OF 
INTERNAL KINK STABILITY 

2.1 CASES WITH A SINGLE q = l SURFACE 
The ideal MHD toroidal stability problem was considered for a large-aspect-

ratio torus by Bussac et al.,8 and the effect of shaping was analyzed by Edery et 
al.22 Shaping effects decouple from toroidal effects in the large-aspect-ratio limit, so 
that the combined effects are additive. For an equilibrium of circular cross section, 
the energy integral S W , after minimization, is given by 

6 W = 2 ^ R B l \ i \ 2 ^ 6 W T , (1) 

where 

6 W t = 85(6 - c) + ^(6 - 1)(1 - e ) - 6(6 - 1 ) ( c + 3)(/3p + s ) 

—4(c + 3)(6 + 3)(/?p + a)' x [16(6-c)] (2) 

- H f e H H -
(3) 

P p = 
B j ( n ) 

P 4 (lS 
J o * \ r i ) 

d r , (4) 

with Bp the poloidal field strength and rx the radius at which q(r) = 1. The 
quantities 6 and c in 6 W T are the values of the logarithmic derivatives 

h r i ^ c = 
**i — 

r i d t 
£ d r (5) 

r i + 

obtained by integrating the m = 2 Euler equation, 

(6 ) 



4 Analytic Theory of Internal Kink Stability 

from the axis (with regular boundary conditions there) to give b and from the q = 2 
surface (or the plasma boundary, if there is no q = 2 surface within the plasma) to 
give c. 

An important consequence of the toroidal geometry8 is that the cylindrical 
contribution to SW is identically cancelled out for an n = 1, m = 1 mode. It follows 
that if the value of the ideal MHD energy, S W , is important in determining the 
trigger for internal disruption and reconnection, cylindrical simulations must give 
incorrect results. 

To obtain the linear growth rate of either the ideal MHD mode or the resistive 
kink mode, the calculation of 6W must be supplemented by a theory of the singular 
layer. 

In the case of the ideal mode, the growth rate may be obtained by equating the 
kinetic energy, 

K = ^ P J \ t \ 2 d 3 x 1 ( 7 ) 

to the potential energy available for instability, (—6W).2Z Because of the inertial 
layer at r t , K is dominated by the contributions from and in the inertial 
layer, where 

~ 2s in0 — , 

while the discontinuity at the singular layer is resolved by the inertia, and one finds 

with OJJI = VA/R and the Alfven velocity. 
The factor 3 appearing in Eq. (9) is the inertial enhancement factor M a 1 + 2 q 7 

found by Glasser, Greene, and Johnson2 4 in toroidal geometry. To obtain the correct 
linear growth, one must add the field line bending modification to the potential 
energy that comes from the layer. This is given by 

(10) 

At marginal stability this contribution vanishes; however, when Eq. (9) is used to 
give the layer solution, a finite contribution is obtained. 



A n a l y t i c T h e o r y o f I n t e r n a l K i n k S t a b i l i t y 

Finally, equating K — — (6W -f 6 W ) , one obtains the linear growth rate 

d x 
- l 

f - o o S ( - y V w 3 l ) + ( 9 - l ) a J 

where x = (r — r i ) / r \ is the local radial variable. 
Several cases can now be distinguished. 

1. Monotonic q ( r ) , with q (ri) = 1 and q' (ri) / 0 (solid line in Fig. 1), 

-2- = - L - 4 = (swT) 4 • (12) 

2. Nonmonotonic g(r), with a minimum at r i , ?(ri) = 1 and q' (ri) = 0 (dashed 
line in Fig. 1), 

-V Tj- 2 / 3 j / 2 \ 2 / 3 

— = !L7=- ^TT? ) • (13) wa v/3 (r?g") 7 \ -R2 / V ' 

3. Nonmonotonic ?(r), with q (ri) ± 1 and 9' (ri) = 0 (dot-dashed line in Fig. 1), 

where 7 = [372/w^ + (6?) 2 ] 1 / 2 and = q (ri) - 1 < 1. Equation (14) is valid 
for both positive and negative values of £9, provided that when 6q < 0, |£<71 does 
not become large enough for the inertial layer to separate into two layers at the 
different 9 = 1 radii. For positive 6q, there is a strong stabilizing effect from 
the field line bending at r \ , and an equilibrium that is unstable when q m \ a = 1 
(i.e., for which 6 W T is negative) is marginally stable for 

1 1 / r* \ 2 / 3 

Sg = - L - ( - t t - ^ t ) . (15) 
2 1 / 3 ( r a ^ ) » / s V R 2 J V ' 

The ideal growth rate peaks for negative 6q at 7 m a x = l-097o, with 70 the 
Sq = 0 growth rate. As 6q becomes more negative, the growth rati; decreases, 
but the single-layer theory eventually becomes invalid. These analytic results 
are compared with computed growth rates in the next section. 

4. Monotonic 9(7- ) , with a point of inflection at r i , 9(»"i) = 1 and 9 ' ( n ) = 9 " 

( r i ) = 0, 
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Fig. 1. Profiles of the safety factor q(r) for which ideal M H D growth 
rates are calculated in Eqs. (12) (solid line), (13) (dashed line), and (14) 
(dot-dashed line). 

The presence of a point of inflection of q at f | , therefore, enhances the ideal MHD 
growth rate ^ ( n / i E ) 6 7 6 ] when S W T < 0. For 6 W T > 0 the resistive stability of 
such q ( r ) profiles is investigated in Sect. 4. 

2.2 THE ROLE OF RESISTIVITY 
In the foregoing estimates of growth rates, it has been assumed that S W T < 0, 

that is, that energy is available to drive the ideal MHD instability. However, even 
when this is the case, it does not follow that the ideal growth rates calculated 
above are correct. Resistivity may dominate the layer behavior. To estimate the 
magnitude of resistive effects, we compare the inductive contribution to the parallel 
electric field, l A \ \ , with the resistive term in the layer i7j|| oc r f c 2 A \ \ / d 2 , where d is 
a measure of the layer width. 



A n a l y t i c T h e o r y o f I n t e r n a l K i n k S t a b i l i t y 7 

From this we find that resistivity is negligible if the condition 

fe) (?) > S ~ l (17) 

is satisfied. 
Here, S = o j ^ T r with r r = 7 7 c 2 / r \ , and a is the minor radius of the device. 
Estimating the layer width d from Eq. (9) and the growth rates from Eqs. (12) 

and (13), we find that for q' (ri) ^ 0, Eq. (17) becomes 

s ~ l < M M " 5 Q ) 6 ( ~ w T ) 3 , ( is) 

while for the nonmonotonic case, with q m \ a = 1, it becomes 

< i r V a ^ i T I [ r \ q " { U ) } - ^ ( S W T f Z , (19) 

where the layer width is 

2/3 
1/3 

Inequality (18) gives the familiar result that resistivity (even with 5 in the range 
from 106 to 108) tends to dominate the linear growth of m = 1 modes. Inequality 
(19), however, shows that because of the broader inertial layer and larger ideal 
growth rate, the internal kink becomes an essentially ideal mode when the shear 
vanishes at the q = 1 surface. 

When 6 W T > 0, no ideal instability is possible and a resistive layer theory 
is required. Coppi et al.9 have given this theory in cylindrical geometry (with 
q' ( r i ) 0) and Bussac et al.1 0 have extended this to toroidal geometry. The 
dispersion relation is given in ref. 10 with diamagnetic and toroidal coupling effects 
included. In single-fluid resistive theory, neglecting coupling to the q = 2 tearing 
mode, it reduces to 

± S W T + 1 ( n o ' ) 3 / 2 + - 0 + j r ( r , « ) { u a 8 J ^ r [ ( / i + 3 ) / 4 ] ~ (20) 

with 

= ^ ( J L 
1 1 r q ' \ u ; a 

\ 3/2 
J . 



8 Analytic Theory of Internal Kink Stability 

This yields the ideal MHD growth rate when S W T < 0 and S —• oo, and the familiar 
1 oc S""1/3 scaling when HiM-
For very large S , very tight aspect ratio, or small Bhear [g'(ri) —• 0], the scaling 
of 7 is modified to the S ~ 3 / 6 of conventional tearing modes. No theory of the 
resistive layer appears to have been done when q' (r^ = 0, but, as we shall see from 
the numerical results, no unstable m = 1 resistive mode is found when g(r) > 1 
everywhere, provided the rippling modes are excluded. 

The analytic estimate of the growth rate given by Eq. (14) breaks down when 
the characteristic layer width d becomes less than the separation of the two q = 1 
radii when gmin < 1. 

The analytic minimization of SW for two q = 1 radii is similar to the origi-
nal analysis of Bussac et al. The analysis is outlined in the appendix, where the 
following expression for SW is obtained: 

with r i the radius of the first and the radius of the second 9 = 1 surface, £ tu.e 
amplitude of the "top hat" m = 1 eigenfunction in [0, ri], and £ the amplitude in 
[»"i» »*2]. The expressions for 6 W U S W 2 , and SWZ are given in the appendix. They 
depend on the quantities 

2.3 EQUILIBRIA WITH TWO q = l SURFACES 

S W = 2 n * R B * [ ( € - J ) 2 i 6 W X + f & 6 W 2 

(21) 

(22) 

and 

( 2 3 ) 

which are obvious generalizations of the single-surface case. 
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The ideal growth rates and eigenfunctions (ratio of £ to £) of the two possible 
ideal modes are also calculated in the appendix. The results are 

^ = ^ [ ( A E + C D ) ± S/{AE + C D ) * + { B * - A A C ) D E ] ( 2 4 ) 

and 

+ ~ [ ~ ( A E - C D ) ± y / { A E + C D ) * + { B * - 4 A C ) D E ] , ( 2 5 ) 

where 

A = £ s w „ B = - g - 6 W 3 , C = & 6 W U Z? = | r 2 9 ' ( r 2 ) | , E = \ r x q ' ( r x ) \ . 



3. COMPARISON OF ANALYTIC 
AND NUMERICAL RESULTS 

In this section we demonstrate the very close agreement between the aspect 
ratio expansion analytic techniques presented in Sect. 2 and computational results 
obtained using a modified version of the FAR code.18 The modified FAR code19 

solves the linear compressible (or incompressible) resistive MHD equations in full 
toroidal geometry, with no ordering assumptions. The double equations of state, 
d p / d t = 0 and V • (v/i22) = 0, employed in the original FAR code18 have therefore 
been replaced by the adiabatic equation of state or, in the incompressible case, by 
V • v = 0. As a result, the localized resistive-pressure-driven modes that appeared 
in earlier m = 1 simulations using the original FAR code,18 and in simulations with 
reduced equations using the RST code,26 do not appear at finite beta. 

In all other respects, the new version of FAR is identical to the original code as 
described in ref. 18. As input to the FAR code, the flux coordinates are computed 
from numerical solution of the Grad-Shafranov equation. 

3.1 MONOTONIC q ( r ) 
Figure 2 shows the variation of ideal MHD growth rate with beta for monotonic 

q [ r ) = 0.9 (l + r 2 ) . The aspect ratio A = 102, and the pressure profile is a parabolic 
function of r, the flux coordinate used in ref. 8. For this comparison the logarithmic 
derivatives b and c of Eq. (5) were evaluated numerically and found to be 1.15 and 
—2.02, respectively. The code was run incompressibly with resistivity set to zero. As 
predicted analytically, 7 oc /?2, and close agreement exists between computational 
and analytic results. 

Figure 3 shows the growth rate of the resistive mode as a function of the mag-
netic Reynolds number S for the equilibrium of Fig. 2, but at zero beta. The 
comparison is now with the analytic prediction taken from Eq. (20). Within the 
range of S values investigated, the dispersion relation is effectively P = 1, so that 
SW T plays no role. The growth rate scales as At even higher 5 , a transition 
to S - 3 / 6 behavior should occur (probably beyond 5 = 1012 for this case). This 
transition is demonstrated for an equilibrium of tight aspect ratio in Sect. 4. 

10 
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Fig. 2. Comparison of analytic [Eq. (12)] and computed growth rates 
for the ideal M H D mode, as functions of peak fio = 2p(0)/2?§. A = 102, 
g(r) = 0.9(1 + r2), p(r) = po(l - r2). 

ORNL-DWG 86-2919 

S (x<0 6 ) 
Fig. 3. Comparison of analytic [Eq. (20)] and computed growth rates 

for the resistive kink instability, as functions of magnetic Reynolds num-
ber S. A = 10a, 0O - 0, q = 0.9(1 + r2). 
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3.2 NONMONOTONIC q(r) 
In Fig. 4 we compare the ideal MHD growth rates computed from the FAR code 

with those calculated analytically for the nonmonotonic profile, 

9 ~ Qm\a + 0.2 (l - 4 r 2 ) 2 , 

at zero beta and A = 10. 
The solid curve is that given by Eq. (24), which should be valid whenever two 

separate inertial layers are present. The dashed curve is evaluated from Eq. (14), 
which should apply when only one inertial layer is present. A striking feature is the 
very sharp stability boundary close to qm•,„ = 1. Results from the compressible FAR 
code are also shown in Fig. 4. At zero beta, the sound waves no longer propagate in 
a compressible formulation, and the inertial enhancement factor M ^ 1 (as opposed 
to M m 1 + 2 q2 when the sound waves propagate faster than the mode grows). Thus, 
the compressible and incompressible growth rates should and do differ by the factor 
V ( 1 + 2 q * ) = VS. 

The spatial dependence of the radial displacement eigenfunction is shown in 
Fig. 5 for various values of q m } n . The transition from one inertial layer, when 
9min = 0.99, to two separate layers, when q m \ n < 0.97, is apparent. In the cases 
with two distinct layers, the ratios of the constant values for the eigenfunction in 
[0,ri] and [ r l s r 2 ] are in good agreement with the analytic prediction in Eq. (25). 
Figure 6 shows the variation of growth rate with aspect ratio for this case with 
9min = 1-0, again with close agreement between analytic and computed results. 

The nonmonotonic class of profiles studied here includes a marginally stable 
equilibrium (for ideal MHD modes). This remains true when finite resistivity is 
introduced and will be demonstrated for JET-like equilibria in Sect. 4. 

Figure 7 shows a comparison of analytic [Eq. (13)] and computed growth rates 
as functions of beta, for the nonmonotonic q { r ) = l + A g [ l - ( r / r i ) 2 ] 2 with A q = 0.1, 
r i = 0.33, and an aspect ratio A = 10. In this case, the term in 6W that is linear in 
beta is weakly stabilizing but is rapidly dominated by the quadratic term as beta 
is increased. Thereafter, the growth rate 7 scales as /?4/3. 

The remarkable quantitative agreement found in the foregoing comparisons 
demonstrates tha t the analytic, large-aspect-ratio theory provides an extremely 
valuable framework for understanding the varied scalings of linear growth rate with 
S, /?, €, etc., which emerge when different equilibrium g(r) profiles are investigated. 
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Fig. 4. Comparison of analytic and computed ideal growth rates for 
the non-monotonic safety factor q(r) = qmin + 0.2(1 — 4r2)a, plotted against 
minimum value of q. The dashed curve is calculated from Eq. (14) (appro-
priate for a single inertial layer), the solid curve from Eq. (24) (appro-
priate for two distinct layers). Solid circles were computed using the 
compressible FAR code (and corrected by the factor see text) . Open 
circles were computed using the incompressible code. A = 10, fa = 0. 



14 Comparison oj Analytic and Numerical Results 

ORNL-DWG 8 6 - 2 9 2 2 FED 

Fig. 5. Structure of the eigenfunction (m = 1 component of radial 
velocity) as a function of radius, for various values of gm\a- A = 10, 0O = 0, 
Q — 4min + 0.2(1 — 4ra)a. 
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Fig. 6. Ideal growth rate vs inverse aspect ratio e = A ~ X , for the 
equilibrium of Figs. 4 and 5. qm\n = 1.0. Analytic results (solid curve) are 
from Eq. (13). 
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Fig. 7. Growth rate plotted vs 0O> peak value of beta. Ana-
lytic results (solid line) are from Eq. (13). A = 10, q = 1 + 0.1(1 - 9 r a ) a , 
P = Pofa - * /* (« ) ] 2 with ¥ = f ; R o B , d r . 



4. NUMERICAL RESULTS 

In this section we extend the results of Sect. 3 by computing growth rates of 
ideal and resistive MHD modes in various equilibria for which the analytic theory 
should be expected to break down; namely, equilibria of small aspect ratio { A < 3), 
strongly shaped cross section, very flat q(r) within [0, r j] , or very low shear at the 
9 = 1 surface. 

Figure 8 shows the transition from resistive kink behavior ( 7 oc 5 - 1 / 3 ) to the 
more slowly growing tearing mode (reconnecting mode,12 7 oc S ~ 3 / B ) at high values 

r a ! */2 

of S , for the profile q ( r ) = 0 , 9 1 + (r/0.65) at A = 1.4. (We are forced to use 
this very tight aspect ratio to recover tearing mode behavior even for the high 
S values (~ 108) used.] In the high-S, or tearing, regime, this mode should be 
sensitive to the stabilizing effect of favorable average curvatures.24 This effect is, 
however, rather weak at the 9 = 1 surface, since the Dr of ref. 24 is much reduced 
there. 

Figure 9 contrasts the resistive kink mode eigenfunction corresponding to Fig. 3 
with the very localized tearing mode eigenfunction corresponding to Fig. 8 (at 
S = 1 0 7 ) . 

Figure 10 shows the growth rate of the m = 1 mode at the J E T aspect ratio 
of A = 2.5 for the nonmonotonic 9(r) = q m \ n + 0.1 ( l - 8r2 + 16r4) and several 
values of S. The equilibria in this case have a circular boundary. The behavior 
of 7 is qualitatively the same as that found at large aspect ratio (Fig. 4), and a 
notable feature is again the sharp stability boundary. In this case, when qm\n > 1, 
the growth rates are almost independent of S, with very weak resistive, damping 
when 9min > 1 (Fig. 11). As noted in the previous section, this shows that the non-
monotonic profile considered is marginally stable to both ideal and resistive m = 1 
instability when q m \ n is slighly above unity. For q m \ a < 1, the usual 7 oe S - 1 / 3 

scaling of resistive kink modes is also displayed in Fig. 11. 
Figure 12 shows the destabilizing effect of beta for the previous case with q m \ B = 

1, while Fig. 13 shows a new important d e s t a b i l i z i n g effect from triangular shaping. 
This last result is in qualitative agreement with analytic theory. Previous results22 

have indicated that triangular, quadrangular, and high-order shaping is stabilizing 
for internal kink modes, but in these calculations monotonic q ( r ) was assumed. 

1 6 
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Fig. 8. Computed growth rate of m = 1 kink mode as a function of 
magnetic Reynolds number S. A = 1.4, (30 = 0, q — 0.9[l + (r/0.65)4]1/2. 
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Fig. 9. Eigenfunction Vr(r) for the resistive kink mode [A = 102, = 0, 
q = 0.9(1 + r2), 5 = 107] and m = 1 reconnecting mode {A = 1.4, /?o = 0, 
q = 0.9 [1 + (r/0.65)4]1/*, S = 107>. 



Numerical Results 18 

ORNL-DWG 8 6 - 2 9 2 0 FED 

— \ 

1 1 

— 

\ s = 105 

\ / / \ \ y* i 

— 

N 
f \ 

I ' I 
0.8 0.9 1.0 

''min 

Fig. 10. Computed growth rates for A = 2.5, P o = 0, g(r) = q m i n + 0.1(1 -
8r2 +16r4) , and several values of 5 , plotted vs qmin-
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Fig. 11. Computed scaling of kink mode growth rates with S for three 
values of gmia and the equilibrium of Fig. 10. 
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Fig. 12. Computed growth rate as a function of fio for the equilibrium 
of Fig. 10 with g m i n = 1.0. 
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Fig. 13. Computed growth rate as a function of triangularity of the 
plasma boundary for the equilibrium of Fig. 10 with 0o = 0, qm\n = 1.0. 
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The present result shows that this stabilizing effect is profile-dependent and can be 
reversed for nonmonotonic q ( r ) . 

Recently, Wesson7 has suggested a sawtooth model that is quite different from 
the original Kadomtsev model and has as its crux the assumption of an "ultra-flat" 
q ( r ) profile for 0 < r < r \ . This assumption is supported both by the measurements 
on ASDEX2 0 and by transport code simulations, which, once such a flat q is estab-
lished, tend to show very small deviations from it. Figure 14 shows the growth rate 
as a function of q on axis for an "ultra-flat" profile, 

at the J E T aspect ratio A = 2.5 for a central beta of 2%. Various values of S are 
shown, but it is clear that the unstable mode is essentially ideal near go ~ 1- For 
qo > 1.02, the m = 2 tearing mode becomes unstable: the transition from an m = 1 
to an m = 2 mode is clear in the energy spectra of the eigenmodes. The sharp ideal 
stability boundary similar to that found for nonmonotonic q ( r ) is again evident. 
Growth rates calculated from the compressible FAR code are also shown in Fig. 14. 
For this finite beta, equilibrium sound propagation along the magnetic field is faster 
than mode growth, so that the compressible and incompressible results are in good 
quantitative agreement. ' 

In Fig. 15 the dependence of the linear growth on beta is shown for the case in 
Fig. 14 (S = 106), and in Fig. 16 the eigenfunctions are compared for various values 
of 0o and go- In a l l cases, the eigenfunctions extend out to a significant radius; in 
addition, those closest to marginal stability show the rounded feature observed in 
the experimentally reconstructed flows using soft X-ray data.2 6 

Figure 17 shows a similar plot of 7 vs q0 for a somewhat less flat profile, 

with all other parameters identical to Fig. 14. The increasingly sharp ideal stability 
boundary as the shear within the q = 1 radius decreases is evident when Figs. 14 
and 17 are compared. 

Experimental measurements on TEXTOR 2 1 have produced evidence of some-
what different profiles of the safety factor and longitudinal current. In T E X T O R , 
measurements of the poloidal magnetic field indicate an axial value of the safety 
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Fig. 14. Computed growth rate as a function of qo, for A = 2.5, 
0o = 2%, q = 9o[1 + (r/0.462)12]1/®, p(r) = po(l - 9/9a)a, and various values 
of S. Open circles are growth rates obtained using the compressible FAR 
code at S = 107. 
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Fig. 15. Computed growth rate as a function of qo for various values 

of 0o and the equilibrium of Fig. 14. S = 10*. 
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Fig. 16. Comparison of m = 1 eigenfunctions, Vr(r) for various values 
of 0o and 40 and the equilibrium of Fig. 14. S s= 10®. 
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Fig. 17. Computed growth rates of m = 1 kink mode for A = 2.5, 

q(r) = g0[l + (r/0.46)4]1/2, p = po(l - and various values of fa and 
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factor go < 0.7, with a point of inflection in the current </||(r) and somewhat reduced 
shear at the 9 = 1 surface. For such an equilibrium, the original theory of Bussac 
et al. for ideal8 and resistive10 stability is valid. This theory predicts that , a t large 
aspect ratio, the ideal MHD mode should be stable below some critical beta values, 
while the resistive m = 1 mode should be unstable (whatever the beta). 

Since the effective A ' for driving the resistive m = 1 mode in toroidal geometry1 0 

is \q' (ri)]2 / ( t \ 6 W T ) for a large-aspect-ratio device, it is of interest to investigate 
what might be gained by modifying the current profile to remove the shear com-
pletely at r i [^ ' (r i) —» 0] in a tight-aspect-ratio torus. To study the general prop-
erties of profiles of this class, we adopt the simple parameterization 

9 = 0.6 + 2.2r2 - 2.2 ( r 2 - r 2 ) exp [~100(r2 - r?)2] , 

with r i = 0.426 so that 
9 , ( r i ) = 9 " ( r 1 ) = 0 

with q (ri) = 1. 
Results from the FAR code for this equilibrium profile (with P = 0) are shown in 

Fig. 18, where a strong stabilizing trend is evident as A is reduced. Surprisingly, for 
a force-free equilibrium, the mode becomes overstable at small aspect ratio. Over-
stability may (as in the favorable curvature stabilization24 of conventional tearing 
modes) be symptomatic of a stabilizing mechanism within the layer, which could 
yield absolute stability below some critical value of A. This is difficult to establish 
computationally and remains a conjecture. 
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Fig. 18. Computed growth rate of m = 1 kink mode for fio = 0, 
g(r) = 0.6 + 2 .2r a -2 .2 (r a - r f ) exp[ -100(r a -r? ) ) , n = 0.426, and S = 108, 
plotted vs aspect ratio A. The mode becomes overstable at the smallest 
aspect ratio shown. 



5. DISCUSSION AND CONCLUSIONS 

A key ingredient in understanding, and possibly controlling, internal disruptions 
in tokamaks is an understanding of the stability boundary that is crossed at the 
instant of the fast temperature crash. An important clue is provided by the ex-
perimental observation that the phase inversion radius of the temperature collapse, 
which is usually interpreted as the radius of the q = 1 surface, is not small. The 
marginal ?(r) profiles therefore appear to pass through, or close to, unity at a finite 
distance r \ from the axis of the discharge. 

As a result of the calculations presented here, we can distinguish three distinct 
classes of q(r) profile that possess this property and can be marginally stable to 
m = 1 modes: 

1. nonmonotonic q(r) with a minimum value close to unity at r = fx, 
2. ASDEX-like, or ultra-fiat, q(r) profiles that are close to unity over the 

whole region (0,fi], 
3. monotonic g(r) profiles for which qo is well below unity, q ( r j ) = 1, and 

r*i is a point of inflection for q, or at least a point of weak shear. 

Examples of these profiles have been analyzed for ideal and resistive growth close 
to marginal stability, and earlier analytic theory8 has been extended to provide a 
framework for understanding computational results from the initial value code FAR. 
Remarkable agreement has also been found in comparing analytic and computed 
growth rates. 

Among the new results presented here are the following observations. 
• Very sharp stability boundaries can be found when a critical q value deter-

mines stability. Examples are given for "ultra-flat" and non-monotonic q 
profiles. 

• S ~ 1 / 3 scaling of linear growth rates is not found close to marginal stability 
for any of the three classes of profiles just described. 

• Triangular shaping of the plasma cross section can be destabilizing. Its 
effect is dependent on the q(r) profile. 

• Equilibria with axial q values well below unity have been found and may 
be stable to resistive as well as ideal MHD m = 1 modes, in a tight-aspect-
ratio torus. Overstability of the mode makes the determination of a stability 
boundary in A difficult. 

2 7 



28 Discussion and Conclusions 

Many of the features of the sawtooth in smaller tokamaks were explained by the 
model of Jahns et al.,27 which invoked island growth of the resistive kink mode. In 
particular, the precursor oscillations and their growth rates agreed with the model 
proposed. In larger tokamaks, such as JET, however, precursor oscillations are not 
usually observed28 in conditions of constant current. In addition, the initial plasma 
displacement in the sawtooth collapse is too fast (100 //s in JET) 2 8 for the model of 
ref. 27. This suggests that the steep, ideal MHD, stability boundaries apparent in 
Figs. 4 and 10 might be involved. We can calculate the initial time dependence to be 
expected as an equilibrium evolves resistively through such a boundary. Assuming 
a time dependence of the q profile such that 

and using Eq. (14) for the growth rate [for a nonmonotonic g(r) with (gmln — 1) = 
6q\, we find that the mode growth is initially given by exp ( t / r n ) 3 / 2 , with the hybrid 
time TH defined by 

r H » ( 3 r A \ / 6 g c ) 1 / 3 , (26) 

where Sqe is the value of 6g at the stability boundary. Thus, even though the mode 
is an ideal MHD instability, the resistive evolution of g introduces r j 1 / 3 into the t ime 
scale. Estimating this hybrid growth time for J E T parameters, we find TH ~ 300 fis, 
which is still a little too long to account for the experimental observations. To 
understand the fast time scales involved, it therefore appears that theory must look 
to nonlinear, or kinetic theory, phenomena. 

To understand the nature of the internal disruptions in tokamaks, it is necessary 
to study the n o n l i n e a r evolution of the m = 1, n = 1 kink mode. The present paper 
suggests a number of equilibrium q ( r ) profiles that could be marginally stable in 
linear studies. Because of the considerable differences in these q profiles, a wide 
variety of nonlinear behavior is to be expected, with the classic Kadomtsev recon-
nection as one possibility. Such studies are under way using a nonlinear version of 
the FAR code and will form the basis of a future paper. 
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APPENDIX 

The ideal MHD theory of Bussac et al.1 can be readily extended to the case 
with two distinct radii at which q is unity. Denoting these by r i and ra, we follow 
refs. 1 and 2 in expanding the ideal energy integral BW in powers of the inverse 
aspect ratio, for a large-aspect-ratio equilibrium with circular plasma cross section 
and poloidal beta of order unity. Using the straight-field-line coordinates of refs. 1 
and 2, ( r , 0 , $ ) , 

t ^ 
r 2 = 2Rq I f d t f , (A.l) 

J o -» 

- I f t d i 0 , 

and <f> is the axisymmetric angle. In Eqs. (A.l) and (A.2), ® is the poloidal flux 
function, the magnetic field is given by 

and I measures arc length i^ong B. 
In lowest order of the aspect ratio expansion, one finds 6Wq = 0, provided £o is 

chosen to satisfy 

0-ero) + = 0 , (A.3) 

where £ a e
i { - m 8 ~ n ^ with m = n = 1. 

In second order, £ is also required to satisfy Eq. (A.3) and 

S W 2 = 2 n 2 R o B l J r d r | Y i - 1 | r ^ S d t r o 
D a i r o r [ i r v r 

This is minimized by the choice 

£r0 

(A.4) 

0 < r < n 

1 0 , n < r < r 2 (A.5) 

k 0, r 2 < r < a 

when 6W2 = 0. The relative magnitudes of the "top-hat" solutions £0 and £0 are 
arbitrary at this stage;. 
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In fourth order, after minimizing with respect to £ , the second-order correction 
to the m = 1 component, and with respect to the m = 0 part of £ , one obtains 

6 W 4 = 6 W 4 (0,rO + SW4 ( n , r 2 ) + S W 4 ( r 2 , a ) , 

where 

S W 4 { o . n ) a r j 
2 t v 2 R q B q R 2 

- ^ ( a i + P p l ) 2 - ^ ( S i + / 3 P 1 ) + ^ 

+ f f o e i (r i) % ( a i • 

(A.6) 

W M r i . r a ) 4 
2 i r * R o B Z 

= Zo R ? 

9 
{ S Z + M 2 - - {S2 + M + — 

_ 7 2 I L $0 R 2 

Here 

- s i - - ( s l + 0 p l ) i - - { s l + / 3 p l ) + 

+ | l o l l (ra) ( - a + ft* - J ) - f ^ ?o?i (r . ) 

6 W 4 ( r 2 , a ) 1 3 ? 

2ir2RoB2 ~ 4 2
 r a 

• ' - / . T l ? " 1 ) ' ' = 1 , 2 ' - fdr (-£) 5 • '=1,2 

64 
(A.7) 

(A.8) 

and £i(r) , Ci(r)> £i( r ) a r e all solutions of the homogeneous, m = 2 Euler equation, 

(A.9) A 
d r 

Since the full m = 2 solutions in the three regions are given by 

' & ( » • ) - & ( A ' + H ) [®»ril 

e ( m = 2 ) = | ? i ( r ) - € o ( A ' + i * ) in [ r l f r , ] , 

. f i W 1 * 2 , a ] 
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continuity of £( m = 2 ) requires tha t 

6 ( n ) - 6 ( A ' + = M r i ) - e 0 ( A ' + ^ ) r (A.10) 

and 

* i ( r a ) = I i ( r a ) - ! < > ( * ' + 5 5 ) • (A . l l ) 

In addition, £i(r) must be regular as r —> 0, and £(r) must be small at the q = 2 
surface if that falls within the plasma, or (a) must vanish if qa < 2. 

In these equations, A(r) is the Shafranov shift, so that 

A ' ( n ) = ^ + fipl + J ) , A'(rs) = i G2+^+i) • 
To proceed with the minimization of 6W4, we choose to represent £j( r ) , which 

is a solution of Eq. (A.9), by a linear superposition of £i(r) and £i(r) , the solutions 
for which are regular at r = 0 and at the q = 2 surface. 

Thus, writing ?i(r) = « e i ( r ) + / * J i ( r ) , 

the two continuity relations (A.10) and (A. l l ) are used to eliminate a and The 
energy integral may now be expressed in terms of £o> €o> a n d two quantities char-
acterizing the magnitude of the £i(r) and £i(r) solution [£i(r) and £i(r2) , say], 
together with six quantities that characterize the solutions £1 and , 

6 _ r i e > i ) r - ( n ) . n e K r i ) 
e i ( n ) ' e x ( r 2 ) 

e = 
^ e i ( r a ) _ h ( r i ) ft ( r a ) 

r ~ J — r 9 = t ~ 7 r 
M r s ) € 1 ( r a ) " 

Thus 

S W 4 = 6 W 4 [ & , 
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The next step is to minimize 6W+ with respect to £1 and £1. These minimizations 
are algebraic but tediously complicated. The final result is 

.4 „ _4 
6 W A = 2 i r 2 R B l 

+ t o ( t o - t o ) 

with 

6 W 1 = i | a a i + (6 + 3) (/?pl + 5 l ) 2 + \ (f> - 1) ( 0 p i + «i) + ^ (6 - 1) 

M « - c) 
a ( d - b ) 

(6 + 3) ( a i + / ? p l ) + - ( 6 - i ) 

(A.12) 

(A.13) 

= i {252 - ( e + 3) (/?p2 + s 2 ) 2 [1 + (e + 3)/o] - jj (« + 3) (/?p2 + s2) 

x [ 1 + ( « - ! ) / « ] + A ( i _ e ) [! + ( « - ! ) / « ] } , 

S W 3 -H 

(A.14) 

2 5 1 - 3 (/?pl + 5 x ) - (e + 3) (j9p2 + 52) + ^ (e - 1) [(6 + 3) { / 3 p l + S l ) 

, 3 , . 1 r2 [ ( d - 6 ) / + ( c - c ) g r f / r » ] 1 
+ J 2a rx (d - 6)/<7 / ' 

(A.15) 

a = 
( e - c ) f g 1 r ? ( 1 r ( d -
(i - fs) 4 rg (rf L ( 1 - + (A. 16) 

The necessary and sufficient condition for ideal MHD m = 1 stability can now 
be expressed as 

6 W X > 0 , 

6 W Z > 0 , 
8 

(A.17) 

( y j ( 6 W 2 ) 2 ~ 4 S W i S W 3 < 0 . 

If any one of these three inequalities is violated, an ideal m = 1 mode is unstable. 
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The appropriate ideal growth rates and eigenfunctions of unstable modes are 
obtained by equating Eq. (A.l?) to the energy contributions from the two inertial 
layers at r i and r2, in a way analogous to that discussed in the main text for a 
single inertial layer. The single-surface result [Eq. (11)] now becomes 

( £ o - J o ) 2 , J L _ S W 4 ( b > l o ) , A l g l 

where 

h i l ) = f 
J —c .00 s ^ M + k ' M 2 ^ ' 

and SW4 ( $ 0 , I 0 ) i s 8 i v e n b y Ecl- (A.12). 
On solving for 7/wyi and extremizing with respect to the ratio £ 0 / w e obtain 

the growth rates and eigenfunctions of the ideal modes. It is these results [Eqs. (24) 
and (25) of the main text] that have been used in the comparison of analytic growth 
rates with those obtained from the FAR code. 
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