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A 1990 PROGRESS REPORT Qctober 1; 1989 to October 1, 1990

1. Ground State Correlations of Nuclei in Relativistic Random Phase .

Approximation J. A. McNeil, C, I8, Price and J. R. Shepard

Relativistic (Dirac-cquation-based) approaches to nucicar phenomena have en-
joyed some successes in recent years and have provided a common framework for
understanding nuclear structure and scattering.! The simple relativistic mean field
approach (QHD-1) bears the closest resemblance to non-relativistic approaches in
that the dynamical vacunm is excluded. This model’s degrees of freedom include
nucleons and two isoscalat mesous, a Lorentz scalar (sigma) and a Lorentz vector

[ n)

(omega). The structure theoryhas been successfully applied to closed shell nuclei®,
“deformed nuclel

3, excited spectrat, and nuclei near closed shells®.

In this work we examine the ground state correlations implied by the random
phase approximation reported in several recent articles!. In this study we have
assumed that vacuum fuctuation effects are approximately accounted for in the
adjusted meson masses and meson-nucleon coupling constants, and therefore need
not be included explicitly. This theory is very similar to standard non-relativistic
approaches and we apply the many-hody correlation methods of Thouless® and
others to the present QHD problem. '

The specific quantities of interest are 1) the shift in the ground state energy
due to correlations, 2) RPA correlation corrections to the charge density, and 3)
occupancy and vacancy numbers due to 2p-2h configurations in the correlated
ground state. We have calculated these quantities for 0 and *°Ca for which
comparisons to previous nonrelativistic calculations are possible (for further details
of our calculations see ref. 7). An examination of the isoscalar RPA excitation
spectrum in 190 shows that the 17 and 37 states are the most affected by the
RPA correlations. Therefore the corrclation quantities will be dominated by these
modes. Calculations including the 27 and 07 phonons differ only slightly from
those with the 17 and 37 only. ‘

In Table I we present several quantities of interest to our correlation study of
160 . We include the 17 and 3~ phonons up to a S0 MeV. The spurious 17 is
excluded. First note the magnitude of the renormalization factor which measures
the overall strength of the correlations. For the RPA to be valid we should have this
factor less than unity. The present value, while less than one, is still appreciable
indicating that the correlations ave fairly strong in this case. Nevertheless we find
that the shift in the ground state energy is only —3.22 MeV compared to the Agassi®
result of —0.408 MeV. Tt is alveady well known that Dirac MEFT significantly under-
binds 'O (by about 2.5 MeV per nucleon). The corvelation shift is thus much too
small to resolve this discrepancy:.



i

Quantity  Dirac RPA  Agassi®

Energy shift  —3.22 MeV —0.105 MeV

RNS Radins 2,753 fm | e

| Normalization = 0.598 0.408

 Table I. Dirac-RPA Correlatioxy Quantities for 160

We next -examine the 160 ground state charge density., Figure 1 shows the
effect of correlations due to the 17 and 37 phonons as discussed in the previous
paragraph compared to the Dirac-Hartree mean field result and a fourier-bessel
fit to the experimental data’. As expected, the 3= phonon correlations remove
charge from the interior region and move it to the surface region while the 1~
phonon correlations add some charge to the interior through population of the
2s1/2 orbital. The net result is a slightly larger root-mean-square radius of 2.753
fm compared to the mean field value of 2.700 fm, The shape of the correlated
charge density is not appreciably affected by the correlations. :

Table II'presents the occupancy and vacancy numbers for 180 compared with
the values of Agassi®. (These expressions are normalized to the number of particles,
not the probability). We find numbers of approximately the same magnitude as
Agassi giving a net 0.384 particles removed from the MFT ground state due to
correlations compared to Agassi’s value of 0.357.

Vacancy Numbers Occupancy Numbers

Orbital' Dirac RPA Agassi® Orbital Dirac RPA Agassi®

Isy; 0021 0019 | 1dsp 0200 0172
1p3/2 0.158  0.180 | 2d5,  0.010 —
1pijp  0.205  0.058 | ldyp 0063  0.082

Sum  0.384  0.357 | 2dy, 0028 0.035
3dys  0.013  0.015
Sum 0.314 0.349

Table II. Occupancy and Vacancy Numbers for 160

In summary, we found that the shift in the ground state energy for both 160
and “°Ca was quite small, only —3.22 MeV for 60 and —2.95 MeV for °Ca .
For the charge densities, in 10 the 17 and 3~ contributions largely cancel in the
interior while for *°Ca the 3~ contribution reduces the central 'density to give a

2



reasonable clovcmptxon of the data. We also calculated the occupancy and vacancy
numbers for the two nuclei, and where comparisons are available our results agree
reasonably with similar nonrelativistic calculations. This is not surprising given
the nature of the mean field approximation used in the present Dirac case,

B. D. Serot and J. D. Walecka, Adv. Nuc. Phys. 16, 1 (1986).

C. J. Horowitz and B. D. Serot, Nucl. Phys. A368, 503 (1981). ‘

R. J. Furnstahl, C. E. Price and G. E. Walker, Phys. Rev. C36, 354 (1987).

R. Furnstahl, Phys Lett. 152B, 313 (1985); J. R. Shepard, E. Rost, and J. A.

McNeil, Phys. Rev. C40, 2320 (1989); J. A. McNeil, R. J. Furnstahl, E. Rost,

and J. R. Shepard, Phys, Rev. C40, 399 (1989). - ‘

R. J. Furnstahl and C. E. Price, Phys. Rev. C40, 1398 (1989); J. A. McNeil,

R. D. Amado, C. J. Horowitz, M. Oka, J. R. Shepald and D. A. Sparrow, Phys.

Rev. C34, 746 (1986); J. R. Shepmd E. Rost, C.-Y. Cheung, and J. A, McNexl

Phys. Rev. C37, 1130 (1987).

6. D. Jl\ Thouless, [’he Quantum Mechanics of Many- Body S’qu‘ems, Academic, New
York, 1961.

7. J. A. McNeil, C. E. Price and J. R. Shepard, submitted to Phys. Rev. C.

8. D. Agassi, et al., Nuc. Phys. A130, 129 (1969). ‘

9. I. Sick, J. B. Belhcard J. M. Cavedon, B. Frois, M. Huet, P. Leconte, P. X.

Ho, and S. PI atchkov, Phys Le t. 88B, 245 (1979). Fourier-Bessel fits to the

experim‘ental data can be four | in H.DeVries, ef al., Atom. and Nuc.  Data

Tables 36, 521 (1987). |
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Fig. 1. ‘Ch‘arge density of 180 . The solid curve is a Fourier-Bessel fit to the
experimental data®, the dashed curve is the Dirac mean field theory result, the

dotted curve is 10 times the correlation correction, and the dash-dot curve is the
full correlated charge density.
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2. Instability of Tnfinite Nuclear Matter in the Relativistic Hartree
Approximation (. E. Price, J. R. Shepard and J. A, McNeil

The relativistic. mean field model obtained from quantum hadro-dynamics!
(QHD) has been very successful in describing the ground state properties of a wide
variety of nuclei.? It has also been extensively used as the basis for RPA calculations
of nuclear excited state properties® and for investigations of scattering processes.*
An appealing feature of this model is the small number of free parameters. These
parameters are the coupling constants of the meson fields (scalar and vector) and
the mass of the scalar meson. Generally the coupling constants are fit to the
saturation density and binding energy of infinite nuclear matter so that only one
parameter remains which can be adjusted to reproduce the propertics of finite
nuclei. This procedure assumes that the ground state of the infinite system is
uniform and may be described in terms of the plane wave solutions of a Dirac
equation which includes the uniform meson mean fields.”

In our earlier work.” we demonstrated that, at the mean-field level of QHD, the
uniform nuclear matter ground state may be unstable. Our calculations revealed
a lower energy configuration of nuclear matter which contained periodic spatial
variations in the nuclear density. \Ve interpreted these density oscillations in terms
of nuclear clustering and demonstrated that the instability is sensitive to the value
of the scalar (sigma) meson mass. For low values of the sigma mass the nuclear
matter ground state is uniform and for high scalar masses (greater than about 690
MeV) nuclear matter crystalizes into alpha particles arranged on a cubic lattice.

In the previous work, we restricted the calculations to the mean-field approx-
imation (which ignores vacuum polarization contributions) and only investigated
the dependence on the scalar mass (keeping the vector mass fixed). Since a consid-
erable amount of work has been done in mean-field models which treat the vector
(ornega) mass as a parameter® and in models which include at least some of the
vacuumn polarization effects,” it is important to determine the range of both me-
son masses for which the assumed ground state is unstable both with and without
vacuuni polarization,

To do this, it is most efficient to utilize the random phase approximation (RPA).
If the energy of the lowest RPA excited state is less than zero then the assumed
ground state is not the lowest energy state of the system, therefore the boundary
of the region of instability is marked by the locus of points for which the lowest
energy RPA state (assuming a uniform ground state) is at zero excitation, This
connection between the RPA and the direct solution was demonstrated in Ref. 3.

We have identified the region of instability for various values of the scalar and .
vector masses by finding the momentum transfer for which the RPA polarization
insertion has a pole at zero excitation energy. The momentum transfer controls
the period of the oscillatory structure in the densities of the non-uniform state of
nuclear matter (see ref. 5 for details).

The RPA polarization ingertion is given by:®

[ =1+1pirame ‘ (1)



where :
Ds(q) = l/[qﬁ — ms2 - IT;'“C_(q)] : (2)
Dy(q) = 1/[qp —mi = (q)] . = (3)

In eq. (1), IT is the usual mean-field polarization insertion (see, for example, ref. 9)
and I1"*%(q) is given by:

v . 3(/"2 ‘«7 ‘47 1 "
vacy . ____.__i 2 « *“_«t ,*‘/ —
I1,%(q) = S {1\1 + 3A/ MM 5u o
L . sy ()
a0 a ’[*2 - 1--a 2 .
_./da [M* = a(l - a)q” In(/\ j:/ﬁ.l i )}
0 | ‘ | |
and
| ' L] 1 2 o ' »
vacs \ _ O84° o M* —a(l —a)g .
I1,%(q) = = /da a(l — «a) 1n( e > (5)
0

where we have assumed that the isospin degeneracy of the vacuum is two. The
difference between MFT and RHA is that for MFT the ITJ° are set to zero in order

to eliminate the vacuum contributions.

. . n 9 n D)
In uniform nuclear matter only the ratios g7 /m; and gg/m§ enter; so, as we

“vary the meson masses, we keep these ratios fixed. This insures that the nuclear

matter saturation properties (in the uniform state) do not change. If we wished to
examine the detailed structure of the non-uniform solution it would be necessary
to refit the parameters (in the non-uniform state) for each choice of mg and my.

In fig. 1, we show two views of the boundary of the region for which the uniforn
ground state of nuclear matter in the mean-field approximation is unstable. Below
this surface there is a non-uniform state characterized by density fluctualions of
frequency ¢ which has lower energy than the spatially uniform state. Clearly, for
the lower values of the scalar mass that are typically used in MEFT (e.g. 550 MeV)
the uniform state is stable for a wide range of vector masses; however, as the scalar
mass increases the instability is present for increasingly larger values of the vector
mass. Also the value of ¢ for which the uniform state is most unstable is roughly
1.6 times the fermi momentum (ks = 1.3 fm™!) and is only slightly dependent on
the meson masses, By taking a cut through the surface in fig. 1 at my = 783, the
results shown in our previous paper® can be obtained.

This same surface, obtainéd from calculations in the relativistic Hartree ap-

proximation, is shown in fig. 2. The most striking difference is that the RHA
uniform state is stable for all values of the vector mass greater than about 100



MeV regardless of the value of the scalar mass. This can be understood by consid-
eL‘il‘lg(eqs. (2) and (3).. The “cflective ranges” of the scalar and vector interactions

e not controlled solely by the corresponding masses as they are in the mean-feld
lnmt The inclusion of the of the vacuum polarization leads to effective masses for
the scalar and vector fields that are given by:

‘ mé/f = VALNE R Fa msff = \/mi +1ype (6)

ana depend on ¢. The vacuum polarization insertions in eq. (6) are generally less
" than zero and roughly scale with the corresponding masses. This means that for a
given change in the “bare” meson masses, the effective meson masses change much
less, Thus, in contrast to the MFT, the RHA-RPA polarization insertion (and
hence the onset of vhe instability) is relatively insensitive to moderate changes in
the meson masses.

The results from the RIA indicate that the problem of the instability of nuclear
matter is much less severe than for MI'T; however, that cannot be interpreted to
- mean that the instability can be ignored. Even in regions where the RHA uniform
ground state is stable, the nearby instability can still effect calculations in finite
nuclei. While it is true that the farther the meson masses are from the region of
instability the less pronounced the effects on finite nuclei will be, it is by no means
obvious that the effects can be entirely eliminated. In fact, it is likely that the
~ subtle structure seen in the interior of nuclei using the standard RHA parameters
can be interpreted as a reflection of the nearby non-uniform state of nuclear matter.

Clearly, care must be taken when analyzing any calculation that relies on the
assumption that infinite matter is uniform. Specifically, for calculations in both
MFT and RHA it is probably unwise to adjust the coupling constants so that the
saturation properties of uniform infinite nuclear matter are reproduced. A better
procedure would be to fit the MI'T and RHA coupling constants directly to the
bulk properties of finite nuclei,

B. D. Serot and J. D. Walecka, Adv. in Nucl, Phys. 16, 1 (1986).

2. C. J. Horowitz and B. D. Serot, Nucl. Phys. A368, 503 (1981); R. J. Furnstahl,
C. E. Price and G. E. Walker, Phys Rev. C 36, 2590 (1987); Y. K. Gambhir a.nd
P. Ring, Phys. Lett. 202B, 5 (1988); R. J. Furnstahl and C. E. Price. Phys. Rev,
C 40, 1398 (1989); U, Hofmann and P. Ring, Phys. Lett. 21418, 307 (1988) ,

3.1, R. Shepard, E. Rost and J. A. McNeil, Phys. Rev. C 40, 2320 (1989); R. J.
Furnstahl, Phys. Lett. 1528, 313 (1983); P. G. Blunden and P. \Ic(,otquoda,lc,
Phys. Rev. C 38, 1361 (1988),

4. L. G. Arnold, B. C. Clark, R. L. Mercer and P. Schwandt, Phys. Rev. C 23,
1949 (1981); J. R. Shepard, E. Rost, E. R. Siciliano, and J. A. McNeil, Phys.
Rev. C 29, 2243 (1934).

5. C. E. Price, J. R. Shepard and J. A, McNeil, Phys. Rev. C (in press),
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. P.-C, Reinhard, M. Rufa, J. Mmuhn W. Greiner and J. Friedrich, Zeit. Ph\s

AS”J 13 (1966)
. J. Horowitz and B. D, Serot, Phys. Lett. 140B, 181 (1984).
C J. Horowitz and J. demmwwz Phys. Rev. Lett. 62, 391 (1989).
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Fig. 1. The region of instability of uniform nuclear matter in the mean-field ap-
proximation (MEFT) as a function of the scalar and vector masses and the frequency.
The region below the surface marks the arca in which the uniform state is not the
lowest energy state of the system as determined in the RPA. Tor clarity, the upper
and lower panels show the same surface from different viewpoints,
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3. Charge Density Differences for Nuclei Near 'OBPb in Relativistic
‘Models C. E. Pricc and R. J. Furnstahl

There are recent data 2 on the charge densities of various nuclei near *®Pb
(e.g. 2%%Ph, °T] and *™Hg). The difference between the charge densities of two
such nuclet that differ by one or two protons should he dominated by the charge
density associated with the last occupied proton orbital. Ior these nuclei near
208Ph, the last occupied proton state is the 3s1/2 orbital, which has a characteristic
two node shape with a large central maximum. This shape should provide a unique
signature for ‘,he‘ef‘l‘"ects‘ of this orbital in the charge density difference, and should
make it possible to identify any. deviations from the pure single particle picture.

~There are at least two effects that are expected to cause the charge density
difference to deviate from the pure 3s,,; shape. First, the removal of even a single
proton will induce some polarization in the remaining core orbitals so that the
charge densities of the cores of two neighboring nuclei (like 20571 and 206 Pb) will
not cancel exactly. Secondly, t he occupation numbers of the least bound proton
orbitals need not be identical {or these heavy nuclei. For example, rather than
being dominated by the removal of a single proton (or pair of protons) from the
3s1/5 orbital, the charge density difference may be p:imarily due to the removal
of a “fraction” of a proton’ from cach of the 3sy,, and 2dy/, orbitals (ox any more
complicated ﬁact]onal level occupation schemes). '

In this work, we study the charge densities of 206pyy, 205 and *%1Ig in the
context of quantum hadro-dynamics®(QHD). This model has been very success-
ful in describing a wide range of nuclear ground state properties thloughoub the
periodic table, and typically provides agreement with experiment that is on the
same level as that obtained using non-relativistic Skyrme interactions.* For these
calculations, we have used both linear (L) and nonlinear (NL) parametrizations of

QHD.

Figure 1 shows the charge density differences for 206Pb—205T] and *0Ph > Hg,

In both cases the general shape of the calculated density difference is similar to that
of the experiment: however, the calculations overestimate the size of the oscilla-
tory structure. This overestimation is particularly evident in the central maximum
where the calculations are two to three times larger than the experiment. This
central difference strongly suggests that either core polarization or fractional level
occupancies are playing an important role in the charge density differences. The
calculations shown in fig. 1, are very similar to those obtained from non-relativistic
Hartree-Fock calculations using phenomenological effective interactions (see ref. 1

for *05T1 and ref. 2 for **1g). In these carlier calculations both core polarization
and fractional level occupancy had significant effects on the charge densltles

I order to demonstrate the effect of core polarization, we will focus on *6Ph
and Tl Tig. 2 shows the charge density difference obtained from experiment
(solid line) along with two results obtained from the linear model. The dashed

line shows the full calculation (as in fig. 1) and the dotted curve shows the charge

11



1<°nslty contribution of the 351/ proton orbital of 296D, These two calculations
would be identical if the core polallz,amon was négligible. Clearly, there is about a
10% difference at r=0 that persists to all ». Notice that the pure 3s1/9 result lies

above the full calculation, indicating that the core polarization has already reduced
the discrepancy thhlexpcumont. This reduction act ually arises from two distinct

sources. IMirst, the absence of the valence 3s;/5 proton in 2051 efrectivcaly reduces
the size of the potential well that is seen by the remaining core orbitals. These
orbitals then have a slightly different spherical distribution than the corresponding:
levels in “°6 P, This accounts for roughly two thirds of the core polmmatlon seen in
fig. 2. The remainder arises from the deformation of the 9Tl core. Since removing

a single proton leaves an incomplete outer shell, 25711 is not constrained to have

a spherical shape. The calcula‘tlon shown in ﬁ . 2 (dashed line) allows for the
possibility of £, = 1, 2, and 3 deformations of the *">T] core (higher deformations

“were observed to be unimportant), and these deformations contribute one third

of the total core polarization effect.Most importantly, notice that while the core
pelarization does move the calculations away from the pure 3sy/, result, it does
not begin to explain the large discrepancy with experiment.

In order to understand the discrepancy, we now consider the effects of {ractional
level occupancy.  Since we are only interested in the charge density. differences, it
is sufficient to leave the level filling of *%Pb fixed and only vary the occupancy
of the least bound levels in either 0“'[‘1 or 0 Hg. In hgs 3 and 4, we show the
chaxgu density differences for 2061y 20577 apd 200PhH—204 g obtamed by varying
the occupancy of the high lying proton orbitals, For these calculations, we have
assumed that the neutron occupancies are not affected and that the chang)es in the
proton occupancies are restricted to the 3s;/, and 2dg/, shells.

2
“or 206 PH—205T], we used the occupancms suggested by Irois’s! rompauson of

the experimental results with the mean-field calculations of Campi et al.® Specif-
ically, there are 0.7 protons removed {rom the 3s shell and 0.3 protons removed
from the 2d shell. This level occupancy is minimally sufficient to bring our QID
results into agreement with the experimental density. Our central maximum is
still slightly too h)gh and the osc111atoxy structure remains slightly enhanced. The
agreement could be improved by using depletions of 0.6 and 0.4 for the 3s and 2d
levels respectively. This larger 3s occupancy is supported by the theoretical calcula-
“ion of Pr"mdhc‘uipander in which the occupation probabilities of shell-model orbits
in the lead region are estimated by the ad(htlon of random-phase approximation .
corrections to nuclear matter results.

For :3(]61?1)—2041133, we ha,\'(: used the occupancies suggested in ref, 2, based
on the average of the occupation numbers required to bring three separate non-
relativistic calculations into agreement with experiment. Namely, ~ 1.0 proton
removed from the 3s orbital and ~ 1.0 proton removed from the 2d orbital (this
corresponds to a {ractional occupancy of 0.5 for each of the 38y lev els). Again
this occupancy is sufficient to bring our results into minimal agreement with ex-
periment, but the agreement could be improved by removing slightly {ewer protons
from the 3s level, Since the three calculations of ref. 2 had a spledcl of about +£10%,

12



such a reduction would still be consistent with the non-relativistic calculations. It

_is important to point out that, particularly for an even-even nucleus like ***Hg,

the fractional occupation of the levels near the Fermi surface should be included
via the pairing appm\lmat]on as has been used by Ring et al.” rather than by the

- simple occupation number variation that we have employed heve. While it is not

expected that the pairing effects would alter the qualitative features of our results,
it is likely that the simple picture of the charge density dif fmenco in terms of only
two lev cls (the 3s and 2d) would be changed.

W5t

0.
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Lett. 59, 2420 (1987); R. J. Furnstahl, C. E. Price, and G. I5. Walker, Phys. Rev.
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(dashed-dotted) 1.0 proton removed from th(* 3s level and 1.0 from the 2d level.



4. Meson Exchange Current Corrections to Magnetic Moments in
Quantum Hadro- Dynamxcs ‘T M. Morse, C.oE. Price and J. R, Shep-

ard
In the car ly Qm\lltum Hadro-Dynamics (QHD) ca]cnlatmns of the maenv(n(*
moments of closed shell &0 nuclei, ™ there was a significant (hsmjr cement with

both oxpmlmcnt and Llw non-relativistic Schunidt moments, This disagreement
was due to an'enhancement of the convection current contribution to the magnetic
moments, which was an indivect result of the reduced nucleon elfective mass in
QUD. Subsequent calculations? showed that problems with the isoscalar magnetic
qmoments were an. attifact of the treatment uf the unpaired nucleon. The early

calculdtions had assumed that the unpaired nucleon could be treated as a valence
particle in the nearby closed shell system. This assumption effectively ignored the
polarization of the closed shell core due to the presence (or absence) of the valence
nucleon. McNeil et al.t showed that, by including this (isoscalar) core polarization
in the random phase approximation, the enliancement of the convection current
was eliminated and good agreement (< 5%) with experiment was obtained for
the isoscalar magnetic moments, Finally, in a fully self-consistent calculation that
included the response of the valence particle to the polarization of the core, 'urn-
stahl and Price® also obtained reasonable agreement with experiment (£10%) for
the isovector magnetic moments, This last result is surprising since the model does
not include the eflects of the charged mesons and it is expected®® that the meson
exchange currents (MEC) due to charged mesons—especially pions—will have a
significant effect on the isovector moments.

We have considered the corrections to the QHD magnetic mome nt,s due to a
single charged pion exchange within the nucleus, The QIID-I1 Lagrangian! includes
the interactions of nucleons with sigma, omega, vho and pi mesons (and Coulomb
interactions); however, in many applications the pi meson does not contribute, For
example, in uniform nuclear 1‘na,t.ter, spherical nuclei and even-even deformed nuclet
the pion mean field vanishes, In the current calculation the pion can contribute in
two ways, I'irst, even if the pion mean field is zero, it is still possible to exchange
virtual pions between two nuclei and the exchange of such charged pions give rise
to the MEC corrections considered here, Sec onclly, in a completely self consistent
calculation of an odd-A nucleus, the pion field does not anlH]l, so the plon can
enter Lthe calculation through the details of the mean-field basis,

The pion exchange contributions to the magnetic moment are described by the
two Feynman diagrams shown in figure 1. These diagrams will have a non-zero
contribution to the magnetic moments only if one of the nucleon lines corresponds
to the valence nucleon (diagrams that do not involve the valence nucleon will cancel
when the appropriate suinmation over core states is carried out),

Using the Feynman rules, it is simple to write down coordinate space expres-
sions for the clectro-magnetic currents corresponding to these two diagrams which
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can be used to caleulate the magnetic moments, We obtain
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whete 9 is a nucleon wave function (p for proton, n for neutron), gr and my are the
pi-nucleon (‘0\1")“11;7‘ and the pion mass, and A (M*) is the nucleon mass (cll’wtiv(‘
mass: A minus the sigma meson mean fleld). In deriving these expressions, we
have assumed pseudo-vector coupling for the plon-nucleon interaction and have
obtained the photon couplings by minimal substitution. We have evaluated these
expressions 1n the closed shell 41 systems near A=16 and A=40, using the spherical
Hartree basis wave-functions (in QHD-IT) appropriate to the nearby doubly closed
shell nucleus, By doing so, we have neglected the effects of core polarization on
the MIEC corrections. This effect is expected to be small compared to the total
magnetic moment. We have also neglected the effects of the pion mean-field in
the odd-A system. Since this effect has not yet been studied and could alter not
only MEC corrections but also the self-consistent QHD n'mgnvtic moments that
we have used as our starting point, it is difficult to assess its importance. The
additional corrections due to properly including the pion effects in the full odd-A
wavefunctions will be the subject of a future investigation,

In Table I, we show the QID pion exchange current correction to the magnetic
moments of mgjllt nuclei near A=16 and A=40. The self consistent QHD magnetic
moments are from ref. § and are in qualitative dg.,l(‘(,‘lll(‘llt with the non-relativistic
Schmidt moments and the e\perlmcntal values. The MEC corrections (from this
work) are relatively small and are of roughly the sanic magnitude as the typical dis-
crepancy between the QHD moments and the experimental values, Unfortunately,
the sign of the correction is opposite to that of the discrepancy.

In order to get a more accurate picture of these corrections, it is convenient to
recast our results in terms of the isoscalar and isovector mf\;,notl( moments, These
results are shown in Tables [T and 1, From Table [T, it is clear that the QHD ve-
sults are in rather close agreement with experiment and that the MEC corrections
are negligible as is expected based on the isovector nature of the pion exchange (the
isoscalar corrections would vanish only if we had ignored the differences between
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Schmidt QHD  MEC QHD+MEC Iixpt:
BN | =0.264 | =0.250 | 0.102 ~0.148 | =0,283
50 | 0,633 | 0.648 [=0.001]  0.547 | 0,719
0 | —=1.918 | ~2.08 | 0.162 —~2,19 | ~1.894
R | 4703 | 489 | —0.140] 508 | 4722
K | 0,124 | 0.380 | 0.173 0.553 0.391
Wloa | L148 | 0.940 | —0.174 0.766 1,022
MCa| —1.913 | 2,20 | 0.277 ~248 | =1.595
MSc| 5793 608 | -0.263 6.3 5,080

Table I. Magnetic moments of closed shell £1 nuclei in nuclear magnetons,

A QUD MEC QUDMEC Bxpt
1500109 0,001 | 0200 |0.218
7] L3 [-0011 ] 1az | 1aLd
30 [0.660[-0.001|  0.659  |0.706
1] 1.04 |-0.007| 103 |1.918

Table 11, Valence (QHD) and one pion exchange corrections (MEC) to tsoscalar
magnetic moments.

the neutron and proton basis states which are due to Coulomb effects and the rho
meson interaction). From Table 1, it is clear that the discrepancy between the
QUD isovector moments and the experimental values is somewhat larger than the
corresponding discrepancy for the isoscalar moments, and that the meson exchange
currents contribute a significant correction to these moments. For all of the sys-
tems that we studied (A=15, 17, 39 and 41), the MEC corrections significantly
degrade the agreement of the QID moments with experiment. This degradation
is particularly large for the A=15 and 17 systems where the total magnetic mo-
ments are fairly small. These calculations could be improved by including the
effects of core polarization on the MIEC corrections, including pion contributions
to the Hartree basis and by including additional isovector correction such as isobar
current corrections and exchange current corrections due to other mesons,
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A QUD MEC QUDHMEC Exp
15| ~0.449 [0.102| —0.847 | —0.501
171 3.46 [0.161 3,061 3.308
500 00280 10,174 ~0.106 0916
S| 0270 ddt 3,512

Table TI1. Valence (QI1D) and one pion exchange corrections (MEC) to isovector
magnetic motments, ‘ ‘
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Fig. 1. The two Feynman diagrams (seagull and in-flight) which describe the pion
exchange currents used to calculate the magnetic moment correction,
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5. Analysis of the 0% — 0~ Reaction at Intermediate Encrgles I3, Rost
and P, Kung |

The 0% — 0~ transition by medium-energy prolon inclastic scattering is a po-
tentially rich source of new nuclear structure information, A general inclastic scat-
lering reaction requircs! theee nnelear strncture densities: The spin-independent
longitudinal density, the spin-dependent transverse density and the spin-dependent
longitucdinal density., For a 0% -+ 07 transition only the last term is non-zero and
henee . can be studied in isolation from the other, gencrally lavger, terms, I'he

o)

analysis usually involves a perturbation treatment with some form of distorted
wave immpulse approximation (DWIA) where only fivrst-order effects are considered.
Since such analyses® Jdo not agree with the data, we were motivated to consider a
generalization of the DWIA to include sccond-order terms. '

Our analysis employs a simplified DWIA which uis based on a nucleon-nueleon
-inatrix of the lorm : '

I‘TNN((/, Q) = A4 B35 G0+ (J(fﬁ A Ga) T /)((?1 '(2)(013 oq) + /L‘(&}l ~C§)(5g ' C:)), (1)»

where ' = - ﬁf, Q= Iy + /::f and 7 = § x Q. Bquation (1) is approximated by

The last term in Eq. (1) involving Q cannot be accomodated in a local {-matrix
form and is ignored in this work, We have considered the fourth term, which is
basically a lensor interaction, and can calculate the DWIA with it, Mowever its
effect is completely negligible for the 7" = 0 transitions in this work. The third
term, a two-body spin-orbit term, is neglected here for calenlational simplicity. We
hope to repair this defect later. We note that explicit treatment of exchange is not
included in this calculation—however some implicit effects of exchange are present
since Lhe experimental NN amplitudes are used.

The complex V¢(¢) and V7 (¢) amplitudes are known from NN scattering and
are fitted at each encrgy by a sum of Yukawa forms

bl ‘
. L3 ‘ | 24 o0 oy = P
Vo= dr(hie)t S =i (e 4 b ey 3
(he) le e [ ! [ J ’ (3)

for j = " and o and lor isospins 0 and 1. Pive masses (125, 350, 550, 900 and 1500
MeV) were found to give an adequate fit to the forward angle (less that 60°) NN
“data”. A local pseudo-potential may then be written
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where

— L (h (.")3
[t 4 1'met /2] /2

I, jrert

and 1" is the incident proton energy in the laboratory systemn, The configuration-
space potentials are Chen ‘

5 .
‘ - COND O . e
Vigr) = $ SRt o e (6)
— T h

v

for j = (' and o,

Distorted waves are generated from optical potentials which have fitted elastic
scabtering data, At 400 MeV the optical parameters are taken form the work of
Abdul-Jahil et al3y at 180 MeV we adopt a “global” parametrization of Schwandt

4
et al*,

The nuclear structure for the T=0, JT=07 state of 160 is believed to be very
simple® and dominated by the {p']“/l.,sl/v_,] configuration, We describe the single
particle or Lole states in terms of shell-model wavelictions in a \Woods-Saxon

\ + - U l ;‘ A ] o 1 . . "\
well of radius 1,25 x(16) /* fi and diffusivity 0.65 fm, A standard Thomas-lorm
spin-orbit term of strength \ = 25 is used, Finally the depth of the well was
adjusted so that the binding encrgies followed experimental energics [taken as the
average of proton and neutron particle (or hole) energies.] These are 15 = (—=20.72,
—13.40, =2.37, —1.68) for the (py/ay Prj2s ds/as 812) orbitals. The results that
follow are largly insensitive to the precise details of such choices,

rm N ] ]

['wo reaction mechanisms are considered:

(1) A single-step excitation of the 07 final statey
(2) Two-step excitation via an intermediate [p]“/l,3 dg/2la- stale,

The 37 state is strongly excited in (p,p') reactions and is readily caleulated in
the DWIA model, Pigure 1 shows the cross scetion for (p.p') at 180 MeV caleu-
lated with the impulse approximation where the calculated cross seetion has been
multiplied by a factor of 2 to account for other configurations, or cquivalently,
some collectivity, This one-step excitation which proceeds throngh the V& term
in . (2) is reasonably described in our simple model, For the de-excitation of
the 37 state to the final 07 state, a spin-flip term is required, i.c, the transition
involves [,=2, S=1, J=43 and proceeds via the V7 term of Eq, 20 We assume the
same {actor ol two enhancement here as in the excitation process,



[t is now possible to calculate a second-order DWIA, either alone (puro two-
step) or in coherent combination with the one-sten DWIA, Tn Flgs, 2 and 3 we
show the onesstep, Lwo-step, and coherent combinavion DWIA caleulations for the
excitation of the 07 state by 180 MeV and 400 MeV protons, tespectively, T he

caleulated cross sections compare as well with the data as other, more sophisticated
DWIA caleulations,

The analyzing power results fn Figs, 2 and 3 give the most significant result of
this work. .f\ll\mngh the bwo-step crogs sections lie an order of maenitude below the

one-step DWIA (and the data), the coherent sum of one- and two-step processes
make lor substantial u[l‘c*cq in the caleulated analyzing powers, The one-step cal-
culation gives zero (1, values (or v loeal interaction as may be rigorously shown®
(our small values are due to a slight momentum dillerence between initial and
final systems.) Karlier work™ has attempted to explain the clearly non-zero exper-
imental values with non-local (e.g., spin-orbit and exchange) terms in the one-step

interaction, However the effect of two- step processes, although unimportant for
the cross sections, should not be ignored in such analyses,

Lo W. G Love e aly, in Proceedings of International Confercnce on Spin Eecitalions,
Telluride, CO, edited by ' Petrovich el al. (1982)
2, E.Rost. in Technical Progress Report, Universily of Colorado, NPL lOu(), S0 (1989)
3, LAbdul-Jalil and D.F.Jackson, J. Phys. G5, 16D) (1979)
4, P.Schwandt et al. Phys, Rev, C286, 55 10«“)) o
5, V. Gillet and N Vinh Mau, Nu(.'l. l‘]lvs u4 321 (1t
1)

G. S.SN . Wong ef al., Phys, Lett, 14913 299 (108
7o J Plckarewicz, 'hys, Rev, ©36, 675 (1O87)

8 J.LKelly ef al, Phys, Rev., €41, 2504 (1990) and private communication
0, J.Ning, private communication
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Fig. 1. Experimental and theoretical cross sections for the excitation of the 6,130
MeV 3~ level level of %0 by 180 MeV protons, The data are taken from ref, 7. The
theoretical curve is obtained from a simple first-order impulse as approximation
described in the text and includes a renormalization factor of 2.
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Fig. 2. Bxperimental and theoretical cross sections and analyzing powers for the

-

excitation of the 10.957 MeV 0~ level of 10 by 180 MeV protons. The data are
taken from ref, 8, The dashed curve is obtained from a simple first-order impulse
approximation described in the text, The dotted curve is obtained from a second-
order DWIA via an intermediate 37 state, The solid curve is obtained from both
one- and two-step processes.

24
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Fig. 3. Experimental and theoretical cross sections and analyzing powers for the
excitation of the 10.957 MeV 0~ level of 10 by 400 MeV protons. The data are
taken from ref. 9. The dashed curve is obtained from a simple first-order impulse
approximation described in the text. The dotted curve is obtained from a second-
order DWTA via an intermediate 3~ state. The solid curve is obtained from both
one- and two-step processes. ‘
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‘6. Contributions of Reaction C‘lmnnels to the °L1(p 4)"Be Reaction
P.D.Kunz , ‘

At low bhombarding energies the strength of the SLi(p,v)"Be reaction to the
ground and first excited state is larger by a factor of two than that calculated
from a simple direct capture model!. In this model an effective potential model is
constructed for the interaction. The v-ray transition is dominated by the electric
(‘lipolo transition from the continuum s states to a p state in-the final nucleus: The
spin 1/2 channel gives the main contribution to the cross section because of the

small amplitude of the spin 3/2 component in 'Be. The Jotontml mo(l(*] is litted

separately 1o the s wave scattering lengths for the spin 1/2 > and spin 3/2 L1 +
! g g ! ! ‘

p channels. The scattering length for the spin 1/2 system is large and positive
and its potential supports-a bound state of a few. MeV binding energy. ”O\\’CVCI
the experimental evidence for such a 1/2% level in "Be is lacking. ‘In addition the
fitted potential must contain an imaginary part to account for the breakup reaction
SLi(p,*He) He. The results of calculations with this simple model describe the
energy dependence of the (p,y) cross section but {all to fit the magnitude of the
(lucd.

An open 3Uo + *He channel can give rise to a large effect but a simple lo-
cal potentml model with an imaginary component may not describe properly the
removal of flux from the initial channel. Therefore we consider a self consistent
model for the reaction which takes into account both capture and breakup pro-

cesses. The latter pxoceks can be considered to be a deuteron exchange process?

between the proton and ®Li or, equivalently, a Li(p,*He)*He rcaction. 1f the *He

+ He channel is coupled bacl\ into the initial channel then the effects of the ab-
sorption can treated in a more natural way than by 1e1ymg3 on an imaginary term
in the potential. The reaction is depicted as

°Li4+ p «% He +4 He

‘Li+p—"Be+4~y

in a coupled (‘hannels formulation, Fhe equations can be easily formulated and
solved using the coupled channel code CHUCK3. In addition a (ontnl)utlon to the
gamma ray L1a11€1t10n also results from the breakup channel

‘e +* He =" Be + 7.

This component is coherent with the direct capture process and has no extra sup-
pression {rom the Coulomb barrier since the channel has an energy of about

NMeV,



Preliminary calculations have studied the effect of the explicit inclusion of the
breakup reaction channel. The parameters cf the model are adjusted Lo reproduce
the known breakup cross section. The most sensitive parameter is the strength of
the channel coupling. The fit to the breakup data gives the scattering lengths for
the two spin channels within 10% and closer agreement may be obtained by adjust-
ing the range parameters in the two-nucleon transfer form factor. This agreement
involves no addit’ aal petential terms in (he initial p 4+ Li channel. A preliminary
calculation also shows better agrecinent with the magnitnde of the capture cross
section,

1. .C. Barker, Austr. J. Phys. 33, 159 (1980)
2. H. Weigmann and P. Manakos, Zeitschrift {tiv Physik, A289, 383 (1979)

t
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7. Deformed Chiral Nucleons C. E. Price and J. R. Shepard
!

The lunclamcntal field theory of the strong interaction, QCI, has not yet
evolved to a form which makes possible quantitative, first- pnnuple calculations
of low-energy hadronic properties. Nevertheless, there is general agreement that,
when such calculations are done, they will be consistent with the ideas of quark
confinement and hidden chival symmetry. Much effort has been expended to de-
velop phenomenological field theories which are at once cdlcnlatloncllly tractable
and also to some degree compatlblo with QCD. A familiar example is that of the
Skyrme model! which can be interpreted as the large N, limit of low-cnergy QCD?
and whose topological solitons possess both the plopmtlw ol absolute confinement
and hidden chiral symmetry. [t is both the strength and weakness of the Skyrme
models that they make no explicit reference to quarks. Non-topological soliton (or

hybrid) models® have been put forward as alternatives which include quark degrees
of freedom throughout. These models still possess hidden chiral syimmetry but the
quarks are not absolutely confined. This latter shortcoming, it may be argued,
should not be distressing provided the binding energy of the quarks in hadrons is
large on the scale set by our definition of the “low-energy” nadronic properties we
seek to describe. In any case, such hybrid models, typically based on claborations
of the Lagrangian of the o-model,* can provide very economical de sc-riptions of,
e.g., the N-A system. For example, the calculations of Birse and Banerjee® and re-
pxoducc with reasonable accuracy nucleon properties such as rest mass, magnetic
moments, rms radii, g4 and gryny with essentially two free parameters, namely
the coupling constant ¢ for the interaction between the quarks and the chiral field
(or equivalently, the effective-quark mass) and mg, the mass of the scalar meson.
These and virtually all other hybrid model calculations employ the “hedgehog”
ansatz. This amounts to assuming that the pion fel(l has the form @ = 77 and
then calculating an intrinsic state in which isospin [ and angulcu ‘momentum J are

coupled to yield a state for which the “grand spin” K=1+Jisa good quan-
tum number. Since the matrix elements of the quark spin and isospin operators
are readily evaluated for such states, significant calculational simplifications are
achieved. More significantly, it has been shown that the hedgehog is a local min-
imum of energy at least with respect to some restricted variation. Iowever, it is
also true that the hedgeheg is an unphysical object and physical states with well

defined I and J must be projected from it much as, in the standard treatment of
deformed nuclei, states of “good” angular momentum must be projected from a
deformed intrinsic state.

With these difficulties in mind, we have developed an alternative to the hedge-
hog model which utilizes tcchmques employed in calculations of deformed nuc lear
ground states in the framework of quantum hadrodynamics (QI1 D®), a relativistic
quantum field theory of nuclear structure. We begin with the standard Lagrangian
of the non-linear o model (see, e.g., Reference 3) including a chiral symmetry break-
ing term that generates a quark mass (through the non-zero vacuum expectation
value of the o field). Our method diverges from the 1cclgjc 10g approach in that we
assume our three-quark wave functions have spin-isospin structure corresponding
to the usual SU(6) wave function for a spin-up proton. Our solutions therefore



possess Lhc proper spin and isospin projections by construction, l‘urthermore, if
the single quarl\ wave functions were degenerate, our mldvon would have the cor-
rect total isospin, as well, If we assume the quarks are in s-states, the (‘(llldtl()ll of
motion for the neutral pion field implies g o cos 0 where 0 = ¢« 2 is the usual
polar angle (charged pion mean fields are excluded in this model). The pi-quark
interaction can then couple, e.g., the lower component of an sy /5 quark wave func-
tion to the upper component of a (/,/r, wave function. This means that the neutral
pion field can induce deformations in our mean-field solution for the nueleon. We
allow for lu.s possibility in.our calculations and find single quark wave functions
whose cnergies are split by their interaction with the mo Tield which changes sign
upon [lip ofutlw spin or isospin. However, this splitting is not large and we have
estimated isospin projection by itscll to be a 5 to 10% effect at most, If e ignore
this small violation of isospin symmetry, we conclude that we have calculated an
object intermediate between the hedgehog intrinsic state which is a mixture of
various upms and isospins and the physical state which hag unique values of spin
and isospin. Of course we still face the task of projecting physical states of good
total angular momentum as is done in standard treatments of deformed nuclei,

In Table 1, we compare the results of our calculation of nucleon properties with
those of Birse and Banerjec® and with experiment, Our (Birse and Banerjee’s)
calculations use best-fit parameters m, = ]‘)OO (500) I\IOV and m, = 600 (1200)
MeV. We show two sets of our results, one designated as “spherical” which includes
only sy/5 quark wave functions and another labelled © l(.,l,omm(l which allows up
to g7/o admixtures. In the deformed (spherical) calculation, the o field has L =0
and 2 (L = 0) multipoles while the 7o field has L = 1 and 3 (L = 1), We have
determined empirically that higher multipoles in cither the quark wave functions
or the meson fields are of negligible importance. The major difference between the
spherical and cl('imm( d calenlations is due to the presence of the dy/y components
in the quark wave functions. The amount of deformation may thus be quantified
in tclms of the amplitude of the dyjy component of the quark wave functions and
is found to be 14% for the deformed calculations presented in Table 1. Another
measure of the departure from sphericity is the standard deformation parameter
which is f3 = —0.26 (for the quark scalar density) in the present case indicating an
oblate deformation, As the numbers in the table show, this modest deformation
has profound effects on the nucleon properties. Deformat.lon reduces the uq/d;
versus uy/dy splitting by 690 MeV (to only 224 MeV), increases the total mass
by 353 MeV, changes the magnetic moments by about 45% and reduces g4 and
gen N by nearly a f{actor of three putting them in essentially exact agreement with
experiment! (Note thal g4 and gryn are constrained to be proportional by the
Cioldberger-Trieman relation, gaM = gryn Fr, which is realized at the level of
gaM [ gen N e = 0.961 (0.785) for our deformed (spherical) caleulation.) Perhaps
the most striking difference between our calculations and those for the hedgehog is
that our pion field (and hence, its contribution to the nucleon mass) is much smaller
than that of the hedgehog. llw weakness of our mg field is closely connected with
the deformation of the quark wave functions. Recall that the my field has a cos
spatial Jopondonu- and is therefore strongest at the nucleon “poles™ and vanishes
at the “equator.” Though the interaction of the quarks with this field is attractive
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for ty and dy and repulsive otherwise, the total nucleon energy Is minimized by
minimizing the mo-quark interaction. Tn the present mocdel, this | is :\((0111plmlw<1 by
an oblate deformation which effectively concentrates the quarks in the ‘oquatorial®
region. In turn, this weakens the mg source and linally the overall mg field strength,

Except for the mass which is subject to sizeable reductions ('lm‘ to center-of-
mass corrections, the deformed caleulations of the properties of the nucleon are
i excellent agreement with experiment. l'mtlunm(;w, no parameter combination
could be found which gave even remaolely comparable agreement for the spherical

calculation. Deformation is evidently a crucial degree ol lreedom in this model!
f\gmn except for the mass, our clviovme,cl caleulation glves a description ol the
nucleon which in almost every instance is comparable or superior to that of the
hedgehog. The values of g4 and gryy in particular are much better accounted
( Ll o " , S . - o 3,89
for l)y the deformed calculation. Only our value for the o-nucleus commutator,®®

orN, is in substantial disagreement with experiment? and in fact is somethat worse
than the hedgehog result, Regatdless of how the two models [arc in compatisons
with data, perhaps the most interesting result is that they require such different
Cinputs to describe the nucleon. In fact, our calculations do not generate a bound
system when we use the Birse and Banerjee best-fit parameters, These diflerences
in values of my and my are difficult to understand and provide a strong incentive
to understand the formal relation between deformed and hedgehog solutions, This
will be the subject of a future publication,

\While differences between best-lit parameters lor the deformed and the hedge-
hog solutions are noteworthy in their own right, the specific values we (ind lor my,
and me have their own interesting implications, We mentioned above that hybrid
models such as ours do not give absolute confinement. The energy scale on which

the quarks are effectively conlined is given by the quark binding <’ncwy In the
Birse and Banerjee hedgehog, as shown in Table 1, this energy is ~170 MeV. By
taking the average of our quark binding energies with weights fixed by the SU (())
wave functions, our quark binding energy is found to be 900 MeV (1125 MeV)
for the deformed (spherical) calculation. Thus our quarks are substantially better
confined than those of the hedgehog,

Assessing which o-mass is most physical is a challenging problem principally
because the o is not physical. However, most workers in this field have their own
prejudices. Birse and Banerjee, for example, secem happy with their value of 1200
MeV because it is consistent with “that observed from 7N scattering and the ob-
served ¢(1300) resonance,” Our prejudices are somewhat different. There have long
been suggestions of a very broad o-resonance at about 600 MeV. Notwithstanding
its glaring absence [rom the Particle Properties Data Booklet, this o-immeson has
played a prominent role in nuclear physics. [n fact many of the arguments in fa-
vor of using this mythical o-meson have the same flavor as those used to ]uqti[‘v
the Skyrme m()dP] and its offspring. Its presence is central to the QHD models®
mentioned above where it provides the strong isoscalar attraction which, when
balanced by the isoscalar re pulsion from the w, yields an cconomical relativistic
description of many aspects of nuclear (I)Ildml(.b, The relationship - if any - be-
tween our o component of the chiral field and the o of nuclear physics has not bvon
established, However, the fact that their masses are compatible in our model gives
at least some encouragement to pursue this question,
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We have computed nucleon propertios using a hybreid chiral model, Instead
ol employing the hedgehog ansatz, we have computed a mean field solution with
well delined pin and isospin projactions, Our model allows for spatial deformation
ol the nucleon, liven though this deformation is modest, it iy crucial in bringing
about agreement with experiment, especially for quantities like magnetic mowents
and g4, Our best fit involves only two [ree parameters and is generally superior to
that of the hedgehog with vory different values for the parameters, Our solution
also dillers from the hedgehog by having a much weaker pion ficld, Elucidating the
formal connection between our deformed solution and the hedgehog is a high pri-
ority for the future as are treatment of sea quark elfects and the study of a possible
connection between the chiral field of the nucleon and the e-lield of, ¢.g., QHD,
Of Lighest priovity is the study of the effects of full spin and isospin projection,
The former especially may lead to major modilications ol the unprojected resulls
presented here, Such projected. calculations are in progress.
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Spherical Deformed Hedgehog| Uxperiment
(L5 =), - 1328 MeV —950 MeV —469.5
(12— m)y —=4 13 MoV -T2 MeV ~d69H

My 1149/693 MeV| 150 / 58 MeV| 1116 McV|939/1086 MceV
()47 0.68 fm 0.71 fm -
(e 0.66 fm 0.70 fm | — 0.85 fm
[tp 1,79 nm 2,85 nin 2.87 nm 2.79 nin
[ — 1,54 nm —2.00 nm ~2.29 | =191 nm
JA 3.63 1,255 1.86 L.25
JeNN Mg /20 3.7 0.98 1.5¢ 1.00
TN 115 MeV 118 MeV 92.5 MeV| 59 MeV

Table 1. Kxperimental and calculated nucleon properties. The spherical and

deformed calculations refer to the present work with m,=1200 MeV and mq=0600
MeV. The hedgchog calculations ave from Reference 3 and assume m =500 MeV
and me=1200 MeV, The quantity (£ —m)1 is the binding energy for the uyp and
d) single quark wave [unctions while (£~ m)q relers to the other pair, RMS radii
for the vector quark density and the proton charge density are quoted along with

“proton and neutron magnetic moments, the axial vector (onplmL, constant and

the 7NN coupling constant, The o- nuclens commutator ogp is discussed in, e.g.,
References 3 and 8, Both the nucleon mass and the average N-A mass appear
for the experimental value of Aly. Values wlth and without the center-of-mass
correction are displayed for our spherical and deformed calculations.
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8. Vacuum Polarization in a Finlte System 'I'.C, Ferree and J.R, Shepard

T'he nucleus can be viewed ag a many-body system of nucleons interacting via
the exchange of virtual mesons, and the Walecka model (QUD-1) has been very
succassiul in describing the nuclear structure of closed-shell systems from this point
of view.!) he nucleans are taken to be spii-tpednt particles deseribed by the Divac
equation, coupled to both intermediaterange atbractive and short-range repulsive
meson fields, [t is well known (hat the Dirac equation predicts the existence of
negatlive enrgy particles which cannot be ignored in a consistent treatment of the
problem, In particular, vivbnal particle-antiparticle pair production, or vacuum
polarization, in the meson propagators can significantly influence nuclear structure,

Ciround state calculations in QUD-1 usually employ the sell-consistent Hartree
approxitmation, which assumes that each nucleon interacts with the nucleus through
background classical meson fields, So far, vacuum polarization has either been ig-
nored entirely (MET) or included in various Thomas-Fermi approxinations (LDA
and DE). It is possible, however, to include the celfects of vacuum polarization
exactly within this model; this is known as the Fxact Relativistic Hartree Approx-
imation (ERHA).

The model QHD-I is defined by a Lagrangian density in which the nucleons
interact via the exchange of a repulsive w-meson vector field V4 and an atlractive
o-meson scalar field ¢.

—
~

|1 ‘
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Both the vector and scalar mesons are isoscalar particles. Also included are coun-
terterms which allow the renormalization of divergences arising when the infinite
number of negative energy nucleon states is not ignored, The coupling parame-
ters gy and ¢, are determined by solving the infinite nuclear matter problem and
adjusting them until the nucleon density and the Fermi momentum equal those
given by experimental data, Since the o-meson is ficticious, my is enlively a free
parameter in this model, Note that in the rest fvame of the ground state nucleus,

Vi) = 68 VO ().

As a model calculation, we consider the finite problem in one spatial dimension,
imposing periodic boundary conditions, The period is chosen to be large (20-30
[m) compared to the size of the nucleus, Parity is the analog of angular momentum
in one dimension, and both nucleon and meson ficlds are parity eigenfunctions in
this case. Also, there can be no intrinsic spin in one dimension since there is no
way to satisly the angular momentum commutation relations,

\We have solved the MY problem in one spatial dimension for N=% nuclei with
I through 4 closed shells, Tn this approach, one beging with a reasonable guess for
the meson ficlds and numerically calculates the nucleon cigenstates, The occupied
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states then become sources for the meson flelds. T MIT, only the positive energy
shates are considered to be cocupied, Abiterative inethod allows the solutions to
ovolve to a sell-consistent solution which no longer depends on the initial guess
made for the meson feldse Pigure 1 shows the results in the caso of three closed
shells, which is the one dimensional analog of 1%Ca, Based on the sell-consistent
meson fields one can construct a basis ol nucleon cigenstales, the orthogonality
and completeness of which has been verilied numericaliy,

The stmplest approximation whiclt ineludes vacuum polavization effects is the
Local Density Approsimation (DAL Here the source of the sealar field s taken
to have a negative energy contribution equal to thal in the inlinite system, but
where the futeracting nielean mass m* = — ged has spatial dependence througl
the scalar field @),

#*
(=), & A e ey
e () = =fm =t ot —-
ps ) 7r[ -m.]

By adjusting 1y, this solution may be forced to have the same rins size as the ML
solution, A qualitative difference, however, is thal, in the LDA solution the scalar
source is slightly larger than the vector source, as seen in igure 20 This vesull is
also unlike the LDA result in three dimensions, where vacuum polavization reduces
the strength of the scalar source, The Devivative Fxpansion (D) is an improved
Thomas-Fermi approsimation which includes the derivatives of the meson fields,
but still assumes that the nueleon wavelunctions behave locally as plane waves, ]
Work is currently in progress to investigate a self-congistent application of the DI
to the one dimensional finite system,

The most obvious mechod of handling vacunm polarization exactly makes use
of the spectral green fnetion, ‘

W (e )i (y) .
G (g w) = Yy —em (3)
~< W = We Wy

[Tere the mesen field sources include contributions from the infinite number of neg-
ative energy aucleon states known as the Dirac sca. Periodic boundary couditions
discretize the unbound continuum states, so that cach state may be labeled accord-
ing to nodes and parity and solved for mumerically, T'he Dirac sea contributions are
rendered finite by choosing counterterms insuch a way that the meson sonrces van-
ish in the vacuum, Summing explicitly over an infinite number of negative encrgy
stales poses o numerical problem, but after renormalization the results converge
once one has gone “deep enough® into the Dirac sea,

Auother exact method makes use of the nonspectral green funetion,

(}"'j(.u‘ yiw) = Z[l/‘f‘(:l‘)‘l,/;'l{(;l/)(.)(‘lj — )+ '4/!{,(;;')'(,/,:'{;(y)()(‘z' = 1)) (1)
v

This ethod has been applied to a finite system B but never before in a sell-
consistent manner including hoth vector and scalar inesons,



I"he spectral and nonspeetral green functions wre eeactly equivalent, which
provides an excellent verification of these caleulations, Ihe nonspectral approuc h,
however, will have advantages later when normal mode (RPA) excilations of the
finite systom are investignted, Work is well i progeess using hoth the spectral
ane nonspectral me hods to caleulate exactly vacunm polarlzation cffects fn the
ground stale system,
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Fig. 1. Seclf-consistent, MEFT solution, The solid curve is the sum of vector and
scalar meson potentials, with nucleon cigenenergies indicated by dotted curves,
The dashed curve is the veetor source density cqual to the nueleon particle density,
The dot-dashed curve is the scalar source density.

30



LDA
0 .
- 1 .OO

?;‘
;3 . ) n
220 - 0.76 g
.Z} N - g
R o
2 2
2 . 0.50 1
o “,
Q- 40 ":r
o -

o .
‘N o
E 0.25 2,
= \-;‘

60

0.00

-0
0

Fig. 2. Self-consistent LDA solution. The curves represent the same quantities as
in IMigure 1,

37

ERE N TR . . Iy



9, Second Order Processes {n the (¢,¢'d) Reaction P, Kung and 100,

Blok (NTSTHTER)

The (e, ¢'d) knockout reaction leaving the deuteron in its ground state allows
one Lo study certain aspects of nucleon-nucleon correlations in nuclel, Recent high
quality data from NTKHETR allows the opportunity for the extraction of these fea-
tures ol nuclear structure, Uhe deuteron knockout diflers from the proton knock-
out teaction in that the outgoing particls has structire and its decription is more
complicated, In order to teliably extract the structure information the reaction
mechanism must be understood,

By neglecting the Coulomb distortions for the electron one can use plane wave
states and the transition amplitude in fiest order Born approximation may be
modelled as deuteron pickup by a light lictitious particle of momentum ¢,

Tip = Jo0) (x5 (R) | fo(R) [ ). ()

Here fo(0) is the Coulomb amplitude, x5 (R) is a distorted wave for the deuteron
center of mass motion and o ,k; are the momentum transfer and inital momentum
of the electron respectively, The lorm factor [y is an integral of the deuteron
ground state wave Tunction ¢g(r) with the overlap between the initial and final
target states u(rp, ry).

‘/"(](1{) oz <{f)(’)(l') , (','.I‘kl.r'”(l‘p, l'“)>

This amplitude for the knockont reaction has the same general structure as thoe
matrix element for the two nucleon transfer reactions (TN'T) such as (p,*/l¢).

1L is well known thal the direct first order term does not adequately describe!
(he I'NT reactions and that second order processes such as secuential transfer are
important. The derivation of the second order processes may be lormulated via
two dillerent methods of expansion of the exact transition amplitude, In the lirst
of these the reaction may proceed by the knockout ol a deuteron to one ol its
continuinm states {ollowed by the transition to its ground state via the interaction
of the deuteron with the muclear field before escaping. In the second method the
cjection of the deuteron may be considered as the knockoul of a proton with the
subsequent pickup of a neutron by the outgoing proton. If the corrections to all
order were ased in cach of the two methods, the resulting cross scetions would be
identical, However, truncations must be made in order to allow computation of the
results and (o determine which method gives a better description of the reaction,

I the first method (the continmum model), the transition amplitude can be
expressed by generalizing the outgoing deuteron wave for the ground state in (1) to
include the continuum chanuels for the deuteron internal motion. The amplitude
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bhecomes

LR

= [o(0) Z<XE(R)|fn(R) b S

n

“where

fu (R) = <§’Sn (1)

Ry (1, 1) ).

[ere, the sum on n denotes summation over the bound and integration over the
continuum set of deuteron states. The summalion is truncated to include only
the s states and the distorted waves v (R) may be solved for by a suitable
discretization®? of the continuum. A preliminary calculation of this process in
a schematic model is.shown in Fig. 1 as a function of the number of continuum
states included in the calculation. The calculation converges rather rapidly as the
number of channels is increased. and the main cffect is to renormalize the cross
section by factors of 2-3 over the ground state only case (one channel).

In the sequential knockout method the second order term can be transformed
by a post-prior interchange of the pickup interaction giving rise to a correction
term. This term can be shown! to exactly cancel the first order knockout term
leaving only the sequential knockout for the amplitude through second order,

fi= fe(0 )< o (R)do(r) | vap(rap)un(rn)
L ulrp> } ‘. (3)

[ 1}' “1)(1‘1))
p T Hp — Up

where the up and w,, are the form factors for the knockout and pickup vertices in
the reaction.

Although this amplitude is of second order it may be calculated by recasting
it into a solution of a set of coupled equations. In order to facilitate the solution
of these equations a first order range correction to a zero range approximation is
usually made for the interaction vgp. The result of this calculation is shown in
Fig. 2 along with the 7 channel result from Fig. 1 for comparison. As seen in the
Iwulo the sequential l\nocl\ont cross section is almost an order of magnitude larger
at forward angles than the continuum case. While the range correction for a (p,d)
reaction on the encrgy-s shell is usually small, the propagator for the intermediate
proten state gives rise to a large off shell component to the range correction?.
Preliminary calculations including both of the off-shell terms to first order indicate
that this correction is as large as the main term. This is in contrast to the (p,t)
reaction® where the range correction is rather small. Since the olf-shicll correction
is large, a more exact method of evaluating the lmnsmon amplitude using {ull
finite range techniques must be employed.
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In Eq. 3 the knockout vertex is local and the intermediate proton wave may
be derived from a set of equations with a source term,

(Bp — Kp = Up)xif (0p) = up(rp)e’ ™, (4)

where \'4‘( rp) has the I)l)Llll(ldly conditions of outgoing waves 0111 The resulting
transition amplitude is

ri = fe(0 )< ( )do(x )|“np(1nl>)“n(1n)[\p( )> (

o
~—

The pickup vertex must be treated in finite range with a readily available finite
range distorted wave computer program such as DWUCK5®, Work on the con-
version of the finite range program to allow for the calculation of the transition
amplitude without the zero range approximalion is in progress.
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Fig. 1. The ratio of the cross section to Rutherford for the continuum odel as a
function of the number of channels included. The ground state case only is the 1
channel calculation.
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Fig. 2. The sequential knockout model without off-shell corrections compared to

the 1 channel and 7 channel cases for the continnum model,




10. Sea Contributions in Dirac RPA. for Finite Nuclei J.R. Shopard C.Is.
Price, £, Rost and J.A, McNeil

Quantum hadro-dynamics (QIID) is a relativistic quantum field theory of nu-
clear dynamics!., One of the features which distingnishes it from non-relativistic
formulations is the presence of a negative energy sea of nucleons which can interact
dynamically with positive energy nucleons and thereby affect nuclear properties.
The carliest formulations of QID simply ignored sea effects; these are referred to as
mean-field theory (MEFT) trcatnwnts. Later studies examined sea contributions at
the one-loop level for nuclear matter? and—utilizing the nuclear matter results in
a local-density approximation (LDA)~—Tor finite nuclei These models constitute
the relativistic Hartree approximation or RIA. After independent adjustment of
model parameters, both MIT and RIIA calculations yield reasonable descriptions
of nuclear ground states and are both characterized by the near cancellation of
strong attractive scalar (o) and repulsive vector (w) ficlds. RPA descriptions of
the nuclear response based on the MI'T ground states have been developed by
several authors? including our group.® This MFT-RPA has been shown to pos-
sess many appealing features including exactly conserved transition currents and
correct treatment of spurious 17 T = 0 excitations arising {rom violation of trans-
lational invariance in the ground state. [n addition, it has been shown to provide
quantitatively accurate descriptions of low-lying collective excitations in light to
medium closed-shell nuclei.

The RPA based on the RITA ground state has been less well studicd. How-
ever, it has been clear for some time that correlations involving negative energy
nucleons—which can be treated in the RITA-RPA—are critical in describing, e.g.,
the elastic magnetic response of odd-A nuclei at momentum transfers ¢ > 300
MeV/c. It has also been observed that the longitudinal (e,e') response of nuclear
matter is appreciably quenched in the RHA-RPA which in turn affects, e.g., the
Coulomb sum rule. Again, the sea contributions tend to improve the correspon-
dance between theory and experiment. More recently, orowits and Pickarewics®
have employed the LDA to compute the RHA-RPA (e,¢') quasiclastic response of

“the finite nuclei 1*C and 1°Ca. Here again, the sea contributions appeared to have

a salutary effect on the calculations, at least for 1°Ca. Finally, PielxdrewiczT has
reported RHA-RPA calculations for some of the same low-lying collective states
discussed above in connections with the MFT-RPA. Here the results are not en-
couraging since many of the nice features of the MIT-RPA such as exact current
conservation and proper handling of spurious translational modes. are lost due to
the LDA. Furthermore these levels become much less collective than thcy are in
either the MIPT-RPA or in nature,
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In order to understand better the role of the negative energy seain the response
ol finite nuclei, we have extended our non-spectral Dirac MF'T-RPAS to include
vacuum polarization cffects at various levels of approximation beginning with the
extreme LDA of Refs. 6 and 7. Our calculational approach is based on the derivative
expansion method which has been frequently employed in the RHA description of
the ground states of finite nuelet.®? In onr version of the RITA-RPA; we emphasize
consistancy between the ground state (or, more specifically, the single particle
basis) and the RPA. Because the derivalive expansion is still an approximation to
the exact renormalization of the finite system (see, e.g,, Ref, 10), inconsistancies
cannot be entirely eliminated as they are in ME'T-RPA,

The derivation of the derivative expansion method for the treatment of one-
loop vacuum contributions in QID has been given in many places. We present
here the important results required {or development of our RHA-RPA following
most closely the discussion in Rel. 11, The onc-loop effective action is given by

['= IWf)cc + Pvnc + 1“meson + Fc(.c (1)

“where ['y¢c is the contribution from the positive energy nucleons, I'megon comes

from the free meson part of the Lagrangian and [y is the contribution {from
counter-terms. The negative energy sea contribution is |

Pyae = /cl"a; [—-z'Tr In(iypmud* — m* - gjw“/,nzlif")}

/ cl"ax'[—Ue 11(8) + 1 Z15() 80" b + & Zas () (Tl) (2)

12

+ 121 (R) Fuy MY + L Zay (DdFM) (0/3]_%“)]

where m* = m+ S = m — gud, g4 (gu) is the cNN(wNN) coupling constant,
and ¢ (V") is the scalar (vector) field. As shown in Ref. 10, the coefficients of
the derivative terms are proportional to the cocflicients of a ¢* expansion of the
renormalized vacuum polarization insertions, Iy, and Ily,. Specifically

Zig = ~1li,, Zag = —113,

. : . ; (3)
Ziv =+1y,,  Zoy = +1{,
where I17 is the coefficient of (¢%)7.

The equation of motion for the scalar field is found by requiring that the
variation of the total action with respect to ¢ vanish. We express this field as
® = ¢y + ¢ where ¢g is the uniform solution for the value of m* at the point in
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r-space about which we make our derivative expansion and ¢ is the variation [rom
$o. Working to second order in ¢, the cquation of motion for ¢ is,

. 11 : 2 ) (')'“’Sv . ‘ )”u\/('li? )
— (J — “V,o.>v ‘(]‘) - (7»‘110 - m) (}S -I-. o (/)D,d -+ /’V,rr) -+ s n*',ﬂ (/)

= (g [pj)‘,, + pvg — (" 'n'z,)lAIv‘(,(m.'U)
| gy

where
Ey(m* ,A = =) / -—0 A= k) \//‘~ + m—*_Z

is the unrenormalized culoff encrgy density of [ the uniforin sca including all levels
with |&| = £ < A. Here A=4 is the spin-isospin multiplicity of the sea. Note that
we have dropped the Zys and Zy, terms, The analogous equation of motion for
the (time-like) vector field is ‘

- (1 - H%ﬁw) AVARVA 7'/'1,3,1/0 = JupB

—
[
~—

where pp is the baryon density. The equation of motion for the nucleons is, as
usual, ‘

[z‘*? V= (A S) = OV ] = By (6)

where § = —go¢, V = g,V are the scalar and vector potentials, respectively.
Solving equations (4) through (6) self-consistently yields the derivative expansion
RIIA (or RHA/DEM) for closed shell nuclei,

We now construct our RHA-RPA based on the RHA/DI. Following Horowitz
and Piekarewicz®12 we write the full, renormalized RHA-RPA polarizaion insertion
as

Mpira-rpa = 1lo + HODO”RHA rea = all'a+ olly (M
where 1Tp = IIp + Ily is the free polarizaion insertion consisting of 11y due to

positive-energy nucleons and Ily is the renormalized sea contribution. Also, the
intermediate polarization I1' is given by

N'=T1lp + D'l (

]
P

where the (gencralized) vacuum-dressed meson propagator D' is given in terms of




the bare propagator Dy by
D = Dy + Dolly D= Dy (())

or
I

PEI—— ) 1Y ‘ 1
1 T Doty Ly ‘ (10)

A meastre of consistency with our RITA/DE ground state is acheived by making

“a ¢° expansion of 1Ty in the equation for D' and keeping only those terms with

counterparts retained in the derivation of the o and w equations of motion, Fgs. (4)
and (5). We thus go to order ¢* and write, ¢.g., the vacuum-dressed o-propagator
as :
; 1 | l
D%, m*) = ~ -
(g7 T - R RINTT
g« —ms — v (q®) = (1 - ll\',,a)q = (mg +11y,;) (1)
L ’

P
4 — s

il

where

ty = ag(m*) = (1 - H%/.g)d‘

1= pi(m*) = az(m*) [mg + 'l.'I(‘]/ﬂ] .

(12)
Similarly, for the vacuum-dressed w propagator,

1

. "
DL (ghm*) = =y
‘ qc — [

tw = au(m*) = (1~ l'l‘%/’w)uJ b (13)

12 = ay(m*ym?

The expansions of DY and D!, through order ¢* are quite accurate for all relevant
values of m* up to at least ¢> = —(500 MeV /c)? where the departure from the
exact results are still less than ~ 3%. These dressed propagators are now simple
Yukawas whose ranges (o p~1) and strengths (o< a/p*) depend on the local value
of m*. This result is numerically convenient since Iiq. (8) can now be solved for
the intermediate polarization insertion I using techniques near'y identical to those
employed® for the MIT-RPA, The only modifications are, (i) a Slater expansion of
the effective Yukawas is required at each grid-point (i.e., for each value of m*) and,
(ii), calculation of the nuclear response contained in 11 gy 4— gpa requires additional
foldings of TI' with a.
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To make contact with the previous work of Horowitz and Plekarewics, 712
we lest observe that thelt RPA caleulations are performed in momentunt space
and, hence, in effect, all orders ol the ¢* expansion of the vacuum polarization
insertions are retained in the solution of the RPA cquation. Inconsistencies arise
because the RIA ground state (or single particle basis) is computed in r-space
using the extreme LDA where, e.g., the o equation of motion comparable to that
siven in B, (4) is reduced to

. (14)

(—Vg + 'mff,) b = go [/)u,& + pvo

i.c., not even the leading order contributions to the vacuum polarization insertions
enter into the delerminalion of the basis, Note that 1iq. (14) even dilffers from
the uniform solution in that the “vestigial® —=V*¢g term is retained in the former
where it contributes due to the non-uniformity of pp,e and pys. As shown by
Perry® and also by Wasson,? the additional derivative expansion corrections’can
be appreciable in finite systems which means that consistency is likely to be more
" than a formal nicety, Our RITA/DE ground state calculations—which differ in some
details from those of Perry and of Wasson—are in progress and will be compared
with various other calculations including extreme LDA as employed by Horowity
and Pickarewicz.
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[1, Momentum Cutofls In the Sea J.R, Shepard, Cld Price, 15, Rost and
J.A L MeNedl

As emphasized in the preceding section, QHD is distinguished lrom non-relativ-
istic approaches, at least in part, by the fact that the formalism hmplies the exis-
tence of o dynamically interacting negative energy sea of nucleons, ‘I'he physical
relevance ol this sea i being hotly debated, Most of the controvo sy has focussed
on the fact that, on a small cnough length scale, the compositeness ol the nu-
cleon must be reckoned with in a way that QIHD--which supposes the nucleon to
be a fundamental, poiut-like Dirac ficld—does not encompass,!=4, Although such
questions are still largely unresolved, there are ample warnings that a “literal”
interpretation of the QHD sea is problemalic, Perhaps the most striking exam-
ple is the evidence, based on the huge two-loop corrections to the QITD nucleon
sell-cnergy,®= that the loop expansion is badly divergent, Tiven at the one-loop
level of the present work, it has long been known™? that vacuum instabilities arise
at space-like momentum transfers of |§] ~ 3 GeV/e. In the context of the work
discussed above, these instabilities are manifested as poles in the vacuum-dressed
meson propagalors.

With these issues in mind, we have examined at least one alternative to the
“literal” treatment of sea contributions discussed so lar. This approach employs
a momentum cutoll in the sca, retaining contributions only from negative energy
states with 3-momentum less than A, the cutoll momentum, A “literal” treatment
of the vacuum corresponds to taking the limit A — co i.e., including all of the
sea, This limit i3 a questionable one, il for no other reason, because we associate
contributions from very high momentunm negative energy nucleons with very short
distance scales where nucleon compositencss must surely play an essential role.
QHD ignores this compositeness and therefore can only be expected to describe
the physics down to the scale set by compositeness which must correspond to an
inverse length of a few nucleon masses at most, Since contributions from this
length scale are surely unphysical, QIID as a nuclear phenomenology, may make
more physical sense with cutolls, A, of the order of a few GeV. Imposing such a
cutolf is straightforward calculationally, We simply evaluate Ugpp(#), Hy g, Ty
or the coellicients of their various expansions with finite A, perforing the counter-
term subtractions numerically.

The cutofl A is now an additional parameter in the theory, the variation of
which takes us continnously from the MIMT' (A = 0) to the RITA (A = oo) limit, lor
any given cutofl, we must readjust the remaining free parameters of the model—-
usually g2, g2 and m,—to reproduce fixed nuclear properties, Table T lists five
such parame.er sets, The fivst four were adjusted to yield BE/N = 15,75 MeV
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ata saburation density corresponding (o kg = 130 (in~! and to yleld 3.48 [ for
the RMS charge vadius of ""Ca, The Qth st gives kp = 133 T al satueation
and reproduces the most recent value!™ of 8.5 fin lor the "Ca charge radius, The
differences between the extreme local density! =M (RIA/FELDA) and derivative
expansion (RHA/DE) parametrization'® are relevant only i linite systems since
the ratios g2 /m and g% /m% ave identical for the two parameter sels,  As an-
ticipated, these ratios for the last two cutoff (RITA/CO-DI) parameter sets are
roughly midway between the MIYT and A = co RHA values, The same is true lor
the nuclear matter m* /i ratios. The value of the cutofl parameter A = 2404, in
the RIA/CO-DI s consigtent with the general argiiments at the beginning of this
section and roughly aptimizes the description of the spin-orbit splitting of single
~particle levels which is Lypically overestimated in the MIMT and underestimated
in the usual A = co RIA. (Recall that the strength of the spin-orbit interac-
tion roughly scales with the departure of m*/m from uuity,) The exact value of
Lhis entofl is, however, arbitrary and was set to Lwice Lthe bare nucleon mass for
convenience,

Some ol the motivatlon for pursuing the cutoll model presented here emerges
from the cutoll dependence of, e.g., Upsp and pyo(m*,A) = Q‘L%';'r: A We find
that Uyspy pvo and I”lﬂ",ﬂ have their largest contribulions from sea states with
[/T| >> 20, while .l"[{,'a and .l“I{,’w are augmented by a mere 20% by these same
contributions. These dependences arve intriguing because, with a cutolt of ~ 2A4,,
the RITA/CO-DI caleulations of ground state properties can be expected to be very
similar to M results, but the vacuum polarization contributions to the vector
polarization insertion will be largely the same as in the A — oo limit, Thus there is
at least the promise of a model which possesses the best features of both the MEFT
and the usual A — co RIA. The desireable features of the MIMT' to which we refer
are the strong spin-orbit splitting and the high degree of collectivity in the RPA
for low-lying collective levels, Those of the A — co RIIA are the quenching of the
transverse (vector) response at moderate momentum trausfers; i.e., the quenching
of the “front-flow”. Cutoff vacuum RPA calculations are in progress; they will
show the extent to which this promise is fulfilled.
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Cable 1 Paraimeters of the Caleulations

C'ale kp(fm~YYy A e g I
M 1.30 0 5201 10971 190,61 0.54
RITA/IELDA 1,30 co | 468 B4, | 102.8] 0.7

RITA/DE 1,30 co | H60 | 783 | 102.8] 0.73
RIA/CO-DIS 130 | 240, 635] 1388 164.8| 0.62
RITA/CO-DIEY 133 |20, | 610 1226 47.5] 0.62
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