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SUMMARY

An automated uncertainty analysis option has been added to the
FRAP-T5 code which allows the user to obtain estimates of the uncer-
tainty in computed code outputs as functions of known input uncertain-
ties. Developmental verification, the Subject of this report, is an
ongoing process whereby the uncertainty subcode is checked for pro-
gramming correctness and for validity of analysis results. Three
developmental verification studies were undertaken. (1) A benchmark
calculation using a simple equation replacing FRAP-T5 was performed
to check the correctness of the subcode programming. (2) The
adequacy of the fit of the response equations to the data was evaluated '
using a statistical criteria to guard against over and under fitting
and a visual examination of residuals. An uncertainty analysis of a
LOCA was used as an example. (3) The ability of the response equations
to predict the true response surface was determined by generating new
data and comparing the predictions of the original equations with the
new data. Résu]ts indicated that the majority of the responses were
fit acceptably well by just a linear response equation. The fit for
a few responses could be improved by continuing the analysis to include
higher order terms. Recommendations for future versions of the uncer-
tainty analysis option are to include methods for assessing the validity
of the responée equations as an automatic user feature.
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1. INTRODUCTION

Part of the United States Nuclear Regulatory Commission's Water
Reactor Safety Research Program is the development of analytical tools
to accurately predict the response of nuclear reactor systems during
off-normal or hypothetical accident operation. The development of
the FRAP-T 1 (Fuel Rod Analysis Program-Transient) code is an import- .
ant part of this program. FRAP-T is a best-estimate code designed to
calculate fuel rod response (é,g., cladding temperature, cladding strain)
during transient conditions in the reactor.

Recently an option has been added to the FRAP-T5 code which allows
the user to automatically generate a complete uncertainty analysis.
The uncertainty ané]ysis option provides, at each problem time step,
“uncertainty 1imits on user selected fuel behavior responsés as a func-
tion of uncertainties in code inputs and code models. The analysis
also yields relative contributions to the total uncertainty of each
of the inputs used at each time step. Knowing the total uncertainty
of the FRAP-T calculated fuel behavior and knowing from where these
uncertainties originate within the code is useful, both in code appli-
cation as well as allowing rational direction of code development and
refinement.

The Automated Uncertainty Analysis Option[z] is based on response
surface methodology and second order error propogation techniques.
The option has specifically been developed to be user oriented and
will provide a complete uncertainty analysis in a single cdmputer run.
At each time step.the option generates an approximation of the true
response surface[ﬁlfor each fuel behavior response selected for ana]ySis.
Second order error propagation techniques are then used to determine
uncertainties and relative contributions to the uncertainties based
on the approximated response surface.

Developmental verification, the subject of this report, is an
ongoing verification process whereby the uncertainty subcode is checked

* The concept of Response Surface is explained in Section 2.
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for programming accuracy and for validity and applicability of analysis
results. Specifically, the objectives of the FRAP-T5 uncertainty analy-
sis developmental verification are:

1. To ensure the correctness of the subcode programming.

2. To assess the validity of the approximate response surface
relative to the data used to generate it.

3. To assess how well the approximate response surface predicts
the true response surface.

‘This report presents the developmental verification analyses compari-
sons and discusses the results of the analyses. The report includes an
overview of the uncertainty analysis method (Section 2), the developmental
verification studies (Section 3), a sample problem (Section 4), and
conclusions and recommendations (Section 5).




2. OVERVIEW OF THE UNCERTAINTY ANALYSIS OPTION

The FRAP-T5 uncertainty analysis option has been developed so that
a user may easily obtain estimates of the uncertainty in calculated code
outputs. The option has specifically been designed so that any user may
perform an uncertainty analysis on any FRAP problem in an understandable,
systematic manner. To aid the user, features such as default uncertainty
values for approximately 50 input variables have been built into the
code. The option further provides for a sequential development of
output complexity by allowing the user to restart and continue an
analysis from intermediatg points. One goal of the option is to provide
to all users a straightforward technique based on sound methodology for
estimating code uncertainties. A complete description of the option is
available in Reference 2.

The uncertainty analysis option is based on the response surface
method. Any of the output variables of a computer code may be termed a
response. There is some functional relationship between a response and
the input variables. In the space of the input variables, this relation-
ship defines a surface, and hence the term "response surface". When the
code is rather sample, this surface may be determined analytically over
the entire range of the input values. More often, as in the case of
the FRAP code, the surface may be known only through the code, and the
range of inputs‘and problem types is very large. Thus, the complete
true response surface cannot be determined analytically. The response
surface method of uncertainty analysis is based on a systematic samp]ing
of the true surface which is then approximated by a polynomial equation
in the independent (input) variables. In effect, the true surface is

approximated by.a smooth surface[3’4].

The polynomial equation approximating the true surface is derived

as follows. Let Y(xi) denote the code response as a function of X4

X1 Xos o Xy inputs. The Taylor's series expansion about any point
My is then given by:
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Truncating the Taylor's series at second order terms, the desired
polynomial equation is obtained by identifying the coefficients of the
polynomial with the partial derivatives of the series expansion. The
coefficients are estimated from sample values of the true response
surface obtained by perturbing the nominal inputs. For a second order
polynomial to reasonably approximate the true response surface, the
region of the surface being sampled must be small enough so that large
irregularities are not present. Experience has shown that a range of
plus and minus one standard deviation (+ls) in the input variable un-
certainties will usually satisfy}this requirement for the FRAP code.

The polynomial approximation to the true response surface may be
used to examine the behavior of the true surface in the region of the
sample space without the burden of excessive cost. In particular, the
polynomial can be used to study the propagation of errors through the
code and their effect on the uncertainty in computed outputs. Thus, an
estimate of response uncertainty and the relative contributions of input
varidb]es to this uncertainty may be obtained using the response surface
method.

Once the user has selected a base case problem and made a choice of
output responses and input variables, the following procedures will be
followed by the code to obtain the desired final results, the estimates
of response uncertainties.




(1) An experimental design will be chosen. This is simply a
pattern for perturbing the independent variables of the problem.
The pattern is obtained in matrix format where the columns
correspond to inputs and the rows correspond to the individual
analyses that must be computed. The problem is run as many
times as the design dictates, each time varying the input
variable perturbations according to the pattern.

(2) The response surface equations are then generated using the
information derived from step one. Basically, a multiple
regression routine is used with certain simplifications
arising from orthogonal properties of the experimental design.

(3) The response surface equations are used to generate uncertainty
distributions'fok the response parameters. Second order error
propagation analysis is used to estimate the means and variances

- of the responses.

(4) Finally, estimates of the fractional contributions to the
response variances are made to indicate the relative importance
of individual input variables.

3. DEVELOPMENTAL VERIFICATION STUDIES

The principle objective of this developmental verification of the
uncertainty analysis option is to demonstrate the conditions which lead
to useful and valid uncertainty estimates. In particular, the user must
be able to identify these conditions and assess the validity of his
results based on standard criteria. The following developmental verifi-
cation studies and the particular illustrative examples were chosen to
demonstrate the wide variety of possible uncertainty analysis results
and the methods used to judge their adequacy. Some of these methods
appear well suited for future inclusion in an optimized version of the
option, and this point will be addressed in Section 5, Conclusions and
Recommendations. At present they will be considered only as tools of
developmental verification.




Three developmental verification studies were performed. - First, a
benchmark calculation was performed using the uncertainty subcode to
ensure the accuracy of the subcede programming. Second, the validity of
the response surface equations and the assumed models were addressed by
independently fitting a least squares model to the data using a statistical
criteria to guard against under and overfitting. Lack of fit (important
terms not included) was addressed as well. Finally, the range of applic-
ability of the response equations was investigated by obtaining a variety
of off-design data points (points other than those used to fit the
equations) and comparing the predictions of the original response equations
with the new data.

3.1 Benchmark Ca]cu]ation

The objective of the benchmark ealculation is to demonstrate the
ability of the uncertainty analysis subcode to perform accuratly. To
this end a simple equation was substituted for FRAP-T5 in the uncer-

‘tainty option and an uncertainty analysis performed on it. The option

generated results were then compared to hand calculations. The results
demonstrate not only the accuracy of the coding but specific features of
the response surface method of which the user should be aware.

The simple equation chosen was

Y(x],xz) =1+ Xy + x12 XX, t x24

This equation was chosen because it contained constant, linear,
cross product, quadratic and a higher order term plus more than one
variable. Uncertainty distributions (assumed normal) for each variable
were assigned with a standard deviation of one for each (c] =1, 0,= 1)
and respective mean values of 1 and 10 (uj = T, = 10). Values of the
response Y(x],xz) were obtained according to an experimental design in
nine runs that allowed the estimates of all terms up through quadratic
without any confounding between them.



In order to best compare results of the two calculations, the
equation for Y(x],xz) should be transformed to standard normal form
since the uncertainty analysis results are given in this format. This
is accomplished by the change of viriable

TR B | ‘ (2)

where Zi is now a variable with zero mean and unit standard deviation.
Alternatively,

Xj = 0423 * oy (3)

substituting into equation (1) gives the following expression for Y(z],zz).

2 4 i
Y(zy52p) = (Vg + g™ 27 )+ {og *+ugoy + 2n0y)z

+ (uyop + dogu,7)z, + 00,2125 0,22)% + 60,5u,72,° (4)

* 4°23“222 * °24224

Putting in the values for His Mps Oy and 9, yields

Y(z7,2,) = 10013 + 13z, + 4001z, + 272, + z]2+ 6002,7+ 40z,°+ z,*  (5)

This is still-the true function that was to be approximated by the
response surface equation. The response equation as determined by hand
calculation using the uncertainty analysis method and.designated here- . . -
by 9(21,22), was determined to be |

2

+Z.I

+ 60122 (6)

Y(z 2

»1.22) = 10013 + 13z, + 4041z

1 2t 447,

This equation was predicted identically by the uncertainty subcode, thus
verifying that portion of the programming.



Notice that the linear and quadratic terms for.z] were estimated exactly
as expected while the higher order terms of z, are approximated by
slightly different coefficients for the linear and quadratic terms from
the exact values. That is, the coefficients in the equation for ?(z],zz)
are estimates of the true coefficients as expressed in equation (5).

When the approximation is exact, so are the estimates. But when the
approximation is not exact the estimates are biased by the exclusion of
higher order terms.

Perhaps the most important results of an uncertainty analysis are
the estimates of the mean and variance of the response. The following
discussion shows how the mean and variance are estimatéd by a second
order approximation, and how they differ from the true values. The
following results were also predicted identically by the subcode.

Given a response Y(x) where the independent variable x has a known
uncertainty distribution (as specified by its probability density function),
the uncertainty distribution of the output Y(x) may be determined. The
mean of this distribution, called the Expected Value of the response, is
computed from V '

by = E(Y) = L Y(x) f(x) dx (7)

where f(x) is the probability density function of the independent variable
x. The variance, defined as the expected value of the second central
moment of the distribution, is given as

o 2 - E(Y-u

y )? (8)

y

Estimates of the mean and variance are obtained by similarly determining
the mean and variance, respectively, of the approximating response
function Y(z.),

;y=E(?> (9)
N2 et N2
o " = E(Y-u) (10)



These are the values returned by the uncertainty analysis subcode. For
example, refering to equation (6), the estimated mean would be

4

£(7) = E(10013) + E(137) + E(40412,) + E(z)2)) + E(2,%) + E(6012,7)  (11)

The expected values of the independent variable Zis which was assumed to
have a normal probability density function, are easily shown to be

E(z) = 0 E(z°) = 0
E(2%) = 1 E(z%) = 15 -
(12)
E(z%) = 0 E(z') = 0
E(z%) = 3 E(z%) = 105
So, it can easily by seen that’
E(Y) = 10013+ 0+ 0+ 0+ 1+ 601 = 10615 (13)
when terms to second order are included. When only terms to first order
are included, the estimate is
E(Y) = 10013 (14)
Now, referring to the true response function, equation (5), the exact
value of the mean can be seen to be
E(Y) = 10013+ 0+ 0+ 0+ 1+ 600+ 40 + 3 = 10617 (15)

Thus, the second order estimate is better than the first order
estimate since the model approximation is more accurate. The first
order estimate is said to be biased by the exclusion of important
higher order terms.

One further important comment should be made regarding the mean.
The nominal value of the response that is obtained when Y(xi) is evaluated

at thg mean values of the X3 is not the same as the mean, “y' In




the example the nominal value of Y(zi) is 10013 yet the second order
estimate of the mean is 10615. This indicates the presence of positive
curvature in the sample space about the nominal. '

The estimated value of the variance of the response as determined

from equations (6) and (10) is given as
~ 2 2
o

2
y )

) + (4041)% (2,
%E(2,") (16)

E(y-n,)? = (13)% (2,
2 2 4

E(z] )E(z2 ) + E(z1 ) + (601)

E(2,%) - (601)%(2,")

-+

dropping terms that contribute only zero. SubstitUting in the values
from equation (12) gives the following estimate '

8§/= .70 x 108 (17)

The true value, cyz, is determined as

2

g

2
y )

E(Y-u)% = (13)%(2,%) + (4001)%E(2,°) + E(z,°)E(2,
4+ (600)%E(2,") - E(2,%) - (600)%E(2,°)

- E(2,ME(2,%) + (40)%E(2,5) + (2)(4001) (40)E(2,

+ (2)(600) (1)E(2,5) - 2(600) (1)E(z,2)E(z,")

8

-+

+ E(z
4

E(z

2 (18) |

+ (40

' again dropping terms that only contrjbute zero. Substituting in from
equation (12) gives the true value of the variance as '
o2 =1.77 x 108 (19)
y
Thus, the second order estimate is not seriously in error. In fact, the

estimate of the variance obtained by including only first order terms is
~ 2 8
[9)

y 1.63 x 10

(20)

which differs_from the exact value by less than 8 percent.




This benchmark calculation has shown how the uncertainty analysis
subcode approximates the true response behavior and estimates distri-
butional parameters for the response. Hopefully this has shed light on
how the method works as well as proving the correctness of the programming.

3.2 Analysis of Responsé Equation Fit to Data

The present version of the uncertainty analysis subcode constructs
response equations based on the full assumed model. That is, every term
in the approximate response equation which can be estimated from the ‘
chosen design is included in the equation. This Teads ‘to the possibility
of overfitting the data. Overfitting may affect the ability of the
equation to predict off design responses in the region of the sample
space. At the other extreme, the response equation may underfit the
data due to the exclusion of significant terms in the assumed model. In
this case the response equations may'tend to underestimate the mean and
variance of the response. Therefore, a program called ANYOLS, devised
by the Reliability and Statistics Branch of EG&G Idaho, Inc. was used to
examine the possible over or underfit of the response equationslto the
data .and thereby assess their adequacy in modeling the true response
behavior.

3.2.1 Sample Problem. An uncertainty analysis on an example

problem was conducted to generate response surface equations. A com-
plete description of the sample problem is presented in Section 4.
Briefly, the problem consisted on a nominal PWR fuel rod in a loss of
coolant accident (LOCA) through blowdown at beginning of life conditions.
The fuel rod power was artifically raised to increase the likelihood of
rod failure but otherwise all parameters were left at their nominal
values. The uncertainty analysis considered ten factors in sixteen
FRAP-T5 executions. Five crossproduct terms were thus estimable and the
factors were ordered so that those crossproducts thought most likely to
be influential were estimated. Ten responses were chosen including
cladding surface temperature, fuel centerline temperature, gap heat
transfer coefficient and cladding strains. The output was taken at half
second intervals throughout the history and so 10 responses x 59 data
sets = 590 response equations were generated.

1



3.2.2 ANYOLS, PRESS, and Residual Plots. ANYOLSLd is a computer
code that allows the user to.fit one or more ordinary least squares

regression models according to predetermined statistical criteria. In
this case the criterion chosen was the prediction error sum of squares
(PRESS) which guards against both lack of fit and overfitting regression
models. The criterion will become large if too few or too many variable
are included in the model. AMNYOLS with PRESS was used to select a
suitable regression model from the whole model originally assumed for
the 590 sets of FRAP-T5 generated data. In practically all cases the
PRESS criterion sequentially chose variables to add to a given model in
the order of absolute magnitude of the response coefficients. This was
to be expected since the variables have been transformed to standard
normal dimension1ess form. However, the final model chosen by PRESS
frequently contained fewer than the full model. As a general obser-
vation those responses that were strorig functions of only a few vari-
ables contained the fewest terms in the PRESS equation and, vice versa,
those response equations that were weak functions of many variables were
fit by PRESS with practically the full model.

One of the best methods for judging the adequacy of a response
equation is to look at a residual plot. A residual.plot is a graph of
the differences between the observed data and the response equation
prediction for the same data (residuals) plotted versus the response
equation predictions. .An equation well fit to the data would not show
up and down trends in the residuals which would otherwise indicate
biasing due to an inadequate assumed model. Furthermore, the residuals
should be fairly well dispersed across the graph indicating a reasonably
constant variance. Examples of residual plots taken from the sample
problem are discussed in the following subsections.

3.2.3 Example 1: Good Fit. Cladding surface temperature at 5.0
seconds in the transient (response 1 at time increment 11) illustrates a
response that is well fit by the PRESS generated response equation.
PRESS chose a constant and eight‘varfab1es (two were crossproducts) to

model the response out of fifteen possible. The residuals, Figure 1,
are reasonably uniform and well distributed. The residuals are fairly

12
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Fig. 1 Cladding surface temperature (K) residuals at 5 seconds (ANYOLS)-




small but this is because they still represent only lack of fit to the
data. The user should feel confident that this equation adequately
models the true response in the region about the nominal. a
3.2.4 Example 2: OQOverlift. Fuel centerline temperature at 15.0
seconds is a response that has been overfit to the data by PRESS. The
residual plot, Figure 2 (response 3 at time increment 31), shows very
small residuals of equal magnitude alternating in sign. This indicates
the addition of terms to the response equation that just counter the
effect of other terms without actua11y contributing a new effect. The
PRESS equation included fifteen of a possible sixteen terms in the
equation. Curiously, one term contributed 82% of the calculated vari-
ance and one might have expected PRESS ‘to stop adding terms shortly
after adding that one. It appears instead that most of the remaining

terms were of roughly equal significance and so PRESS just continued to
add them. A prudent user might be tempted to examine the equation that
includes only those terms contributing a significant contribution to the
variance as a possible fitting criteria. -

3.2.5 Example 3: Underfit. Cladding permanent hoop strain at 5.0
seconds (response 7 at time increment 11) illustrates a responsezthat
definitely suffers from an inadequate model approxjmation. ‘The PRESS
equation chose only eight terms out of sixteen to fit the déta, yet the
residual plot, Figure 3, shows highly grouped data and a large difference
in the magnitude of the residuals. The equation fit the data as well as
could be expected with the terms aVai]able but obviously higher ordgr
terms would provide a better fit and equation. This is not an unexpected
result since cladding permanent strain is known to be a very sensitive

function of local rod conditions. The user would be advised to expect
large biases to enter into any estimates about distributional parameters
made by this equation.
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3.2.6 Example 4 = Qutliers in the Data. Heat transfer across the

gap at 5.0 seconds (response 6 at time increment 11) is an example of a
 data set that includes an outlier, or obviously different point from
most of the data. The PRESS equation has fit the data in only four
terms yet the residual plot, Figure 4, shows that the entire fit has
been biased by one very low data point. ‘

In a traditional analysis the experimenter might be tempted to
throw the point out of the data set as possibly erroneous. That is not
possible here and this case in fact represents a slice in time near the
beginning of a.physica11y real phenomena that exhibits a threshold
behavior. That is, the gap heat transfer in a LOCA will markedly degrade
when the gap opens up during the course of the transient. Just when
that occurs appears to be a function of some of the relative values of
the input parameters. The problem here is that while a first or second
order ﬁesponse equation may reasonably approximate the true behavior on
either side of the threshold, across the threshold the approximation is
inadequate. Including higher order terms and the necessary runs to
estimate them may not solve the problem since in some physically real
cases these thresholds approach step functions. An a]ternative‘is to
divide the data into two groups when this happens and analyze each
individually. This is the practice recommended to the user when this
occurs.

3.2.7 Summary. One further observation regarding ANYOLS, PRESS
and residual plots is in order. PRESS, or for that matter most other
statistical criteria, was developed assuming that in general the number
of data would largely exceed the terms of an assumed model. In particular,
the data were assumed to contain a random element of error and replicate
experiments might not produce identical results. In our case this is
not true. The output of a computer code can be observed without error
and replication only produces identical results. Furthermore, the number
of data generated are ususally close to the number of terms being fitted.
The mean squared deviation of the residuals is thus purely due to fitting
and could potentially be made arbitrarily small by including tenmsvup‘to-
the fql] model. The result is that the user should treat any response

17
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equation with caution until the residuals have been examined and the
equation checked for physically meaningful behavior over the region in
which it was generated. Once this has been done, the validated results
may be reported with confidence.

3.3 Analysis of Response Equation Interpolation and Extrapolation

The previous section has illustrated how the respbnse equations fit
the calculated data. The next logical question is how well the fitted
equations predict the true responses at points other than the design
points. That is, how well do the equations interpolate or extrapolate?
In one dimension interpolation or extrapolation is well understood. In
more than one dimension, however, the issue is not as clear, especially
with the sparse experimental point distribution of a fractional factorial
design. For example, points that are a multiple (for example 2) of the
original fraction are c]eérly extrapolated while points that are a
fraction'(for example, 1/2) are interpolated. Not as clear are points
that are taken from another fraction of the fractional facterial (multi-

pliers of - 1/2, or -1, for example). Keeping in mind the previous

analyses of equation fit, it seems worthwhile to determine the performance
of the response equations at off-design points and so the range of their
validity.

3.3.1 Generation of Off-Design Points. To generate off-design

data, the sample problem discussed in Section 4 was run an additional 16
times. The origiha] design was divided into four groups of four runs
each and the new runs were made at (1) one-half the original design, (2)
minus one-half the design, (3) minus one times the design, and (4) twice
the design. The runs for each group were chosen so that each factor
always had plus and minus values within a group. This way a distinction
could be made within categories as well as between them. The object in
choosing these particular off-design points was to reasonably cover the
sample épace from interpolation to extrapolation. The ability of the
response equations to predict new data is illustrated in the following
examples continued from the previous section. '

19



3.3.2 Examples of Off-Design Residuals. Figure 5 shows cladding

surface temperature (5 seconds) off-design residuals. The square symbols
corresponds to half design points, circles to minus half design points,
triangles to minus design points; and pluses to twice design points. In
Subsection 3.2.3 this response equation was judged a good fit. The off-
design residuals show that even at twice the design the maximum residual
'is only about 2% of the predicted mean. The judgment therefore continues
to hold and the response equation appears useful as a predictor within
the sample space.

~ Fuel centerline temperature off-design residuals (15 seconds) are
shown in Figure 6. This equation overfit the available data and cautious
use of extrapolation was recommended. In fact, the first three kinds of
off-design points consistently overpredict the response (residual =
response - equation) while the twice desigh points seriously underpredict
the response. This indicates the presence of positive upward curvature
“in the response not previously detected by PRESS. This curvature can be
detected by comparing the nominal run with the constant term in the
'response equation. The nominal is an off-design point included in every
analysis and the constant is the response equation evaluated at nominal
conditions. The response equation overpredicts the nominal (it is
important to remember that the nominal was not used in this case to fit
the response equation) in this example and, in fact, for most of the
LOCA history for this response. Within the sample space the magnitude
of the bias appears to be reasonable (~2%) but any extrapolation is very
risky due to the possibility of curvature in the response.

’ Figure 7 shows permanent cladding hoop strain (5 seconds) off-

design residuals. This equation already lacked needed higher order

terms and the off-design residuals fared no better. The residuals are

the same magnitude as the predictions, both over and underpredicted, and
show no discernable trends toward which kind of off-design points fit
better. Thus, the previous conclusion that large biases could be expected
still holds.
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Gap heat transfer coefficient (5 seconds) off-design residuals,
Figure 8, show the same trends as the original residuals. This equation
contained the effects of one extreme data point caused by a threshold
behavior in the fuel rod physical response. The majority of off-design
residuals are reasonably well behaved and don't exceed roughly 10% of
the response. Two points at twice the design appear to cross the threshold
and are widely dispersed. Coincidentally, one point was twice the
design of the same point that caused the original bias. This point was
still fit rather well. The other point obviously didn't do as well.

The original conclusion reached was that the data should be grouped
depending on whether the threshold had been reacted or not. This still
appears to be true with the added comment that extrapolation of any kind
might be risky since the threshold could inadvertently be crossed.

4. SAMPLE PROBLEM
4.1 Introduction

The sample problem used in the developmental verification studies
was a Zion fuel rod subjected to the blowdown portion of a double ended
cold leg break LOCA. Beginning of 1life conditious were assumed and the
only deviation from nominal conditions was artifically raising the
average fuel rod power to 42.1 kW/m. A RELAP4 (MODS)[G] analysis was
used for the deterministic thermal hydraulic boundary conditions and the
uncertainty analysis option itself used FRAP-TS5 for the fuel rod
calculations. Complete results of the analysis are included on microfiche
at the back of this report.

The complete uncertainty analysis used 30876 system seconds on the
CDC 7600 and cost about $1390. Sixteen individual FRAP-T5 runs would
have used 29800 system seconds ($1341), so the uncertainty analysis

subcode used about 1076 system seconds and cost $49, which includes the cost of
the nominal FRAP-T5 execution.
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4.2 Design

Results of a previous LOCA uncertaihty ana]ysis[7] indicated that
10 input variables accounted for a large majority of the uncertainty in
responses for this problem. These 10 variables and ‘their uncertainties
are shown in Table I. The fractional factorial design for 10 factors is
made in 16 problem executions and so.allows the estimation of 5 interaction
(crossproduct) coefficients as well as 10 main effects and a constant.
Ten factors have 45 two factor interactions so the factors were carefully
ordered so that the five interactions thought most 1ikely to be influen-
tial could be estimated. The estimable interactions included the products
of fuel thermal conductivity and pellet radius, gas thermal conductivity,
and power, respectively, and the products of pellet radius and cladding
diametral thermal expansion, and cladding radius, respectively. A
total of 10 responses from a variety of thermal and mechanical code
outputs were chosen as representative of the fuel rod behavior during a
LOCA. These responses are listed in Table 1I.

4.3 Results

.The 10 calculated responses were sampled at half second intervals
throughout the 29 second blowdowh:history of the LOCA, generating 590
sets of 16 data points. A response equation was fit to each data set
and used to estimate the mean and variance of each response at each
point in time. Finally, fractional contributions to the variance of
each term were determined.

Developmental verification studies, described in detail in preceding
sections, analyzed the fit to the data of response equations chosen by
the PRESS criterion. Then, each of the full model equations was analyzed
for its ability to predict responses at off design points. Results of
these studies determined which equations reasonably approximated the
true response surface and which required the addition of higher order
terms or other independent variables. The results for each response may
be summarized as follows. Responses 1 and 2, cladding.surface temperatures,
are well approximated by a linear function throughout most of the sample
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TABLE 1
UNCERTAINTY FACTORS
Factor
Fuel thermal conductivity
Cladding roughness
Fuel density

Cladding diametral thermal expansion

Pellet shoulder radius
Fuel roughness |

Cladding inner radius

. | Pellet outer radius

" Gas thermal conductivity

Transient power level

27

value (o)
0.4 W/m-K
10%

0.67%

10% T >1073 (k)
50% T <1073 (k)

3.4%

10%

1%

1% |
-.00068 + 1,61 x 10767 W/m-k

5%
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TABLE II
RESPONSES

(11 equally spaced axial nodes)

Response

Cladding surface temperature (K)

Cladding surface temperature (K)

| Fuel centerline temperature (K)

Fraction of failed fuel rods

Gap heat transfer coefficient (w/mz-K)

Gap heat transfer coefficient (W/mz-K)

Permanent cladding hoop strain

Permanent cladding hoop strain
Cladding hoop strain

Gap pressure (N/m2)
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Axial Node

6
7
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problem. Response 3, fuel centerline temperature, and response 10, gap
pressure, are fit acceptably well a]thodgh'some Bias due to local curva-
ture in the response surface is indicated. Response 4,-fraction of
failed rods, and responses 7, 8 and 9, cladding strain, are not fit well
by a Tinear approximation. Cladding strains, particularly permanent
strains, are very sensitive functions of cladding conditions and this
result is not unexpected. Response 4 is a function of cladding strain
and so follows in behavior and response 9, total hdop strain, shows
similar, although not as pronounced, behavior due to contributions from
thermal expansion and elastic strains. Responses 5 and 6, gap heat
transfer coefficients, are fit well except during threshold behavior,
The recommendation for these particular responses was to divide the data
into groups and reanalyze. Figures 9-18 show the means plus and minus
one standard deviation for all responses for completeness. Only those
for which a linear fit is justified Should be interpreted in a mean-
ingful manner. Note, fqr example, that minus one standard deviation for
response 4, fraction of failed rods, is less than zero. This is clearly
erroneous. At the very least the output distribution is not normally
distributed as the figure might imply. More likely the original equation
is inadequate, as stated before, and thus produces erroneous results.

One of the objectives of this sample problem was to look at the
contributions of two factor interactions to the variance of estimated
responses. The results showed that the crossproduct of fuel thermal
conductivity and power level was a significant contributor to the calcu-
Tated uncertainties in cladding strains and particularly, gap heat
transfer. Unfortunately, the uncertainties in.cladding strains'are'
probably not valid since the.mddel approXimation was inadequate. The
true uncertainties are likely to be larger and therefore, the relative
contribution of a particular term like a crossproduct may diminish.
Nevertheless, an orthogonal design estimates coefficients independently
of one another and the contribution is significant.

In summary, the results of developmental verification studies
applied to this sample problem showed that a linear approximation for




cladding surface temperature, gap pressure, and heat transfer coefficients
produced meaningful uncertainty estimates. If these were the primary
responses of interest to the user, the analysis could stop here. Cladding
strain and related responses were not fit well and meaningful results

were not obtained. If these responses were of particular interest, the
analysis should continue by generating more data for estimating higher
order terms.
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5. CONCLUSIONS AND QECOMMENDATIONS

The developmental verification of the Uncertainty Analysis Option
incorporated in the FRAP-T5 code included a comparison of the code pre-
dictions with a hand solution in order to verify the correctness of the
subcode programming, and a study of the adequacy of the fit of the approx-
imate response surfaces generated for a hypothetical LOCA example problem.
This study showed .that the majority of the code output responses were
adequately modeled by a simple linear response surface equation. For !
those responses for which the 1inear response surface fit was less than
adequate, the fit could potentially be improved by continuing the analysis
to include quadratic terms in the response surface equations. The
adequacy of fit is highly problem dependent, and a study of response
surface requirements for the typical hypothetical accidents important to
Light Water Reactor Safety Analysis is underway. This study will result
in specific recommendations for the choice of response surface equation
forms for the accident scenarios in question.

In the current version of the Uncertainty Analysis Option (as in-
corporated in FRAP-T5) the correct choice of the completeness of the
response surface equation is left to the user. In the developmental
verification, the ANYOLS code was used to automatically ascertain the
best form of the response equations. In addition, it was found that the
response equation selected by the ANYOLS code was sometimes more accurate
than using the full model response equation. Thus it is recommended
that calculations such as performed in ANYOLS be incorporated in.future
versions of the FRAP-T Uncertainty Analysis Option. In addition, it is
recommended that future versions should include a method for graphically
plotting the nominal responses and comparing them to the estimated mean
and variance. An alternative method would be to overlay plots of all
the data together with a plot of the mean and nominal. In this way
the user could visualize the data spread and the location of the mean
and nominal relative to the data.

Finally, it should be noted that the evaluation of response equa-
tion validity relies heavily on visual techniques. Ideally, a quantita-
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tive measure should be found that could be used in the same manner as
a confidence 1imit. That is, response equation X can be used with Y%
confidence. The possibility of incorporating such confidence limits
will be studied as part of the on-going code optimization tasks to be
performed during the remainder of FY-1979.
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