

DOE/PC/90284--1

DE91 005554

DOE Report No DOE/PC 90284-1

November 1990

Quarterly Report

for

Grant No. DE-FG22-90PC90284

entitled

Molecular Accessibility In Solvent Swelled Coal

**Lowell D. Kispert, Principal Investigator
Department of Chemistry
The University of Alabama
Tuscaloosa, AL 35487-0336**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

US/DOE Patent clearance is not required prior to the publication of this document.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

BACKGROUND:

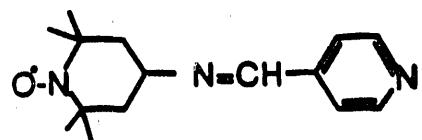
An EPR technique developed in this lab¹⁻³ is being used to determine the pore size and number distribution changes after swelling the coal samples with various solvents. Stable nitroxide radical spin probes of different sizes, shapes and reactivity are dissolved in an appropriate solvent, the coal sample is added to the resulting solution, stirred over night at elevated temperature, filtered, washed with a nonswelling solvent to eliminate any spin probes that are not trapped in the pores and the spin concentration measured. Comparing these spin probe measurements to DRIFT data have shown⁴ that the relative number distribution of acidic functionalities can be accurately predicted by the spin probe method. The spin probe method has also been used to predict⁴⁻⁵ the increase in elongated voids in Pittsburgh No. 8 (APCS No. 4) upon swelling with pyridine in agreement with independent SANS data. NMR relaxation data show³ that it is possible to deduce the pore (accessibility) distribution as a function of size (up to 6 nm). It has also been possible by variable temperature¹⁻³ and ENDOR measurements⁶ to determine the presence of hydrogen bonding as a function of pore shape and size. The advantage of the EPR method is that it permits molecules of selected shape and size to be used as probes of accessible regions of the coal, thus providing information on the importance of molecular shape. To expand the information base in this area, it is the objective of our current study to determine molecular accessibility in Argonne premium coal samples (APCS) upon swelling in polar, basic solvents before and after moisture loss.

Summary of Current Activities

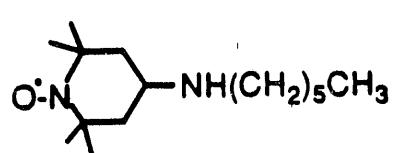
Dr. Lidia Piekara-Sady from the Institute of Molecular Physics in Poznan, Poland has begun carrying out the ENDOR study of the spin probe doped Argonne

Premium Coal Samples (APCS #3, #4, #5, #6 and #8) swelled with the solvents toluene, nitrobenzene and pyridine. Although ENDOR spectra are being obtained, methods are being developed to improve the ENDOR signal to noise so a more complete study can be obtained. Mr. Ross Spears, a graduate student working towards his Ph.D. degree in chemistry with speciality in coal chemistry has been carrying out a study of the changes in the size and member distribution of the accessible regions of the APCS coals #3, 4, 5, 6, and 8 as a function of rank upon swelling with solvents, toluene, nitrobenzene and pyridine using spin probes V, X, XII and XIII. So far he has found that as the basicity of the solvent increases (toluene to that of pyridine), the number and length of the cylindrical pores increased with decreasing rank. The number of cylindrical pores also increased with oxygen content (with decreasing rank) suggesting a destruction of the hydrogen-bond network upon swelling with pyridine. A paper based on this work has been accepted as a chapter to be published in an ACS Book entitled "Magnetic Resonance of Solid Carbonaceous Fuels." Mr. Spears actually started his Ph.D. dissertation research on the changes in coal porosity with swelling solvent approximately 9 months before the grant was awarded. Thus more than the usual progress can be reported for the first quarterly report.

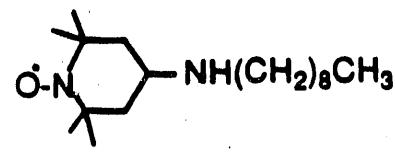
These same studies are being extended to APCS #1, 2 and #7 coal samples. The pore size, shape and number-distribution will also be studied as function of the temperature at which the overnight swelling treatment is carried out.

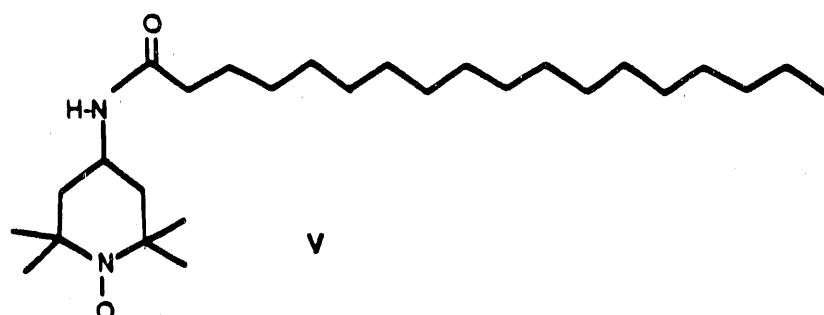

No problems have developed so far other than the increasing difficulty in locating the spin probes of the size and shape needed to determine the changes in pore structure. The previous three year DOE - coal grant provided us with the support needed to set-up a functioning lab and support for trained personal to carry

4


out coal studies. Thus it should be possible to continue making progress during the next quarter.

REFERENCES


1. Wuu, S. K.; Kispert, L. D. "Fuel" 1981, 64, 1681-1686.
2. Kispert, L. D.; Cooray, L. S.; Wuu, S. K. "Prepr. Pap. - Am. Chem. Soc., Div. Fuel Chem." 1987, 32, 286-292.
3. Cooray, L. S.; Kispert, L. D.; Wuu, S. K. "Prepr. Pap. - Am. Chem. Soc., Div Fuel Chem." 1988, 33, 32-37.
4. Goslar, J.; Kispert, L. D. "Energy to Fuels" 1989, 3, 589-594.
5. Goslar, J.; Cooray, L. S.; Kispert, L. D. "Fuel" 1989, 68, 1402-1407.
6. Goslar, J.; Kispert, L. D. "Fuel" 1990, 69, 564-569.


X

XII

XIII

V

Spin Probes V, X, XII and XIII

END

DATE FILMED

01/16/91

