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ABSTRACT

Lawrence Livermore National Laboratory has
developed a tele-robotic and autonomous controller
architecture for waste handling and sorting using their
work in tele-robotics, autonomous grasping and image
processing along with related work at ORNL. As a
starting point, prior work from LLNL and ORNL was
restructured and ported to a special real-time development
environment. Significant improvements in the collision
avoidance, force compliance and shared control aspects
were then developed. Several orders of magnitude
improvement were made in some areas to meet the speed
and robustness requirements of the application.

The resulting controller architecture and functionality
supports the following behaviors:

•  master (tele-operational hand control) position to
tele-robotic position control

•  master position to tele-robotic velocity control
•  force compliant tele-robotic control
•  real-time collision avoidance
•  autonomous motion control
•  operator force queuing
•  operator selectable tele-robotic behaviors

The control system is currently being used to
integrate and control a six degree-of-freedom manipulator
and a six degree-of-freedom force-reflecting master
controller in a plant-prototypic waste sorting
demonstration cell. The system has been in use for six
months and is currently being successfully operated by
personnel with little or no robotics background and
essentially no training. This paper discusses, in more

detail, the tele-robotic controller architecture and the
system results to date.

I.  OBJECTIVE

The Tele-Robotic/Autonomous Controller (TRAC)
system at the Lawrence Livermore National Laboratory
(LLNL) is part of the technology needed to bridge the gap
between mature, bench-scale proven waste treatment
technologies and full-scale treatment facilities. As an
integrated facility, the technologies demonstrate the entire
treatment sequence from solid waste receipt to output of
the final waste form. Tele-robotics are to be used for
container handling, waste characterization and preliminary
sorting of the solid waste stream. In addition to meeting
the specific design needs, the controller technology must
be easily transferable and the development costs contained.

There have been many controllers developed which
could meet some of these objectives, but their proprietary
development environment impedes their transferability to
other labs. The TRAC controller avoided these
impediments by using an advanced, commercially
supported development environment. To achieve software
transferability, the TRAC controller development
attempted to limit software development by using existing
software to its greatest advantage. By developing a
controller in this manner, the software transferability was
enhanced.

Another goal of the TRAC system was to reduce the
complexity of the system to the level where people with
no robotics experience could operate the system
effectively. Specifically, minimizing the number of



interfaces to allow efficient operator training. This
includes replacing the key board interface with a voice
recognition interface and implementing a limited set of
function buttons. Also, the tele-robotic interface was
simplified to minimize the operators need to adjust his
behavior for changing conditions.

II.  HARDWARE

To minimize the development effort, commercial
hardware was used whenever possible. The commercial
hardware included the slave robot and master input
systems. Two separate masters were tested: an RSI
Research Ltd. six-degree-of-freedom (6-DOF) hand
controller and a CyberImpact. These hand controllers were
interfaced to a Titan III robot.

A Schilling[1] Titan III robot was installed in the
Automation and Intelligent Systems laboratory at LLNL
on October 29, 1995.[2] The Titan III is a 6-DOF
hydraulic arm capable of lifting 250 lbs. In addition, the
robot can move at 37 inches per second and has a
maximum reach of 76 inches. The robot has a parallel
jaw gripper capable of applying 540 lbs. force (see figure
1) and, as of October 1996, LLNL has upgraded their
Titan to include Schilling’s quick-change wrist. Also, as
part of the wrist, a 6-DOF-force sensor from JR3, Inc.
measures the robot end point forces in x, y, and z, and
moments about x, y, and z.

Figure 1.  The Titan III robot used at LLNL.

The Titan III can be controlled with either an RSI
Research Ltd. 6-DOF hand controller or a Cybernet force-

reflecting 6-DOF hand controller. The RSI 6-DOF hand
controller[3] is an inverted Stewart platform with two
push-button switches, two trigger switches, and a deadman
push-button switch (see figure 2). The Stewart platform
has nine potentiometer monitoring positions which define
the position and orientation of the grip handle.

The CyberImpact hand controller from Cybernet[3] is a
small back-drivable robot which moves in 6 degrees-of-
freedom: three linear positions (x-, y-, z-) and
three attitudes (roll, pitch, yaw). The operator interface is
through a grip handle with three push-button switches in
addition to an analog displacement trigger switch and a
deadman push button switch (see figure 3). An operator
can use this motorized handle to generate position and
force commands simultaneously (in x-, y-, z-) and tool
angle (roll, pitch, yaw). Cybernet provides an MS-DOS
C development environment for control system
modification, reconfiguration, and interfacing. The
standard CyberImpact hand controller supports serial
communications at 19.2 KB.

Figure 2.  The RSI Research Ltd. 6-DOF hand controller
used at LLNL.



III.  INTRODUCTION

For the first design, we selected a development
environment which would facilitate extensive software
reuse and rapid prototyping. Of the development
environments examined, ControlShell from Real Time
Innovations (RTI)[4] was determined to be the most
appropriate. ControlShell is a component-based, object-
oriented system for real-time software development. Built
on top of VxWorks, ControlShell combines a modular
structure, powerful graphics-based 4GLa, and integrated
data management into a unique approach to real-time
software.

Figure 3.  The CyberImpact hand controller used
by LLNL.

ControlShell programs build complex systems from
reusable code objects called "components". Graphical
editors connect and combine these components into
working real-time systems. New components are easily
added with automatic C++ code generators. ControlShell
takes advantage of object inheritance to allow
development of complex components from simpler base
classes; this makes components especially easy to reuse.
ControlShell thus provides a framework that allows
users, even at different sites, to share and reuse software.

ControlShell addresses both data-flow (sampled-data)
systems and event-driven reactive systems. It excels when
applied to complex systems combining these traits. It

                                                
a  4GL: Fourth Generation Language code generator.

also features a graphical configuration manager, an object
data service, a complete real-time matrix math package, an
interface to RTI's data monitor (StethoScope), full
integration with RTI's network data-sharing package
(Network Data Delivery Service; NDDS), and an extensive
library of generic and reusable components, including
controllers, estimators, filters, signal generators, trajectory
generators, device drivers, etc.

These features significantly reduced design time
needed to develop the TRAC system. Components from
different developers were loaded and used by simply
transferring the source code files and installing them into
the LLNL component libraries. Having a well-defined,
commercially-supported graphical interface to connect
components ensures easy integration of these new
components. The configuration manager enabled
components to be initialized and activated at will, giving
the controller different behaviors on the fly. These
different behaviors could be controlled through an
expandable operator interface, or the controller could set
the new behaviors from switch controls, or from an
LLNL-developed voice command interface. The
configuration manager also augments debugging. Specific
problems could be tested by activating a limited subset of
the system components to test for particular problems.
Debugging could also be performed with StethoScope.
StethoScope generates an X-window plot for any specified
signal in real time. These plots were an invaluable tool
for determining internal system behavior as the system
operates.

The software reuse and rapid prototyping of
ControlShell was demonstrated at the beginning of the
TRAC controller development. After installation of the
robot, rapid development of a prototype TRAC began.
With only eight days devoted to controller development, a
completed TRAC prototype was demonstrated which
verified the software transferability and rapid prototyping
capabilities of the ControlShell environment. This
original controller was called the RSI TRAC.

As part of the RSI TRAC development, components
from an ORNL Titan II controller[5] and a LLNL Puma
562 controller[2] were incorporated with new software to
produce an autonomous and tele-operational controller.
The tele-operational controller interpreted command inputs
from the hand controller as positional commands or
velocity commands to direct the robot gripper position. In
addition, preplanned joint trajectories were stored for
autonomous operations. These capabilities were
selectively activated with the hand controller switches so
the configuration could be seamlessly transferred between



the different modes. These capabilities are described in
more detail in the technical approach.

IV.  TECHNICAL APPROACH

After selection of the controller development
environment, the desired behavior of the controller was
defined and the needed tasks identified. The basic tele-
robotic task was to sort mixed waste for a waste treatment
facility. The waste was to be delivered in 55-gallon
barrels where the barrel lid had been removed in a
previous section of the facility. The waste barrel was to
be placed in a barrel dumper and the waste poured onto a
sorting table. The actual waste objects were placed in the
barrels under pressure so it was expected the waste would
occasionally need to be pulled loose with the robotic arm.
Once the waste was on the sorting table, the waste was to
be sorted into different categories as specified by the
treatment facility needs. For some operations,
singulationb tasks would need to be performed through
glove ports by an operator, but the majority of work was
expected to be performed with the robot.

The controller behavior was designed to assist the
operator in sorting the waste. The controller was set up
for the operator to pickup objects tele-robotically, then
log information about the object in the waste tracking
record. Information about the object included a visual
description of the object, entered by voice. In addition,
information from any sensor data, weight, x-ray images,
etc., were entered electronically. Once the object had been
grasped and described, the operator directed the controller
to autonomously place the object in a specific bin. From
the description and sensor data, the controller determined
the correct category bin to deposit the waste. These
autonomous tasks were important because they provided
the operator with time to examine the waste pile in
preparation for the next grasping operation. The complete
controller with these capabilities is the TRAC system.

The TRAC system uses two VMEbus Motorola
68060’s for control and collision avoidance, respectively.
In addition, the TRAC system uses a Sun workstation for
GUI interface and voice recognition. The set-up and
display of the robot and work cell models were done in a
graphical simulation package on an SGI Indigo Extreme.
The graphical simulation package used was Robline from
Cimetrix.[6] The SGI was also used for experimentation of
real-time path planning.

                                                
b  That is, to segregate a pile of objects into a string of
single objects according to sorting criteria.

The TRAC system is an extension of the original
RSI TRAC. An overview of the TRAC system is shown
in figure 4.  Each indicated component of figure 4
represents several lower level components. Each active
component for a given configuration is run by each
controller cycle. Since the CyberImpact includes
capabilities of the RSI hand controller and has additional
capacity, the remainder of the TRAC system discussion
will focus on the final developed controller using the
CyberImpact. The TRAC control structure has two basic
configurations, tele-robotic and autonomous. The
autonomous configuration uses the control component to
replay preplanned joint trajectories to produce desired robot
motions. The tele-robotic mode interprets input from the
hand controller as a desired robot gripper-position
command. These gripper-position commands are modified
for compliance, joint limits, and collision avoidance and
then converted to robot joint commands. Each subsystem
will be discussed separately.

PosMatrix (Feedback Position Matrix)

Desired_Mat FC_Desired_Mat

Kinematics

Forward

Inverse

DesJntPos
(Desired Joints)

Collision_Range
Collision

Avoidance
Control

allMeas

driveSig
(Velocity Command)

jntAngMeas
grpPosMeas

jntAngMeas
jr3_force Titan

Interface

Titan Drive

Input
System

Voice
Control
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Compliance
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Control
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Configuration
Control

Figure 4.  Overview of TRAC used to control the
Titan III at LLNL.

A.  Input System

The input system collects all mechanical input from
the operator and converts it to the appropriate command
signals. There are five switches on the CyberImpact, each
performing a different function. The most important
switch is the deadman switch on the CyberImpact handle.
While the deadman is not active, the input system outputs
a constant signal representing the current robot gripper
command. This constant signal represents the operator’s



desire not to move the robot in a tele-robotic manner.
When the deadman is activated, the user can start tele-
operations of the robotic arm even under conditions where
the arm is performing an autonomous operation. For the
input system, with the deadman active, gripper position
commands are output as the signal Desired_Mat. The
Desired_Mat is a 4 x 4 matrix representing position and
orientation of the desired gripper robot command with
respect to its base frame.[7]

All master inputs are shifts from the initial robot
gripper position. The current gripper position of the arm
is generated by each control loop as the signal PosMatrix.
To make these shifts as intuitive for the operator as
possible, the shifts in gripper position are mathematically
adjusted to match the operators view. For example, for
tele-robotic operations from a camera view, when an
operator moves the master to the right, the robot gripper
moves to the right in the operator’s camera view point.
Matching the master movement to the operator’s view
point simplifies the control of the robot by causing the
behavior of the robot to be the same for any selected
view.

One operator interface difficulty overcome in the
TRAC system was hand controller re-indexing. Re-
indexing is the process of moving over large robot
distances with a positional hand control master of lower
motion range. The CyberImpact range of movement is 6
inches in x, y and z compared to a maximum of 12 feet
for the work space of the Titan III. Therefore, in
positional operation, to make large Titan movements
generally requires several full range movements with the
CyberImpact. After each full range movement, the
deadman switch would need to be released, and the master
moved to the opposite motion side to begin the next
finite move. These repetitive movements are referred to as
hand controller re-indexing.

A velocity mode was added to the input system to
minimize master re-indexing. To activate the velocity
mode, the CyberImpact is moved near the CyberImpact
mechanical range-of-movement limit. When the
CyberImpact is within half an inch of its mechanical
range-of-movement limit, it has past the software range-
of-movement limit. When the CyberImpact has past the
software range-of-movement limit, the velocity mode
control is activated for that axis, and a simulated spring
behavior is implemented. The closer the hand controller is
to the mechanical range-of-movement limit, the faster the
velocity command of the robot in the direction desired.
The velocity command peaks at the maximum speed of
the robot. To notify the operator of the velocity mode
status, a spring-like force is applied to the operator

proportional to the velocity command being sent to the
robot. The higher the velocity command, the more force
to be applied to the operator’s hand. Once the hand
controller is moved within the software range-of-
movement limit, the system seamlessly returns to
positional control of the robot, and the velocity mode
control and spring behavior are turned off.

B.  Compliance

The input system signal Desired_Mat is passed into
the compliance component. The compliance component
modifies the user’s desired input gripper position to limit
the measured forces at the robot force sensor. The
measured force comes from the jr3_force sensor in the
wrist, and is provided to the compliance component as a 6
point array called the jr3_force. The compliance
component restricts the force the robot imparts on the
work cell, protecting the robot and work cell from
damage. This capability can run during autonomous and
tele-robotics operations to reduce imparted force while
picking up or setting down objects.

The first function of the compliance component is
gravity compensation. Since the wrist weighs over
20 lbs., the orientation of the wrist has a significant
predicable effect on the jr3_force sensor. The gravity
compensation predicts the forces from the weight of the
gripper for a calculated orientation, and subtracts it from
the measured jr3_force to produce an estimate of the
external force on the robot wrist.

After obtaining an estimate of the external forces
acting on the wrist, the forces in the world x, y and z were
obtained by adding the relative constituent forces to their
respective world axes. As the wrist changes orientation,
the relative constituent transform is updated to compensate
for the new orientation.

Once the world forces x, y, and z are obtained, the
desired gripper position command, Desired_Mat, can be
modified to limit these forces. If the world forces are
below a threshold of 50 lbs., the Desired_Mat is not
modified.  If the forces exceed 50 lbs., the Desired_Mat is
modified to relieve the force by integrating of the force
error  multiplied by a scalar and adding it to the
Desired_Mat signal.  This modified force is output as a
4 x 4 position and orientation matrix called
FC_Desired_Mat. Since the measured forces can rapidly
change due to the small robot movements, the speed of
the robot must be slow enough for the robot to
compensate for the fastest possible force transition.
Limiting the speed of the robot will be discussed in the
collision avoidance section.



C.  Kinematics

The Kinematics component converts the input desired
gripper command signal, FC_Desired_Mat, to the desired
robot joint angles, DesJntPos. In addition, the
Kinematics component converts the actual robot joint
angles, allMeas, to a 4 x 4 feedback position and
orientation matrix called PosMatrix. The generation of
DesJntPos uses inverse Kinematics and the generation of
FC_Desired_Mat uses forward Kinematics. These forward
and inverse Kinematics are combined into the same
component to ensure they remained a matched pair. If the
forward and inverse Kinematics differed each time the
input tele-operational system is activated, the robot would
jump as it corrected for the difference. The core
Kinematics and inverse Kinematics software were
obtained from the ORNL Titan II development project.

Since the Titan III has finite reach, not all desired
gripper positions are reachable. To handle these
unreachable points, a behavior was implemented as part
of the inverse Kinematics. A point may be unreachable in
position, orientation, or both. The inverse Kinematics
used in the TRAC reach as close to the desired position as
possible and then attempt to match the orientation.  In
the reachable area of the robot, the position and
orientation are located correctly, but as the desired gripper
positions leave the reachable work space, the robot
orientation command is modified to maximize the robots’
reach.

D.  Control

The control component takes the desired joint
positions, DesJntPos, and the feedback, jntAngMeas and
grpPosMeas, and calculates the appropriate velocity
command, driveSig, with a control loop. The control
loop uses proportional control with a limit range
integrator and a simple lead lag compensator. In addition,
the control component has multiple software joint limits.
One software joint limit protects the mechanical stops of
the robot. All the joints except the wrist roll have
mechanical joint limits which may be damaged with
repeated full velocity movements into the mechanical
stops. The other joint limit is part of the collision
avoidance system. This collision avoidance joint limit is
dynamic and restricts the movement of the arm to a range
that has been calculated to be safe.

E.  Collision Avoidance

The collision avoidance system includes a full-arm
model-based collision detection system. From the model

of the arm, the collision avoidance system determines the
safe operating space. The collision avoidance system has
two main functions.  First, the collision avoidance system
must stop the arm from touching parts of the work cell it
may damage during any operation. Second, the collision
avoidance system must slow down the arm before the
robot makes contact with the work cell in areas it may
touch.  The collision avoidance system operates on its
own 68060 at a nominal rate of 40 Hz.  At 40 Hz, the
collision avoidance system is sufficient to protect the
entire robot arm from collisions anywhere in the work
space with minimal effects on performance.

The collision avoidance software also includes a path
planner which has demonstrated the capability of
calculating collision-free paths in real time. For the
current Titan III work cell, the path planner calculated
90% of the anticipated paths in 0.5 seconds and the most
difficult paths were determined in 7 seconds. Although the
path planner was not optimized and was not designed to
find every possible path, the results show useable path
planning.

F.  Titan Interface and Titan Driver

The Titan Interface Driver System interfaces with the
Schilling VME-based Titan driver card and jr3_force
sensor driver card. The drivers are interrupt-driven and
control the reading of feedback position and force
information from the driver cards. The drivers also
communicate the desired velocity command to the Titan
driver card. The resulting driver software was built from a
combination of work from LLNL, Schilling and ORNL.

G.  Voice and  Configuration Control

The voice and configuration control system
encompasses the user’s ability to change the behavior of
the TRAC system. Each voice command is interpreted by
the voice recognition system and converted to an event.
The voice recognition system is a commercially-developed
speaker independent software package from Nuance
Communications.[8] The voice recognition system runs on
a Sun workstation and transmits data using RTI’s NDDS
ethernet communications system to the controller running
on the VME chassis.  The controller uses a state machine
environment developed by RTI to control what specific
components of the controller are active at a given time.
The TRAC state machine is shown in figure 5.

The state machine is centered around the
TeleOperation state. The voice recognition system
controls the initialization of hydraulic power during setup
and leaves the controller in the TeleOperation state. There
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are four modifiers of tele-operation which entail changing
the scale of hand controller inputs to robotic movements.
In addition, there are several autonomous functions. These
autonomous functions are preplanned movements which
are executed by a voice command and can be interrupted
by pushing the deadman switch. The voice recognition
system also logs the operator description of the object in
the robot gripper and executes the classification of the
object into the appropriate category. This sorting
algorithm is modified for classification needs.

V.  CONCLUSION

This TRAC system has been used for over six
months by untrained people of various backgrounds. The
collision avoidance system keeps these untrained
operators from damaging the work cell while still
allowing them to sort objects efficiently. A moderately
trained operator can pick up a waste object, describe it
with voice commands and autonomously place the object
in its correct location every 17 seconds. The software
structure has been successful enough that the TRAC
system has been licensed to Schilling Development and
parts are commercially available.
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