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1. I n t r o d u c t i o n .  

I t  i s  c u r r e n t l y  wel l  e s t a b l i s h e d  t h a t  t h e  f a s t  s e l f - d i f f u s i o n  which occurs  a long  g r a i n  
boundaries (GBs) i n  meta l s  must occur  by a  p o i n t  d e f e c t  exchange mechanism. For example, it i s  
known t h a t  r a p i d  G B  d i f f u s i o n  can t r a n s p o r t  a n e t  c u r r e n t  of  atoms along G B s  dur ing  both s i n t e r -  
ing  (1) and d i f f u s i o n a l  c reep  ( 2 ) ,  and t h a t  t h e  two s p e c i e s  i n  a  b ina ry  s u b s t i t u t i o n a l  a l l o y  
d i f f u s e  a t  d i f f e r e n t  r a t e s  i n  G B s  (3 ) .  However, i t  has n o t  been p o s s i b l e  t o  e s t a b l i s h  f i r m l y  
whether t h e  d e f e c t  mechanism invo lves  t h e  exchange of atoms wi th  vacancy o r  i n t e r s t i t i a l  p o i n t  
d e f e c t s .  I t  has  been suspected t h a t  t h e  vacancy exchange mechanism must app ly  ( 3 , 4 ) ,  but  it h a s  
been d i f f i c u l t  t o - p r o v e  t h i s  hypo thes i s  because of  a  lack..of . . . . . . 

d e t a i l e d  . in fo rmat ion  a t  t h e  atom- 
i s t i c  l e v e l .  

I n  t h i s  n o t e  we r e p o r t  on t h e  r e s u l t s  o f  an e f f o r t  t o  e s t a b l i s h  t h e  GB s e l f - d i f f u s i o n  mech- 
anism i n  a  bcc i r o n  C=5 (36.g0) [001] (310) tilt boundary using t h e  combined methods o f  computer 
molecular s t a t i c s  and molecular dynamics s imula t ion .  The methods a r e  found t o  be complementary 
s i n c e  t h e  s t a t i c s  method e f f i c i e n t l y  p rov ides  informat ion about  t h e  s t a t i c  d e f e c t  e n e r g i e s  a11d 
conf igura t ions ,  whereas t h e  dynamics method al lows one t o  observe t h e  a tomic motions a s s o c i a t e d  
wi th  p o i n t  d e f e c t  jumps a t  t empera tu res  equal  t o  Qr g r e a t e r  than  h a l f  t h e  mel t ing  temperature .  
An account of  t h e  molecular dynamics r e s u l t s  has been p resen ted  i n  Ref. 5 which g i v e s  evidence 
f o r  f a s t  vacancy migra t ion  i n  t h e  p r e s e n t  G B .  In  t h e  p r e s e n t  n o t e  we review the r e l e v a n t  dyna- 
mics work b r i e f l y  and show how t h e  r e s u l t s  can be combined with t h e  r e s u l t s  o f  molecular  s t a t i c s  
c a l c u l a t i o n s  t o  provide q u a n t i t a t i v e  microscopic  evidence i n  favor  of  t h e  vacancy mechanism. 

The s imula t ion  model used i n  both t h e  s t a t i c  and dynamic c a l c u l a t i o n s  c o n s i s t e d  of  10  l a y e r s  
of  [ O O l ]  a tomic planes  with t h e i r  normal a long t h e  t i l t  axis: Each p lane  con ta ined  40 atom 
s i t e s ,  and a  p o r t i o n  of t h e  model con ta in ing  t h e  boundary midplane arid two p e r i o d s  o f  t h e  sym- 
m e t r i c  G B  i s  shown i n  Fig. 1 . '  A l l  atoms were assuiied t o  i n t e r a c t  v i a  a  c e n t r a l  f o r c e  p a i r w i s e  
p o t e n t i a l  of t h e  empir ical  type  with  a  f o r c e  c u t o f f  midway between second and t h i r d  neighbors  
(6) 

2 .  Mo'lecular S t a t i c s  Resu l t s  

The molecular  s t a t i c s  technique employed a  modifi6d method of s t e e p e s t  descen t  t o  minimize : 

t h e  p o t e n t i a l  energy of t h e  atomic ensemble (7).  A l l  e n t r o p i c  e f f e c t s  a r i s i n g  from l a t t i c e  v i b -  
r a t i o n s  and k i n e t i c  energy were t h e r e f o r e  ignored s o  t h a t  t h e  s imula t ion  e f f e c t i v e l y  proceeded 
a t  zero a b s o l u t e  temperature .  

The p e r f e c t  G B  s t r u c t u r e  i n  t h e  absence of  any p o i n t  d e f e c t s  was f i r s t  determined by r e l a x -  
ing t h e  i n i t i a l  s t r u c t u r e . i n  which a l l  atoms were located on t h e  Z=5 co inc idence  s i t e  l a t t i c e .  
This  r e s u l t e d  i n  a minimun~ energy G B  s t r u c t u r e  charac te r i zed  by a  r ig id -body  t r a n s l a t i o n  of one 
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c r y s t a l  wi th  r e s p e c t  t o  t h e  o t h e r  along [I301 caus ing  an expansion o f  0.18 aO (ao = l a t t i c e  p a r a -  
meter) .  

A vacancy was then  i n s e r t e d  a t  a  s i t e  i n  t h e  G B  by removing t h e  atom occupying t h a t  s i t e ,  
p l ac ing  it on t h e  s u r f a c e  of a re fe rence  c r y s t a l ,  and aga in  r e l a x i n g  t h e  model. Conf igura t ions  
and e n e r g i e s  o f  vacanc ies  in t roduced a t  t h e  s i t e s  A ,  B, C, and D (Fig.  1 )  by t h i s  procedure  were 
determined. In  each case  t h e  vacancy remained q u i t e  l o c a l i z e d  and recogn izab le  a s  an  empty s i t e  
i n  t h e  G B  i n  agreement wi th  expec ta t ions  based on p rev ious  work (8 ,9 ) .  The fo rmat ion  e n e r g i e s ,  

F B EB , of  t h e s e ' v a c a n c i e s  a r e  l i s t e d  i n  Table  I a long  wi th  t h e i r  b inding e n e r g i e s  t o  t h e  GB,  E B ,  
B F F  determined from EB F 

= EB - EL , where EL = 1.35 .eV i s  t h e  c a l c u l a t e d  format ion energy i n  t h e  
- 

l a t t i c e .  We n o t e  t h a t  t h e  binding energy can a l s o  b e  c a l c u l a t e d  by molecular  dynamics t echn iques  

TABLE I 
F ' B Formation Energies ,  E B , a n d  Binding Energies ,  EB ,.of Vacancies and 

I n t e r s t i t i a l s  i n  Boundary S i t e s  Shown i n  Fig.  1. 

F Boundary S i t e  EB (eV) E,: (eV) 

Vacancies B 0.94 -0.41 

. C 1.26 -0.09 

us ing a  damping f o r c e .  Such a  c a l c u l a t i o n  has  been c a r r i e d  o u t  a t  s i t e . B  f o r  t h e  vacancy, and 
t h e  r e s u l t  ag rees  wi th  t h a t  c a l c u l a t e d  b y - t h e  molecul.ar s t a t i c s  method. 

An i n t e r s t i t i a l  was i n s e r t e d  by simply adding an e x t r a  atom i n  t h e  boundary and aga in  r e l a x -  
i n g  t h e  s t r u c t u r e .  The l a r g e s t  "hole" i n  a  hard sphere  model o f  t h e  p e r f e c t  G B  i s  l o c a t e d  a t  
t h e  p o s i t i o n  I i n  Fig .  1, and an atom was t h e r e f o r e  i n s e r t e d  a t  t h a t  p o i n t  t o  s i m u l a t e  an i n t e r -  
s t i t i a l .  Considerable  atomic ' r e l axa t ion  occurred around t h i s  i n t e r s t i t i a l  but  i t  remained e a s i l y  
r ecogn izab le  a s  an e x t r a  atom i n s e r t e d  a t -  I .  I n t e r s t i t i a l s  were a l s o  in t roduced  a t  t h e  s i t e s  A,  
B, C ,  a n d . D , i n  Fig .  1. However, i n  t h e s e . c a s e s  it was convenient  t o  remove t h e  atom o r i g i n a l l y  
a t  t h e  s i t e  and then  i n s e r t  two atoms symmetr ical ly  d isposed around t h e  empty s i t e .  I n  t h e  sub- 
sequent r e l a x a t i o n  t h e  two atoms were g e n e r a l l y . d i s p l a c c d ,  and t h e  .symmetric arrangement was des -  
t royed .  These i n t e r s t i t i a l s  were t h e r e f o r e  somewhat more d e l o c a l i z e d  but  remained a s  bona f i d e  
p o i n t  d e f e c t s  i n  t h e  G B  s t r u c t u r e .  The c a l c u l a t e d  format ion and binding e n e r g i e s  f o r  t h e s e  
i n t e r s t i t i a l s  a r e  a l s o  1 i s t e d . i n  Table 1. (Here, t h e  c a l c u l a t e d  format ion energy i n  t h e  l a t t i c e  

i s  EE = 4.74 eV f o r  a  <110> s p l i t  i n t e r i t i t i a l . )  

3. Molecular Dynamics R e s u l t s  

The molecular  dynamics of t h e  G B  modcl were i n v e s t i g a t e d  by adding thermal  k i n e t i c  energy t o  
t h e  p rcv ious ly  desc r ibed  s t a t i c  model. Standard ntolecular dynamics t echn iques  ( 1 0 , l l )  were used 
t o  s imula te  t h e  bchavior  of t h e  G B  po in t  d e f e c t s  a s  wel l  a s  t h c  atomic motions i n  t h e  system. 
A number of isothermal "d i f fus ion  runs" was madc i n  which a  s i n g l e  vacancy was in t roduced  i n  t h e  
G B  and observed t o  migrate  a s  a  func t ion  of t ime. The r e s u l t s  a r e  d e s c r i b e d  i n  Ref. 5 and a r e  
b r i e f l y  reviewed and discussed f u r t h c r  below. 

( i )  The vacancy migrated i n  the '  co re  of t h e  G B  by execut ing jumps between' a  v a r i e t y  o f  



S i x  of t h e  10 a tomic  p l a n e s  used t o  model t h e  bcc i r o n  [OOl] (310) t i l t  boundary (1 = 5 ,  
8'= 36.87") f o r  computer s i m u l a t i o n .  Only h a l f  of  t h e  atoms i n  each p l a n e  (which c o n t a i n s  f o u r  
co inc idence  s i t c  l a t t i c e  c e l l s )  a r e  shown. A vacancy c r e a t e d  a.t s i t e  B p r e f e r e n t i a l l y  jumps 
among t h e  boundary s i t e s  A ,  B, C ,  D r a t h e r  than  i n t o  t h e  s i t e s  E ,  F ,  G which a r e  f u r t h e r  away 
from t h e  boundary midplane.  The sequence on t h e  l e f t  i r ld i cn tes  a t y p i c a l  vacancy jump p a t h .  The 
arrow i n  t h e  c e n t e r  s h o r ~ s  an ' a tom a t  B jumping i n t o  t h e  i n t e r s t i t i a l  s i t c  I ,  t h u s  c r e a t i n g  a 
boundary i n t e r s t i t i a l  and a boundary vacancy. The sequence on t h e  r i :ght  shows t h e  observed i n t e r -  
change o f  atoms a t  B and t3' v i a  a r i n g  mechanism involvi r ig  t h e  i n t e r s t i t i a l  s i t e  a t  I .  The r a t i o  
of t h e  scale usccl i n  t h e  drawing i s  [ i 3 0 ] :  [310]: [001] = 1: 1:s. . . . 



TABLE I1 

Number of  Vacancy Jumps i n t o  Various Boundary 
S i t e s  (Fig.  1 )  dur ing  Vacancy Di f fus ion  Run 

Involving 195 Jumps a t  1300 K .  

S i t e  I A  B c D E F G 

s i t e s .  E s s e n t i a l l y  a l l  jumps occurred between s i t e s  of  t h e  t y p e s  l abe led  A, B ,  C ,  and D i n  Fig.1.  
(Note t h a t  t h e  A ' ,  B ' ,  C', and D' s i t e s  a r e  equ iva len t  s i t e s  because of  t h e  boundary symmetry.) 
The jumping was t h e r e f o r e  confined almost e n t i r e l y  t o  t h e  c o r e  of  t h e  GB. A t y p i c a l  t r a j e c t o r y  
i s  shown on t h e  l e f t  o f  Fig. 1. The.number of t imes a  vacancy jumped i n t o  a  given type  of s i t e  
dur ing a  run a t  1300 K involving 195 jumps is shown i n  Table 11. Comparison of Table  I 1  wi th  
Table I shows a  c l e a r  c o r r e l a t i o n  between t h e  vacancy binding energy a t  d i f f e r e n t  s i t e s  and t h e  
frequency with  which a  s i t e  received jumps; i . e . ,  t h e  l a r g e r  t h e  binding energy t h e  more f r e -  - 
quen t ly  i t  received jumps. The s i t e s  E ,  F, and G a r e  at  d i s t a n c e s  from t h e  GB midplane where t h e  
binding energy was r e l a t i v e l y  s s ~ a l l ,  and they  t h e r e f o r e  rece ived  very  few jumps. 

( i i )  The vacancy migrat ion took p l a c e  predominantly a long t h e  tilt a x i s  r a t h e r  than  perpen- 
d i c u l a r  t o  i t  (Fig.  1) .  

( i i i )  The e f f e c t i v e  vacancy jump frequency (due t o  a l l  jumps) obeyed t h e  Arrhenius expres -  
s ion :  

-M ' -  -M with Fo = 4.85 x  1013 sec - l ,  and E B . -  0.51 eV. Here, E is t h e  e f f e c t i v e  h i g r a t i o n  energy, and -- B 
t h e  pre-exponent ia l  f a c t o r  can be  w r i t t e n  a s  ?. = z v o  , where; = e f f e c t i v e  coord ina t ion  number, 

. - O - '- . 
12 -: and v i s  an e f f e c t i v e  "attempt frequencyu. I f  z  = 8,  3 = 6.@6 x ,  10 SPC , which i s  of +he 

0 O - 
same magnitude a s  t h e  Debye frequency ( i . e . , ' 7 . 1  x  1012 s e c  l )  a s  might be  expected (12) i f  e f -  

f e c t s  due t o  t h e  entropy o f  migrat idn a r e  n o t  large. '  

( iv )  Atoms on B s i t e s  occas iona l ly  jumped i n t o  i n t e r s t i t i a l  I s i t e s  by a  p rocess  i l l u s t r a t -  
ed i n  t h e  c e n t e r  of F ig .  1 ,which i s  e s s e n t i a l l y  t h e  the rmal ly  a c t i v a t e d  format ion of a  Frenkel  
p a i r .  Inspec t ion  of Table  I  shows t h a t  t h i s  t y p e  of Frenkel p a i r  must have a  cons ide rab ly  l o s e r  
formation energy than any o t h e r  p o s s i b l e  Frenkel  p a i r ,  and t h i s  i s  e v i d e n t l y  t h e  reason f o r  i t s  
occurrence. The vacancy formed i n  t h i s  way o f t e n  d i f f u s e d  away leav ing  t h e  i n t e r s t i t i a l  behind 
a t  I .  Furthermore, t h e  i n t e r s t i t i a l  a t  I remained completely immobile and could only be e l i n i n -  
a t e d  by mutual a n n i h i l a t i o n  with  a  neighboring vacancy. The immobili ty o f  t h e  i n t e r s t i t i a l  a t  I  
i s  r e a d i l y  understood on t h e  b a s i s  of  t h e  r e s u l t s  i n  Table I where it i s  seev  t h a t  t h e  format ion 
energ ies  of t h e  i n t e r s t i t i a l  a t  t h e  o t h e r  i n t e r s t i t i a l  s i t e s  a r e  l a r g e r  by a t  l e a s t  1.26 eV. 
The a c t i v a t i o n  energy f o r  t h e  i n t e r s t i t i a l  t o  migra te  must t h e r e f o r e  be l a r g e r  than  1.26 eV, and 
t h i s  p rocess  was t h e r e f o r e  not  observed. These r e s u l t s  i n d i c a t e  t h e r e f o r e  t h a t  any i n t e r s t i t i a l  
i n  t h e  GR w i l l  he  s t r o n g l y  trapped a t  I  s i t e s  and w i l l  t h e r e f o r e  be rendered immobile and i n c a -  
pab le  of promoting s e l f - d i f f u s i o n .  

(v) The interchange of atoms a t  B and B' by t h e  process  i l l u s t r a t e d  on t h e  r i g h t  s i d e  o f  
Fig .  1 was observed occas iona l ly .  In  t h i s  p rocess  an atom i n  s i t e  B jumped i n t o  s i t e  I  i n  t h e  
ad jacen t  boundary p lane ,  followcd by an atom i n  s i t e : B t  jumping i n t o  t h e  newly c r e a t e d  vacancy i n  

. , t h e  s i t e  B .  The p rocess  was then completed by t h e  i n t e r s t i t i a l  i n  t h e  s i t e  I  jumping i n t o  t h e  
vacancy s i t t i n g  i n  s i t c  B ' .  This  sequence rsas.found t o  occur more f r e q u c n t l y  a s  t h e  temperature  
inc reased .  The proccss  docs not  c o n t r i b u t e  t o  d i f f u s i o n  because t h e  two atoms involved remain 
t rapped i n  t h e  same p a i r  conf igura t ion ,  t h u s  producing no n e t  m a t t e r  t r a n s p o r t  r e l a t i v e  t o  t h e  . 

o t h e r  atoms. 

4. Discussion 

The p rev ious  r e s u l t s ,  taken a l l  t o g e t h e r ,  provide s t rong  evidence f o r  a  vacancy exchange 
mechanism f o r  s e l f - d i f f u s i o n  i n  t h e  p resen t  G B .  We now show t h a t  we can d e r i v e  an approximate 



expression f o r  t he  G B  s e l f -d i f fu s ion  coe f f i c i en t  on t h e  ba s i s  of a  vacancy exchange model using 
t he  vacancy parameters t h a t  we have obtained. Furthermore, t he  expression p red i c t s  d i f f u s i v i t i e s  
which a r e  i n  reasonable agreement with dxperimen'tally determined values.  For a  mechani,sm involv- 
ing t he  exchange of atoms with vacancies i n  t he  G B  core we may wr i t e  (12) t he  s e l f - d i f f u s i v i t y  
a s  : 

where f  = co r r e l a t i on  f a c t o r ,  g  = geometrical f a c t o r ,  G2 = e f f e c t i v e  squared jump d i s t ance ,  - - .. -F 
and N = e f f ec t i ve  equi l ibr ium vacancy concentration. Therefore, by wr i t ing  Nv = Aexp (-EB/kT), ' 

v - - F 
where A = e f f e c t i v e  pre-exponential f a c t o r ,  and EB = e f f e c t i v e  formation energy, we have: 

and 

Consider first t h e  quan t i t y  aB. ' Since t he  equi l ibr ium vacancy population i n  t he  var ious  
G B  s i t e s  i n  t he  core should obey a  Boltzmann d i s t r i b u t i o n  we can take  t h e  concentrat ion a t  each 

-F 
r i t e  as  proport ional  t o  exp (-EB/kT). If we assume t h a t  t he  constant  of p ropo r t i ona l i t y  i s  ' the 

. same fo r  a l l  s i t e s  we can es t imate  t h e  t o t a l  e f f e c t i v e  vacancy-concentration i n  t h e  core ( t o  
within t he  constant .of p ro .pcr t iona l i ty )  by using t he  da t a  in  Table-. I .  The e f f e c t i v e  vacancy fo r -  
mation energy can then be found from the  temperature dependence of t he  t o t a l  concentrat ion.  The 

- F 
r e s u l t  of t h i s  procedure i s  EB = 1.0  eV. Since t he  e f f e c t i v e  migration energy [see Eq. ( I ) ] '  i s  
-bl - 

. EB =..0.51 eV, we obta in  QB = 1.51 eV. 

Consider next the  magnitude of  t h e  . e f fec t ive  pre-exponential f a c t o r ,  6 . The g.eometrical 
Bo 

f ac to r  should be of  order  g - 1/3. S ince .  t he r e  is  a  v a r i e t y  of vacancy jumps which occur i n  
t h r ee  dimensions i n  t he  boundary (i.e.., it does not cons i s t  o f  a  s i ng l c  row of jump s i t e s ) ,  we 
expect t he  co r r e l a t i on  f a c t o r  f  t o  be of order  0.5 (4) .  Also, reasonable values of A and 62 a r e  

i = exp (2 )  (see Ref. 12).  and a2 = [0:85 a0 l2 .  Using thes. values and f o  = 4 . 8 5 ' ~  1013 sec - l ,  
=2 2 -1 

we f i nd  D = 3.66 x 10 crn s e c  , and obtain f i n a l l y :  
Bo 

- 
The value of QB = 1.51 eV i s  s i g n i f i c a n t l y ' l o u e r  than t he  measured value of 2.5 eV f o r  l a t t i c e  

s e l f -d i f fu s ion  i n  bcc i r on  (13); and t h e  pre-exponential f a c t o r ,  3.66 x lo-' cm2 sec - l ,  is  i n  t h e  
range general ly  expccted f o r  t h i s  quant i ty .  The ca lcu la ted  r e s u l t  therefore-pred ic t s  r ap id  G B  
se l f -d i f fus ion  a s  required.  Our conclusion about t he  r e l a t i v e  magnitude of QB agrees with one 
reached e a r l i e r  by brokman (14) on a  more qua l i r a t i ve  bas i s .  

Further  examination shows t h a t  Eq. (6)  p red ic t s  values of DB which a r e  cons i s t en t  with those 
reported in  the l i t e r a t u r e .  Martin and Per ra i l lon  (15) havc recent ly  p lo t t ed  a l l  ava i l ab l e  G B  
se l f -d i f fus ion  da ta  on an Arrllcnius p lo t  using a  rec iproca l  tempcrature s ca l e  normalized by t he  
fac tor  l/Tm where T,, = melting tempcrature [see Fig. lS(b) of Ref. 151. The D B  valucs given by 
Eq. (6) f a l l  within the  range of values appcarlng on t h c  p lo t  but thcy a r e  genera l ly  lowcr than 
the avcragc valucs by about on ordcr  of magnitude. In view o f  a l l  t he  uncertainties which a r e  
involvcd i n  thc cn lcu la t ions  we may therefore  regard t he  valucs of DB prcdictcd by E q .  (6) a s  
q u i t e  s a t i s f ac to ry .  In t h i s  rcspcc t  i t  i s  i n t e r e s t i ng  t o  notc  t h a t  t he  present  G B  i s  a  



.I - . 
-, 
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r e l a t i v e l y  spec i a l  boundary with a high coincidence s i t e  dens i ty  misorientat ion and a s h o r t  wave 
length pe r iod i c i t y  (16). There is some evidence (4) t h a t  t he  G B  s e l f - d i f f u s i v i t y  along such 
boundaries i s  genera l ly  slower than along more general  boundaries.  Since t he  da t a  p l o t t e d  i n  
Fig. 18(b) of Ref. 16 a r e  represen ta t ive  of general  boundaries,  we may specula te  t h a t  . a t  l e a s t  
p a r t  of t he  above d i f fe rence  may be explained on t h i s  ba s i s .  We a l s o  note  t h a t  t he  molecular 
dynamics s imulat ion showed t h a t  t he  vacancy GB,migration was more rap id ,a long  t he  tilt a x i s  than : 

perpendicular t o  i t  ( 5 ) .  According t o  t he  vacancy exchange mechanism the  G B  s e l f - d i f f u s i o n  r a t e s  
should exhib i t  t he  same behavior, and t h i s  i s  confirmed experinlentally (4) .  

In  cont ras t  t o  t he  behavior of vacancies i n  t h e  G B  core ,  i n t e r s t i t i a l s  appear t o  be r e l a -  
t i v e l y  immobile and would thcreforc  not beexpec t ed  t o  con t r i bu t e  s i g n i f i c a n t l y  t o  G B  s e l f -  
d i f fus ion  r a t e s .  The dynamics simulation (5) a l ready  demonstrated t he  immobility of t h e  i n t e r -  . . .. 

s t i t i a l  a t  t he  s i t e  1 (Fig. 1 ) .  Alms ?,he r e s u l t s  i n   able I i?dic?.c,e :that EF = 1.26 eV and . . , - .  _ . . - 
$; = 1.06, and, therefore ,  QB = 2.32 eV. This  r e s u l t  suggests  t h a t  G B  se l f -d i f fus ion  by an i n -  , . . . .. 

t e r s t i t i a l  mechanism i s  probably slower than even l a t t i c e  s e l f -d i f fu s ion .  . . . .  

Fina l ly ,  we mention t h a t  it would be i n t e r e s t i n g  a t  t h i s  po in t  t o  car ry  out f u r t h e r  ca lcu la -  
t i o n s  of the  present  t.ype f o r  boundaries of d i f f e r e n t  kinds.  As has already been mentioned, t h e  
present  C=5 t i l t  boundary i s  a r a t h e r  spec ia l  boundary i n  which t he  vacancies remain q u i t e  recog- 
n izab le  a s  empty s i t e s .  We have already shown (8,9) t h a t  i n  o the r  G B s  t he  r e l axa t i on  around ' 

vacancies may be g r ea t e r  causing them t o  d i s s o c i a t e  o r  "sp l i t " .  The G B  migration of such relaxed . 

vacancies may be even e a s i e r  than t h a t  of t he  presen t  vacancies  leading t o  even f a s t e r  r e l a t i v e  
G B  s e l f -d i f fu s ion  r a t e s .  Further  ca l cu l a t i ons  i nves t i ga t i ng  t h i s  p o s s i b i 1 i t y . a r e  planned. 
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