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PARALLEL DOMAIN DECOMPOSITION AND

THE SOLUTION OF NONLINEAR SYSTEMS OF EQUATIONS

WILLIAM D. GROPPt AND DAVID E. KEYESt

A_bstract. Many linear systems arise a.s subproblems in the solution of nonlinear equations, either as part c_f a

simple fixed-point or a Newton's method iteration. Tiffs paper considers the use of domain decomposition techniques

for the solution of these linear problems in the context of solving a multlcomponent system of nonlinear equations

on two types of parallel processors. One of the computations is drawn from fluid d)-namics and includes locally

refined grids. Such problems require great computational resources, and domain decomposition seems to offer a way

to efficiently solve these problems on computers with significant parallelism. The domain decomposition approach

used is as in Gropp and Keyes, modified to acbfieve better parallelism and to reduce the computational work.
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. . 1. Introduction. The work described in this contribution takes the domain decomposed
Krylov method described in [9, 10] and extends lt to systems of equations arising from tile so-
lution of nonlinear equations. Since the problems of interest are not self-adjoint, the conjugate
gradient method does not apply, and there is little rea.son to use a symmetric preconditioner. 'rho
domain decomposition approach used here is a block triangularly preconditioned GMRES used by
the authors in previous studies, requiring first a solve on a coarse grid of cross-points, then a set of
independent interface solves, then a set of independent subdomain solves. While it is not optin_al, it
has in practice represented an efficient compromise of less work and data exchange per iteration for
more iterations. Asymptotically in the reciprocal of the mesh parameter, the "optimal" methods,
such as those described in [1] and [3], are to be preferred. For practical problem sizes, simpler
approaches may be more efficient. In particular, the optimal methods described in [1, 3] involve two
subdomain solves per subdomain for each application of the preconditioner; this requirement makes
the "constant" multiplier in tile time complexity of this method roughly twice as large as that of a
method using a single subdomain solve. For the additive methods described in [,5], the additional
overlap required of the subdomains also increases the constant multiplier in the asymptotic work
estimate. For many problems with modest accuracy requirements such as linear subiterations in a

nonlinear problem, these inveigh against their optimal convergence rates. It is this problem domain
that we consider in this paper.

We also discuss the prospects for the use of extensive parallelism (more than 100 processors) in
domain decomposition, and we provide some experimental and analytic estimates of the sources of
inetliciency in parallel domain decornposition algorithms on this scale. In addition, we consider an
approximate cross-point solver as a method for improving tlm parallel efticiency of these algorithms.

Previous Work. ,4. number of authors have considered the application of domain decompo-
sition methods to parallel computers (e.g., [6, 7, 8, 11, 13]). Others have considered the solution
of nonlinear equations by these methods, focusing either on problems generated by a Newton-like
solution algorithm (e.g., [12]) or generated by a time-splitting linearization (e.g., [41).

A Brief Description of the Method. A typical division of a domain into subdomains (or
tiles) is shown in Figure I. The matrix corresponding to a five-point discretization of a PDE over
this domain looks like

At AIB 0 )

A = AB1 AB ABC ,
0 Ac_ Ac

where
At = block diagonal tile interiors

AtB = coupling to tile interiors from interfaces

AB1 = coupling to interfaces from tile interiors

AB = block diagonal interfaces

ABc = coupling to interfaces from cross-points

Ac13 = coupling to cross-points from interfaces

Ac = diagonal cross-points

As our preconditioner, we take a block triangular approximation to A:

B = 0 An A_c ,
0 0 Ac

where, except for fie, the "tildes" represent approximations (so -At is an approximation to At,
such as a fast Poisson solver in a variable coefficient diffusion problem, or possibly an incomplete

factorization). Note that At is block diagonal, so its inverse is a highly parallelizable operation.
Likewise, AB will typically be block diagonal, with block sizes equal to the number of interior degrees
of freedom along each interface, llowever, Ac is a coarse grid discretization of the original operator
and thus lacks the simplicity of Ac. For it, we employ a direct banded elimination routine (a sparse
elirrdnation or an iterative procedure could be used as weil). Note that only one set of subdomain
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Figure 1: A sample decomposition of a domain. C denotes a
cross-point; lines are tile-tile boundaries.

solves per iteration is needed to apply B -1. As an aside pertaining to efficient implementation, we
note that if ii.y = At and Atu = Alu, then the G_IRES orthogonalization steps can be computed
at a lower cost, since, as is readily verilied, the rows of AB -1 corresponding to the interiors of the
subdomains form an identity matrix.

In this paper, we solve systems of equations using the natural generalization of the scalar method
described in [9]. This method relies on the form of interface solver. Of the methods considered in [9],
the "tangential" preconditioner has an obvious generalization t,o systems of equations; we simply
drop the normal derivatives, and solve the coupled system of equations along the interfaces.

2. Solving the Nonlinear Equations. The nonlinear equations are represented either as

= 0

or as the special case

A(u)u- b -- 0.

In either case, the linear equations are solved by using GMRES preconditioned with the domain-
decomposed preconditioner described above, with the outer loop (tile nonlinear iteration) being
either fixed point (A(un)un+ 1 = b) or Newton (u"+ 1 = u n - F'(un).P(un)).

In our experiments, the Jacobian for the Newton iteration is computed by analytically differen-
tiating F (dropping high-order terms) and discretizing the result, ratl',er than forming the Jacobian
from differences of F.

Many optimizations and modifications may be applied; some are discussed in Brown and Sand

[2]. While any production code should incorporate such refinements, for tile purposes of this paper
it is enough to implement the simplest version of these methods. Any improvements will likely not
involve any new kind of work, only different (and more efficient, one hopes) application of tile same
kind of work. Thus, the parallel efficiencies of these methods will not be significantly affected by
improvements to the algorithm.

lt is important to note that we cannot solve only the linear part in parallel. Not only does
Amdahl's law arise, but the cost of collecting and distributing the linear problema is high.

Sample nonlinear problems• We consider two classic nonlinear problems. The first is the
Bratu problem

-V2u + ce'* = 0 (1)

on the unit square with homogeneous Dirichlet boundary conditions. The second is the streamfunc-
tion/vorticity formulation from computational tluid dynamics"

V'-¢ + w =0

-R---; ' Ox . V_o = O.

Tile problem domain is tile step shown in Figure 2. The boundary conditions are ¢ constant along

the walls and w = -o,_:_°_¢ along the walls, ¢ = y2 _ ½F_ and ¢o= 2(y - 1) along the in-tlow boundary,

and N;°"= 0 and °-LC-ona= 0 on the out-flow edge.
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Figure 2: Domain for problem ('2.)

Table 1: Times (in seconds) and speedups for Problem 8 oil differ-
ent numbers of processors, showing the detrimental effects of the

cross-point solves. Note also that the smallest cross-point system
was not the best in terms of overall time, but was the best in terms
of parallel speedup.

Factor Solve Total

Mesh p Time [ Rel. Sp. Time Rel. Sp, Time I Rel. Sp.
48 tiles 4 11.61 54.91 66..52

each 8 5.9't 1.95 28.61 1.92 34.55 1.93
16 x 16 16 3.13 1.90 15.30 1.87 18.43 1.87

192 tiles 8 2.28 16.95 19.23
each 16 1.71 1.33 9.91 1.71 11.62 1.65
8 × 8 32 1.42 1.20 6.37 1.56 7.79 1.49

64 1.28 1.11 4.67 1.36 5.95 1.31
768 tiles 16 15.79 19.92 35.71

each 32 15.73 1.00 14.62 1.36 30.35 1.18
4 x 4 64 15,70 1.00 11.83 1.24 27.53 i.i0

Parallel Computing Issues. Our previous results [10] showed that the inefficiency in a par-
allel domain decomposition program comes from three main sources: the cross-point solve, the
global dot products used in the GMRES algorithm, and the neighbor communication used in the
matrix-vector multiplications and the preconditioner solves.

For modest to large numbers of processors, the first of these, the cross-point solve, is the
dominant cause of loss of parallel efficiency [8].

Table 1 shows the results from different numbers of subdomains for a diffusion probleln on an
L-shaped l:egion (Problem 8 in Table 4) on an Intel iPSC/2-SX. This machine has 4 rnegabytes of
memory per node and roughly 0.5 megaflops per node of computing power. Ali computations were
done in double precision. These results show that, while the best parallel speedups are achieved for
the smallest numbers of tiles, the best elapsed time occurs when the size of the cross-point system
and the size. of an individual tile are comparable. Basically, a smaller number of tiles means that each
individual 1;ile is larger, and hence the interior solve on that tile is more expensive. This reduces

the fraction_ of time that is spent coordinating the paCallel computation, and thus gives a higher
speedup. These effects may be modeled; more details are given found in [8]. These results confirm
that we will need to manage a relatively large cross-point system if we are to get the best (;lapsed
time for a computa. ;on.

Parallelizability of Nonlinear Solw_.s. The outer loop of the nonlinear solve, whether it is
a simple fixed-point iteration or a sophisticated Newton-like method, is as parallelizable as the inner

(linear) solves. In particular, the outer nonlinear solve involves three steps (besides the inner solve):
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Table 2: Results from Encore 320 for tile problems in (1) and (2).
The "Bratu" results are for a Newton iteration and tile "Step"
results are for a fixed-point iteration, t is the number of tiles per
unit length, and m is the number nf subintervals along a tile side.

.Problena t m p Total Speedup Nonlinear Speedup
tinac time

Bratu 8 5 1 51.4 7.2
2 26.5 1.9 3.7 1.9
4 14.4 3.6 2 0 3.6
8 8.3 6.2 1.2 6.0

,,

Bratu 16 5 1 726 31.3
2 373 1.9 16.4 1.9
4 197 3.7 8.6 3.6
8 109 6.7 5.0 6.3

,,,

Bratu 5 16 1 142 106
2 7,t 1.9 55.8 1.9
4 _1 3.5 31.1 3.4
8 21 6.8 17.5 6.1

Step ' 1 5 1 4378 225 ....
2 2247 1.95 115 1.96
4 1202 3.6 61 3.7
8 699 G.3 38 5.9

• computation of residual vector (local communication),

• recomputation of coefficients for the problem and the preconditioner (all local, except for cross-
point), and

• convergence test (global dot product).

No term here dominates the costs of GMRES solves. In particular, the preprocessing cost for the
cross-point solve (when done by a direct method) involves the same sort of global communication as
is involved in the solution phase. Note that the ratio of computation to communication is different
in these two phases, but since the granularity of this subproblem is small, the overall efficiencies are
similar.

Results of Parallel Computation of the Nonlinear Problems. As T_Lble 2 slows, the
parallel speedups of the part of the computation related to the nonlinear solves (compu_ ation of
the residual, construction of the preconditioners, and the convergence tests) are nearly idm tical to
those of the inner linear solves (note that in most cases the nonlinear solve is a small parl of the
computation, and the linear solves makes up most of the effort). A similar result was obtained with
a distributed-memory version of our code on an Intel iPSC/2.

For the problems shown in Table 2, the coefficient c of the Bratu problem was 1, the Reynolds
number for the "Step" problem was 100, and the numbers.of unknowns were 1681, 6561, 6561, and
1532, respectively.

Parallelizing the Cross-Point Solver. Since the cross-point solver is a bottleneck in a par-
allel domain decomposition code, we discuss how it may be made more efficient. The obvious way
to reduce the cost of the cross-point solver, by reducing the number of subdomains, is generally
untenable. This limits the number of subdomains and hence, if subdomains are not further subdi-

vided among processors, limits the amount of parallelism. Our target is a parallel computer with
hundreds to thousands of processors, so this is not an option. Further, if the subdomains are of

different (computational) sizes, resulting, for example, from differing amounts of refinement, then
in order to balance the work load, some processors will need to process more than one subdomain.

Thus, on the grounds of parallel load balancing alone, apart from the significant benefit in tern Lsof
the convergence rate, the cross-point system will be relatively large.

There are several possibilities to consider for faster and more parallel cross-point solvers. These

represent different compromises between computation, cominunication, and quality of the precondi-
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tioner. Some choices are

1. sparse, direct (less computation, more communication);

2. iterative (less computation and communication for a loose convergence tolerance); and

3. concurrent solution of the cross-point system.

We will consider the second of these. The third is inherent in the function space decomposition of
the additive Schwarz method [5], and is also advocated in [3].

Complexity Estimates. As two limiting cases, we consider a banded solve for the cross-point

system (an expensive procedure in both computation and communication time) and a wavefront-
ordered Gauss-Seidel-like iterative method (very cheap in both tern_s). Of course, the banded solve
gives the exact solution to the cross-point systeln, and the iterative method only an approximate
value. The questions are: (1) Is the iterative solver, at the relatively fine gram of the cross-point
system, significantly cheaper per iteration than the banded solve? and (2) What penalt3 do we pay
in terms of iteratioa count for using the iterative solver? The first question may be answered by
looking at the time omplexities of the parallel versions of these two approaches. We also consider
two other limiting cases: computing on one processor (trading communication for computation) and
computing on ali pr,_cessors.

Our notation is

.f = time for a floating point operation

s = time for an I/O startup or synchronization

Jb = GMRES iterations for the banded solve preconditioner

Ia, = GMRES iterations for the Gauss-Seidel (GS) solve preconditioner

p = nun;ber of processors.

We consider an n x n mesh of tiles. Ilere, "startups" refers to message startup times on a distributed-
memory computer and synchronizations to barriers on a shared-memory computer. For simplicity,
we are neglecting the size of the data transfer in the cost of communication.

If all processors are involved in the computation, then the banded solve takes about

n4 f /p + 2n2s + Ii(2na f /p + 2n2s)

time, and the wavefront GS takes

Ig.('M5n2f/p + 4(M + n)s)

for M inner iterations of the GS method. Note that in the case of the banded solver, much of the
time is spent in computing the factors (the term in n4).

A feature common to both of these approaches is that there is a fair amount of communication
involved. If the cost of communication is high enough, it can actually bemore efficient to collect
the data on a single processor (or a smaller number of processors) and compute it there. In fact,
some communication can be saved by having each processor do the same comp_tation after ali have
exchanged data. In this ease, the banded solve takes roughly

n4f + lb(2naf + slogp),

and the wavefront GS takes

Ig, (M5n2f + s logp).

Note that in this case, M < n for the GS solver to be better than the banded solver (assuming that

Ib _ Ig, > n, so that the setup or factorization cost is subdominant).
Using these formulas, we can m_swer some questions about the relative effectiveness of these

approaches. First, we will compare the distributed to the local approaches.
For distributed version of GS to be faster than local GS, we must have.

< 4(M + n) - logp 5n2 1 - ,
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Table 3: Timings of wavefront GS on an iPSC/2. Tile mesh is
71 X rr.

p n Time Speedup
1 32 3,8
4 2.3 1.7
16 1.6 2.4
64 0.92 4.1
1 64 30.2
4 14.2 2.1
16 8.8 3.4
64 5.4 5.6

Table 4: The test problern suite (from [9]). Values of f are chosen
to match the given solution. Tile values of c for Problems 8-10
are c = 0, -10, and 10, respectively. Boundary conditions are
Dirichlet unless otherwise noted.

Test Equation Boundary Solution

4 -V2u + c a--_= f u::(z 1) - 0 u -- sin(,'rx) sin(_@)Oy

5 _.(e_v-_.) + u = e_v sin(rz) sin(Try)

u ._f1+xTy.,

6 °_u + _ ((1 + y2)ou) au--0_2 "0"_ - u -._ = g u = 0.135(eX+V+

0x°u (1 + y2)_ = f (x 2 - z) 2 log(1 + V_-))......

=o = sin( (0-8-10 -V2u + 7_-7

_=_/(_-_)_+(_=i)_
a=ar g((_.- 1)+ i(v - 1)),

o<a<2r
,.

where we have assumed a hypercube or other communication network with log p time to distribute

data from all processors to ali processors. For banded version (linear pipe with log scatter) to be
faster than local banded, we must have

s 1 2n a 1 - _ n 1 - .
"] < 2n2 -1ogp

Finally, if we take the fastest of these two for the size of p and n that characterize our current
problem sets, we see that for distributed GS to be faster than local banded,

_s < 1 ,_ (2n 5M)f 4(3'/+ n) - lo_,v n_ V "

Here we have assumed that Ia. = Ib, since we expect Ias > Ib, and the assumption of equality gives
us a bound (if s/f exceeds the right-hand side instead, then the local banded will be better).

Table 3 shows the observed speedups for the wavefront ordered algorithm running on the indi-

cated number of processors. The subdomains were assigned to processors in such a way as to reduce
amount of communication. These timings are samples; they could be tuned to produce slightly

higher speedups. The message here is that a factor of 2 or even 4 improvement in the times will still
yield a relatively slow solver (at 64 processors, an efficiency of only 24-30%).

Experimental Iteration Counts. In interpreting the complexity analysis, we assumed that

Ias = lb. In fact, we expect the iteration counts for the approximate cross-point solver to be
larger than those of the direct solver. Since the question of "how much larger" is difficult to attack
analytically, we performed a series of numerical experiments, using the problem suite introduced in

[9]. The problems that we used in our experiments are shown in Table 4.
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Table 5: Iteration count results for problem suite in 'Fable 4. Each

subdomain is 4 X 4 in size. The number of subdomains (tiles):along
a side of the domain is given by the column labeled t. GMRES
was not restarted in these examples. 'these ti,nes are for runs on
-_.,ingle SPARCStation 1.

Problem t Direct GS

I.terations Time Iterations I Time
4 16 19' 3,t 3'1 '66
4 32 19 160 45 509
5 16 22 4'2 36 83
5 32 23 203 -- --
6 16 17 30 52 151
6 32 15 124 ....
8 16 12 14 18 23
8 32 iI 65 28 180
9 16 16 21 19 25
9 32 15 88 24 142
I0 16 13 16 13 15
i0 32 i0 58 14 67

Table 5 shows that Lhe simple GS iteration is rarely advantageous. In even the simplest problem
(Problem 4), the number of GMRES iterations increased substantially, dramatically increasing the
solution times. For Problems 5 and 6, the GMI_ES iterations were making so little progress that
they had not converged after 500 iterations. In contrast, for Problem 10, the GS iteration was
actually comparable to the direct solution in terms of iteration count and overall time. These results
suggest that a suitable approximate cross-point system solver may be appropriate for problems with
special structure. Combing these results with the complexity estimates above, we can say that for
the general case, any approximate cross-point solver must be more accurate than the GS method
but must be nearly as inexpensive. A fast multigrid solver might be employed.

3. Conclusions. Our results show that cross-point solution remains a problem for massively
parallel domain decomposition algorithms. Computationally, the relatively small size of the cross-
point problem makes it difficult to develop an efficient parallel algorithm, since the amount of floating
point work relative to the amount of communication is small. We have showed experimentally that a
simple approximate cross-point solver is rarely suitable; we leave it as a challange to determine how
accurate a solution of the cross-point system is must ensure the optimality properties of the various
flavors of domain decomposition methods. The fully additive methods may provide a way around
this difficulty, as the cross-point problem may be computed in parallel with the interior .solves.

We have also shown that domain decomposition is an effective preconditioner for the parallel
solution of problems arising from (some) nonlinear equations, in the case where a relatively small

number (less than 100) of processors is used. In particular, the cost of the steps associated with
the nonlinear solve, whether it be a simple fixed point or Newton method, parallelizes at least as
well as steps in the domain decomposition algorithm for the inner linear problem. The sequence of
linear problems that we encountered in our model problems were ali efficiently solved by our domain
decomposition approach.
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