

WHC-EP--0231-3

DE91 002446

# **Hanford Surplus Facilities Program Plan**

## **Fiscal Year 1991**

**M. C. Hughes  
R. K. Wahlen  
R. A. Winship**

**Date Published  
September 1990**

**Prepared for the U.S. Department of Energy  
Assistant Secretary for Defense Programs**



**Westinghouse  
Hanford Company** P.O. Box 1970  
Richland, Washington 99352

Hanford Operations and Engineering Contractor for the  
U.S. Department of Energy under Contract DE-AC06-87RL10930

**Approved for Public Release**

**MASTER**

**DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED**

HANFORD SURPLUS FACILITIES PROGRAM PLAN  
FISCAL YEAR 1991

M. C. Hughes  
R. K. Wahlen  
R. A. Winship

**ABSTRACT**

*The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the U.S. Department of Energy-Richland Operations Office, Environmental Restoration Division, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition.*

## EXECUTIVE SUMMARY

The Hanford Surplus Facilities Program (HSFP) is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The number of facilities in the program will vary from year to year in accordance with the demolition of some structures and the addition of other facilities that have been declared excess and are transferred to this program during the last year. There are 129\* facilities listed in the current inventory. These facilities have been retired from programmatic use and, with the exception of a number of ancillary buildings, are contaminated with radioactive material. The majority of these facilities are located in the 100 and 200 Areas and include shutdown production reactors, chemical separations and processing plants, waste-handling facilities, and various support structures. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition, and development of a plan for ultimate disposition. This document outlines the plan for managing these facilities to the end of disposition.

The surveillance and maintenance cost for these facilities is approximately \$5 million annually in FY 1991 values. This cost will vary, decreasing when facilities are decommissioned and increasing substantially if they are placed in a long-term protective storage mode.

The decommissioning costs of this program will total approximately \$800 million and are projected over a period of 30 years beginning in FY 1989.

---

\*One facility was completed during fiscal year (FY) 1990, and 32 facilities were added with 13 others transferred to another program.

This cost can vary significantly depending on the decommissioning alternative (e.g., in situ decommissioning, total dismantlement), regulatory requirements, and actual budget received per fiscal year.

The surveillance, maintenance, and decommissioning work will be accomplished by employees of the Westinghouse Hanford Company (Westinghouse Hanford) Hanford Restoration Operations (HRO), except in cases requiring specialists, such as divers or explosives experts. When specialties are required, the services will be contracted out under the direction of the HSFP.

The Westinghouse Hanford Management Control System is used for financial planning and scheduling work. Budget guidance is received annually from the U.S. Department of Energy (DOE), Office of Environmental Restoration and Waste Management. Projects and associated budgets and schedules are established based on this guidance. Project status is monitored and reported monthly. Control procedures have been established for routine surveillance and services. Controls, which ensure compliance with regulations, are incorporated into the individual decommissioning project plans.

## CONTENTS

|         |                                                                                       |    |
|---------|---------------------------------------------------------------------------------------|----|
| 1.0     | INTRODUCTION . . . . .                                                                | 1  |
| 1.1     | PURPOSE . . . . .                                                                     | 1  |
| 1.2     | SCOPE . . . . .                                                                       | 1  |
| 1.3     | MAJOR SURPLUS FACILITIES MANAGEMENT OBJECTIVES . . . . .                              | 2  |
| 2.0     | ORGANIZATIONAL STRUCTURE AND RESPONSIBILITIES . . . . .                               | 3  |
| 2.1     | ORGANIZATION STRUCTURE . . . . .                                                      | 3  |
| 2.2     | RESPONSIBILITIES . . . . .                                                            | 3  |
| 2.2.1   | U.S. Department of Energy-Richland Operations Office . . . . .                        | 3  |
| 2.2.2   | Westinghouse Hanford Company Environmental Division . . . . .                         | 3  |
| 2.2.3   | Environmental Restoration Programs . . . . .                                          | 3  |
| 2.2.4   | Hanford Site Surplus Facilities Programs . . . . .                                    | 3  |
| 2.2.5   | Defense Waste Planning, Integration, and Budgets . . . . .                            | 5  |
| 2.2.6   | Hanford Restoration Operations . . . . .                                              | 5  |
| 3.0     | BUDGETING AND PLANNING . . . . .                                                      | 7  |
| 4.0     | SURPLUS FACILITIES MANAGEMENT PROGRAM ASSUMPTIONS, CRITERIA, AND PRIORITIES . . . . . | 9  |
| 4.1     | ASSUMPTIONS . . . . .                                                                 | 9  |
| 4.2     | CRITERIA . . . . .                                                                    | 10 |
| 4.2.1   | Criteria Used in Assessing Decommissioning Alternatives . . . . .                     | 10 |
| 4.2.2   | Environmental Protection Criteria . . . . .                                           | 10 |
| 4.2.3   | Safety Criteria . . . . .                                                             | 11 |
| 4.3     | PROJECT PRIORITIES . . . . .                                                          | 12 |
| 4.3.1   | Prioritization Criteria . . . . .                                                     | 12 |
| 4.3.2   | Prioritization of Projects . . . . .                                                  | 13 |
| 5.0     | WORK ELEMENTS . . . . .                                                               | 15 |
| 5.1     | GENERAL . . . . .                                                                     | 15 |
| 5.1.1   | Program Management and Administration . . . . .                                       | 15 |
| 5.1.2   | Surveillance and Maintenance . . . . .                                                | 15 |
| 5.1.3   | Decommissioning Projects . . . . .                                                    | 15 |
| 5.1.4   | Underground Storage Tanks . . . . .                                                   | 15 |
| 5.1.5   | Asbestos Abatement . . . . .                                                          | 15 |
| 5.1.6   | Reactor Support Facilities . . . . .                                                  | 16 |
| 6.0     | CONTROL . . . . .                                                                     | 17 |
| 6.1     | INDUSTRIAL AND RADIOLOGICAL SAFETY . . . . .                                          | 17 |
| 6.1.1   | Industrial Safety . . . . .                                                           | 17 |
| 6.1.2   | Radiological Safety . . . . .                                                         | 17 |
| 6.1.2.1 | Management of Waste Generated during Decontamination and Decommissioning . . . . .    | 21 |
| 6.1.2.2 | Waste Left at the Site (Decommissioned In Situ) . . . . .                             | 21 |
| 6.1.2.3 | Allowable Residual Contamination Levels . . . . .                                     | 21 |
| 6.1.2.4 | Application of the Allowable Residual Contamination Limits Method . . . . .           | 22 |
| 6.1.2.5 | Release of Materials for Unrestricted Offsite Use . . . . .                           | 23 |
| 6.1.2.6 | Disposition of Contaminated Equipment . . . . .                                       | 23 |

## CONTENTS (continued)

|       |                                                                              |    |
|-------|------------------------------------------------------------------------------|----|
| 6.2   | DISPOSITION OF NONRADIOACTIVE, HAZARDOUS MATERIAL . . . . .                  | 25 |
| 6.3   | QUALITY ASSURANCE . . . . .                                                  | 25 |
| 6.4   | PROJECT MANAGEMENT AND CONTROL . . . . .                                     | 25 |
| 6.4.1 | Cost and Schedule Performance Monitoring . . . . .                           | 25 |
| 6.5   | REGULATORY REQUIREMENTS . . . . .                                            | 27 |
| 6.6   | FACILITY ACCEPTANCE AND TRANSFER . . . . .                                   | 27 |
| 6.6.1 | Facility Transfer and Acceptance Requirements . . . . .                      | 27 |
| 6.6.2 | Facility Transfer into the Program . . . . .                                 | 28 |
| 6.6.3 | Facility Transfer out of the Program . . . . .                               | 28 |
| 6.6.4 | Identification and Description of Surplus Facilities Questionnaire . . . . . | 29 |
| 6.6.5 | Property Management . . . . .                                                | 29 |
| 7.0   | DOCUMENTATION AND APPROVALS . . . . .                                        | 31 |
| 7.1   | SURVEILLANCE AND MAINTENANCE GUIDELINES . . . . .                            | 31 |
| 7.2   | DECOMMISSIONING PROJECT WORK . . . . .                                       | 31 |
| 7.3   | LISTINGS OF HANFORD SITE FACILITIES . . . . .                                | 31 |
| 8.0   | REFERENCES . . . . .                                                         | 33 |

## APPENDIXES:

|    |                                               |     |
|----|-----------------------------------------------|-----|
| A. | WORK ELEMENTS . . . . .                       | A-1 |
| B. | AREA SITE MAPS . . . . .                      | B-1 |
| C. | LONG-RANGE COST/SCHEDULE PROJECTION . . . . . | C-1 |

**LIST OF FIGURES**

|                                                         |   |
|---------------------------------------------------------|---|
| 1 Organization Structure . . . . .                      | 4 |
| 2 Rollup Process for Developing Cost Accounts . . . . . | 8 |

**LIST OF TABLES**

|                                                                                                    |    |
|----------------------------------------------------------------------------------------------------|----|
| 1 Regulatory Requirements . . . . .                                                                | 18 |
| 2 Release Levels and Priorities for Decommissioned Facilities<br>and Land Areas . . . . .          | 20 |
| 3 Acceptable Surface Contamination Levels for Materials Removed<br>from the Site . . . . .         | 24 |
| 4 Nonradioactive, Hazardous Materials Present in the<br>Hanford Site Shutdown Facilities . . . . . | 26 |

## LIST OF TERMS

|                         |                                                                       |
|-------------------------|-----------------------------------------------------------------------|
| ACWP                    | actual cost of work performed                                         |
| ADM                     | action description memorandum                                         |
| ADS                     | activity data sheets                                                  |
| ALARA                   | as low as reasonably achievable                                       |
| ARCL                    | allowable residual contamination limits                               |
| BCWP                    | budget cost of work performed                                         |
| BCWS                    | budget cost of work scheduled                                         |
| CAA                     | cost account authorizations                                           |
| CAM                     | cost account manager                                                  |
| CAP                     | cost account plans                                                    |
| CERCLA                  | Comprehensive Environmental Response, Compensation, and Liability Act |
| CV                      | cost variance                                                         |
| D&D                     | decontamination and decommissioning                                   |
| DFDPO                   | Defense Facilities Decommissioning Programs Office                    |
| DOE                     | U.S. Department of Energy                                             |
| DOE-RL                  | U.S. Department of Energy-Richland Operations Office                  |
| DOT                     | U.S. Department of Transportation                                     |
| EA                      | environmental assessment                                              |
| EAC                     | estimate at completion                                                |
| Ecology                 | Washington State Department of Ecology                                |
| EIS                     | environmental impact statement                                        |
| ERD                     | Environmental Restoration Division                                    |
| FDS                     | Financial Data System                                                 |
| FY                      | fiscal year                                                           |
| HRO                     | Hanford Restoration Operations                                        |
| HSFP                    | Hanford Surplus Facilities Program                                    |
| NEPA                    | National Environmental Policy Act                                     |
| PBR                     | program business representative                                       |
| PCB                     | polychlorinated biphenyl                                              |
| PNL                     | Pacific Northwest Laboratory                                          |
| QA                      | Quality Assurance                                                     |
| RCRA                    | Resource Conservation and Recovery Act                                |
| RI/FS                   | remedial investigation/feasibility study                              |
| SFMP                    | surplus facilities maintenance program                                |
| SV                      | schedule variance                                                     |
| TEC                     | total estimate cost                                                   |
| TRU                     | transuranic                                                           |
| VAR                     | variance analysis report                                              |
| WAC                     | Washington Administrative Code                                        |
| Westinghouse<br>Hanford | Westinghouse Hanford Company                                          |

**HANFORD SURPLUS FACILITIES PROGRAM PLAN  
FISCAL YEAR 1991**

**1.0 INTRODUCTION**

**1.1 PURPOSE**

Many U.S. Department of Energy (DOE)-owned nuclear facilities at the Hanford Site that were used during the early nuclear energy programs have no current use and have been retired and declared excess. The majority of these facilities have residual radioactive contamination requiring surveillance, maintenance, and ultimate disposition.

This program plan identifies the work breakdown structure, cost, schedule, and priorities for decommissioning the surplus facilities at the Hanford Site. The plan also describes the activities of the Hanford Surplus Facilities Programs (HSFP) of Westinghouse Hanford Company (Westinghouse Hanford) in the management of these facilities to meet the objectives listed in Section 1.3 of this report and to comply with regulations set forth by the DOE directives.

**1.2 SCOPE**

This plan covers 129\* separate retired facilities located on the Hanford Site. These facilities include large concrete and cement block structures used to house chemical separation processes, nuclear production reactors, support systems, storage tanks, and ancillary buildings.

The scope of this document includes the following increments of the overall program:

- Purpose, scope, and objectives
- Program organizational structure and responsibilities
- Budgeting and planning
- Assumptions and criteria
- Work elements
- Control.

---

\*One facility was completed during fiscal year (FY) 1990, and 32 facilities were added with 13 others transferred to another program.

### 1.3 MAJOR SURPLUS FACILITIES MANAGEMENT OBJECTIVES

The following items are the major objectives in the management of the surplus retired facilities.

- Continue maintenance and surveillance of the retired HSFP facilities in a safe, cost-effective, and environmentally sound manner pending decontamination and decommissioning (D&D).
- Provide the planning and engineering necessary to ensure the efficient, cost-effective decommissioning of the HSFP retired facilities.
- Develop short- and long-range budgets and schedules, including identification of projects to complete decommissioning of all contaminated facilities within the program.
- Assess technical and economic feasibility of decommissioning and surveillance alternatives.
- Determine if there are any cost-effective reuses for shutdown facilities.
- Comply with the provisions of both state and federal environmental policies, and develop support documentation.
- Develop innovative, cost-effective decommissioning, surveillance, and asbestos abatement methods that comply with regulatory requirements for environmental and occupational safety.
- Decommission facilities in the safest and most cost-effective manner practicable.
- Maintain worker exposure to as low as reasonably achievable (ALARA) levels through the use of administrative or engineered controls.
- Review and update this program plan annually.

## 2.0 ORGANIZATIONAL STRUCTURE AND RESPONSIBILITIES

### 2.1 ORGANIZATION STRUCTURE

A block diagram of the organization structure is presented in Figure 1.

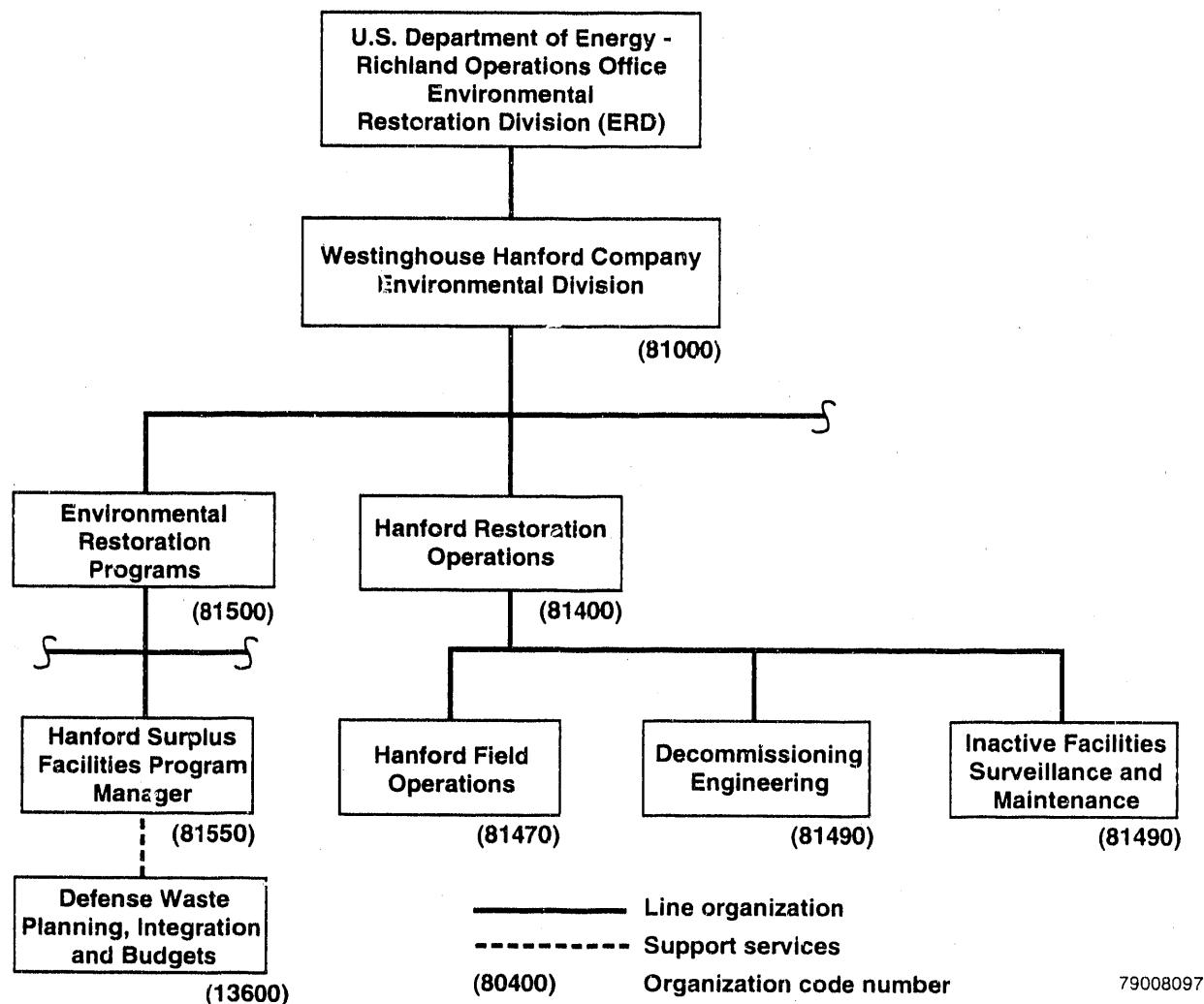
### 2.2 RESPONSIBILITIES

#### 2.2.1 U.S. Department of Energy-Richland Operations Office

The U.S. Department of Energy-Richland Operations Office (DOE-RL) Environmental Restoration Division (ERD) is responsible for the Environmental Restoration Program at Hanford.

#### 2.2.2 Westinghouse Hanford Company Environmental Division

The Westinghouse Hanford Company Environmental Division has overall responsibility for planning, coordinating, and integrating the Westinghouse Hanford environmental activities. This includes the D&D and surplus facilities management.


#### 2.2.3 Environmental Restoration Programs

This program integrates the Environmental Restoration and Remedial Action Program with the Environmental Restoration-Decontamination and Decommissioning Program.

#### 2.2.4 Hanford Site Surplus Facilities Programs

At the Hanford Site, the programmatic responsibility within the Westinghouse Hanford-Environmental Restoration Programs for the surveillance, maintenance, and decommissioning of surplus facilities is the HSFP. The HSFP establishes the cost, schedule, and technical baselines for individual projects, such as the 100 Area shutdown reactor facilities, and provides the project management for completing the work. The work activities relative to projects are completed by various functional organizations through a matrix management system. Performing organizations are assigned work by the Program Office using cost account authorizations (CAA) and cost account plans (CAP). Project status is reported to the Program Office using an earned-value system. The majority of decommissioning field work and engineering at the Hanford Site is performed by Hanford Restoration Operations (HRO). Subcontracted work is managed through the HSFP. (Refer to Figure 1 for the organization structure.)

Figure 1. Organization Structure.



#### **2.2.5 Defense Waste Planning, Integration, and Budgets**

This office provides a full range of business management services for the Waste Management and Environmental Divisions. Some of the direct support services provided to the HSFP include the detailed budget development and the associated monitoring, analysis, and reporting relative to cost and schedule.

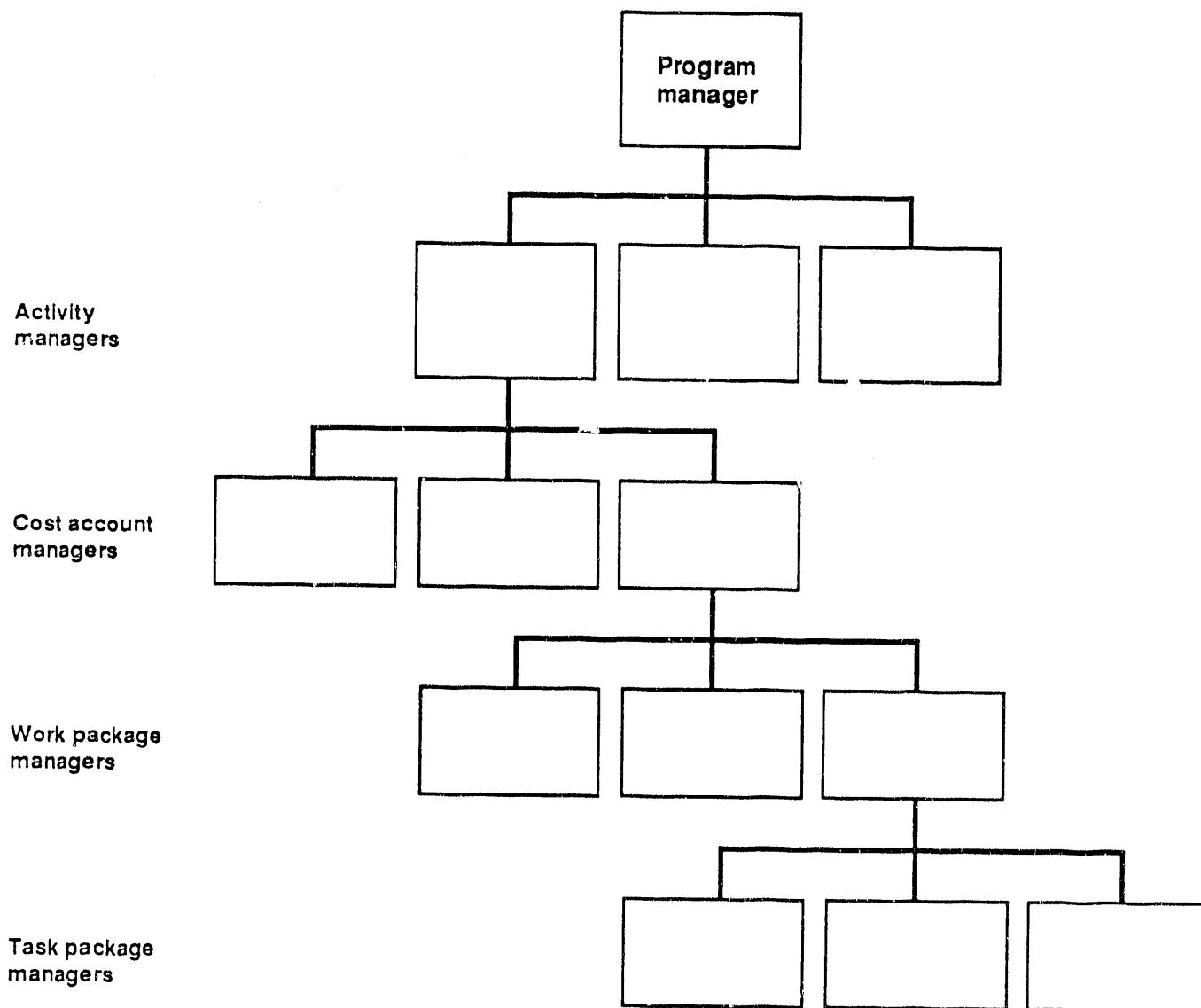
#### **2.2.6 Hanford Restoration Operations**

The HRO performs the necessary surveillance and maintenance, decommissioning and environmental restoration field operations on the Hanford Site, including the engineering activities in support of these operations. The HRO also functions as landlord and plant manager for all contaminated surplus facilities and a selected number of inactive noncontaminated facilities.

### 3.0 BUDGETING AND PLANNING

The HSFP adheres to the guidelines and procedures set forth by the DOE-RL and Westinghouse Hanford with regard to the budgeting and planning of decontamination and decommissioning activities. Defined below are the processes followed by the HSFP in the development and preparation of detailed budgeting, planning, and scheduling of D&D activities.

The HSFP obtains funding for the D&D activities from the DOE-Office of Environmental Restoration and Waste Management. The HSFP receives detailed guidance from the DOE-RL Environmental Restoration Division.


The budgeting cycle (fiscal year +2) begins each fiscal year upon receipt of budget guidance current fiscal year and (fiscal year +1) from DOE. Included in the guidance are funding levels and escalation and inflation assumptions for the outyears. The HSFP also has prepared Activity Data Sheets (ADS) in support of the Office of Environmental Restoration and Waste Management 5-year plan. The ADS provide details by major projects and support all other budget submittals. The ADSs are updated annually as part of the 5-year planning effort.

The HSFP management initiates its detailed planning for the upcoming fiscal year during the first quarter of the current fiscal year. This planning begins by integrating guidance funding levels with long-range plan objectives and project priorities to derive a detailed list of projects for the year. The list is transmitted to HRO for Decommissioning Engineering to develop draft documents that detail the scope for the project. (These documents are known as "scoping" documents.) A project team (headed by the cognizant engineer, including a project coordinator, cost estimator, cost account manager (CAM), scheduler, and program business representative (PBR) prepares the detailed scoping documents. The estimator prepares a project cost estimate based on the scoping document. This estimate is reviewed by the project team and used as a tool for preparing CAAs, the detailed work schedules, and CAPs. This process is targeted for completion by mid-July of each fiscal year.

The CAAs are prepared by the activity manager and approved by the HSFP manager and the PBR. The CAAs are sent to the appropriate CAM to generate the CAPs. The CAMs are responsible for coordination with work package and task package development. The CAAs and CAPs are approved by the HSFP manager before initiating work October 1 of the fiscal year (see Figure 2).

The detailed planning and budgeting begin at the lowest level, the task package, where each task package manager provides the respective work package manager input into the development of the work package. The work package managers follow sequence by providing their input into the development of the cost accounts. This "rollup" process continues to the program level. These data are input into the Financial Data System (FDS) in a development mode until a consensus and approval of workscope and schedules by all responsible management have been achieved. Once the funded activities are approved and their total budget ties with the given funding parameters for the upcoming fiscal year, the planned activities are ready for monitoring and reporting of cost and schedule status information.

Figure 2. Rollup Process for Developing Cost Accounts.



28903017.2

## 4.0 SURPLUS FACILITIES MANAGEMENT PROGRAM ASSUMPTIONS, CRITERIA, AND PRIORITIES

### 4.1 ASSUMPTIONS

The program costs, management, and technical strategies presented in this plan are based on the assumptions listed below. These assumptions are based on experience gained in previous surveillance, maintenance, and decommissioning work; engineering studies; and facility characterization.

The following assumptions are consistent with the guidance provided by the DOE-RL. A change in any of the assumptions would result in the need to reevaluate this plan. The HSFP assumptions are as follows:

- Surveillance and maintenance requirements affecting safety and the environment have the highest priority and will be funded ahead of any other program activity. Additional maintenance activities are supported relative to the potential health risk involved and cost effectiveness.
- Radiological dose rates to personnel and to members of the public will be controlled in accordance with DOE standards for radiation protection and will be reduced to ALARA levels.
- Allowable residual contamination limits (ARCL) for in situ decommissioning will be calculated using the pathway analysis methodology as applicable.
- Future radiological and chemical potential characterization changes were not considered in the current overall decommissioning strategy. Estimated radionuclide inventories are based on the best data available when this plan was prepared.
- Radioactive wastes, transuranic (TRU), and mixed waste not decommissioned in situ will be handled in compliance with applicable DOE orders and with Westinghouse Hanford requirements.
- Material or equipment removed from the site and released for uncontrolled use will meet all radiological DOE requirements applicable at the time of removal.
- The annual budget is based on guidance received from DOE for the specific fiscal year. The outyear's annual budget also is based on DOE guidance and on completing all project work by FY 2017. (See Appendix C for cost and schedule.)
- The reactor facilities and land they occupy can, if necessary, be controlled institutionally for a period of up to 100 years. Institutional control means the controlled use of a decommissioned site or area through regulation by local, county, state, or federal agencies. Because of radiological conditions, institutional control may include access control, minor maintenance and surveillance, and

site-use restrictions. Institutional control starts when a facility is considered to be decommissioned and ends at 100 years, or any time within the 100-year period.

- The site terrain will be restored to as near-natural condition as practicable.
- The program plan work element schedule and cost are based on the one-piece removal alternative for the reactors. The 100 Area ancillaries and the 200 and 300 Area facilities, schedule, and cost are based on in situ decommissioning. A change to other alternatives will require a review and update of these schedules and costs.

## 4.2 CRITERIA

### 4.2.1 Criteria Used in Assessing Decommissioning Alternatives

The following factors are used to assess the relative merits of several candidate decommissioning methods to determine objectively the preferred alternatives:

- Dollar expenditure
- Public and occupational radiation exposure
- Manpower requirements
- Project duration
- Radioactive waste disposal volume
- Potential for reuse of equipment, material, and facility
- Time until site can be restored to a near-natural condition.

Criteria used to evaluate each factor are based on the guidelines presented by the DOE-RL and are consistent with the Westinghouse Hanford commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable.

### 4.2.2 Environmental Protection Criteria

Before starting any decommissioning work at the Hanford Site, Westinghouse Hanford, as a DOE-RL contractor, is required to comply with local, state, and federal environmental protection criteria. Compliance will require a review of all applicable regulations of the National Environmental Policy Act (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and the Washington Administrative Code (WAC) for dangerous waste. The requirements of these regulations are of particular concern because of the range of

environmental issues that may have to be addressed and because of the potential for significant impact on the decommissioning budget and schedule.

These processes will be implemented early in the planning stages to allow Westinghouse Hanford and the DOE-RL sufficient time to complete the necessary documentation. Depending on the proposed project, the DOE may specify one of two levels of NEPA documentation, including an environmental assessment (EA), and/or an environmental impact statement (EIS). The DOE may also prepare an action description memorandum (ADM). The ADM serves as a basis for determination of the required level of NEPA documentation. In some cases, a specific action may be determined to be categorically excluded and therefore would not require an EA or an EIS.

In conjunction with the specified NEPA process, the DOE may direct that a remedial investigation/feasibility study (RI/FS) be conducted to satisfy the requirements of the RCRA and CERCLA and/or those specified by the WAC on Dangerous Waste Regulations (Ecology 1987).

#### 4.2.3 Safety Criteria

Until decommissioning is complete, routine maintenance and surveillance will be conducted on the shutdown facilities to maintain an industrial and radiological safe status and to correct any safety conditions found to be out of standard.

Completing the decommissioning work safely is of primary concern to Westinghouse Hanford. Accordingly, the guidelines presented in DOE Order 5481.1A (DOE-RL 1983) will be followed for all decommissioning work. This Order establishes specific safety criteria for all DOE activities, including decommissioning work, and requires safety analyses be prepared on all projects.

The safety analysis process consists of two parts. The first part is a preliminary safety analysis that becomes a part of the planning documentation for a specific decommissioning activity and determines the level of safety review and approval required to authorize the activity.

The second part of the safety analysis process is documented in the startup readiness review to authorize starting the decommissioning activity. Both the preliminary and final safety analyses will follow the Westinghouse Hanford requirements. The suggested format of both the preliminary and final safety analyses will discuss the following general headings as applicable to decommissioning:

- 1.0 Summary
- 2.0 Introduction
- 3.0 Site Description
- 4.0 Facility and Process Description

- 4.1 Facility Description
- 4.2 Process Description
- 4.3 Waste Management
- 4.4 Safety Features
  
- 5.0 Design Criteria
- 6.0 Safety Analysis
  - 6.1 Safety Analysis Methodology
  - 6.2 Hazards Analysis
  - 6.3 Risk Assessment
  - 6.4 Summary
  
- 7.0 Operational Safety Limits
- 8.0 References
- Appendices (as necessary)

#### **4.2.4 Quality Assurance**

The implementation of quality assurance criteria relative to Decontamination & Decommissioning (D&D) activates is outlined in a quality assurance plan. All line organizations performing D&D work are responsible for ensuring quality work per the established criteria. In addition, the quality assurance organization provides an independent overview to ensure that the overall Hanford Surplus Facilities Program requirements are effectively implemented. The quality assurance organizations also review, assess, and verify the achievement of quality.

### **4.3 PROJECT PRIORITIES**

#### **4.3.1 Prioritization Criteria**

Because of the large number of surplus facilities at the Hanford Site awaiting final disposition and the limited funds available to perform this work, decommissioning priorities must be set. Once priorities are established, detailed costs and schedules that reflect these priorities can be developed with more accuracy.

The former Defense Facilities Decommissioning Programs Office (DFDPO) established criteria to guide participating decommissioning contractors in determining project priorities and ranking (DOE-RL 1982). These criteria continues to be used until a new method of prioritization is developed. The six factors are listed below in order of priority assigned by DFDPO.

1. **Legal and Safety Standards**--The evaluation factor of greatest concern to DFDPO is legal or contractual obligations. Legal requirements generally pertain to the safety of the public, workers, and the environment. Priorities are assigned to ensure that the facilities in the program pose no unacceptable safety risk. Surveillance and maintenance of surplus facilities in a safe

condition (until a decommissioning project can be initiated) is considered to be the highest overall program priority.

2. **Economic Impact of Delayed Versus Immediate Decommissioning--** Consideration must be given to the tradeoff between the cost of continued maintenance and surveillance and the cost of final facility disposition. An economic analysis model that uses a monetary discounting technique to calculate the "present value" cost for surveillance and maintenance, as well as for decommissioning, is used in this determination.
3. **Health Risks of Delayed Decommissioning--**The health risk to onsite personnel and the general public as a result of postponing decommissioning must be considered. A health-risk model is used that ranks each project relative to all other surplus facilities maintenance program (SFMP) projects based on the condition of the facility, the amount and types of radioactive material present in the facility, and the population and meteorological conditions of the area surrounding the facility.
4. **Future Site Plans--**The compatibility of the existing facility with future plans for the site is a factor used to identify facilities that are incompatible with either existing or projected future uses of the site on adjoining sites.
5. **Cost-Effectiveness Program Management--**Cost-effective program management is another evaluation factor that could result in early initiation of a decommissioning project or delay it until a later date. This factor concerns the availability of a developed, efficient organization for the facility project. Where organized programs are already in place at a site, D&D work for facilities on the site will proceed more efficiently and safely than for projects where staff development and training rampup are still required. Cost-effective program management may have important influence on the total cost of this project. High weight is assigned to cost; thus, this factor may have significant bearing on project prioritization.
6. **Other Special Factors--**In some instances, special factors may be unique to a few projects and might contribute to the overall priority ranking of these projects. Special factors such as local government concerns and public opposition or acceptance of proposed D&D work may influence a project priority.

#### 4.3.2 Prioritization of Projects

The criteria presented above were considered in establishing the order in which the facilities are decommissioned. The listing of facilities scheduled for decommissioning presented in Appendix C are in order of priority; however, it should be recognized that changes in the ranking may be necessary to accommodate unforeseen change in the availability of funds, regulatory requirements, and changes to the above factors.

## 5.0 WORK ELEMENTS

### 5.1 GENERAL

The work elements fall in three general categories: (1) program management and administration, (2) surveillance and maintenance, and (3) decommissioning projects. The specific work elements and cost for these categories are identified in Appendix C.

#### 5.1.1 Program Management and Administration

The program management and administration activity includes the HSFP manager, his staff, and various support services. This activity provides the long-range planning, advanced engineering, and program management.

#### 5.1.2 Surveillance and Maintenance

The surveillance and maintenance activity includes the staff dedicated to this activity and the support services received from 100 Area, Site Surveillance Health Physics, and Operations Support Services. Cost for surveillance and maintenance will vary with the level of maintenance required to maintain the confinement of radioactive materials and provide the degree of safety required to comply with the goals and objectives of Westinghouse Hanford and the DOE-RL. For planning purposes, the surveillance and maintenance cost is estimated at \$5 million annually.

#### 5.1.3 Decommissioning Projects

A project comprises work elements that may include several individual facilities. The tables in Appendix A identify the facilities in each project and assign task numbers to the project. The budget requirement for disposing of the current inventory of retired facilities is estimated at approximately \$800 million.

#### 5.1.4 Underground Storage Tanks

The removal of underground tanks regulated by 40 CFR Parts 280 and 281 is being coordinated through the Surplus Facilities Program office. The implementation plan for this work is included in the work packages.

#### 5.1.5 Asbestos Abatement

The asbestos abatement program is being consolidated by the representatives of HSFP office into a site-wide program. The consolidated program plan will be documented under separate cover, and will outline a management plan to be followed in implementing asbestos abatement.

### 5.1.6 Reactor Support Facilities

There are 18 noncontaminated facilities in the 100 and 200 Areas that supported the production facilities. These have been added to the schedule for decommissioning and are listed under A-12 in Appendix A.

## 6.0 CONTROL

### 6.1 INDUSTRIAL AND RADIOLOGICAL SAFETY

In line with Westinghouse Hanford policy to operate and maintain company-managed facilities according to DOE Orders and in compliance with the letter and spirit of other applicable federal, state, and local regulations, Table 1 has been prepared and shows the orders critical to control the items listed below.

#### 6.1.1 Industrial Safety

Transfer of new facilities to the status of "retired" is accepted on completion of a Facilities Transfer form. Before a facility is accepted, it is inspected and any deviation from conditions noted are resolved. Once the facility has been accepted, it is placed on the surveillance and maintenance schedule to receive inspections, surveys, and maintenance as required to meet the goals and objectives of the ongoing safety program of Westinghouse Hanford.

The safety of a facility is the single most important factor in funding to eliminate the hazards or scheduling a facility for decommissioning. When a facility is targeted for decommissioning, a detailed engineering package is developed that includes a safety hazards analysis and a startup readiness review. Before starting work, the startup readiness review is made, evaluating the safety preparedness of the workers, adequacy of procedures to cope with potential hazards, and the safety conditions of the facility and site. The readiness review also ensures that all environmental and safety documentation is in place. During the progress of work, regular safety meetings and safety inspections are made. The personnel assigned to the project participate in all ongoing safety programs. At the completion of the project, a project closeout report is issued. This report identifies the status of the site at the end of the project and identifies surveillance and maintenance requirements, if needed beyond the closeout.

#### 6.1.2 Radiological Safety

Monitoring for radiological and environmental safety will be in compliance with established controls.

Waste disposal will be made in compliance with DOE Order 5480.1A (DOE-RL 1988). The ARCL methodology developed by Pacific Northwest Laboratory (PNL) will be used, as applicable, to define the amount of radioactive material that may safely remain after decommissioning a facility. The management of various types of waste generated during D&D is outlined in the following sections.

Table 1: Regulatory Requirements. (sheet 1 of 3)

| DOE Order Number    | Title                                                                              | Comments                                                                                                                                                                                        |
|---------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1324.2              | Records Disposition                                                                | Establishes records handling procedures                                                                                                                                                         |
| 3790.1              | Occupational Safety and Health Program for Federal Employees                       | Establishes the policy for implementing and administration of occupational safety and health program.                                                                                           |
| 4300.1B<br>4320.1A  | Real Property and Site Development<br>Site Development and Facility Utilization    | Provides requirements for preparing site development plans and facility utilization for DOE facilities.                                                                                         |
| 5000.3              | Unusual Occurrence Reporting System                                                | Establishes DOE policy and provides instructions for reporting, analyzing, and disseminating information on programmatically significant events.                                                |
| 5100.3              | Field Budget Process                                                               | Establishes budget procedure and requirements.                                                                                                                                                  |
| 5400.1              | General Environmental Protection Program Requirements                              | The order defines environmental protection requirements that are established in DOE Order 5400.1B. All CM, MP, and MRP references in the DOE Orders 5400 series have application to this order. |
| 5400.xy<br>In Draft | Radiological Effluent Monitoring and Environmental Surveillance                    | Provides guidance for radiological monitoring and environmental surveillance.                                                                                                                   |
| 5400.3              | Hazardous and Radioactive Mixed Waste Management                                   | Provides instructions for implementing a DOE hazardous waste management program.                                                                                                                |
| 5400.4              | Comprehensive Environmental Response, Compensation, and Liability Act Requirements | Provides direction for implementing a DOE CERCLA program.                                                                                                                                       |

Table 1. Regulatory Requirements. (sheet 2 of 3)

| DOE Order Number | Title                                                                                      | Comments                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5400.5           | Radiation Protection of the Public and the Environment                                     | Presents a program and standards for radiation protection.                                                                                                              |
| 5440.1B          | National Environmental Policy Act (NEPA)                                                   | Establishes DOE policy for implementation of NEPA 1969.                                                                                                                 |
| 5480.1A          | Environmental Safety and Health Program for DOE Operations                                 | Outlines environmental protection, safety and health protection policies and responsibilities.                                                                          |
| 5400.5           | Radiation Protection of the Public and the Environment                                     | Presents a program and standards for radiation protection.                                                                                                              |
| 5482.1B          | Environmental, Safety, and Health Appraisal Program                                        | Establishes DOE environmental protection, safety, and health protection appraisal program.                                                                              |
| 5484.1           | Environmental Protection, Safety, and Health Protection Information Reporting Requirements | Specifies requirements and procedures for reporting and investigating matters of environmental protection, safety, and health protection significant to DOE operations. |
| 5700.4           | Project Management System                                                                  | Establishes requirements and objectives, and assigns responsibilities and authorities necessary for acquisition of major systems.                                       |
| 5780.6B          | Quality Assurance                                                                          | Defines DOE's Quality Assurance program.                                                                                                                                |
| 5720.2           | Radioactive Waste Management                                                               | Policies and guidelines for management of radioactive waste and contaminated facilities.                                                                                |
| 6530.1           | General Design Criteria Manual                                                             | Provides general design criteria for use in requisitions of DOE facilities.                                                                                             |

Table 1. Regulatory Requirements. (sheet 3 of 3)

| Washington State Control | Title                             | Comments                                                                                                                                                                                                                                             |
|--------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WAC 173-303              | Dangerous Waste Regulations       | Identifies dangerous solid wastes, defines surveillance and monitoring requirements, reporting and tracking requirements, regulations for siting, construction, operation and disposal of facilities, permit requirements, and encourages recycling. |
| 5481.1                   | Safety Analysis and Review System | Provides a system for evaluating safety preparedness and approval to implement and proceed with work.                                                                                                                                                |

NOTE: Westinghouse Hanford Company addresses the U.S. Department of Energy regulations in various manuals, procedures, and data compilations.

Table 2. Release Levels and Priorities for Decommissioned Facilities and Land Areas.

| Priority | Release level                                                                    | Site status                                                                                                   |
|----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 1        | Decontaminate to less than detectable                                            | Site can be released immediately for unrestricted use.                                                        |
| 2        | ARCL <sup>a</sup> of 25 mrem/year or less immediately following decommissioning. | Site can be released immediately for unrestricted use.                                                        |
| 3        | ARCL of 25 mrem/year or less within 100-year institutional control period.       | Site can be released in the year that the radionuclides have decayed to ARCL value of less than 25 mrem/year. |
| 4        | ARCL of up to 500 mrem/year at end of 100-year institutional control period.     | DOE-RL <sup>b</sup> approval is needed to exceed 25 mrem/year.                                                |

<sup>a</sup>Allowable residual contamination levels.

<sup>b</sup>U.S. Department of Energy-Richland Operations Office.

**6.1.2.1 Management of Waste Generated during Decontamination and Decommissioning.**

**6.1.2.1.1 Clean Waste**--Clean wastes that are free of radioactive contamination and other hazardous material such as wood, cloth, paper, plastic, and most construction materials are not subject to regulation and will be disposed of in approved clean waste landfills.

**6.1.2.1.2 Mixed Waste**--Waste that is both a radioactive hazard and a chemical hazard is designated mixed waste. Mixed waste will be packaged and disposed of in accordance with provisions of Part 1 of WHC-CM-7-5 *Environmental Compliance* and WAC 173-303 as implemented in WHC-CM-5-16 (WHC 1989).

**6.1.2.1.3 High-Level Radioactive Waste**--Readily retrievable high-level waste will be processed to a final immobilized form in the Defense Waste Processing Facility and the Waste Vitrification Plant preparatory to permanent disposal in a deep geological repository (WHC-CM-7-5, DOE 5820.2A, 1988).

**6.1.2.1.4 Transuranic Waste**--Transuranic waste will be transferred in compliance with DOE and Department of Transportation (DOT) regulations to the Waste Isolation Plant for interim storage and safe disposal (WHC-CM-7-5, DOE 5820.2A).

**6.1.2.1.5 Low-Level Radioactive Waste**--Low-level waste will be processed by two general disposal methods. When the low-level waste meets the requirements of ARCL calculations, the waste will be disposed of in situ. If a low-level waste fails to meet ARCL requirements, the waste will be packaged and shipped to the approved low-level waste burial ground in the 200 Area (WHC-CM-7-5, DOE 5820.2A).

**6.1.2.1.6 Hazardous Waste**--The Washington State *Dangerous Waste Regulations*, Washington Administrative Code (WAC 1989) will be used to classify the type of hazardous waste. The regulations in WAC 173-303 will be implemented by the applicable procedures in Westinghouse Hanford Controlled Manuals 4-2, 2-14, 1-1, 1-3, and 7-5 (WHC 1989, 1990).

**6.1.2.2 Waste Left at the Site (Decommissioned In Situ)**. The majority of radioactive wastes will be left in place as the facilities are decommissioned. The amount (curies) that can remain safely in a decommissioned facility is the amount that will not produce an annual whole body dose or organ dose greater than 25 mrem to an individual living on the site released. The ARCL methodology is used to estimate dose from the residual radioactivity by analysis. This methodology is explained in the following section.

**6.1.2.3 Allowable Residual Contamination Levels**. The historic practice at the Hanford Site is to release equipment and materials for unrestricted use when found to be "free of contamination." Generally, the definition for free

of contamination has been less than detectable with portable radiation detection instrumentation, such as a Geiger Muller or portable alpha monitor. This same approach has been used for decontamination and decommissioning of surplus facilities, i.e., cleanup to less-than-detectable levels before release and demolition.

The DOE recently adopted the release limits defined in Regulatory Guide 1.86 (NRC 1974). These limits, in some cases, are less restrictive than the less-than-detectable criterion. In the spirit of the ALARA philosophy, the less-than-detectable criterion will be used whenever practicable. However, in all cases, material released for offsite use will, as a minimum, meet the limits defined in Regulatory Guide 1.86. Use of Regulatory Guide 1.86 release limits requires the previous approval of Westinghouse Hanford Environmental and Occupational Safety.

This conservative approach is considered a good practice when releasing equipment and materials for offsite use; however, when the less-than-detectable criterion is applied to clean up surplus facilities, it can result in unreasonably high cost. Therefore, the DOE-RL has directed the Hanford Site contractors to use the ARCL methodology, where applicable, to establish radiological release criteria for decommissioning surplus contaminated facilities on the Hanford Site.

The ARCL method, developed by PNL, defines the amount of radioactive material that may remain safely after a facility has been decommissioned. The ARCL method defines realistic exposure scenarios, based on an analysis of potential radiation exposure pathways. The scenarios consider the numerous ways in which persons could be exposed to the remaining radioactive materials during or after institutional control of the site.

The radiological inventory of the facility is estimated from sampling data and then, using the appropriate dose pathways, a dose along with a 90% upper-confidence limit is estimated. If the predicted potential dose to an individual determined by this method is less than 25 mrem/year, then no further actions would be required for that site. If the predicted potential dose exceeds the limit, then additional remedial action must be taken.

**6.1.2.4 Application of the Allowable Residual Contamination Limits Method.** Current DOE guidance requires that the dose to a maximally exposed person, following the release of a decommissioned facility or land area for unrestricted use, be less than 25 mrem/year to the whole body or any organ. (A maximally exposed site resident is assumed to receive the maximum possible radiation dose from all of the exposure pathways on a particular site.)

If the ARCL analysis indicates that the 25 mrem/year criterion cannot be achieved cost effectively for a particular site, then the DOE-RL must approve the specific dose levels for that site, calculated by use of the ARCL method,

before initiation of the decommissioning work. The ALARA philosophy is applicable whenever it is cost effective to reduce doses below the 25 mrem/year level.

Table 2 lists dose levels to a maximally exposed person and how dose levels relate to site status after decommissioning. The ALARA philosophy and cost-effectiveness are of primary importance in determining which release level will be achieved for a particular site.

**6.1.2.5 Release of Materials for Unrestricted Offsite Use.** The DOE recently adopted the release limits defined in Regulatory Guide 1.86 (NRC 1974). These limits, in some cases, are less restrictive than the less-than-detectable criterion. In the spirit of the ALARA philosophy, the less-than-detectable criterion will be used whenever practicable. However, in all cases, material released for offsite use will, as a minimum, meet the limits defined in Regulatory Guide 1.86. Use of Regulatory Guide 1.86 release limits requires the previous approval of Westinghouse Hanford Environmental and Occupational Safety. Table 3 lists these criteria.

**6.1.2.6 Disposition of Contaminated Equipment.** Equipment contaminated with radioactive materials should be dispositioned using the priorities listed below. The intent of these priorities is to practice the ALARA philosophy by minimizing the movement and handling of radioactive materials.

- **Reuse Equipment**--Equipment should be removed for reuse if it is cost effective to do so and if a new user for the equipment has been identified. The new user will provide the funds for removal and transport to the new location.
- **Leave Equipment in Place**--If a cost-effective reuse is not identified, equipment should be left in place. This priority should be used only if the radioactive material on the equipment can be contained during the demolition phase of decommissioning.
- **Relocate Equipment in Same Facility**--If there is a potential for release of radioactive material to the environment during demolition of the facility containing the equipment, the equipment should be relocated to an area in the same facility where it is protected (e.g., tunnel, basement) before demolition.
- **Relocate Equipment to Another Contaminated Facility**--If equipment cannot be left in place or relocated in its own facility, the equipment should be relocated to a below-grade void in another contaminated facility where it can be covered with a minimum of 1 m of clean fill.

Table 3. Acceptable Surface Contamination Levels for Materials Removed from the Site.

| Radionuclide <sup>a</sup>                                                                                                                                                           | Average <sup>b,c</sup>                        | Maximum <sup>b,d</sup>                         | Removable <sup>b,e</sup>                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------|
| Uranium (natural),<br>$^{235}\text{U}$ , $^{238}\text{U}$ associated<br>decay products                                                                                              | 5,000 dpm<br>alpha/100 cm <sup>2</sup>        | 15,000 dpm<br>alpha/cm <sup>2</sup>            | 1,000 dpm<br>alpha/cm <sup>2</sup>            |
| Transuranics, $^{226}\text{Ra}$ ,<br>$^{228}\text{Ra}$ , $^{230}\text{Th}$ , $^{228}\text{Th}$ ,<br>$^{231}\text{Pa}$ , $^{227}\text{Ac}$ , $^{125}\text{I}$ ,<br>$^{129}\text{I}$  | 100 dpm/100 cm <sup>2</sup>                   | 300 dpm/100 cm <sup>2</sup>                    | 20 dpm/100 cm <sup>2</sup>                    |
| Thorium (natural)<br>$^{232}\text{Th}$ , $^{90}\text{Sr}$ , $^{223}\text{Ra}$ ,<br>$^{224}\text{Ra}$ , $^{232}\text{U}$ , $^{126}\text{I}$ ,<br>$^{131}\text{I}$ , $^{133}\text{I}$ | 1,000 dpm/100 cm <sup>2</sup>                 | 3,000 dpm/100 cm <sup>2</sup>                  | 200 dpm/100 cm <sup>2</sup>                   |
| Beta-gamma emitters<br>(radionuclides with<br>decay modes other<br>than alpha emission<br>or spontaneous<br>fission, except<br>$^{90}\text{Sr}$ and others<br>noted above)          | 5,000 dpm/ $\beta$ -Y/<br>100 cm <sup>2</sup> | 15,000 dpm/ $\beta$ -Y/<br>100 cm <sup>2</sup> | 1,000 dpm/ $\beta$ -Y/<br>100 cm <sup>2</sup> |

<sup>a</sup>Where surface contamination by both alpha-emitting and beta-gamma-emitting nuclides exists, the limits established for alpha-emitting and beta-gamma emitting nuclides should apply independently.

<sup>b</sup>As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive materials as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

<sup>c</sup>Measurements of average contaminant should not be averaged over more than 1 m<sup>2</sup>. For objects of less surface area, the average should be derived for each such object.

<sup>d</sup>The maximum contamination level applies to an area of not more than 100 cm<sup>2</sup>.

<sup>e</sup>The amount of removable radioactive material per 100-cm<sup>2</sup> surface area should be determined by wiping that area with dry filter or soft, absorbent paper, applying moderate pressure, and assessing the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of less surface is determined, the pertinent levels should be reduced proportionally, and the entire surface should be wiped.

- **Relocate Equipment to a Noncontaminated Facility**--If the equipment cannot be relocated to a void in another contaminated facility, it should be relocated to a void in a noncontaminated facility that is scheduled to be decommissioned. Special authorization from Westinghouse Hanford Environmental and Occupational Safety is required for this option.
- **Remove Equipment for Burial**--As a last resort, the equipment should be removed and packaged for disposal at the Hanford Site 200 Area low-level waste disposal site.

## 6.2 DISPOSITION OF NONRADIOACTIVE, HAZARDOUS MATERIAL

The disposition of nonradioactive, hazardous wastes and materials, including asbestos, mercury, polychlorinated biphenyl (PCB) oil, and possible other materials, will be addressed in the safety hazards assessment issued by Westinghouse Hanford, in accordance with DOE directives, before any actual decommissioning work begins on a facility. The applicable decommissioning work procedures will provide explicit instructions to control the release of any hazardous material during decommissioning work. Table 4 lists some of the significant nonradioactive hazardous materials present in the Hanford Site facilities. In addition, Section 6.1.2.1 outlines the management of various types of waste generated during the D&D process.

## 6.3 QUALITY ASSURANCE

A quality assurance (QA) plan has been prepared for implementation of Nuclear Quality Assurance-1 requirements for D&D activities. The QA plan applies to operations performed on surplus facilities, inactive sites, and selected treatment, storage, and disposal facilities subject to closure requirements at the Hanford Site.

## 6.4 PROJECT MANAGEMENT AND CONTROL

The administrative controls for tracking cost and schedules are listed in the following.

### 6.4.1 Cost and Schedule Performance Monitoring

The HSFP will track cost and schedule, using Westinghouse Hanford Management Control System.

Table 4. Nonradioactive, Hazardous Materials Present in the Hanford Site Shutdown Facilities.<sup>a</sup>

| Material                                    | Location                                                                                         | Preferred disposition                                                                                                                               |
|---------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Asbestos                                    | Pipe insulation in many facilities; siding material and floor covering on a number of facilities | All friable asbestos will be removed and disposed of in accordance with established procedures.                                                     |
| Mercury                                     | Panel gauges for control equipment in all facilities.                                            | All mercury will be removed before decommissioning.                                                                                                 |
| Polychlorinated biphenyl (PCB) oil shutdown | In transformers.                                                                                 | All PCB remaining in facilities will be removed before decommissioning. Sampling program currently is being conducted to determine PCB inventories. |
| Lead                                        | Reactors, shielding caves, sanitary sewer joints, and storage                                    | Pending.                                                                                                                                            |

<sup>a</sup>Listing is not all inclusive. Some chemical hazardous wastes have not been included.

This earned-value system tracks cost, schedule, and performance on a monthly and to-date basis of all decommissioning projects as they progress toward completion. Cost-performance reports will be prepared through the FDS on a monthly basis. The reports will use the CAPs to establish a fiscal year performance baseline. The report will compare scheduled cost, budget cost of work scheduled (BCWS), to work performance, budget cost of work performed (BCWP), to actual cost of work performed (ACWP). Any deviations from the planned schedules or spending will be reported as a schedule variance (SV) or a cost variance (CV). If the variances exceed the thresholds of 10% or \$100,000, whichever is less, the CAM is required to complete a variance analysis report (VAR), which is to be returned to the activity manager by the tenth working day of the following month. The VAR will explain cause for the SVs and CVs, along with corrective action and impacts. Additionally, a current fiscal year and future year's estimate at completion (EAC), along with a total estimate cost (TEC), will be calculated. The VAR information will be reviewed by the activity manager and approved by the HSFP manager.

Changes to the work scheduled in the base plan will be documented by processing a change control request. An approved copy of the change request will be filed by Program Administration in the Program Office.

## 6.5 REGULATORY REQUIREMENTS

The DOE regulatory requirements are implemented through the various control manuals developed by Westinghouse Hanford as management directives (see Table 1). These directives, as applicable to the HSFP, become a part of the activities associated with surveillance, maintenance, and decommissioning of the facilities. The requirements are to provide employees with clear, documented guidelines consisting of policies, work procedures, performance requirements, process or equipment operational limits, and the following rules of conduct.

- Avoid or mitigate nuclear, radiological, environmental, or industrial safety incidents.
- Protect the general public and employees from injury.
- Avoid or mitigate production or property losses.
- Ensure compliance with DOE Orders, state and federal laws and regulations, industrial codes and standards, requirements of prime contract with the DOE, and Westinghouse Corporate policies.
- Ensure the financial integrity and cost effectiveness of operations of Westinghouse Hanford.
- Ensure the quality and technical excellence of work performed.

## 6.6 FACILITY ACCEPTANCE AND TRANSFER

### 6.6.1 Facility Transfer and Acceptance Requirements

To be eligible for acceptance in the HSFP, facilities must meet the following administrative, technical, and physical requirements.

- The facility and surrounding area will be in a radiologically safe condition, with a current radiation and hazardous chemical survey complete and available.
- The structure(s) and monitoring system will be in a condition adequate to contain and monitor for radiation, contamination, and hazardous chemicals.

- All stored special nuclear materials, reactor fuels, radioactive contaminated liquids, and hazardous chemicals will have been removed from the facility. In addition, all bulk and containerized radioactive-contaminated waste and sludge will have been removed from the facility.
- Deactivation and shutdown status of the facility will have been documented (i.e., final radiological and hazardous substance survey, final configuration, surveillance and maintenance records, and requirements).
- If available, a formal surveillance and maintenance plan will be provided.
- Security systems and procedures will be adequate to prevent unauthorized entry.

#### **6.6.2 Facility Transfer into the Program**

The required actions to transfer a surplus facility into the HSFP are coordinated between the manager of HSFP and the building manager.

If a facility is accepted, HSFP management incorporates it into the program plans and budget until disposition is complete and the facility is transferred out of the program. Identification of the funding source for surveillance, maintenance, and decommissioning will be determined at the time the facility is being considered for transfer, and the agreement then becomes part of the approval documentation.

#### **6.6.3 Facility Transfer out of the Program**

When determined there is a use for a facility currently in the HSFP or the decommissioning of a facility is completed, a formal letter is submitted to HSFP requesting its transfer out of the program. Organizations accepting the facility from the HSFP assume full responsibility for the facility and any further disposition, including decommissioning as appropriate.

#### **6.6.4 Identification and Description of Surplus Facilities Questionnaire**

A facility questionnaire form (which includes information that will assist users when filling out the form) and a suggested form letter for submitting a facility transfer request to HSFP is documented in special Program Management Instructions. The forms are in four parts and identified as follows:

Part 1. Facility Disposition Planning and Cost Data  
(Form No. A3000-423)

Part 2. Facility Data  
(Form No. A3000-424)

Part 3. Facility Radiological Data  
(Form No. A3000-426)

Part 4. Surveillance Data  
(Form No. A3000-425)

#### **6.6.5 Property Management**

Before the disposition of a facility and piece of equipment, a declaration of excess is prepared which makes the property available to other organizations and government agencies. If no interest is shown, a property disposal request form is completed and the facility and equipment are disposed of. Disposal can include demolition or salvage. Regardless of the final disposition, the facility and equipment must be properly released. Release criteria are outlined in Section 6.1.

## 7.0 DOCUMENTATION AND APPROVALS

### 7.1 SURVEILLANCE AND MAINTENANCE GUIDELINES

Surveillance and maintenance guidelines unify the surveillance and maintenance activities concerning responsibility, surveillance inspection, maintenance, monitoring, and recordkeeping. These guidelines set forth the surveillance and maintenance requirements that will be used in documenting unit procedures and tasks performed in surveillance and maintenance as outlined in site-specific instructions. These guidelines require approval of the HRO manager.

The surplus facilities will be maintained to meet the requirements of protective storage until an alternative is opted and funded for final disposition. Long-range surveillance and maintenance plans for the 100 Areas and 200 Areas are being revised and will be reissued in FY 1991.

### 7.2 DECOMMISSIONING PROJECT WORK

All surplus facilities will be segregated into work packages. When the decision is made to decommission a facility and funding is available, a project proposal will be developed that includes detailed engineering, detailed procedures on how the job is to be done, safety hazard analysis, a start-up readiness review, and project closeout requirements. These elements of the project are documented in the project plan and require various levels of approval depending on the size of the project. Approval levels are set forth under the Westinghouse Hanford management control system. Work approval for the specific tasks is established in the work package project plan.

### 7.3 LISTINGS OF HANFORD SITE FACILITIES

A listing of all aboveground facilities, both operational and retired, is maintained by Westinghouse Hanford Support Services, Facility Management and Site Planning. A listing of all underground facilities (i.e., cribs, tanks, and burial grounds) is maintained by Westinghouse Hanford Environmental Division, Environmental Engineering.

## 8.0 REFERENCES

DOE, 1988, *Radioactive Waste Management*, DOE Order 5820.2A, U.S. Department of Energy, Washington, D.C.

DOE-RL, 1982, *Surplus Facilities Management Program Methodology for Establishing Decommissioning Priorities*, RLO/SFM-82-7, U.S. Department of Energy-Richland Operations Office, Richland, Washington.

DOE-RL, 1983, *Safety Analysis Review System*, DOE-RL Order 5481.1, U.S. Department of Energy-Richland Operations Office, Richland, Washington.

DOE-RL, 1988, *Environment, Safety, and Health Program for Department of Energy Operations for Richland Operations*, DOE-RL Order 5480.1A, U.S. Department of Energy-Richland Operations Office, Richland, Washington.

Ecology, 1989, *Dangerous Waste Regulations*, Washington Administrative Code, WAC 173-303, Washington State Department of Ecology, Olympia, Washington.

NRC, 1974, *Termination of Nuclear Operating Licenses for Nuclear Reactors*, Regulatory Guide 1.86, U.S. Nuclear Regulatory Commission, Washington, D.C.

WHC, 1989a, *Environmental Compliance Manual*, WHC-CM-7-5, Westinghouse Hanford Company, Richland, Washington.

WHC, 1989b, *Hazardous Material Packaging and Shipping*, WHC-CM-2-14, Westinghouse Hanford Company, Richland, Washington.

WHC, 1989c, *Nonradioactive Dangerous Waste Disposal Manual*, WHC-CM-5-16, Westinghouse Hanford Company, Richland, Washington.

WHC, 1990a, *Management Policies*, WHC-CM-1-1, Rel. 24, Westinghouse Hanford Company, Richland, Washington.

WHC, 1990b, *Management Requirements and Procedures*, WHC-CM-1-3, Rel. 46, Westinghouse Hanford Company, Richland, Washington.

WHC, 1990c, *Quality Assurance Manual*, WHC-CM-4-2, Releases 22-28, 30, Westinghouse Hanford Company, Richland, Washington.

**APPENDIX A**  
**WORK ELEMENTS**

**APPENDIX A**

**A.1 WORK ELEMENTS**

Following is a list of facilities within the Hanford Surplus Facilities Programs (HSFP) that currently are being maintained and controlled in accordance with specific surveillance and maintenance procedures while awaiting decontamination and decommissioning (D&D).

Accompanying each facility identification title and/or number is a brief description, including type of construction, overall dimensions, estimated decommissioning cost, current plan for fiscal year project work to commence, and related work breakdown structure (WBS) numbers. All project costs are estimates and are in constant fiscal year (FY) 1991 dollars.

## A.2 100 AREA REACTORS. (sheet 1 of 3)

| PROJECT                                                      | WBS   | GENERAL DESCRIPTION                                                                                         | DECOMMISSIONING COST                                                                                                                    | COMMENCE D&D |
|--------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1. 105-D Reactor Building and Associated Fuel Storage Basin  | UB201 | Reinforced concrete and concrete block construction approximately 250 ft long by 230 ft wide by 95 ft high. | \$23,599,000*                                                                                                                           | FY 1999      |
|                                                              |       |                                                                                                             | *Does not included the 97.5 years of well monitoring estimated at \$9,750,00, nor the cost of the Environmental Impact Statement (EIS). |              |
| 2. 105-DR Reactor Building and Associated Fuel Storage Basin | UB202 | Reinforced concrete and concrete block construction approximately 250 ft long by 230 ft wide by 95 ft high. | \$23,599,000*                                                                                                                           | FY 2001      |
| 3. 105-H Reactor Building and Associated Fuel Storage Basin  | UB203 | Reinforced concrete and concrete block construction approximately 250 ft long by 230 ft wide by 95 ft high. | \$24,785,000*                                                                                                                           | FY 1997      |
| 4. 105-F Reactor Building and Associated Fuel Storage Basin  | UB204 | Reinforced concrete and concrete block construction approximately 250 ft long by 230 ft wide by 95 ft high. | \$23,599,000*                                                                                                                           | FY 2004      |
| 5. 105-C Reactor Building and Associated fuel Storage Basin  | UB205 | Reinforced concrete and concrete block construction approximately 250 ft long by 230 ft wide by 95 ft high. | \$23,599,000*                                                                                                                           | FY 2000      |
| 6. 105-KE Reactor and Fuel Storage Basin                     | UB206 | Reinforced concrete and concrete block construction approximately 275 ft by 213 ft by 120 ft high.          | \$23,599,000*                                                                                                                           | FY 2002      |

## A.2 100 AREA REACTORS. (sheet 2 of 3)

| PROJECT                                  | WBS   | GENERAL DESCRIPTION                                                                                                                              | DECOMMISSIONING COST | COMMENCE D&D |
|------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 7. 105-KW Reactor and Fuel Storage Basin | UB207 | Reinforced concrete and concrete block construction approximately 275 ft long by 213 ft wide by 120 ft high.                                     | \$23,599,000*        | FY 2003      |
| 8. 105-B Reactor and Fuel Storage Basin  | UB208 | Reinforced concrete and concrete block construction approximately 250 ft long by 230 ft wide by 95 ft high.                                      | \$23,99,000*         | FY 2005      |
| 9. 105-F & H Basins Fill Removal         | UBA03 | The removal of approximately 4,500 cubic yards of earth from 105-F and 5,800 cubic yards of earth from 105-H may be removed.                     | \$ 7,780,000         | FY 1990      |
| 10. 105-D & DR Water Tunnels             | UB212 | The tunnel housed primary water coolant water piping from the 190 pumphouse to the reactor. These tunnels will be caved in to reduce subsidence. | \$ 55,000            | FY 1997      |
| 11. 105-C Water Tunnel                   | UB215 | The tunnel housed primary water coolant water piping from the 190 pumphouse to the reactor. These tunnels will be caved in to reduce subsidence. | \$ 116,000           | FY 1997      |
| 12. 105-KE Water Tunnel                  | UB216 | The tunnel housed primary water coolant water piping from the 190 pumphouse to the reactor. These tunnels will be caved in to reduce subsidence. | \$ 116,000           | FY 1997      |

## A.2 100 AREA REACTORS. (sheet 3 of 3)

| PROJECT                 | WBS   | GENERAL DESCRIPTION                                                                                                                              | DECOMMISSIONING COST | COMMENCE D&D |
|-------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 13. 105-KW Water Tunnel | UB217 | The tunnel housed primary water coolant water piping from the 190 pumphouse to the reactor. These tunnels will be caved in to reduce subsidence. | \$ 116,000           | FY 1997      |
| 14. 105-S Water Tunnel  | UB218 | The tunnel housed primary water coolant water piping from the 190 pumphouse to the reactor. These tunnels will be caved in to reduce subsidence. | \$ 116,000           | FY 1997      |

A.2 100 AREA REACTORS - TOTAL 14

## A.3 100 AREA ANCILLARIES. (sheet 1 of 4)

| PROJECT                                             | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                   | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D |
|-----------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| 1. 116-D Exhaust Air Stack                          | UAT01 | A monolithic, reinforced structure 200 ft above grade, and 20 ft below grade and 16 ft in diameter at the base.                                                                                                                       | \$ 270,000                     | FY 1993      |
| 2. 116-DR Exhaust Air Stack                         | UAT02 | A monolithic, reinforced structure 200 ft above grade, and 20 ft below grade and 16 ft in diameter at the base.                                                                                                                       | \$ 270,000                     | FY 1993      |
| 3. 117-DR Exhaust Air Filter Building               | UAA04 | Reinforced concrete structure 59 ft long, 39 ft wide, and 35 ft high with only 8 ft of this height above grade.                                                                                                                       | \$ 247,000                     | FY 1993      |
| 4. 119-DR Exhaust Air Sampling Building             | UAA03 | A small metal structure on a grade-level concrete pad.                                                                                                                                                                                | \$ 15,000                      | FY 1993      |
| 5. 108-F Biology Laboratory Building                | UA801 | A four-story reinforced-concrete and concrete block structure 200 ft long, 100 ft wide, and 50 ft above grade. The facility has been decontaminated to unrestricted release levels, except for drain lines and area below foundation. | \$ 3,296,000                   | FY 1993      |
| 6. 103-D Unirradiated Fuel Element Storage Building | UAA01 | A one-story reinforced concrete block structure 53 ft long, 26 ft wide, and 14 ft high.                                                                                                                                               | \$ 39,000                      | FY 1993      |

## A.3 100 AREA ANCILLARIES. (sheet 2 of 4)

| PROJECT                               | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                  | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D                      |
|---------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|
| 7. 115-B/C Gas Recirculation Building | UAA27 | A concrete block and reinforced concrete structure, including tunnels, pit annex, and piping adjoining the 105-B and 105-C Buildings. The building was 113 ft long, 34 ft wide, and 40 ft high, with 20 ft of this height below grade. The tunnel was 1,440 ft long. | \$ 768,000                     | Project was completed in FY 1989. |
| 8. 115-KE Gas Recirculation Building  | UAA06 | A concrete block and reinforced concrete structure, including tunnels, pit annex, and piping adjoining the 105-KE Building. The building is 113 ft long, 34 ft wide, and 40 ft high with 20 ft of this height below grade. The tunnel is 100 ft long.                | \$ 1,080,000                   | FY 1992                           |
| 9. 115-KW Gas Recirculation Building  | UAA07 | A concrete block and reinforced concrete structure, including tunnels, pit annex, and piping adjoining the 105-KW Building. The building is 113 ft long, 34 ft wide, and 40 ft high with 20 ft of this height below grade. The tunnel is 100 ft long.                | \$ 1,103,000                   | FY 1995                           |
| 10. 117-C Exhaust Air Filter Building | UAA32 | This was a reinforced concrete structure 59 ft long, 39 ft wide, 34 ft high with only 8 ft of this height above grade.                                                                                                                                               | \$ 281,000                     | Project was completed in FY 1989  |

## A.3 100 AREA ANCILLARIES. (sheet 3 of 4)

| PROJECT                                | WBS   | GENERAL DESCRIPTION                                                                                                                                 | DECOMMISSIONING COST | COMMENCE D&D |
|----------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 11. 117-KE Exhaust Air Filter Building | UAA08 | A reinforced concrete structure 59 ft long, 39 ft wide, and 35 ft high with only 8 ft of this height above grade.                                   | \$ 247,000           | FY 1992      |
| 12. 117-KW Exhaust Air Filter Building | UAA09 | A reinforced concrete structure 59 ft long, 39 ft wide, and 35 ft high with only 8 ft of this height above grade.                                   | \$ 247,000           | FY 1992      |
| 13. 116-B Exhaust Air Stack            | UAT03 | A monolithic, reinforced concrete structure 200 ft above grade, 20 ft below grade, and 16 ft in diameter at the base.                               | \$ 260,000           | FY 1992      |
| 14. 116-KE Exhaust Air Stack           | UAT04 | A monolithic, reinforced concrete structure 16 ft below grade, 16 ft in diameter at the base. The height was reduced from 300 ft to 200 ft in 1982. | \$ 463,000           | FY 1993      |
| 15. 116-KW Exhaust Air Stack           | UAT05 | A monolithic, reinforced concrete structure 16 ft below grade, 16 ft in diameter at the base. The height was reduced from 300 ft to 200 ft in 1982. | \$ 463,000           | FY 1993      |
| 16. 104-B-1 Tritium Vault              | UA901 | The vault is a 130 square foot concrete structure.                                                                                                  | \$ 27,000            | FY 1993      |
| 17. 104-B-2 Tritium Laboratory         | UA902 | The laboratory is a reinforced concrete structure about 325 square feet.                                                                            | \$ 27,000            | FY 1993      |

## A.3 100 AREA ANCILLARIES. (sheet 4 of 4)

| PROJECT                                  | WBS   | GENERAL DESCRIPTION                                                                                                                            | DECOMMISSIONING COST | COMMENCE D&D |
|------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 18. 119-KE Exhaust Air Sampling Building | UAA05 | The building is a small metal structure on a grade-level concrete pad.                                                                         | \$ 15,000            | FY 1993      |
| 19. 119-KW Exhaust Air Sampling Building | UAA02 | The building is a small metal structure on a grade-level concrete pad.                                                                         | \$ 15,000            | FY 1993      |
| 20. 1706-KE/KEL/KER Test Facility        | UAH01 | The building was a multipurpose test facility, constructed of concrete block and reinforced concrete, and is approximately 13,500 square feet. | \$ 3,663,000         | FY 1993      |
| 21. 103-B Unirradiated Fuel Storage      | UA010 | A one-story reinforced concrete and concrete block structure 53 ft long, 26 ft wide, and 14 ft high.                                           | \$ 37,000            | FY 1992      |
| 22. 111-B Decontamination Station        | UA903 | Remaining is a reinforced below-grade concrete structure. The above grade wooden structure was demolished in 1984.                             | \$ 180,000           | FY 1992      |
|                                          |       |                                                                                                                                                |                      |              |

A.3 100 AREA ANCILLARIES - TOTAL 22

## A.4 100 AREA EFFLUENTS. (sheet 1 of 4)

| PROJECT                        | WBS | GENERAL DESCRIPTION                                                                                                                                                             | DECOMMISSIONING COST                                          | COMMENCE D&D |
|--------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|
| 107-B Retention Basin          |     | A 467 ft long by 230 ft wide by 15 ft high reservoir used to hold up effluent coolant water.                                                                                    | TRANSFERRED TO RA PROGRAM<br>Included to provide continuity.  |              |
| 107-C Retention Basin          |     | Two cylindrical carbon steel open top tanks sitting on concrete pads. Each tank is 16 ft high, 330 ft in diameter used to hold up effluent coolant water.                       | TRANSFERRED TO RA PROGRAM<br>Included to provide continuity.  |              |
| 107-KE Retention Basin         |     | Three cylindrical open-top tanks sitting on concrete pads. Each tank is 29 ft high and 250 ft in diameter used to hold up effluent coolant water.                               | TRANSFERRED TO RA PROGRAM<br>Included to provide continuity.  |              |
| 107-KW Retention Basin         |     | Three cylindrical open-top tanks sitting on concrete pads. Each tank is 29 ft high and 250 ft in diameter used to hold up effluent coolant water.                               | TRANSFERRED TO RA PROGRAM.<br>Included to provide continuity. |              |
| 183-H Solar Evaporation Basins |     | Originally sedimentation basins for coolant water supply to H Reactor. Converted in early 1970 as solar ponds for spent chemical waste from 300 Area Fuels Manufacturing Plant. | TRANSFERRED TO RA PROGRAM.<br>Included to provide continuity. |              |
| 183-H Groundwater Monitoring   |     | As part of the closure activities, additional groundwater monitoring wells were installed in 1986 and 1987.                                                                     | TRANSFERRED TO RA PROGRAM.<br>Included to provide continuity. |              |

## A.4 100 AREA EFFLUENTS. (sheet 2 of 4)

| PROJECT                                              | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                       | DECOMMISSIONING COST                                          | COMMENCE D&D |
|------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|
| 107-F Retention Basin                                |       | A 467 ft long by 230 ft wide by 15 ft high reservoir used to hold up effluent coolant water.                                                                                                                                                              | TRANSFERRED TO RA PROGRAM.<br>Included to provide continuity. |              |
| 107-H Retention Basin                                |       | Rectangular concrete reservoirs 600 ft long, 480 ft wide and 20 ft deep used to hold up effluent coolant water.                                                                                                                                           | TRANSFERRED TO RA PROGRAM.<br>Included to provide continuity. |              |
| 107-D Retention Basin                                |       | A 467 ft long by 230 ft wide by 15 ft high reservoir used to hold up effluent coolant water.                                                                                                                                                              | TRANSFERRED TO RA PROGRAM.<br>Included to provide continuity. |              |
| 107-DR Retention Basin                               |       | Rectangular concrete reservoirs used to hold up effluent coolant water.                                                                                                                                                                                   | TRANSFERRED TO RA PROGRAM.<br>Included to provide continuity. |              |
| 1. 1904-B1/B2<br>Effluent Water<br>Outfall Structure | UCA05 | The outfall structures are reinforced, compartmentalized concrete water boxes located on the bank of the Columbia River. The associated spillways are constructed of reinforced concrete also. The structures are 27 ft long, 14 ft wide, and 24 ft deep. | \$ 235,000                                                    | FY 2010      |
| 2. 1904-C Effluent<br>Water Outfall<br>Structure     | UCA07 | A reinforced, compartmentalized concrete water box located on the bank of the Columbia River. The associated spillway is constructed of reinforced concrete. Dimensions are 27 ft long, 14 ft wide, and 24 ft dep.                                        | \$ 235,000                                                    | FY 2010      |

## A.4 100 AREA EFFLUENTS. (sheet 3 of 4)

| PROJECT                                                | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                   | DECOMMISSIONING COST | COMMENCE D&D |
|--------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 3. 1908-K Effluent Water Outfall Structure             | UCA06 | Constructed of reinforced concrete (as is the spillway). This facility is currently in use to handle discharge water because of the storage of N Area irradiated fuel elements in the KE & KW fuel storage basins. The structure is 30 ft long, 40 ft wide, 20 ft above grade, and 20 ft below grade. | \$ 457,000           | FY 2010      |
| 4. 100-B/C Effluent Lines                              | UC403 | There are approximately 4.25 miles of 5-ft to 6-ft diameter effluent piping remaining at 100-B Area.                                                                                                                                                                                                  | \$ 541,000           | FY 1992      |
| 5. 100-KE/KW Effluent Lines                            | UC404 | There are approximately 4.16 miles of various diameter-size effluent piping (12 in. to 72 in.) remaining at 100-K Area.                                                                                                                                                                               | \$ 298,000           | FY 1992      |
| 6. 100-B/C, KE/KW Effluent Discharge Water River Lines | UC405 | There remains approximately 3,300 ft of 42-in. to 84-in. diameter steel effluent piping underwater in the Columbia River.                                                                                                                                                                             | \$ 1,099,000         | FY 1992      |
| 7. 1904-F Effluent Water Outfall Structure             | UCA01 | A reinforced, compartmentalized concrete water box located on the bank of the Columbia River. The structure size is 27 ft long, 14 ft wide, and 24 ft deep. The associated spillway is also constructed of reinforced concrete.                                                                       | \$ 235,000           | FY 2011      |

## A.4 100 AREA EFFLUENTS. (sheet 4 of 4)

| PROJECT                                      | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                      | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D |
|----------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| 8. 1904-H Effluent Water Outfall Structure   | UCA02 | The outfall structure is constructed of reinforced concrete as is the spillway. The structure is 27 ft long, 14 ft wide, and 24 ft deep.                                                                                                 | \$ 235,000                     | FY 2011      |
| 9. 1904-D Effluent Water Outfall Structure   | UCA03 | The outfall structure is a reinforced, compartmentalized concrete water box located on the bank of the Columbia River. The structure is 27 ft long, 14 ft wide, and 25 ft deep. The spillway is also constructed of reinforced concrete. | \$ 235,000                     | FY 2011      |
| 10. 1904-DR Effluent Water Outfall Structure | UCA04 | The outfall structure is a reinforced, compartmentalized concrete water box located on the bank of the Columbia River. The structure is 27 ft long, 14 ft wide, and 25 ft deep. The spillway is also constructed of reinforced concrete. | \$ 235,000                     | FY 2011      |
| 11. 100-F, H, D & DR River Lines             | UC401 | Approximately 5,000 ft of 42-in. to 84-in. diameter steel effluent piping remains underwater in the Columbia River.                                                                                                                      | \$ 551,000                     | FY 1997      |
| 12. 100-F, H, D & DR Effluent Lines          | UC402 | Approximately 4.57 miles of effluent piping from 1 ft to 6 ft in diameter remains at 100-D & H. At 100-F all above-ground effluent pipe has been removed. About .5 mile remains to be decommissioned.                                    | \$315,000                      | FY 2010      |

A.4 100 AREA EFFLUENTS - TOTAL 12

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 1 of 9)

| PROJECT                            | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                | ESTIMATED DECOMMISSIONING COST    | COMMENCE D&D                                      |
|------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|
| 1. 201-C Process Building          | UE503 | A concrete and transite structure 104 ft long, 80 ft wide, 30 ft above grade, and 30 ft below grade. Building was demolished in FY 1989, however, several support structures and tanks remain to be decommissioned before the project is complete. | \$21,883,000                      | FY 1985<br>Includes D&D of all support buildings. |
| 2. 215-C Gas Preparation Structure | UE503 | A reinforced concrete building 41 ft long, 21 ft wide, and 13 ft above grade. The facility provides instrument air to 271-C.                                                                                                                       | Included in cost of 201-C Project | Completed August 1988                             |
| 3. 291-C Fan House                 | UE503 | A wooden-framed asbestos-shingled building 36 ft long, 24 ft wide, and 11 ft above grade.                                                                                                                                                          | Included in cost of 201-C Project | Completed January 1988                            |
| 4. 2707-C Storage and Change House | UE503 | A wooden-framed asbestos-shingled building 60 ft long, 24 ft wide, and 10 ft above grade.                                                                                                                                                          | Included in cost of 201-C Project | Included in 201-C Proj.                           |
| 5. 271-C Makeup Control Room       | UE503 | A structural steel-and-metal sided building 56 ft long, 41 ft wide, and 35 ft above grade.                                                                                                                                                         | Included in cost of 201-C Project | Included in 201-C Proj.                           |
| 6. 241-CX-70 Tank                  | UE503 | A buried, stainless steel tank 15 ft tall, 20 ft in diameter, and 28 ft below grade.                                                                                                                                                               | Included in cost of 201-C Project | Included in 201-C Proj.                           |
| 7. 241-CX-71 Tank                  | UE503 | A buried, stainless steel tank 9 ft tall, 9 ft in diameter, and an undetermined distance below grade.                                                                                                                                              | Included in cost of 201-C Project | Included in 201-C Proj.                           |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 2 of 9)

| PROJECT                                    | WBS   | GENERAL DESCRIPTION                                                                                                                                                           | ESTIMATED DECOMMISSIONING COST    | COMMENCE D&D            |
|--------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------|
| 8. 241-CX-72 Tank and Vault                | UE503 | The structure is 20 ft long, 7 ft wide, and 12 ft below grade.                                                                                                                | Included in cost of 201-C Project | Included in 201-C Proj. |
| 9. 291-C-1 Stack                           | UE503 | A reinforced concrete outer stack and acid-resistant brick inner stack 200 ft in diameter at base, 200 ft above grade, and 5 ft below grade. Demolition completed in FY 1989. | Included in cost of 201-C Project | Completed August 1988   |
| 10. 295-C-2 Stack                          | UE503 | A sheet metal stack 2 ft by 2 ft square, 30 ft above grade.                                                                                                                   | Included in cost of 201-C Project | Included in 201-C Proj. |
| 11. 224-B Plutonium Concentration Facility | UE505 | A reinforced concrete and concrete block structure 197 ft long, 60 ft wide, 53 ft above grade, and 20 ft below grade. Some previous D&D has been accomplished.                | \$11,070,000                      | FY 1992                 |
| 12. 212-N Storage Building                 | UEA10 | A steel truss and concrete block structure 90 ft long, 74 ft wide, 30 ft above grade, and 37 ft below grade.                                                                  | \$ 1,036,000                      | FY 2009                 |
| 13. 212-P Storage Building                 | UEA11 | A steel truss and concrete block structure 90 ft long, 74 ft wide, 30 ft above grade, and 37 ft below grade.                                                                  | \$ 1,036,000                      | FY 2009                 |
| 14. 212-R Storage Building                 | UEA12 | A steel truss and concrete block structure 90 ft long, 74 ft wide, 30 ft above grade, and 37 ft below grade.                                                                  | \$ 1,036,000                      | FY 2009                 |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 3 of 9)

| PROJECT                                    | WBS   | GENERAL DESCRIPTION                                                                                                                       | DECOMMISSIONING COST              | COMMENCE D&D                      |
|--------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| 15. 233-S Plutonium Concentration Facility | UE502 | A concrete and steel structure with metal siding, 86 ft long, 43 ft wide, and 34 ft above grade. Some previous D&D has been accomplished. | \$13,359,000                      | FY 1992                           |
| 16. 233-SA Exhaust Air Filter Building     | UE502 | A concrete structure 24 ft long, 15 ft wide, and 9 ft above grade.                                                                        | Included in cost of 233-S Project | Included in 233-S Proj.           |
| 17. 296-S-7 Stack                          | UE502 | Two sheet metal stacks, each 24 inches in diameter and 25 ft above grade.                                                                 | Included in cost of 233-S Project | Included in 233-S Proj.           |
| 18. 241-SX-401 Condenser Loadout Facility  | UE401 | A reinforced concrete structure 36 ft long, 24 ft wide, 18 ft above grade, and 7 ft below grade.                                          | \$ 1,250,000                      | FY 2017                           |
| 19. 241-SX-402 Condenser Loadout Facility  | UE402 | A reinforced concrete structure 36 ft long, 24 ft wide, 18 ft above grade, and 7 ft below grade.                                          | \$ 1,250,000                      | FY 2017                           |
| 20. 202-S Canyon Building (REDOX)          | UE501 | A thick, reinforced concrete structure 468 ft long, 161 ft wide, a maximum of 120 ft above grade, and approximately 25 ft below grade.    | \$134,860,000                     | FY 2007                           |
| 21. 291-S Fan House and Filter             | UE501 | A concrete structure 20 ft long, 14 ft wide, and approximately 10 ft above grade.                                                         | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 4 of 9)

| PROJECT                              | WBS   | GENERAL DESCRIPTION                                                                                                                 | DECOMMISSIONING COST              | COMMENCE D&D                      |
|--------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| 22. 292-S Jet Pit House              | UE501 | A reinforced concrete structure approximately 27 ft long, 14 ft wide, 12 ft above grade, and 34 ft below grade.                     | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 23. 293-S Offgas Treatment Facility  | UE501 | A reinforced concrete structure 42 ft long, 25 ft wide, 30 ft above grade, and 16 ft below grade.                                   | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 24. 2711-S Stack Monitoring Building | UE501 | A wooden structure 14 ft long, 13 ft wide, and 9 ft above grade.                                                                    | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 25. 2718-S Sand Filter Sampler       | UE501 | A wooden structure 14 ft long, 13 ft wide, and 9 ft above grade.                                                                    | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 26. 291-S-1 Stack                    | UE501 | A reinforced concrete stack, lined with acid-resistant brick, 14 ft in diameter at base, 200 ft above grade, and 15 ft below grade. | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 27. 296-S-1 Stack                    | UE501 | A sheet metal stack 14 inches wide and 70 ft above grade.                                                                           | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 28. 296-S-2 Stack                    | UE501 | A sheet metal stack 14 inches wide and 50 ft above grade.                                                                           | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 5 of 9)

| PROJECT                                 | WBS   | GENERAL DESCRIPTION                                                                                                                                                    | ESTIMATED DECOMMISSIONING COST    | COMMENCE D&D                      |
|-----------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| 29. 296-S-4 Stack                       | UE501 | A sheet metal stack 18 inches wide, and 48 ft above grade.                                                                                                             | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 30. 296-S-6 Stack                       | UE501 | A sheet metal stack 30 inches in diameter and 75 ft above grade.                                                                                                       | Included in 202-S (REDOX) Project | Included in 202-S (REDOX) Project |
| 31. 232-Z Waste Incinerator Facility    | UEA04 | A concrete block structure 57 ft long, 37 ft wide, and 19 ft above grade.                                                                                              | \$ 507,000                        | FY 1999                           |
| 32. 221-U Canyon Building (U Plant)     | UEA02 | A concrete structure 810 ft long, 66 ft wide, 51 ft above grade, and 26 ft below grade.                                                                                | \$120,720,000                     | FY 2008                           |
| 33. 276-U Solvent Handling Facility     | UEA02 | A concrete basin 66 ft long, 54 ft wide, 35 ft above grade, and 7 ft below grade. Basin contains three tanks ranging in capacity from 2,500 gallons to 29,000 gallons. | Included in 221-U Project         | Included in 221-U Project         |
| 34. 271-U Office Building               | UEA02 | A concrete frame and concrete block structure 160 ft long, 48 ft wide, 56 ft above grade, and 11 ft below grade.                                                       | Included in 221-U Project         | Included in 221-U Project         |
| 35. 291-U Fan House and Filter Facility | UEA02 | A reinforced, thick concrete structure 19 ft long, 18 ft wide, and 14 ft above grade.                                                                                  | Included in 221-U Project         | Included in 221-U Project         |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 6 of 9)

| PROJECT                               | WBS   | GENERAL DESCRIPTION                                                                                                        | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D              |
|---------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|
| 36. 296-U-1 Stack                     | UEA02 | A reinforced concrete stack with acid-resistant brick liner 14 ft in diameter, 200 ft above grade, and 6 ft below grade.   | Included in 221-U Project      | Included in 221-U Project |
| 37. 296-U-6 Stack                     | UEA02 | A carbon steel stack 18 inches in diameter, 50 ft above grade, and 3 ft below grade.                                       | Included in 221-U Project      | Included in 221-U Project |
| 38. 296-U-10 Stack                    | UEA02 | A carbon steel stack 24 inches in diameter and 10 ft above grade. Located on roof of 271-U Building.                       | Included in 221-U Project      | Included in 221-U Project |
| 39. 241-C-801 Cesium Loadout Facility | UEA03 | A reinforced concrete and metal building 32 ft long, 26 ft wide, 12 ft above grade, and 11 ft below grade.                 | \$ 565,000                     | FY 2009                   |
| 40. 276-S Solvent Handling Facility   | UEA01 | A reinforced concrete and steel structure with transite siding 58 ft long, 43 ft wide, 24 ft above grade, and 13 ft below. | \$ 798,000                     | FY 1999                   |
| 41. 296-S-12 Stack                    | UEA01 | Two sheet metal stacks, each 21 inches square, and about 11 ft long.                                                       | Included in 276-S Project      | Included in 276-S Project |
| 42. 276-S-141 Hexone Storage Tank     | UEA01 | A buried steel tank 23 ft tall, 12 ft in diameter, and 14 ft below grade.                                                  | Included in 276-S Project      | Included in 276-S Project |
| 43. 276-S-142 Hexone Storage Tank     | UEA01 | A buried steel tank 23 ft tall, 12 ft in diameter, and 14 ft below grade.                                                  | Included in 276-S Project      | Included in 276-S Project |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 7 of 9)

| PROJECT                                      | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                               | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D |
|----------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| 44. 222-T Office Building                    | UE801 | A single-story building with a concrete block structure with a slab on grade floor. The facility was originally designed as a process analysis laboratory in support of T-Plant. A small portion is being used for storage. The dimensions are 200 ft long, 60 ft wide, and 12 ft high.                                                                                                           | \$ 1,775,000                   | FY 2008      |
| 45. 205-A Silica Gel                         | UEA06 | A metal-framed transite building 12 ft long, 10 ft wide, and 9 ft above grade.                                                                                                                                                                                                                                                                                                                    | \$ 371,000                     | FY 2008      |
| 46. 241-A-431 Tank Farm Ventilation Building | UEA07 | A reinforced concrete building approximately 22 ft long, 16 ft wide, 9 ft above grade, and 14 ft below grade.                                                                                                                                                                                                                                                                                     | \$ 718,000                     | FY 2008      |
| 47. 242-B Facility                           | UEH01 | A 3,000 square foot reinforced concrete structure.                                                                                                                                                                                                                                                                                                                                                | \$ 1,274,000                   | FY 2010      |
| 48. 222-U Office Building                    | UE802 | A single-story building with a concrete block structure and a slab on grade floor, 200 ft long, 60 ft wide, and 12 ft high. A small portion is being used for storage. Originally designed as a process analysis laboratory in support of U-Plant. Water, steam, and power has been shut off and the building winterized. Interior wall finishes are deteriorating, and the HVAC requires repair. | \$ 1,775,000                   | FY 2008      |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 8 of 9)

| PROJECT                             | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DECOMMISSIONING COST | COMMENCE D&D |
|-------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 49. 276-C Solvent Handling Facility | UEA09 | A fireproof structure with steel framework, insulated metal siding, and concrete floors and roof, 18 ft by 49 ft. East half contains four floor levels extending 46 ft above grade. West half rises 24 ft above grade and has 20 ft of headroom. A 6 ft wide loading dock runs the full length of the north wall. At the west end of the south side, a 4 ft by 12 ft lean-to shelter is provided for nonexplosion-proof relays and line switches. Used as a riggers loft.                                                                                 | \$ 197,000           | FY 1999      |
| 50. 216-Z-9 Mining Facility         | UEA08 | The 216-Z-9 enclosed trench is an underground excavation with an active floor area of 30 ft by 60 ft at a mean sea level of 639 ft, 21 ft beneath the top of the concrete slab cover. The excavation is covered by a 9-12 inch thick reinforced concrete slab, 90 ft wide and 120 ft long at ground level and has equally sloping sides which terminate at the trench floor. The concrete cover is supported by footings around the perimeter and by six concrete columns located on the corners of the floor area and midway on each of the 60 ft sides. | \$ 1,985,000         | FY 2011      |

## A.5 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS. (sheet 9 of 9)

| PROJECT                                      | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                    | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D |
|----------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| 51. M0-326 Personnel Decontamination Trailer | UEK01 | A single-story trailer with flat bright aluminum sides with change rooms on each end separated by one stall shower. There are swamp coolers on the roof and electric wall heaters in each change room. The drains for the shower and sinks go to a stainless steel 65 gallon holding tank with special HEPA filtered vent. There is an electric level indicator on the tank. Dimensions are 10 ft wide and 30 ft long. | \$ 41,000                      | FY 1997      |

A.6 200 AREA MAJOR PROCESSING/SUPPORT BUILDINGS - TOTAL 51

## A.6 207-S RETENTION BASIN.

| PROJECT                  | WBS   | GENERAL DESCRIPTION                                                                                               | DECOMMISSIONING COST | COMMENCE D&D |
|--------------------------|-------|-------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 1. 207-S Retention Basin | UK501 | A reinforced concrete structure 14 ft long, 11 ft wide, and approximately 1 ft above grade, and 9 ft below grade. | \$ 1,614,000         | FY 2009      |

A.6 207-S RETENTION BASIN - TOTAL 1

## A.7 200 AREA CONTROL STRUCTURES AND WEIR BOXES.

| PROJECT                                                  | WBS   | GENERAL DESCRIPTION                                                                                                  | DECOMMISSIONING COST                                                      | COMMENCE D&D |
|----------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------|
| 1. 216-A-524 Control Structure                           | UHU01 | A reinforced concrete structure 16 ft long, 8 ft wide, 1 ft above grade, and 10 ft below grade.                      | Estimated to cost \$ 1,760,000 for all control structures and weir boxes. | FY 2006      |
| 2. 216-S-172 Weir and Control Structure                  | UHU02 | A thick, reinforced concrete structure 14 ft long, 11 ft wide, approximately 1 ft above grade, and 9 ft below grade. | Estimated to cost \$ 1,760,000 for all control structures and weir boxes. | FY 2006      |
| 3. 2904-S-160 Control Structure                          | UHU03 | A thick, reinforced concrete structure 9 ft long, 7 ft wide, approximately 1 ft above grade, and 9 ft below grade.   | Estimated to cost \$ 1,760,000 for all control structures and weir boxes. | FY 2006      |
| 4. 2904-S-170 Weir Box                                   | UHU04 | A reinforced concrete structure 16 ft long, 7 ft wide, 1 ft above grade, and 10 ft below grade.                      | Estimated to cost \$ 1,760,000 for all control structures and weir boxes. | FY 2006      |
| 5. 2904-S-171 Weir Box                                   | UHU05 | A thick, reinforced concrete structure, 13 ft long, 12 ft wide, and 10 ft below grade.                               | Estimated to cost \$ 1,760,000 for all control structures and weir boxes. | FY 2006      |
| 6. 2904-SA Sampler Building                              | UHU06 | A wooden structure 8 ft long, 8 ft wide, 7 ft above grade, and 4 ft below.                                           | Estimated to cost \$ 1,760,000 for all control structures and weir boxes. | FY 2006      |
| A.7 200 AREA CONTROL STRUCTURES AND WEIR BOXES - TOTAL 6 |       |                                                                                                                      |                                                                           |              |

## A.8 200 AREA DIRECT-BURIED TANKS.

| PROJECT                      | WBS   | GENERAL DESCRIPTION                                                        | DECOMMISSIONING COST                              | COMMENCE D&D |
|------------------------------|-------|----------------------------------------------------------------------------|---------------------------------------------------|--------------|
| 1. 241-B-361 Settling Tank   | UNU01 | A buried concrete tank 20 ft in diameter and 5 ft below grade.             | Estimated to cost \$295,000 for all buried tanks. | FY 2009      |
| 2. 270-E Neutralization Tank | UNU02 | A buried stainless steel tank 9 ft in diameter and 20 ft below grade.      | Estimated to cost \$295,000 for all buried tanks. | FY 2009      |
| 3. 241-T-361 Settling Tank   | UNU03 | A buried concrete tank 20 ft in diameter and 5 ft below grade.             | Estimated to cost \$295,000 for all buried tanks. | FY 2009      |
| 4. 241-U-361 Settling Tank   | UNU04 | A buried concrete tank 20 ft in diameter and 5 ft below grade.             | Estimated to cost \$295,000 for all buried tanks. | FY 2009      |
| 5. 241-Z-361 Settling Tank   | UNU05 | A buried concrete structure 28 ft tall, 15 ft wide, and 21 ft below grade. | Estimated to cost \$295,000 for all               | FY 2009      |

A-31/32

A.8 200 AREA DIRECT-BURIED TANKS - TOTAL 5

## A.9 300 AREA CONTAMINATED FACILITIES. (sheet 1 of 2)

| PROJECT                                   | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DECOMMISSIONING COST | COMMENCE D&D |
|-------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 1. 321 Hydromechanical Seismic Laboratory | UPA01 | <p>One-story concrete and bolted steel framework with fiberglass insulation in the ceiling, a basement and canyon area, and B, C, and D Additions. The roof is concrete with a 20-year built-up tar and gravel finish. Floors are concrete, and exterior walls are concrete and concrete block.</p> <p>Heating is by electric space heaters and steam coils in fresh air systems. Cooling is by evaporative units and a 3-ton refrigerated air conditioner in the control room. Sprinklers are provided except in the central region of the canyon area.</p> | \$ 1,764,000         | FY 1999      |
| 2. 308 Fuels Development Laboratory       | UPC01 | <p>A 94,294 square foot two-story laboratory with a high bay and a one-story rectangular office wing. The laboratory has exterior walls of reinforced concrete and concrete block. All floors are reinforced concrete inlaid with painted/vinyl tile. The laboratory rooms are divided into zones for contamination control.</p>                                                                                                                                                                                                                             | \$ 2,185,000         | FY 1999      |

## A.9 300 AREA CONTAMINATED FACILITIES. (sheet 2 of 2)

| PROJECT                                      | WBS   | GENERAL DESCRIPTION                                                                                                       | DECOMMISSIONING COST | COMMENCE D&D |
|----------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 3. 304-C Concretion Facility and Change Room | UP901 | This structure has corrugated metal siding and roof with concrete foundation and floor. It is 42 ft long, 60 ft wide, and | \$ 180,000           | FY 1999      |

A.9 300 AREA CONTAMINATED FACILITIES - TOTAL 3

## A.10 HANFORD NONCONTAMINATED FACILITIES. (sheet 1 of 7)

| PROJECT               | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DECOMMISSIONING COST | COMMENCE D&D |
|-----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 1. 1701-FA Gate House | UVP02 | A single-story poured-concrete building with concrete floors and flat concrete roof with tar and gravel surface. This building was equipped with sanitary services and lunch room. The structure is 12 ft high, 20 ft long, and 32 ft wide.                                                                                                                                                                                                                                | \$ 13,000            | FY 1996      |
| 2. 1720-HA Arsenal    | UV102 | A concrete structure 6 ft long, 8 ft wide and 8 ft high used to house explosives when they are needed at the 100 Areas for decommissioning work. The structure was used during the early days at Hanford as a Patrol arsenal vault.                                                                                                                                                                                                                                        | \$ 5,000             | FY 1996      |
| 3. 1713-H Warehouse   | UVA04 | An "L" shaped, single-story, steel frame structure with corrugated transite siding, 228 ft long, 62 ft wide, and 20 ft high. The foundation and floor are concrete and roof is built-up tar and gravel surfacing over flat-prefabricated concrete tile. There is a four-foot high concrete unloading platform on one side of the building. There is approximately 13,000 square feet of space in the building. It has been partitioned into three areas for storage space. | \$ 404,000           | FY 2009      |

## A.10 HANFORD NONCONTAMINATED FACILITIES. (sheet 2 of 7)

| PROJECT                           | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                            | DECOMMISSIONING COST | COMMENCE D&D |
|-----------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 4. 1702-DR Area Badge House       | UVP04 | A one-story wooden frame structure on a concrete floor and foundation 20 ft long, 20 ft wide, and 12 ft high. It has asbestos shake siding, gable wooden roof covered with roll roofing.                       | \$ 7,000             | FY 1996      |
| 5. 1713-KER Warehouse             | UVA03 | An 800 square foot sheet metal 'butler' building with concrete floor and footing. Currently used for miscellaneous equipment and material storage.                                                             | \$ 18,000            | FY 2009      |
| 6. 167-K Crosstie Tunnel Building | UV405 | A concrete and steel structure 49 ft long, 51 ft wide and 14 ft high that is the midway entry and ventilation shaft for the KE/KW crosstie tunnel. The walls of the structure contain large louvered openings. | \$ 5,000             | FY 2009      |
| 7. 166-AKE Oil Storage Facility   | UVA05 | A 'butler' building 17 ft long, 17 ft wide, and 10 ft high, used for oil and grease storage.                                                                                                                   | \$ 6,000             | FY 2009      |
| 8. 1702-KE Badge Badge            | UVP05 | A one-story wooden frame structure on a concrete floor and foundation 20 ft long, 20 ft wide, and 12 ft high with asbestos shake siding, and flat wooden roof covered with roll roofing.                       | \$ 6,000             | FY 2009      |

## A.10 HANFORD NONCONTAMINATED FACILITIES. (sheet 3 of 7)

| PROJECT                        | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DECOMMISSIONING COST | COMMENCE D&D |
|--------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 9. 185-B Water Treatment Plant | UVA02 | Steel and concrete block structure 307 ft long, by 48 ft wide, by 60 ft high, reinforced concrete foundation, precast concrete slab roof with built-up tar and gravel surfacing. Adjoins the 190-B Building and shares a common wall. The original mounting pedestals for the deaerators have been removed so that a large expanse of flat area exists. Services to the building are limited. At one time the building contained a water laboratory, instrument shop, and engineering test facility. When the deaerating was discontinued, the building served as a storage and maintenance work area. | \$ 248,000           | FY 1993      |
| 10. 1702-KW Badge House        | UVP06 | A one-story wooden frame structure 20 ft long, 20 ft wide, and 12 ft high on a concrete floor and foundation with asbestos shake siding, and a flat wooden roof covered with roll roofing.                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 9,000             | FY 2008      |
| 11. 1714-KW Warehouse          | UVA06 | An 800 sq ft sheet metal 'butler' building with concrete floor and footing used for storage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$ 16,000            | FY 2008      |
| 12. 1714-C Solvent Storage     | UVA01 | A steel frame, transite structure on a concrete foundation, 22 ft long, 7 ft wide, 10 ft high behind 105-C used as an oil house.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$ 5,000             | FY 1996      |

## A.10 HANFORD NONCONTAMINATED FACILITIES. (sheet 4 of 7)

| PROJECT                                            | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DECOMMISSIONING COST | COMMENCE D&D |
|----------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 13. 182-K Emergency Water Reservoir and Pump House | UV404 | A steel-framed structure with concrete foundation and floors, transite walls, and roof of insulated steel decking with built up tar and gravel surfacing, 51 ft long, 51 ft wide and 16 ft high. Hosued three 1,500 hp diesel engines to drive pumps and associated equipment for emergency reactor cooling. There are two underground storage tanks which provided diesel oil for the engines. The pump discharged into a common header which connected to the primary cooling system supply line in the 105 buildings. | \$ 75,000            | FY 2009      |
| 14. 110-KE Gas Storage Facility                    | UV406 | An outdoor gas unloading and storage area consisting of a number of 24-inch diameter by 80 feet long, high-pressure helium tanks, and four large diameter tanks used for carbon dioxide. The gas storage facility was served by a railroad spur and had equipment for transferring gas at high pressure. The 110 facilities were the receiving and storage area at the 115 buildings for the reactor graphite cooling media gas.                                                                                         | \$ 304,000           | FY 2010      |

## A.10 HANFORD NONCONTAMINATED FACILITIES. (sheet 5 of 7)

| PROJECT                                | WB'S  | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                  | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D |
|----------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| 15. 110-KW Gas Storage Facility        | UV407 | An outdoor gas storage area consisting of a number of 24-inch diameter by 80 ft long, high pressure helium tanks, and four large diameter, low-pressure tanks. The gas storage facility was served by a railroad spur and had equipment for transferring gas at high pressure.                       | \$ 304,000                     | FY 2010      |
| 16. 1702-C Area Badge House            | UVP03 | A one-story wooden frame structure on a concrete floor and foundation 10 ft long, 10 ft wide, and 10 ft high with asbestos shake siding, and a flat wooden roof covered with roll roofing.                                                                                                           | \$ 5,000                       | FY 1996      |
| 17. 190-B Main Pumphouse               | UV402 | A one-story reinforced concrete structure with concrete foundation 500 ft long, 200 ft wide, and 30 ft high with steel frame, concrete block super-structure and precast concrete roof covered with tar and gravel surfacing.                                                                        | \$ 1,636,000                   | FY 1993      |
| 18. 1701-BA Exclusion Area Badge House | UVP01 | A one-story concrete block structure on a concrete floor and foundation. It has a gable wooden roof, covered with roll roofing. It houses a portal monitor for personnel to use after entering facilities inside the exclusion area, and before leaving the area. 20 ft long, 20 ft wide, 12 ft high | \$ 9,000                       | FY 2009      |

## A.10 HANFORD NONCONTAMINATED FACILITIES. (sheet 6 of 7)

| PROJECT                | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                   | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D |
|------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| 19. 183-C Filter Plant | UV401 | Housed the water treatment and filtering facilities and consisted of a headhouse and chemical building (sold to and removed by a salvage contractor), flocculation and sedimentation basins (removed on Site Cleanup Program) and clearwell and storage with pumproom. The clearwells were four structural steel tanks (sold to and removed by a salvage contractor). | \$ 181,000                     | FY 1996      |

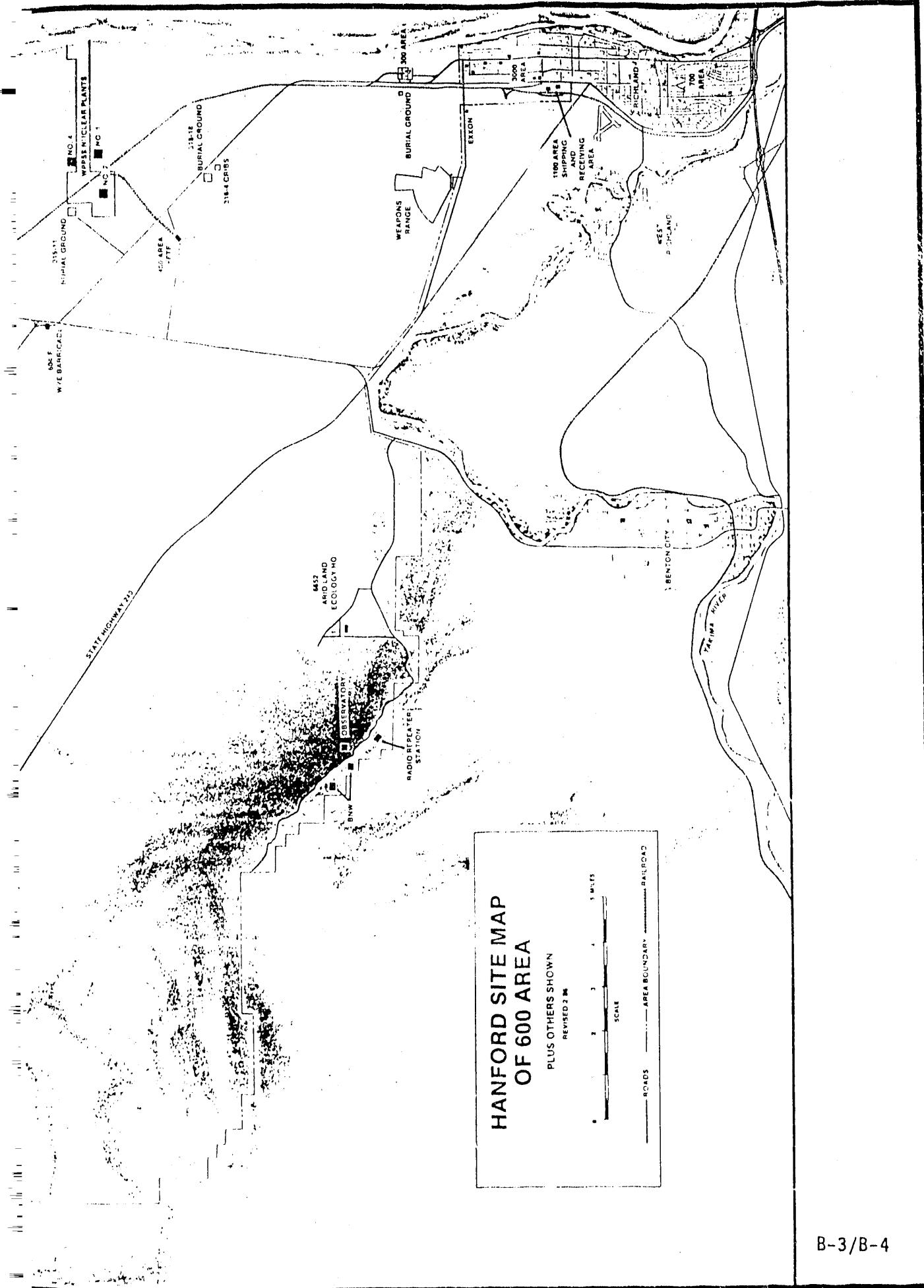
The filter building is a reinforced concrete and concrete block building 13,800 square feet, that housed the filter beds and controls. The filters were gravity flow with Wheeler bottoms. Built in two halves with a gullet between, the filter consisted of graded gravel, sand and graded anthracite coal. Backwashing was accomplished using purified water from the clearwells and was discharged through the gullet to a sewer. The pumproom was a reinforced concrete structure largely below grade. Equipment included transfer pumps for primary reactor cooling water, backwash pumps, high tank pumps, and pumps for power house water, fire, sanitary and emergency filter water.

## A.10 HANFORD NONCONTAMINATED FACILITIES. (sheet 7 of 7)

| PROJECT                           | WBS   | GENERAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                             | ESTIMATED DECOMMISSIONING COST | COMMENCE D&D |
|-----------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|
| 20. 165-KW Power Control Building | UV403 | <p>A single-story concrete structure 240 ft by 110 ft by 15 ft, with reinforced concrete floors, walls, and poured roof with built-up asphalt and gravel surfacing. The building consists of three parts:</p> <p>(1) the pump room and valve pit with steel grating floor providing work area;</p> <p>(2) the electrical area consisting of two concrete floors; and</p> <p>(3) the oil-fired steam plant and control room.</p> | \$ 542,000                     | FY 2008      |

A.10 HANFORD NON-CONTAMINATED FACILITIES - TOTAL 20

## A.11 200 AREA STORAGE VAULTS.


| PROJECT         | WBS   | GENERAL DESCRIPTION                                                                                                                                                                      | ESTIMATED DECOMMISSIONING COST                                      | COMMENCE D&D |
|-----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|
| 1. 244-UR Vault | UJU01 | Four stainless steel tanks of various capacity ranging from 8,000 gallons to 50,000 gallons. These tanks lay in an area 90 ft long, 26 ft wide, about 2 ft above grade, and 46 ft below. | Decommissioning of storage vaults is estimated to cost \$4,505,000. | FY 2006      |
| 2. 241-WR Vault | UJU02 | Nine steel 50,000 gallon tanks inside a reinforced concrete structure 125 ft long, 63 ft wide 8 ft above grade, and 58 ft below grade.                                                   | Decommissioning of storage vaults is estimated to cost \$4,505,000. | FY 2006      |

A.11 200 AREA STORAGE VAULTS - TOTAL 2

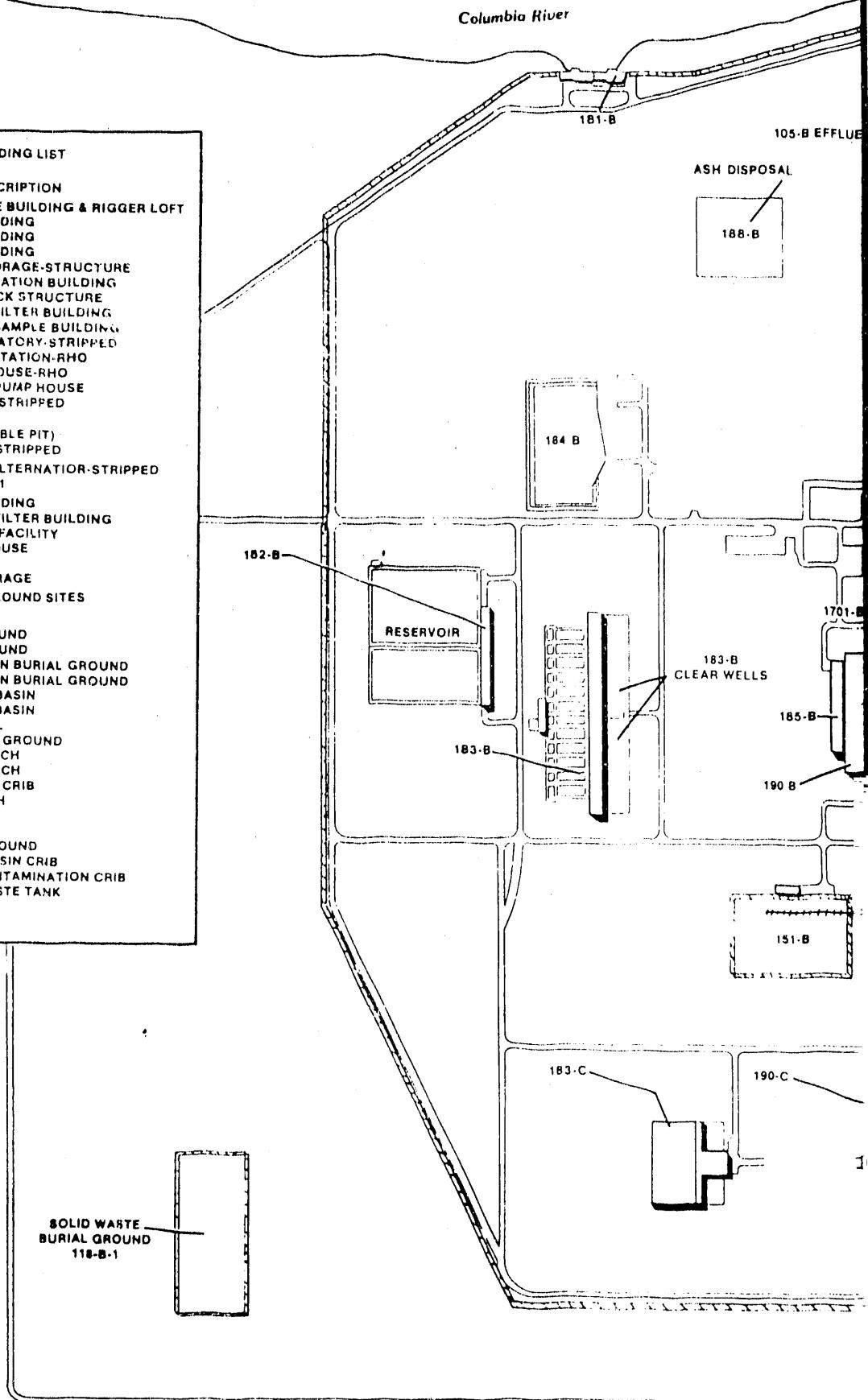
**APPENDIX B**  
**AREA SITE MAPS**

**NOTE:** The 600 Area map is included to show the location of 212-N, 212-P, and 212-R Storage Buildings, which are the only facilities in the Hanford Surplus Facilities Program (HSFP) Plan that are not inside or in close proximity to the 100 and 200 Area boundaries.

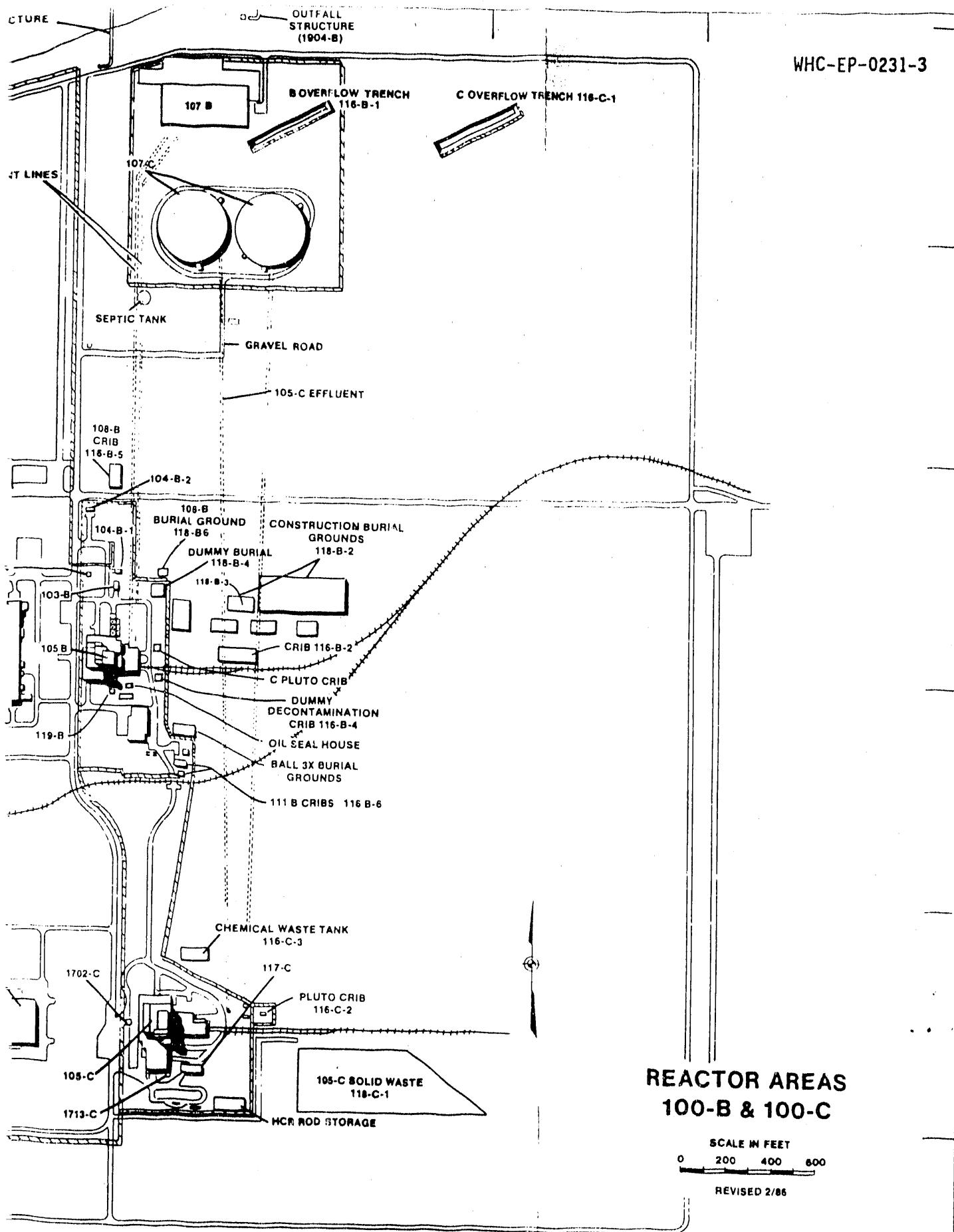




Columbia River


181-B

105-B EFFLU

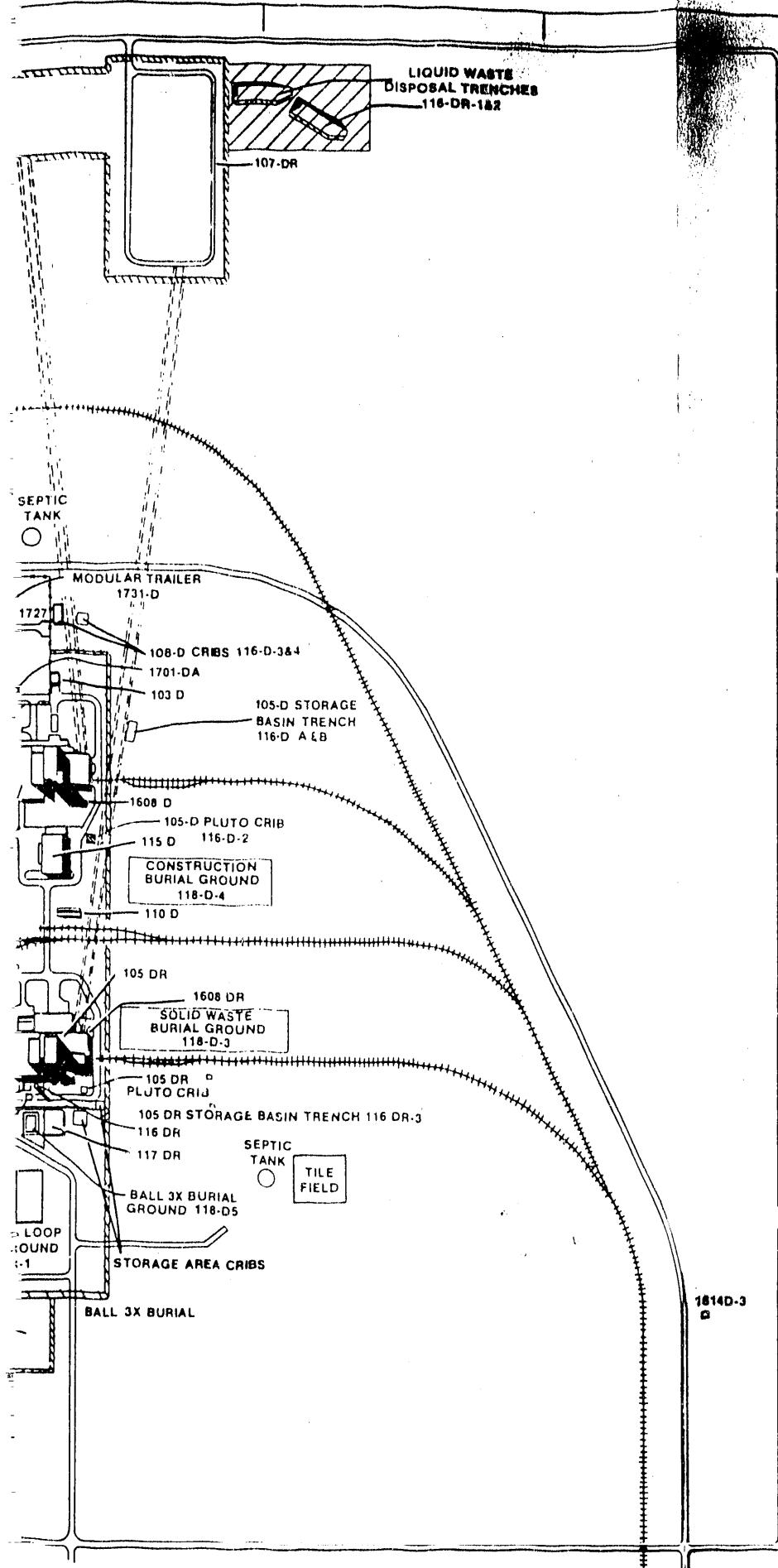

ASH DISPOSAL

188-B

| BUILDING LIST                            |                                     |
|------------------------------------------|-------------------------------------|
| BUILDING NUMBER                          | DESCRIPTION                         |
| 103-B                                    | FUEL STORAGE BUILDING & RIGGER LOFT |
| 104-B-1                                  | STORAGE BUILDING                    |
| 104-B-2                                  | STORAGE BUILDING                    |
| 105-B                                    | REACTOR BUILDING                    |
| 110-B                                    | PRESSURE STORAGE-STRUCTURE          |
| 115-B                                    | GAS RECIRCULATION BUILDING          |
| 116-B                                    | REACTOR STACK STRUCTURE             |
| 117-B                                    | EXHAUST AIR FILTER BUILDING         |
| 119-B                                    | EXHAUST AIR SAMPLE BUILDING         |
| 185-B                                    | WATER LABORATORY-STRIPPED           |
| 151-B                                    | PRIMARY SUBSTATION-RHO              |
| 181-B                                    | RIVER PUMP HOUSE-RHO                |
| 182-B                                    | RESERVOIR & PUMP HOUSE              |
| 183-B                                    | FILTER PLANT-STRIPPED               |
| 183-B                                    | CLEAR WELLS                         |
| 184-B                                    | COAL PIT (RUBBLE PIT)               |
| 190-B                                    | PUMP HOUSE-STRIPPED                 |
| 1621-B                                   | EMERGENCY ALTERNATOR-STRIPPED       |
| 1701-BA                                  | LUNCH ROOM-1                        |
| 105-C                                    | REACTOR BUILDING                    |
| 117-C                                    | EXHAUST AIR FILTER BUILDING         |
| 183-C                                    | FILTER PLANT FACILITY               |
| 190-C                                    | MAIN PUMP HOUSE                     |
| 1702-C                                   | BADGE HOUSE                         |
| 1713-C                                   | SOLVENT STORAGE                     |
| RADIOLOGICAL UNDERGROUND SITES (RETIRED) |                                     |
| 118-B-1                                  | B-BURIAL GROUND                     |
| 118-C-1                                  | C-BURIAL GROUND                     |
| 118-B-2                                  | CONSTRUCTION BURIAL GROUND          |
| 118-B-3                                  | CONSTRUCTION BURIAL GROUND          |
| 107-C                                    | C RETENTION BASIN                   |
| 107-B                                    | B RETENTION BASIN                   |
| 118-B-4                                  | DUMMY BURIAL                        |
| 118-B-5                                  | BALL X BURIAL GROUND                |
| 116-B-1                                  | B-LIQUID TRENCH                     |
| 116-C-1                                  | C-LIQUID TRENCH                     |
| 116-B-6                                  | 111-B PAD AND CRIB                  |
| 116-C-1                                  | LIQUID TRENCH                       |
| 116-C-2                                  | PLUTO CRIB                          |
| 116-B-5                                  | 108 CRIB                            |
| 118-B-6                                  | 108 BURIAL GROUND                   |
| 116-B-2                                  | B STORAGE BASIN CRIB                |
| 116-B-4                                  | DUMMY DECONTAMINATION CRIB          |
| 116-C-3                                  | CHEMICAL WASTE TANK                 |



WHC-EP-0231-3



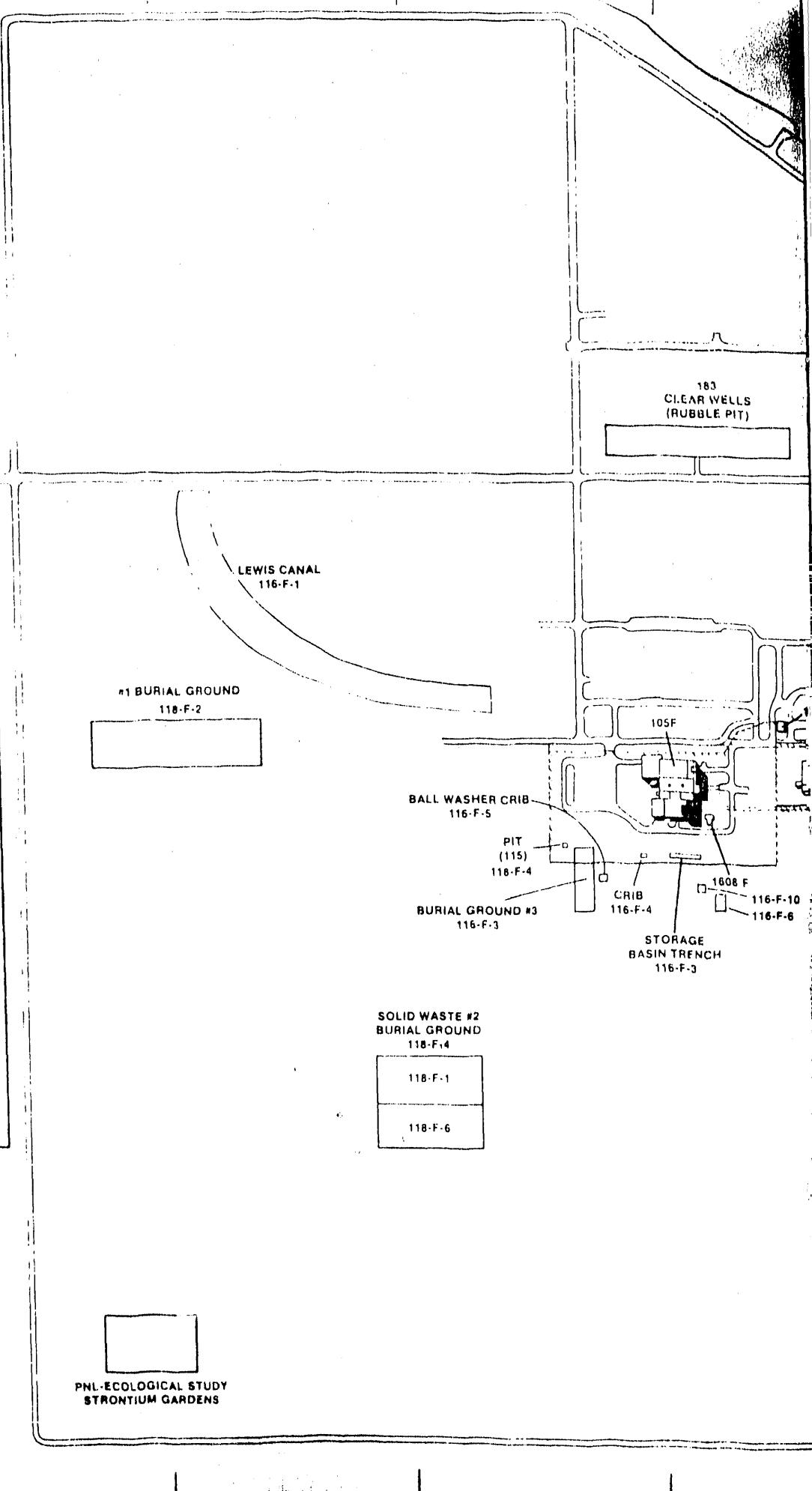

**RADIOLOGICAL UNDERGROUND SITES  
(RETIRED)**

118-D-1 ORIGINAL BURIAL GROUND NO. 1  
 118-D-2 ORIGINAL BURIAL GROUND NO. 2  
 118-D-3 ORIGINAL BURIAL GROUND NO. 3  
 118-D-4 CONSTRUCTION BURIAL GROUND  
 118-D-5 BALL 3X BURIAL GROUND  
 118-DR-1 105-DR GAS LOOP BURIAL GROUND  
 107-D  
 107-DR  
 116-DH 1&2 LIQUID WASTE DISPOSAL TRENCHES  
 116-D-A&B STORAGE BASIN TRENCH  
 116-D-3&4 108-D CRIBS  
 116-D-2 105-D PLUTO CRIB  
 116-DR-3 105-DR STORAGE BASIN TRENCH  
 116-DR-4 105-DR PLUTO CRIB  
 116-D-5 1904D OUTFALL  
 116-DR-5 1904-DR OUTFALL

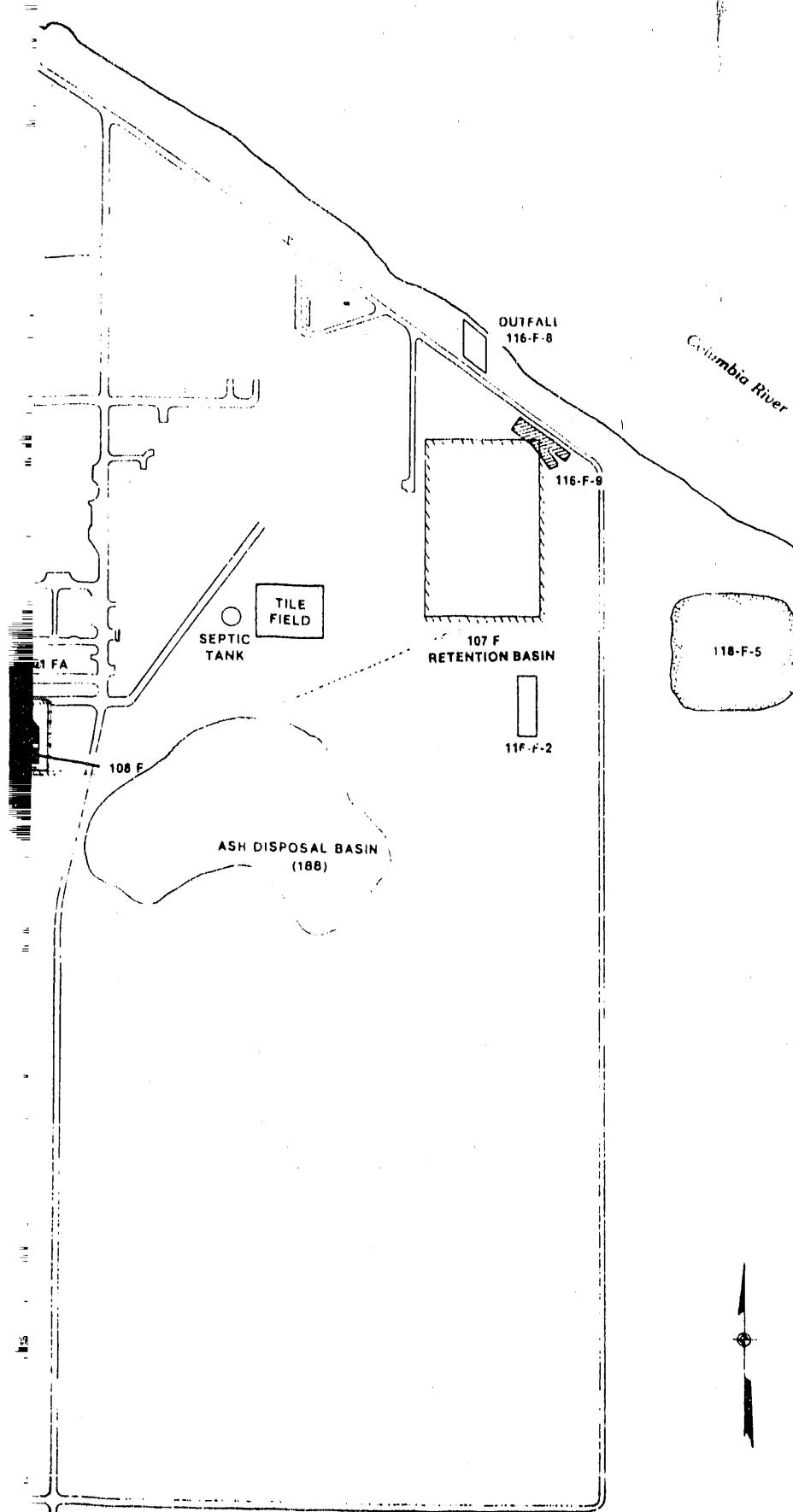


WHC-EP-0231-3




**REACTOR AREAS  
100-D & 100-DR**

REVISED 2/86


0 200 400 600  
SCALE IN FEET

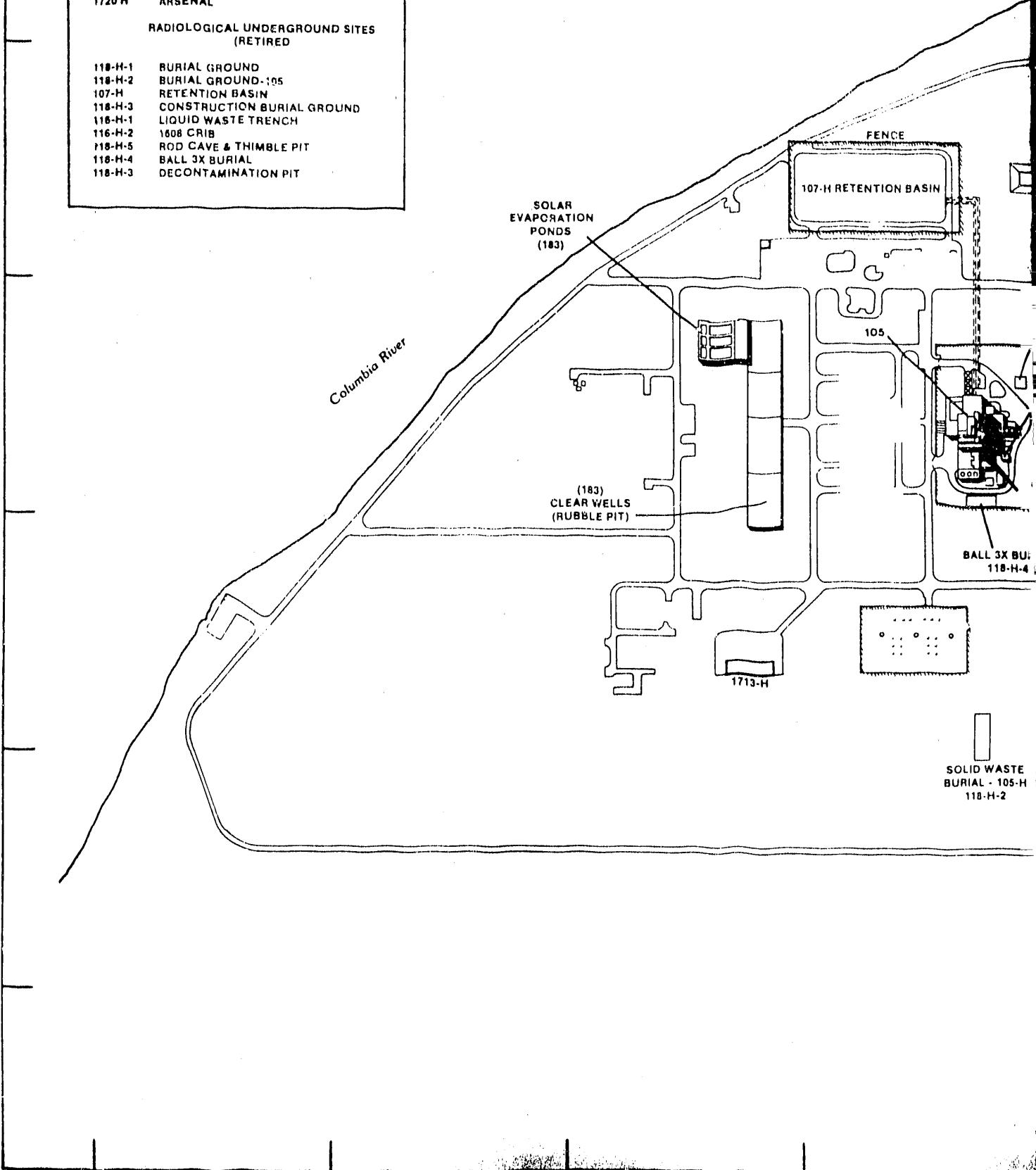
B-7/B-8

| <u>BUILDING LIST</u>                                |                                    |
|-----------------------------------------------------|------------------------------------|
| BUILDING NUMBER                                     | DESCRIPTION                        |
| 105 F                                               | REACTOR BUILDING                   |
| 108 F                                               | BIOLOGY LABORATORY - TEMP. OFFICES |
| 183 F                                               | CLEAR WELLS (RUBBLE PIT)           |
| 1608 F                                              | WASTE WATER PUMP HOUSE             |
| 1701 FA                                             | FIRE VIDAGUARD                     |
| <br><u>RADIOLOGICAL UNDERGROUND SITES (RETIRED)</u> |                                    |
| 118-F-1                                             | NO. 1 BURIAL GROUND                |
| 118-F-2                                             | NO. 2 BURIAL GROUND                |
| 118-F-3                                             | NO. 3 BURIAL GROUND                |
| 118-F-4                                             | 115-F PIT                          |
| 118-F-5                                             | SAWDUST PIT                        |
| 118-F-6                                             | BNW BURIAL GROUND                  |
| 118-F-1                                             | LEWIS CANAL                        |
| 118-F-2                                             | 107-F TRENCH                       |
| 118-F-3                                             | 105-F STORAGE BASIN TRENCH         |
| 118-F-4                                             | 105-F PLUTO CRIB                   |
| 118-F-5                                             | BALL WASHER                        |
| 118-F-8                                             | 1904 OUTFALL                       |
| 118-F-9                                             | ANIMAL WASTE LEACHING TRENCH       |
| 118-F-10                                            | SPACER DRAIN                       |
| 107-F                                               | RETENTION BASIN                    |

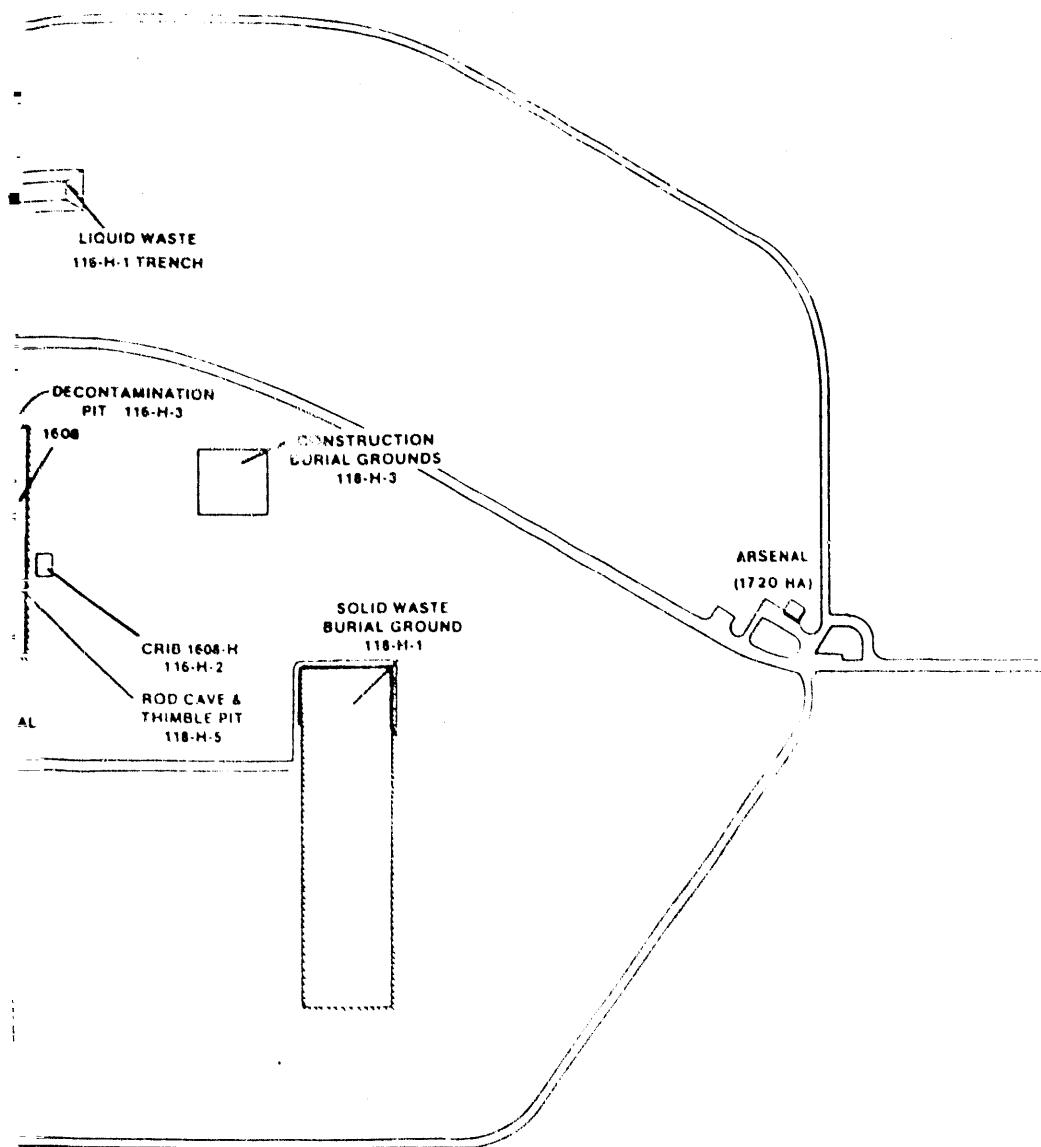


WHD-EP-0231-3




**REACTOR AREA  
100-F**

REVISED 2/86


A horizontal scale bar with tick marks at 0, 300, and 600. Below it is the text "SCALE IN FEET".

B-9/B-10

| BUILDING LIST                               |                                           |
|---------------------------------------------|-------------------------------------------|
| BUILDING NUMBER                             | DESCRIPTION                               |
| 183 H                                       | SOLAR PONDS & CLEAR WELLS<br>(RUBBLE PIT) |
| 105 H                                       | REACTOR BUILDING                          |
| 1608 H                                      | WASTE WATER PUMP HOUSE                    |
| 1713 H                                      | WAREHOUSE                                 |
| 1720 H                                      | ARSENAL                                   |
| RADIOLOGICAL UNDERGROUND SITES<br>(RETIRED) |                                           |
| 118-H-1                                     | BURIAL GROUND                             |
| 118-H-2                                     | BURIAL GROUND-105                         |
| 107-H                                       | RETENTION BASIN                           |
| 118-H-3                                     | CONSTRUCTION BURIAL GROUND                |
| 116-H-1                                     | LIQUID WASTE TRENCH                       |
| 116-H-2                                     | 1608 CRIB                                 |
| 118-H-5                                     | ROD CAVE & THIMBLE PIT                    |
| 118-H-4                                     | BALL 3X BURIAL                            |
| 118-H-3                                     | DECONTAMINATION PIT                       |



WHC-EP-0231-3



**REACTOR AREA**

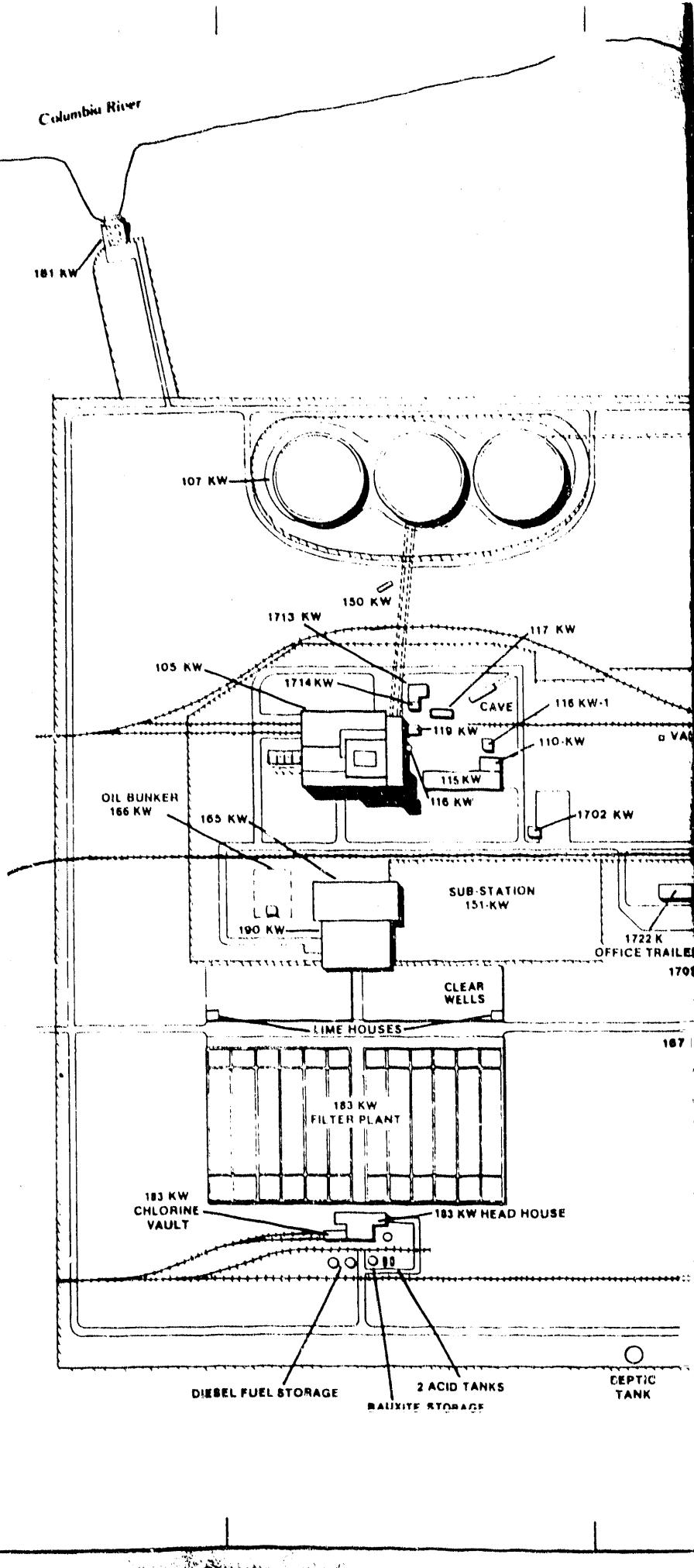
**100-H**

REVISED 2/86

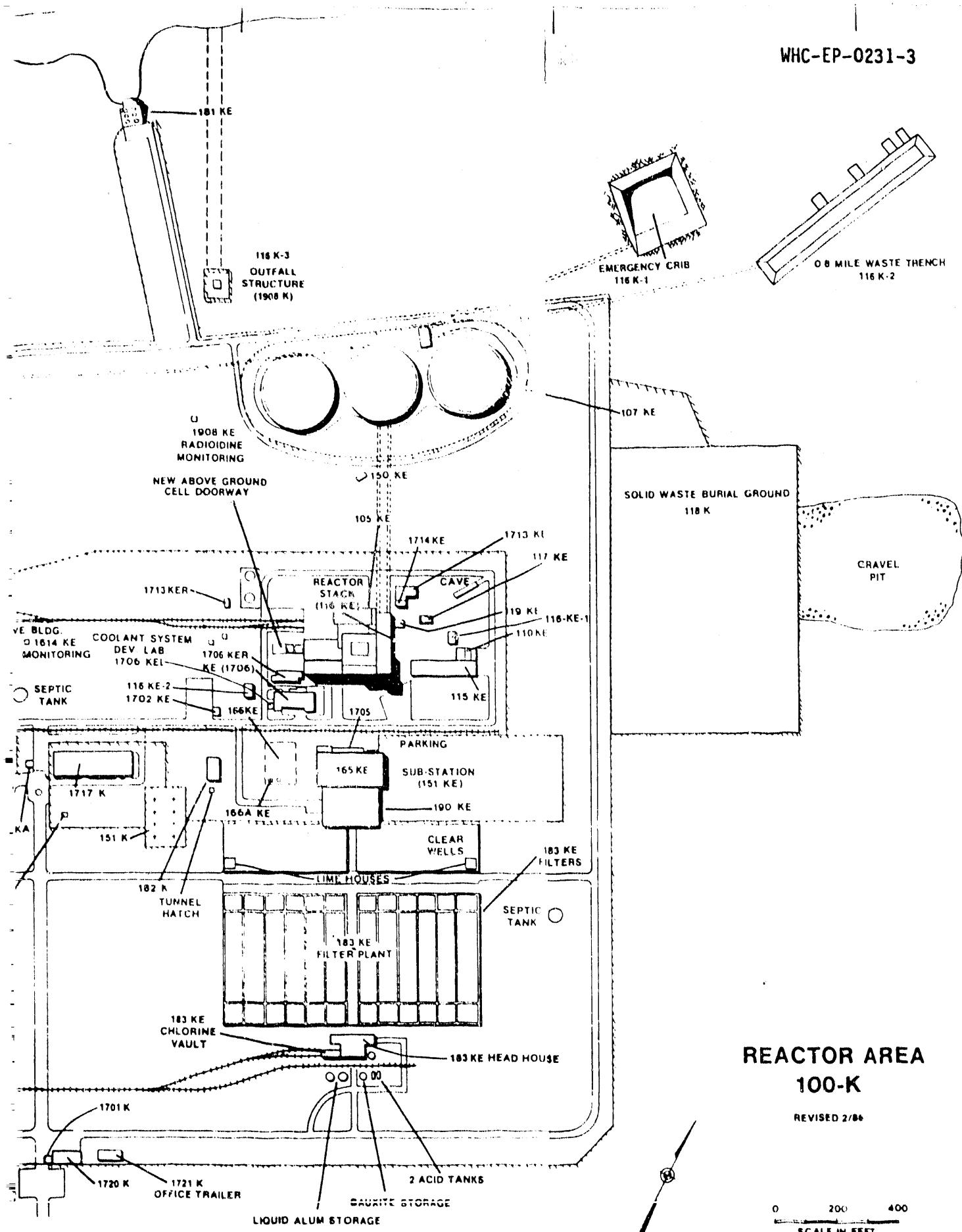
SCALE IN FEET

0 200 400 600

— ♦ —


**B-11/B-12**

BUILDING LIST

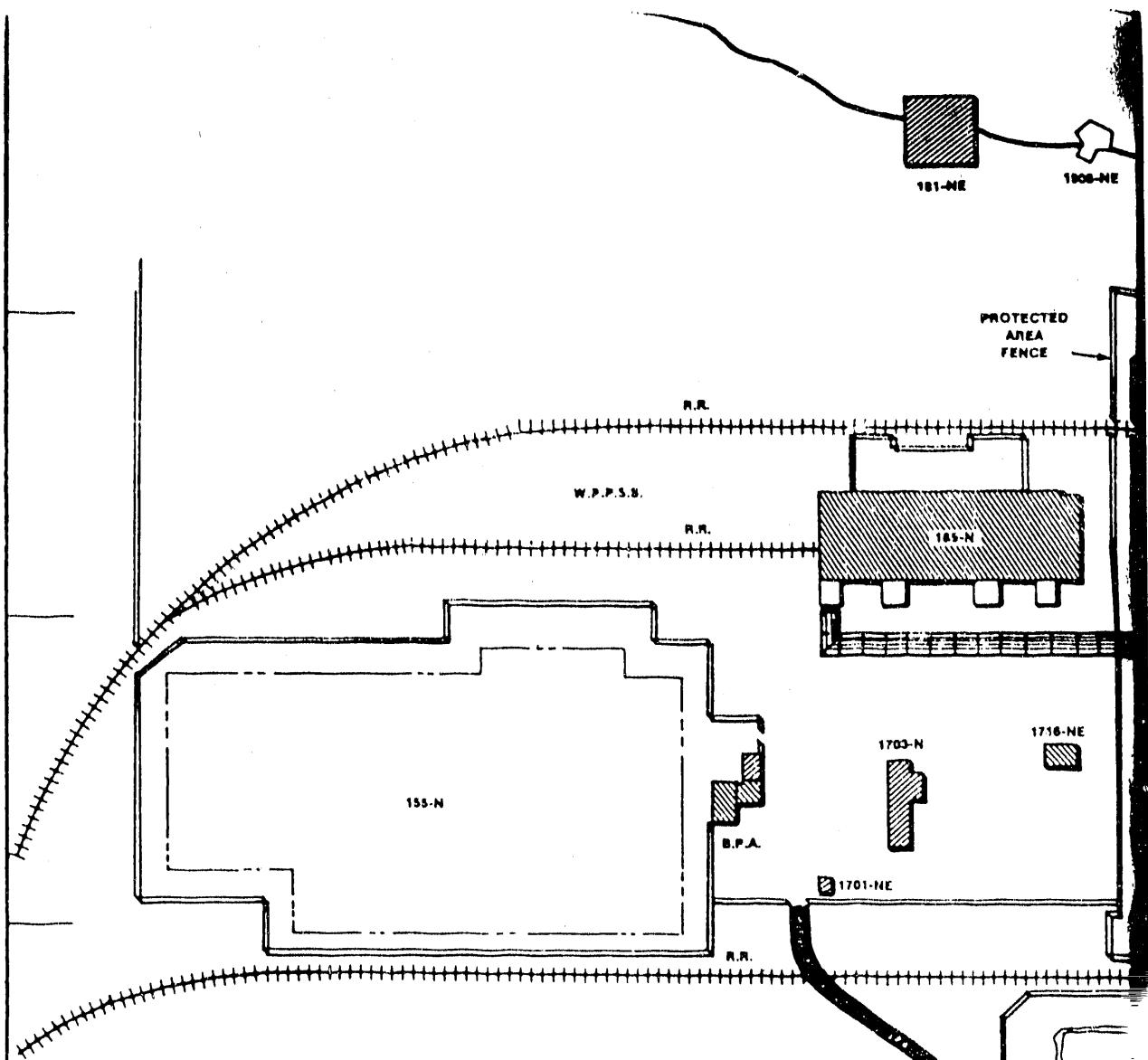

| BUILDING NUMBER | DESCRIPTION                           |
|-----------------|---------------------------------------|
| 105 KW          | REACTOR BUILDING                      |
| 107 KW          | WATER RETENTION BASIN                 |
| 110 KW          | GAS STORAGE                           |
| 115 KW          | GAS RECIRCULATION BUILDING            |
| 116 KW          | REACTOR STACK                         |
| 117 KW          | EXHAUST AIR FILTER BUILDING           |
| 119 KW          | EXHAUST AIR SAMPLE BUILDING           |
| 150 KW          | HEAT RECOVERY FACILITY                |
| 151 K           | SWITCHING STATION                     |
| 151 KW          | SUBSTATION 230-KV                     |
| 165 KW          | POWER CONTROL BUILDING                |
| 166 KW          | OIL BUNKER                            |
| 167 K           | CROSS TILE TUNNEL BUILDING            |
| 181 KW          | RIVER PUMP STATION                    |
| 182 K           | EMERGENCY WATER PUMP HOUSE            |
| 183 KW          | FILTER PLANT                          |
| 183 KW          | CHLORINE VAULT                        |
| 183 KW          | HEAD HOUSE                            |
| 190 KW          | MAIN PUMP HOUSE                       |
| 1701 K          | BADGE HOUSE                           |
| 1701 KA         | EXCLUSION AREA BADGE HOUSE            |
| 1702 KW         | BADGE HOUSE                           |
| 1713 KW         | WAREHOUSE                             |
| 1714 KW         | OIL STORAGE                           |
| 1717 K          | MAINTENANCE & TRANSPORTATION          |
| 1720 K          | OFFICES & TELEPHONE EXCHANGE          |
| 1721 K          | OFFICE TRAILER                        |
| 1722 K          | OFFICE TRAILER                        |
| 105 KE          | REACTOR FACILITY                      |
| 107 KE          | WATER RETENTION BASIN                 |
| 110 KE          | GAS STORAGE                           |
| 115 KE          | GAS RECIRCULATION BUILDING            |
| 116 KE          | REACTOR STACK                         |
| 117 KE          | EXHAUST AIR FILTER BUILDING           |
| 119 KE          | MAINTENANCE SHOP                      |
| 120 KE          | HEAT RECOVERY FACILITY                |
| 165 KE          | POWER CONTROL BUILDING                |
| 166-A KE        | OIL HOUSE                             |
| 166 KE          | OIL BUNKER                            |
| 181 KE          | RIVER PUMP STATION                    |
| 183 KE          | CHLORINE VAULT                        |
| 183 KE          | HEAD HOUSE                            |
| 1702 KE         | BADGE HOUSE                           |
| 1705            | EFFLUENT WATER TREATMENT PILOT PLANT, |
| 1706 KE         | WATER STUDIES SEMIWORKS FACILITY      |
| 1706 KER        | WATER STUDIES RECIRCULATION BUILDING  |
| 1713 KE         | SHOP BUILDING                         |
| 1713 KER        | WAREHOUSE                             |
| 1714 KE         | OIL & PAINT STORAGE                   |

**RADIOLOGICAL UNDERGROUND SITES  
(RETIRED)**

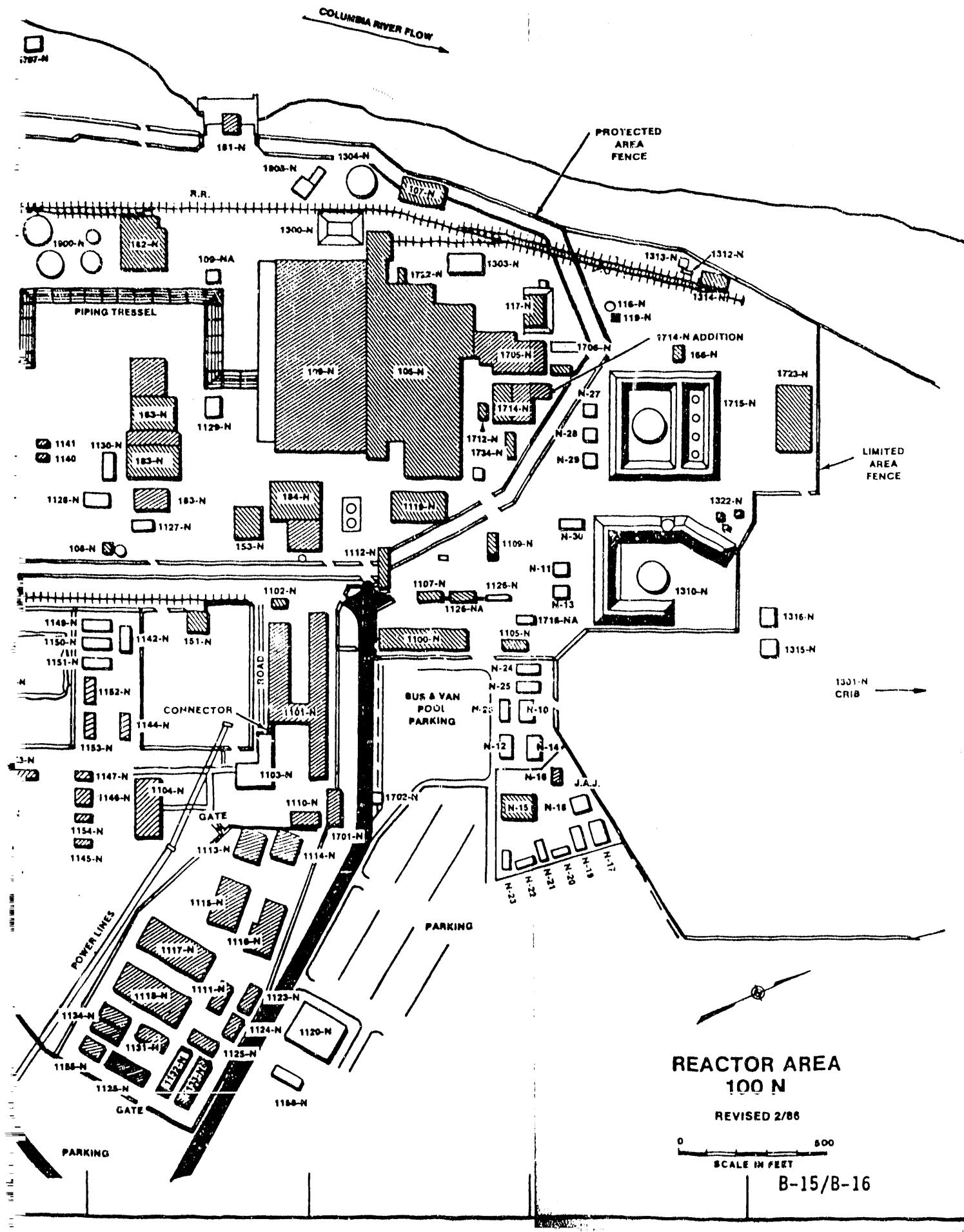
|          |                            |
|----------|----------------------------|
| 116 K    | SOLID WASTE BURIAL GROUNDS |
| 116 K-1  | EMERGENCY CRIB             |
| 116 K-2  | .8 MILE WASTE TRENCH       |
| 107 KE   | RETENTICH BASIN TANKS      |
| 107 KW   | RETENTION BASIN TANKS      |
| 116 KE-1 | 115 KE CRIB                |
| 116 KW-1 | 115 KW CRIB                |
| 116 KE-2 | 1706 KER CRIB              |
| 110 K-3  | 1908 OUTFALL               |



WHD-EP-0231-3

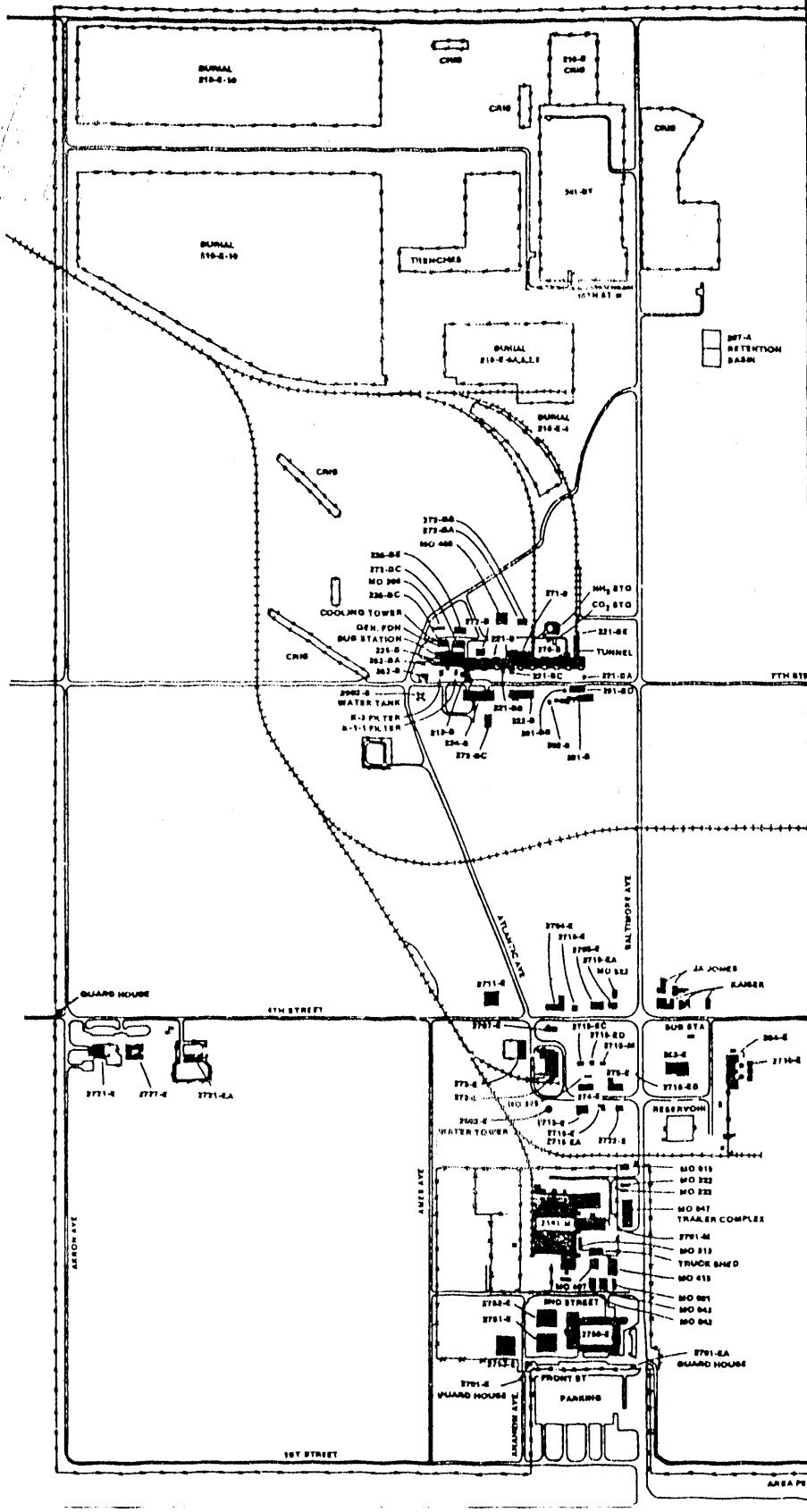



## REACTOR AREA 100-K

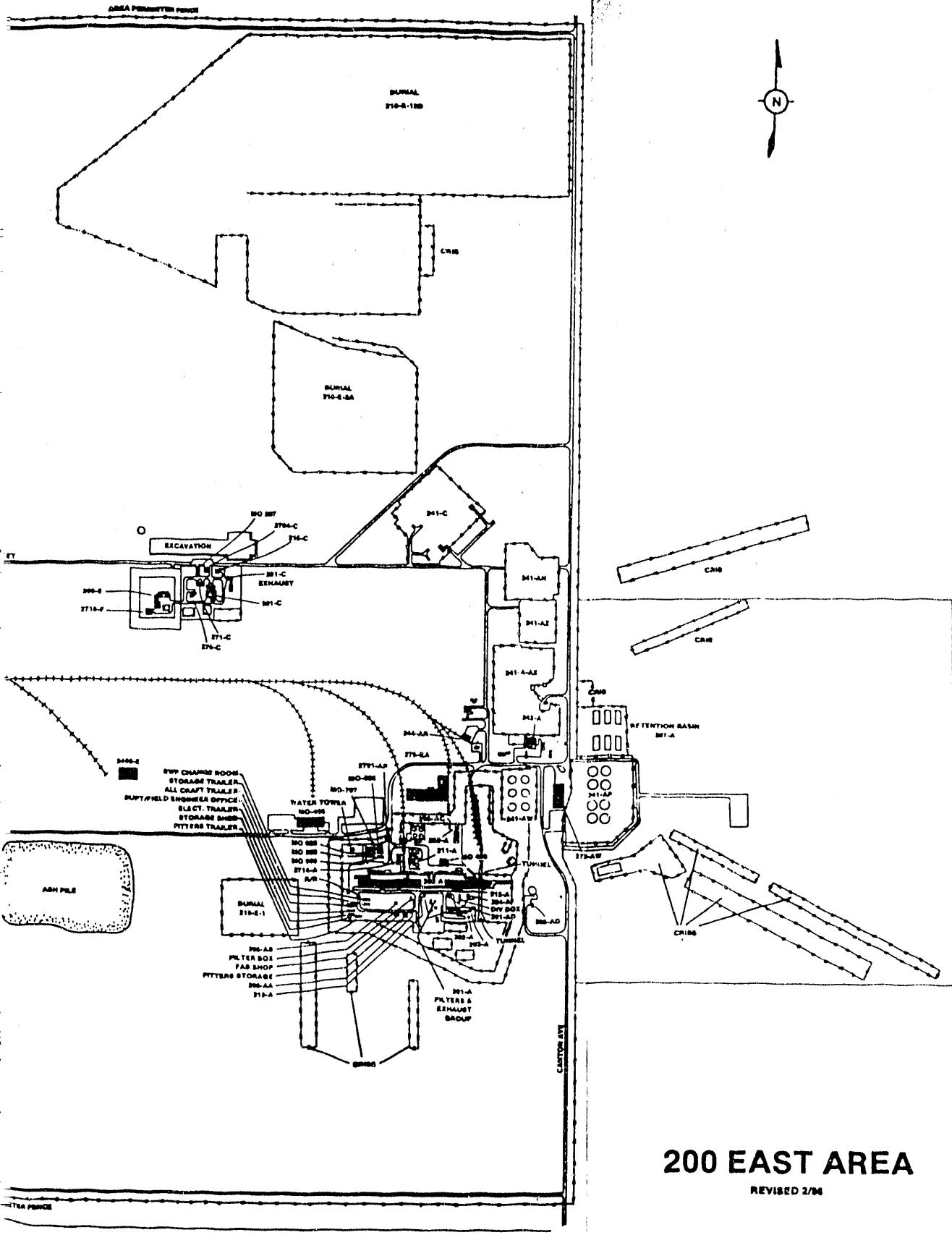

REVISED 2/86

0 200 400  
SCALE IN FEET

B-13/B-14




| BUILDING LIST   |                                  |                 |                                               |                 |                                               |
|-----------------|----------------------------------|-----------------|-----------------------------------------------|-----------------|-----------------------------------------------|
| BUILDING NUMBER | DESCRIPTION                      | BUILDING NUMBER | DESCRIPTION                                   | BUILDING NUMBER | DESCRIPTION                                   |
| 106-N           | REACTOR BUILDING                 | 1128-N          | OFFICE BUILDING (TLR.)                        | 1324-NA         | NON-RADIOACTIVE WASTE WATER PERCOLATION PONDS |
| 107-N           | BASIN RECIRCULATION FACILITY     | 1129-N          | OFFICE BUILDING (TLR.)                        | 1701-N          | BADGE HOUSE (LIMITED AREA)                    |
| 108-N           | CHEMICAL LINER DADING FACILITY   | 1129-NA         | OFFICE BUILDING (TLR.)                        | 1702-N          | VEHICLE INSPECTION STATION                    |
| 109-N           | HEAT EXCHANGER BUILDING          | 1127-N          | MOBILE OUTAGE LOCKER ROOM                     | 1703-N          | WPPSS                                         |
| 109-NA          | STEAM & FLOW BUILDING            | 1128-N          | MOBILE OUTAGE LOCKER ROOM                     | 1704-N          | PLANT ASSISTANCE FACILITY                     |
| 110-N           | AIR STACK                        | 1129-N          | SPECIAL WAREHOUSE                             | 1705-N          | STORAGE BUILDING                              |
| 111-N           | FILTER BUILDING                  | 1129-N          | WPP CHANGE ROOM BLDG                          | 1707-N          | STORAGE BOAT HOUSE                            |
| 111-NVH         | VALVE CONTROL HOUSE              | 1131-N          | KEN FIELD OFFICE                              | 1712-N          | INSULATION SHOP                               |
| 112-N           | AIR SAMPLING MONITORING          | 1132-N          | MOBILE OFFICE                                 | 1714-N          | WAREHOUSE                                     |
| 113-N           | 250 KV ELEC SUBSTATION           | 1133-N          | MOBILE OFFICE                                 | 1714-NA         | RECEIVING INSPECTION FACILITY                 |
| 113-N           | SWITCH GEAR BUILDING             | 1134-N          | KEN MOBILE OFFICE                             | 1714-NB         | TOOL STORAGE SHED                             |
| 114-N           | B.P.A. SWITCH YARD               | 1134-NA         | MOTOR GENERATOR SUPPORT                       | 1715-N          | DIESEL OIL STORAGE TANKS                      |
| 115-N           | DEMINERALIZATION PLANT           | 1135-N          | MOBILE OFFICE                                 | 1715-NA         | UNDERGROUND OIL TANK 105K GAI                 |
| 116-N           | FUEL OIL STORAGE                 | 1136-N          | WOMEN'S RESTROOM                              | 1716-N          | GAS STATION                                   |
| 117-N           | RIVER PUMP HOUSE (106-N)         | 1141-N          | MENTS RESTROOM                                | 1722-N          | DECONTAMINATION HOT SHOP BLDG                 |
| 117-NE          | RIVER PUMP HOUSE (WPPSS)         | 1142-N          | TELEPHONE CENTER                              | 1723-N          | CONTAM. EQUIP. STORAGE BLDG                   |
| 118-N           | HIGH LIFT PUMP HOUSE             | 1143-N          | PAINT SHOP                                    | 1734-N          | GAS BOTTLE STORAGE                            |
| 119-N           | WATER FILTER PLANT               | 1144-N          | BANDIA NATIONAL LAB                           | 1700-N          | WATER SUPPLY TANKS                            |
| 120-N           | PLANT SERVICE POWER HOUSE        | 1145-N          | LOCKER ROOM TRAILER                           | 1804-N          | SEAL WELL                                     |
| 120-NA          | AUXILIARY POWER ANNEX BLDG.      | 1146-N          | OFFICE BLD. TRAILER                           | 1804-NF         | SEAL WELL (WPPSS)                             |
| 125-N           | TURBINE GEN. BLDG. (WPPSS)       | 1147-N          | OFFICE FACILITY                               | N-10            | ALL CRAFTS LUNCHROOM                          |
| 126-N           | ADMINISTRATION & FIRST AID BLDG. | 1149-N          | OFFICE FACILITY                               | N-11            | INSULATORS SHOP BLDG.                         |
| 126-N           | OFFICE BUILDING                  | 1150-N          | OFFICE FACILITY                               | N-12            | OFFICE BLDG. (TLR.)                           |
| 126-N           | OFFICE BUILDING (TLR.)           | 1151-N          | OFFICE FACILITY                               | N-13            | PIPEFITTER STORAGE                            |
| 126-N           | OFFICE BUILDING (TLR.)           | 1152-N          | OFFICE FACILITY                               | N-14            | OFFICE BUILDING (TLR.)                        |
| 126-N           | OFFICE BUILDING (TLR.)           | 1153-N          | OFFICE FACILITY                               | N-15            | PIPEFITTER SHOP & IRONWORKER                  |
| 126-N           | OFFICE BUILDING (TLR.)           | 1154-N          | OFFICE FACILITY                               | N-16            | CARPENTER SHOP                                |
| 126-N           | OFFICE BUILDING (TLR.)           | 1155-N          | OFFICE FACILITY                               | N-17            | PAINT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1157-N          | OFFICE FACILITY                               | N-18            | ELECTRICIAN SHOP BLDG.                        |
| 126-N           | OFFICE BUILDING (TLR.)           | 1158-N          | OFFICE FACILITY                               | N-19            | PIPEFITTER SHOP                               |
| 126-N           | OFFICE BUILDING (TLR.)           | 1159-N          | RADIOACTIVE WASTE DISPOSAL                    | N-20            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1160-N          | CRC                                           | N-21            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1161-N          | RADIOACTIVE DUSTY BURNUP FAC.                 | N-22            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1162-N          | EMERGENCY DUSTY BURNUP TANK                   | N-23            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1214-N          | RADIOACTIVE CHEM. WASTE TREATMENT             | N-24            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1215-N          | LIQUID WASTE LOADOUT STATION                  | N-25            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1216-N          | ORANGE & CONTROL ROAD                         | N-26            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1217-N          | LIQUID WASTE DISPOSAL STATION                 | N-27            | CRAFT SHOP                                    |
| 126-N           | LOCKER ROOM BUILDING (TLR.)      | 1218-N          | DIVERSION SYSTEM VALVE HOUSE                  | N-28            | CRAFT SHOP                                    |
| 126-N           | WAREHOUSE-TRAINING BLDG.         | 1219-N          | VALVE HOUSE                                   | N-29            | CRAFT SHOP                                    |
| 126-N           | OFFICE BUILDING (TLR.)           | 1220-N          | WASTE TREATMENT PILOT PLANT FACIL.            | N-30            | CRAFT SHOP                                    |
| 126-N           | EMERGENCY CONTROL CENTER (TLR.)  | 1224-N          | NON-RADIOACTIVE WASTE WATER PERCOLATION PONDS |                 |                                               |



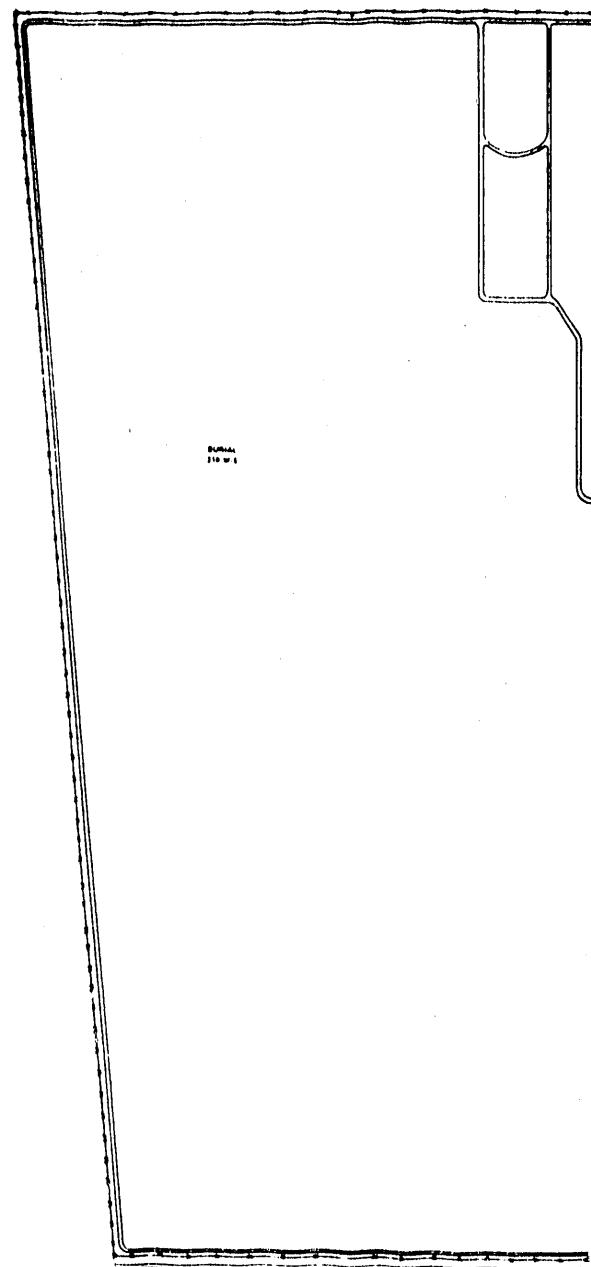

## BUILDING LIST

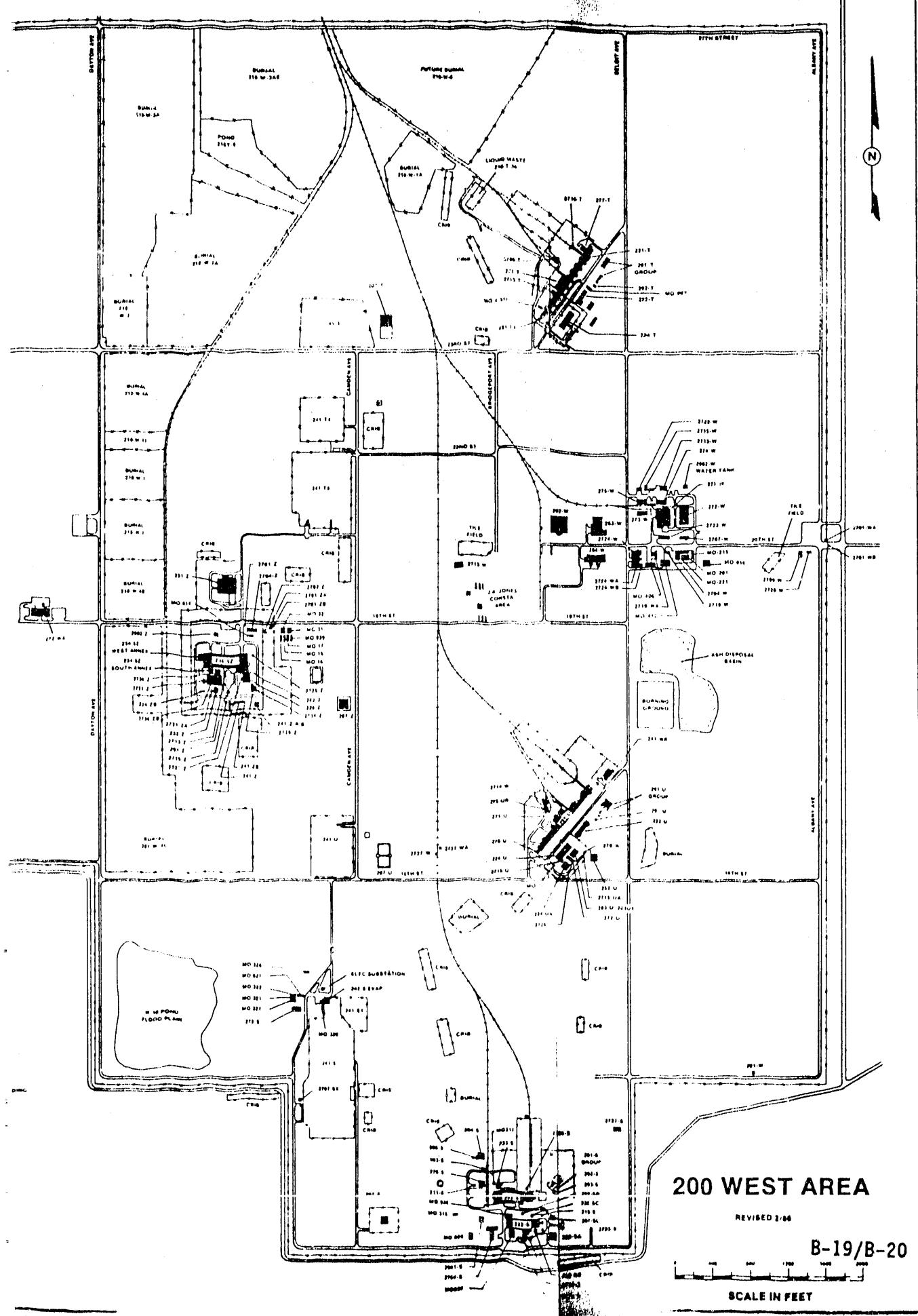
|                  |                                         |
|------------------|-----------------------------------------|
| 201-C            | STRONTIUM SEMI WORKS                    |
| 202-A            | PUREX                                   |
| 207-A            | RETENTION BASIN                         |
| 209-E            | BNW CRITICAL MASS LAB                   |
| 211-A            | CHEMICAL MAKE-UP TANK FARM              |
| 212-A, 212-B     | FISSION PRODUCTS, LOADOUT STATION       |
| 215-C            | GAS PREPARATION BUILDING                |
| 216-C            | GAS PREPARATION BUILDING                |
| 218-E-4,5,5A,2,9 | BURIAL GROUNDS                          |
| 218-E-10         | BURIAL GROUND                           |
| 218-E-12B        | BURIAL GROUND                           |
| 221-E            | SEPARATION BUILDING                     |
| 221-BF           | CONDENSATE EFFLUENT DISCHARGE FACILITY  |
| 222-B            | OFFICE BUILDING                         |
| 224-B            | STORAGE BUILDING                        |
| 225-B            | ENCAPSULATION BUILDING                  |
| 241-A, AX        | WASTE STORAGE TANK FARM                 |
| 241-AN           | TANK FARM                               |
| 241-AY           | TANK FARM                               |
| 241-BY           | TANK FARM                               |
| 241-AW           | WASTE STORAGE TANK FARM                 |
| 241-AZ           | WASTE STORAGE TANK FARM                 |
| 241-C            | WASTE STORAGE TANK FARM                 |
| 242-A            | EVAPORATION BUILDING                    |
| 244-A, AR, BXR   | VAULTS                                  |
| 271-B            | SERVICE BUILDING                        |
| 271-CR           | CONTROL HOUSE                           |
| 272-BC, E        | SHOPS                                   |
| 273-E            | ABANDONED                               |
| 274-E            | MAINTENANCE SHOP                        |
| 275-E            | CARPENTER'S PAINT SHOP                  |
| 275-EA           | WAREHOUSE                               |
| 276-B            | SOLVENT STORAGE                         |
| 282-E            | RESERVOIR                               |
| 283-E            | FILTER PLANT                            |
| 284-E            | POWER HOUSE                             |
| 291-A            | FAN HOUSE & STACK                       |
| 291-B            | SAND FILTERS                            |
| 291-BC, BD, BF   | NEW FILTERS                             |
| 291-BE           | STACK                                   |
| 2910-BG          | STACK AIR SAMPLER                       |
| 291-C, 292-B     | VENTILATING STACKS                      |
| 293-A            | OFF GAS TREATMENT & ACID RECOVERY BLDG. |
| 2101-M           | SPARE PARTS AND ELECTRICAL WAREHOUSE    |
| 2400-E           | DRY MATERIAL HANDLING FACILITY          |
| 2701-M           | STORAGE BUILDING                        |
| 2703-E           | CHEMICAL TESTING FACILITY               |
| 2704-C, E        | OFFICE BUILDING                         |
| 2707-E           | CHANGE HOUSE                            |
| 2709-E           | VACANT                                  |
| 2713-E           | OFFICE BUILDING                         |
| 2715-E           | oIL & PAINT STORAGE BUILDING            |
| 2715-M           | INFLAMMABLE STORAGE & PAINT SPRAY BLDG. |
| 2716-E           | STORAGE                                 |
| 2718-E           | CRITICAL MASS FISSILE STORAGE BLDG.     |
| 2719-E           | FIRST AID STATION                       |
| 2720-E           | VACANT                                  |
| 2721-E           | PATROL HEADQUARTERS                     |
| 2721-EA          | HELICOPTER FACILITY                     |
| 2722-E           | OFFICE BUILDING                         |
| 2727-E           | OFFICE BUILDING                         |
| 2750-E           | OFFICE BUILDING                         |
| 2751-E           | OFFICE BUILDING                         |
| 2752-E           | OFFICE BUILDING                         |
| 2753-E           | OFFICE BUILDING                         |



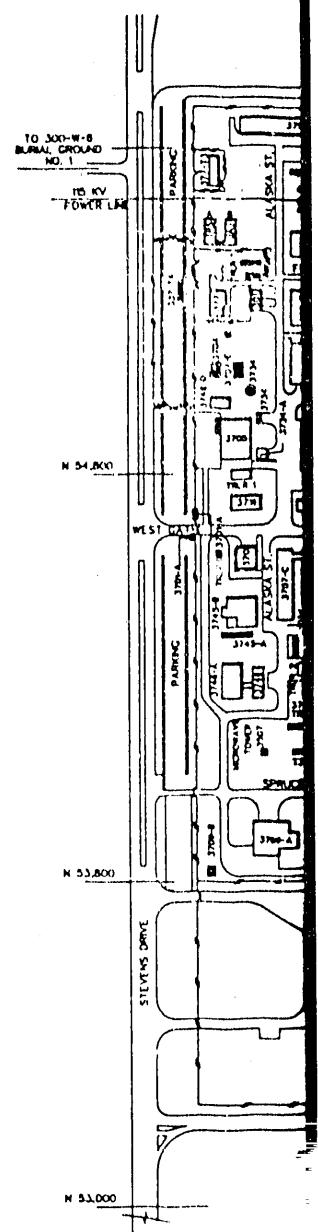
WHD-EP-0231-3



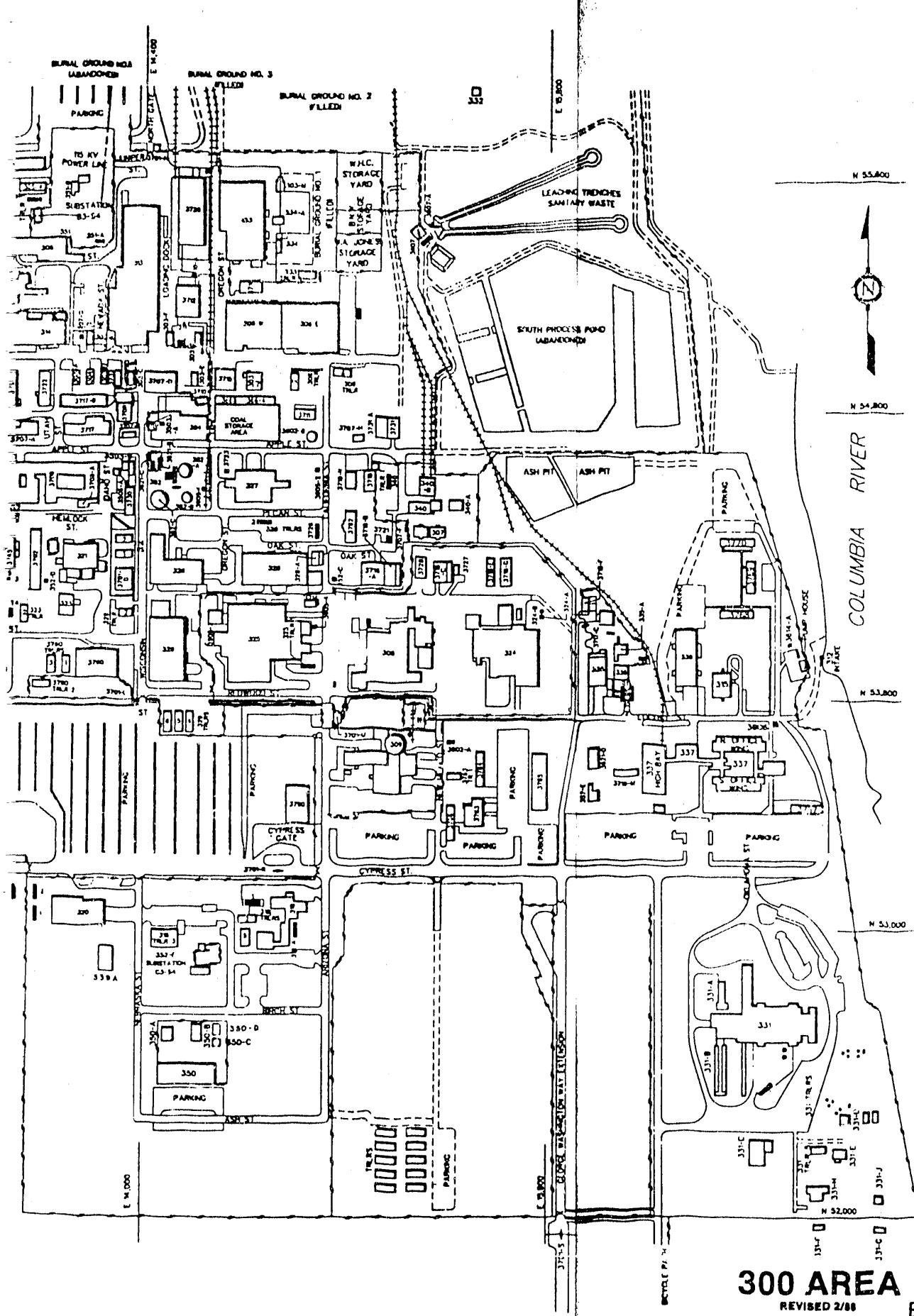

## 200 EAST AREA


REVISED 2/04

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000


SCALE IN FEET

B-17/B-18





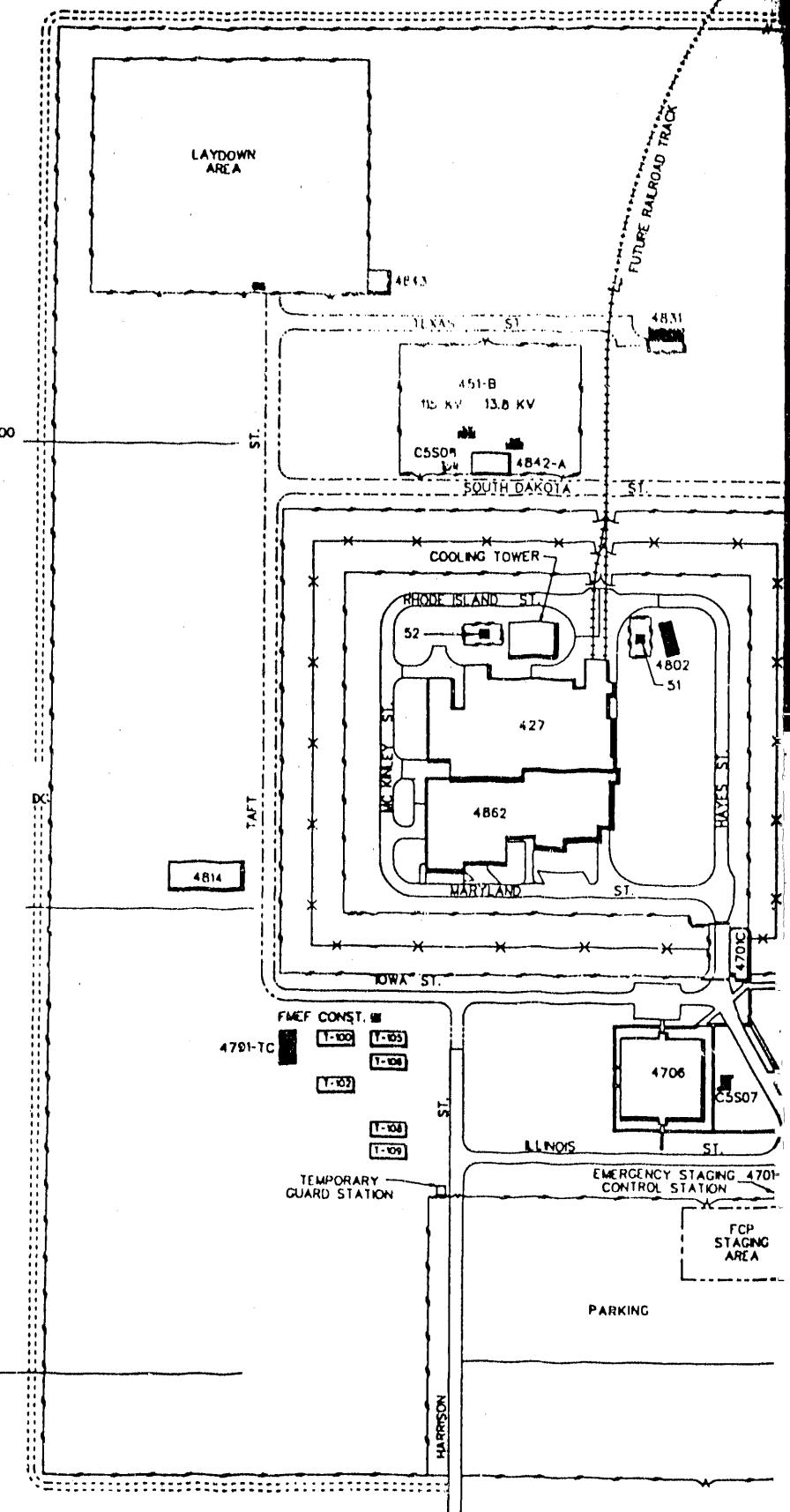

| BLDG       | BLDG NAME                                   | LANDLORD |
|------------|---------------------------------------------|----------|
| 261        | STORAGE                                     | WMC      |
| 262-A      | URANIUM STORAGE                             | WMC      |
| 262-B      | URANIUM STORAGE                             | WMC      |
| 262-C      | MATERIALS EVALUATION LAB                    | PHL      |
| 262-D      | URANIUM STORAGE                             | WMC      |
| 262-E      | CHIMICAL PUMP HOUSE                         | WMC      |
| 262-F      | URANIUM STORAGE                             | WMC      |
| 262-G      | MATERIAL STORAGE                            | PHL      |
| 262-H      | STORAGE                                     | WMC      |
| 262-I      | URANIUM OTHER FACILITY                      | WMC      |
| 264        | CONSTRUCTION FACILITY                       | WMC      |
| 266        | HOT CELL VERIFICATION FACILITY (HCVF)       | WMC      |
| 266A       | ENGINEERING DEVELOPMENT LAB ANNEX           | PHL      |
| 266(EST)   | FABRICATION AND TESTING LAB                 | WMC      |
| 266(WEST)  | FABRICATION DEVELOPMENT LAB                 | PHL      |
| 268        | FUEL DEVELOPMENT LABORATORY                 | WMC      |
| 271        | CONTROL AND DATA SYSTEMS                    | WMC      |
| 273        | STEAM HOUSE                                 | WMC      |
| 275        | FUEL & MANUFACTURING LABORATORY             | WMC      |
| 276        | ENGINEERING DEVELOPMENT LAB                 | PHL      |
| 278        | PURIFIED WATER PLANT                        | WMC      |
| 279        | RADIOLOGICAL CALIBRATION & DEVELOPMENT LAB  | PHL      |
| 281        | ANALYTICAL & NUCLEAR RESEARCH               | WMC      |
| 282        | HYDRO & CHEMICAL FACILITY                   | WMC      |
| 283        | METALS CREEP LABORATORY                     | WMC      |
| 284-A & C  | CHEMICAL ENGINEERING LABORATORY             | WMC      |
| 285        | RADIOCHEMISTRY LABORATORY                   | WMC      |
| 286        | MATERIALS TECHNICAL DATA LABORATORY         | WMC      |
| 287        | POST IRRADIATION TESTING LABORATORY         | WMC      |
| 288        | ENGINEERING SERVICES AND SAFETY             | WMC      |
| 289        | PHYSICAL SCIENCE LABORATORY                 | PHL      |
| 291        | LMT SCIENCES LABORATORY                     | PHL      |
| 291-A      | HYDRO TEST LABORATORY                       | PHL      |
| 291-B      | POLE KEEPER                                 | PHL      |
| 291-C      | ANIMAL CARE FACILITY BIRDFLIE               | PHL      |
| 291-D      | BIOELECTROMAGNETIC EFFECTS LAB              | PHL      |
| 291-E      | GARDENHOUSE                                 | PHL      |
| 291-F      | ANIMAL RESOURCE STORAGE                     | PHL      |
| 291-G      | FARROWING FACILITY                          | PHL      |
| 291-H      | PLANT EXPOSURE FACILITY                     | PHL      |
| 292        | HAZARDOUS WASTE INTERN HOLDING FACILITY     | PHL      |
| 293        | W FUEL MANUFACTURING                        | WMC      |
| 293-1 TNL  | OFFICES                                     | WMC      |
| 294        | BALMING BLDG                                | WMC      |
| 294-A      | SPENT ACME STORAGE                          | WMC      |
| 295        | AEROMARINE TEST FACILITY                    | PHL      |
| 296A       | PART REACTOR THERMAL ENGINEERING FACILITY   | WMC      |
| 296        | HIGH BAY TEST FACILITY                      | PHL      |
| 297        | HIGH TEMPERATURE DODUM FACILITY AND OFFICES | WMC      |
| 298        | BAF COLD TEST FACILITY                      | WMC      |
| 299A       | RETENTION AND NEUTRALIZATION FACILITY       | WMC      |
| 299-B & C  | BR WASTE LOADOUT FACILITY                   | WMC      |
| 300        | PLANT OPERATIONS AND MAINTENANCE FACILITY   | PHL      |
| 301        | PAINT SHOP                                  | PHL      |
| 302        | WAREHOUSE                                   | PHL      |
| 304-C      | STORE                                       | PHL      |
| 304-E      | IMPROVED LAB                                | WMC      |
| 305-E      | GENERATOR SUBSTATION                        | WMC      |
| 307        | STEAM GENERATOR EXAMINATION FACILITY        | PHL      |
| 308        | PUMP HOUSE                                  | WMC      |
| 309A       | NORTH GROUND WATER TANK 200,000 GAL         | WMC      |
| 309B       | SOUTH GROUND WATER TANK 225,000 GAL         | WMC      |
| 309C       | WEST GROUND WATER TANK 800,000 GAL          | WMC      |
| 310        | POWER HOUSE                                 | WMC      |
| 310-A      | MATERIALS PROPERTIES LAB                    | WMC      |
| 310-B      | SERVICE SHOP                                | WMC      |
| 3107       | SEPTIC TANKS                                | WMC      |
| 3112-B & C | EMERGENCY GENERATOR AND CONTROL             | WMC      |
| 31210      | EMERGENCY GENERATOR STATION #3              | WMC      |
| 31701A     | APPLE STREET GUARD STATION                  | WMC      |
| 31701D     | PATROL HEADQUARTERS                         | WMC      |
| 31701L     | WISCONSIN STREET GUARD STATION              | WMC      |
| 31701W     | NORTH GUARD STATION                         | WMC      |
| 31701A     | CYPRESS STREET GUARD STATION                | WMC      |
| 31701E     | GEORGE WASHINGTON WAY GUARD STATION         | WMC      |
| 31701U     | PROTECTED AREA GUARD STATION                | WMC      |
| 31702      | OFFICES                                     | WMC      |
| 31703      | OFFICES                                     | WMC      |
| 31704      | STORAGE (JAJ)                               | JAJ      |
| 31705      | PHOTOGRAPHY                                 | PHL      |
| 31707A     | INFORMATION SERVICES                        | WMC      |
| 31707B     | PUBLIC TRANSPORT                            | WMC      |
| 31707C     | CUSTODIAL SERVICES                          | WMC      |
| 31707D     | AUTOMATED TECHNOLOGY                        | WMC      |
| 31707E     | INFORMATION SERVICES                        | WMC      |
| 31707F     | STORAGE (JAJ)                               | WMC      |
| 31707G     | PERSONNEL SURVEY                            | WMC      |
| 31707H     | CHANGE ROOM                                 | WMC      |
| 31707I     | RADIOBIOLOGICAL LABORATORY                  | PHL      |
| 31707J     | MED PAINT SHOP                              | PHL      |
| 31707K     | FIRE STATION                                | WMC      |
| 31707L     | ON-STOREAGE                                 | WMC      |
| 31711      | REMANUFACTURE STORAGE                       | WMC      |
| 31712      | FUT'S WAREHOUSE                             | WMC      |
| 31713      | PAINT AND CARPENTER SHOP                    | WMC      |
| 31714      | ORGANIC CHEMISTRY LABORATORY                | PHL      |
| 31715      | STORAGE                                     | WMC      |
| 31716      | STORAGE                                     | WMC      |
| 31717      | SHEET METAL AND ENGINEERING OFFICES         | WMC      |
| 31718      | STANDARDS LABORATORY                        | WMC      |
| 3171C      | ARCHIVE STORAGE                             | WMC      |
| 31718      | OPERATIONS SUPPORT SERVICES MECHANICAL      | WMC      |
| 31718A     | LABORATORY EQUIPMENT CENTRAL POOL           | PHL      |
| 31718B     | LABORATORY EQUIPMENT CENTRAL POOL           | PHL      |
| 31718C     | STORAGE (294)                               | WMC      |
| 31719      | STORAGE BUILDING                            | PHL      |
| 31719M     | SOILOM STORAGE FACILITY                     | WMC      |
| 31719N     | OPERATIONS SUPPORT SERVICES ELECTRICAL      | WMC      |
| 31719O     | COMPUTER LABORATORY                         | WMC      |
| 31720      | MATERIALS SCIENCE LAB                       | PHL      |
| 31722      | CONSTRUCTION SHOP                           | JAJ      |
| 31727      | ARCHIVE/PIRATE SPECIMEN VAULT               | WMC      |
| 31728      | TEST ARTICLE STORAGE                        | WMC      |
| 31729      | GAMMA/MUON IRRADIATION FACILITY             | PHL      |
| 31731      | LABORATORY EQUIPMENT CENTRAL POOL           | PHL      |
| 31734      | STORAGE                                     | WMC      |
| 31744-A    | PAINT STORAGE                               | WMC      |
| 31746      | RADIOLOGICAL CALIBRATIONS AND STANDARDS     | PHL      |
| 31748A     | ELECTRON ACCELERATOR                        | PHL      |
| 31748B     | POSITIVE ION ACCELERATOR                    | PHL      |
| 31749      | RADIOLOGICAL PHYSICS BLDG                   | PHL      |
| 31749A     | RADIOLOGICAL PHYSICS LABORATORY             | PHL      |
| 31749D     | TECHNICAL SERVICE ANNEX                     | PHL      |
| 31749E     | TECHNICAL INFORMATION BLDG                  | PHL      |
| 31752      | LABORATORY SAFETY                           | PHL      |
| 31753      | OFFICES                                     | WMC      |
| 31754      | OFFICES                                     | PHL      |
| 31755      | OFFICES                                     | WMC      |
| 31756      | OFFICES                                     | WMC      |
| 31757      | OFFICES                                     | WMC      |
| 31758      | OFFICES                                     | WMC      |
| 31759      | OFFICES                                     | WMC      |
| 31760      | SECURITY OPERATIONS                         | WMC      |



WHD-EP-0231-3

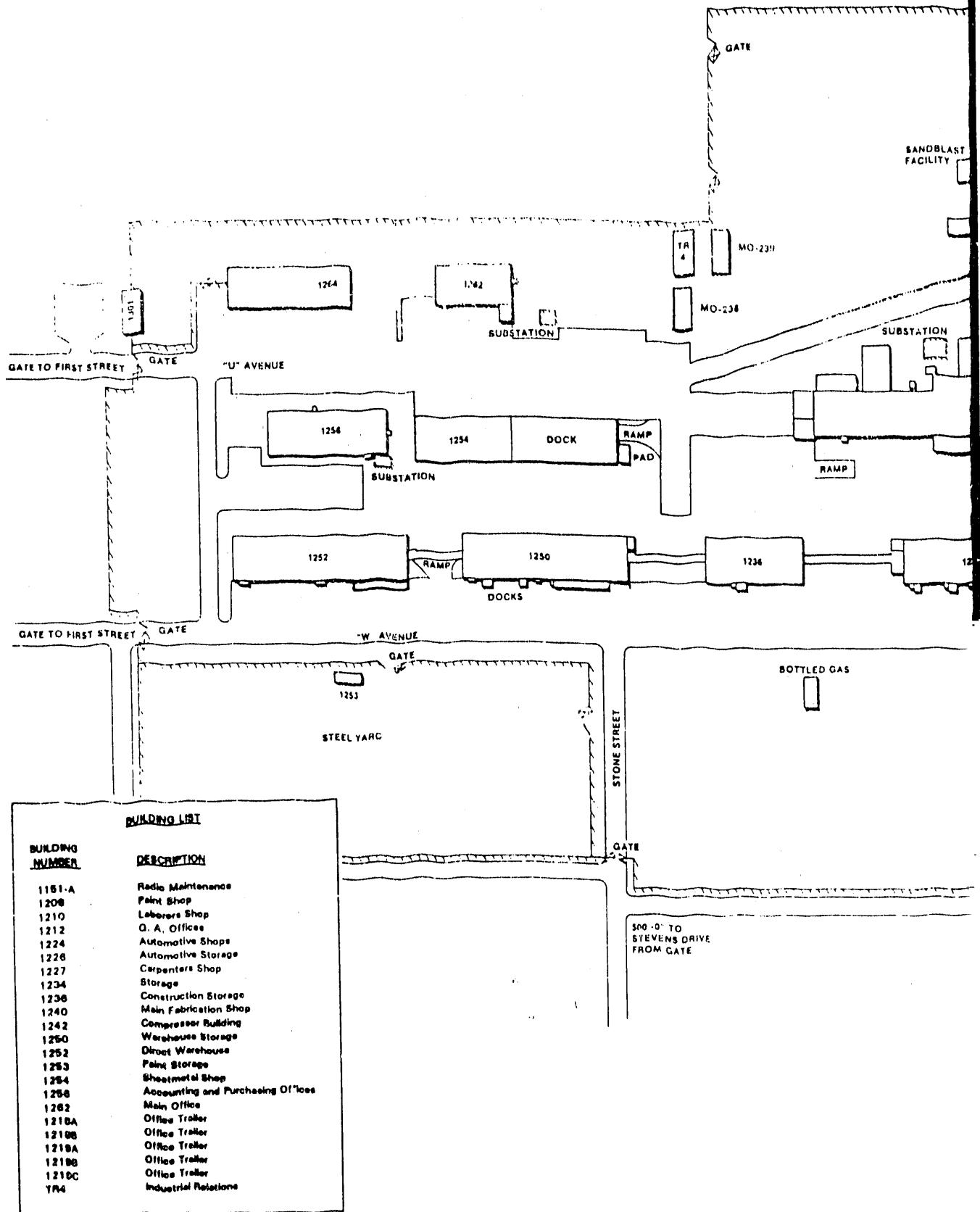


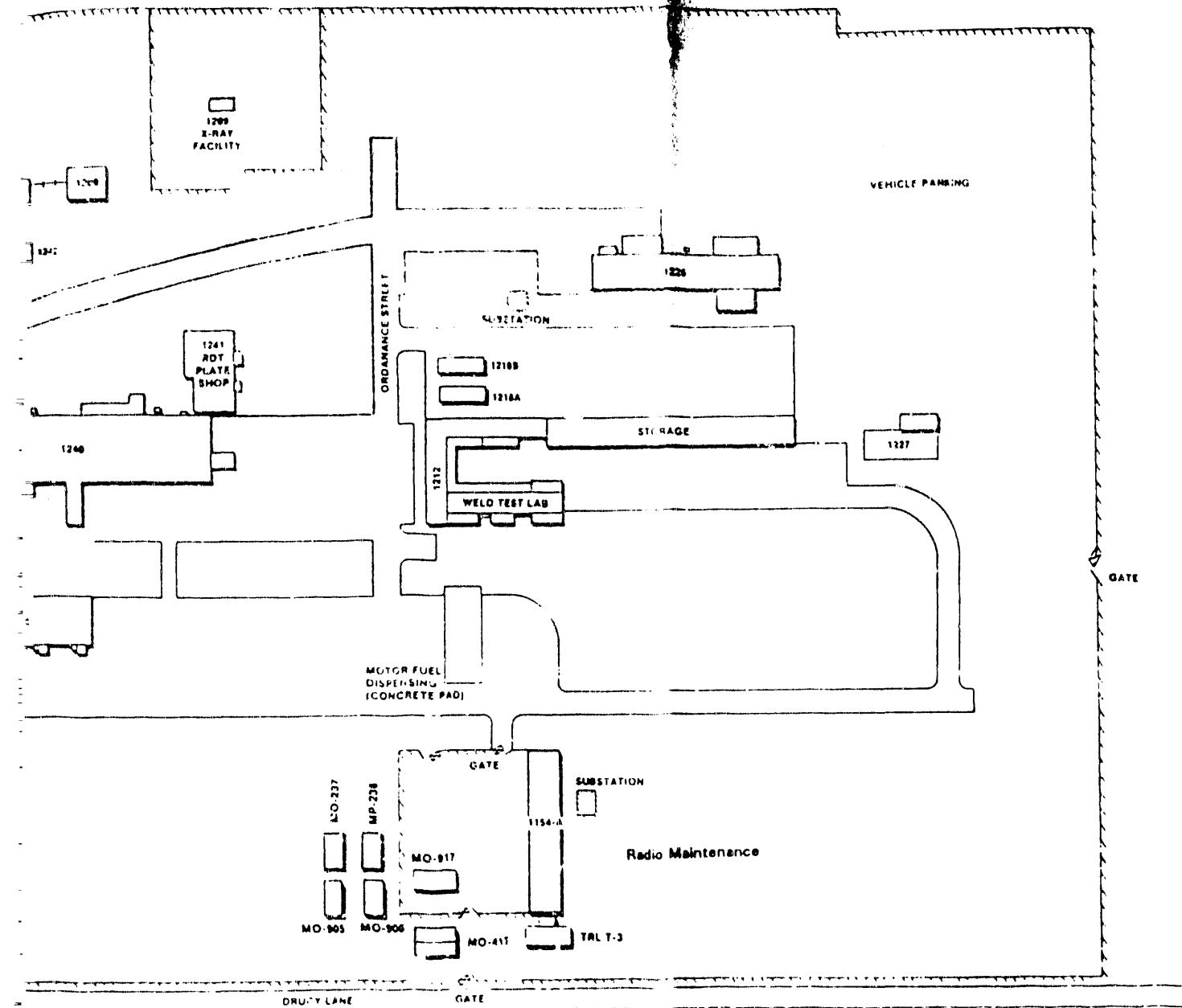
## 300 AREA


REVISED 2/88

B-21/B-22

485


SCALE IN FEET


| BLDG #  | BLDG NAME                       |
|---------|---------------------------------|
| 51      | PFME SUBSTATION                 |
| 52      | PFME SUBSTATION                 |
| 461     | VISITOR CENTER                  |
| 403     | FUEL STORAGE FACILITY           |
| 466     | REACTOR CONTAINMENT-FTFT        |
| 466-A   | DHL EAST                        |
| 476-A   | DHL SOUTH                       |
| 466-C   | DHL WEST                        |
| 406-A   | CLS DHL 1                       |
| 406-B   | CLS DHL 2                       |
| 477     | PROCESS BUILDING-FCP            |
| 436     | TRAINING FACILITY               |
| 437     | MAINTENANCE & STORAGE FAC       |
| 451-A   | FTFT SUBSTATION                 |
| 481-B   | 400 AREA SUBSTATION             |
| 453-A   | A-1 SWITCHGEAR                  |
| 453-B   | A-2 SWITCHGEAR                  |
| 453-C   | A-3 SWITCHGEAR                  |
| 446-A   | WATER SUPPLY WELL NO. 1         |
| 446-B   | WATER SUPPLY WELL NO. 2         |
| 446-C   | WATER SUPPLY WELL NO. 4         |
| 441     | WATER PUMP HOUSE                |
| 441-A   | WATER PUMP HOUSE                |
| 441-B   | WATER STORAGE TANK              |
| 441-C   | WATER STORAGE TANK              |
| 443     | FTFT COOLING TOWER              |
| 444     | ICCW EQUIPMENT BLDG             |
| 441-E   | NTS SERVICE EAST                |
| 441-F   | NTS SERVICE, SOUTH              |
| 441-W   | NTS SERVICE, WEST               |
| 4421-E  | AUX EQUIP. EAST                 |
| 4421-W  | AUX EQUIP. WEST                 |
| 4701-A  | GUARD STATION, KENTUCKY BLD     |
| 4701-B  | GUARD STATION, GRANT ST.        |
| 4701-C  | GUARD STATION, HAYES ST.        |
| 4702    | OFFICE BLDG                     |
| 4703    | FTFT REACTOR CONTROL BLDG.      |
| 4704    | OFFICE BLDG                     |
| 4706    | SUPPORT SERVICES BLDG           |
| 4707    | 400 AREA SITE SUPPORT OFFICE    |
| 4710    | OPERATION SUPPORT BLDG          |
| 4713-A  | FTFT REFUEL AREA LAYDOWN FAC    |
| 4713-B  | PROTECTED AREA MAINTENANCE BLDG |
| 4713-C  | REFUEL/REFUELING LAYDOWN AREA   |
| 4713-D  | INTERIM MAINT & STORAGE FAC     |
| 4716    | MAINTENANCE TOOL STORAGE FAC    |
| 4717    | REACTOR SERVICE BLDG            |
| 4719    | MEDICAL AD STATION              |
| 4721    | FTFT EMERGENCY GENERATOR FAC    |
| 4721-B  | SITE SERVICES MAINTENANCE SHOP  |
| 4721-C  | SITE SERVICES MAINTENANCE SHOP  |
| 4721-D  | UNOCCUPIED (TO BE REMOVED)      |
| 4771    | SANITATORIAL STORAGE            |
| 4773-A  | STORAGE                         |
| 4773-B  | WAREHOUSE                       |
| 4773-C  | WAREHOUSE                       |
| 4774-A  | ATMOSPHERIC DEWAR PAD           |
| 4774-B  | SITE SERVICES MAINTENANCE SHOP  |
| 4774-C  | WAREHOUSE                       |
| 4774-D  | WAREHOUSE                       |
| 4790    | CONSTRUCTION CONTRACTOR SHOP    |
| 4790-A  | PATROL HEADQUARTERS             |
| 4790-B  | INCI SWAY TOWER                 |
| 4791-TC | FM/EF MODEL BUILDING            |
| 4802    | FM/EF CONSTRUCTION              |
| 4814    | FM/EF CONSTRUCTION              |
| 4821    | FLAMMABLE STORAGE WAREHOUSE     |
| 4842-A  | 400 AREA SUBSTATION SWITCHGEAR  |
| 4842-B  | WATER PUMPHOUSE SWITCHGEAR      |
| 4842-C  | LAYDOWN AREA WAREHOUSE          |
| 4842-D  | ENTRY WIND AND FUEL             |
| 4842-E  | ASSEMBLY AREA-FCP               |

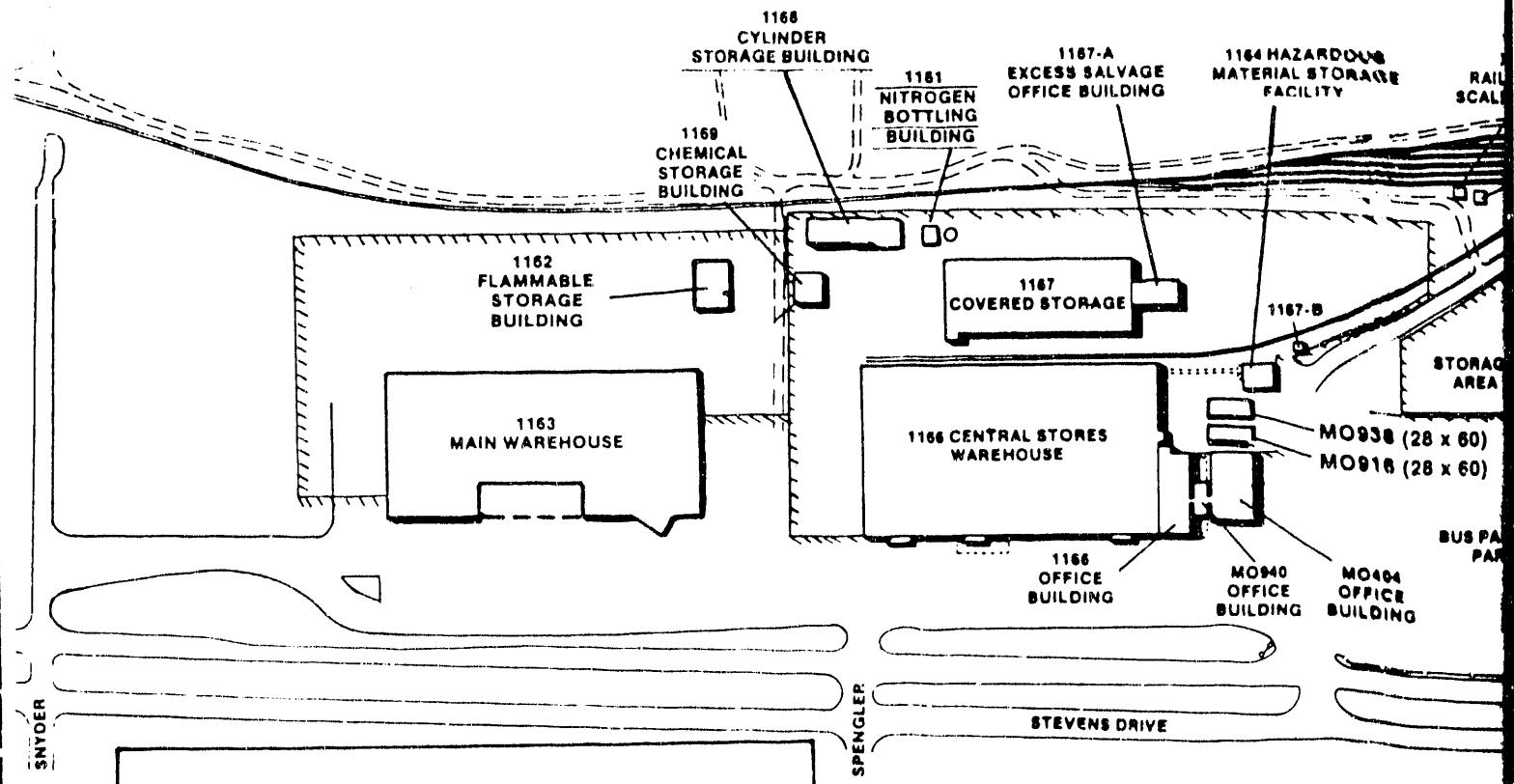


WHC-EP-0231-3



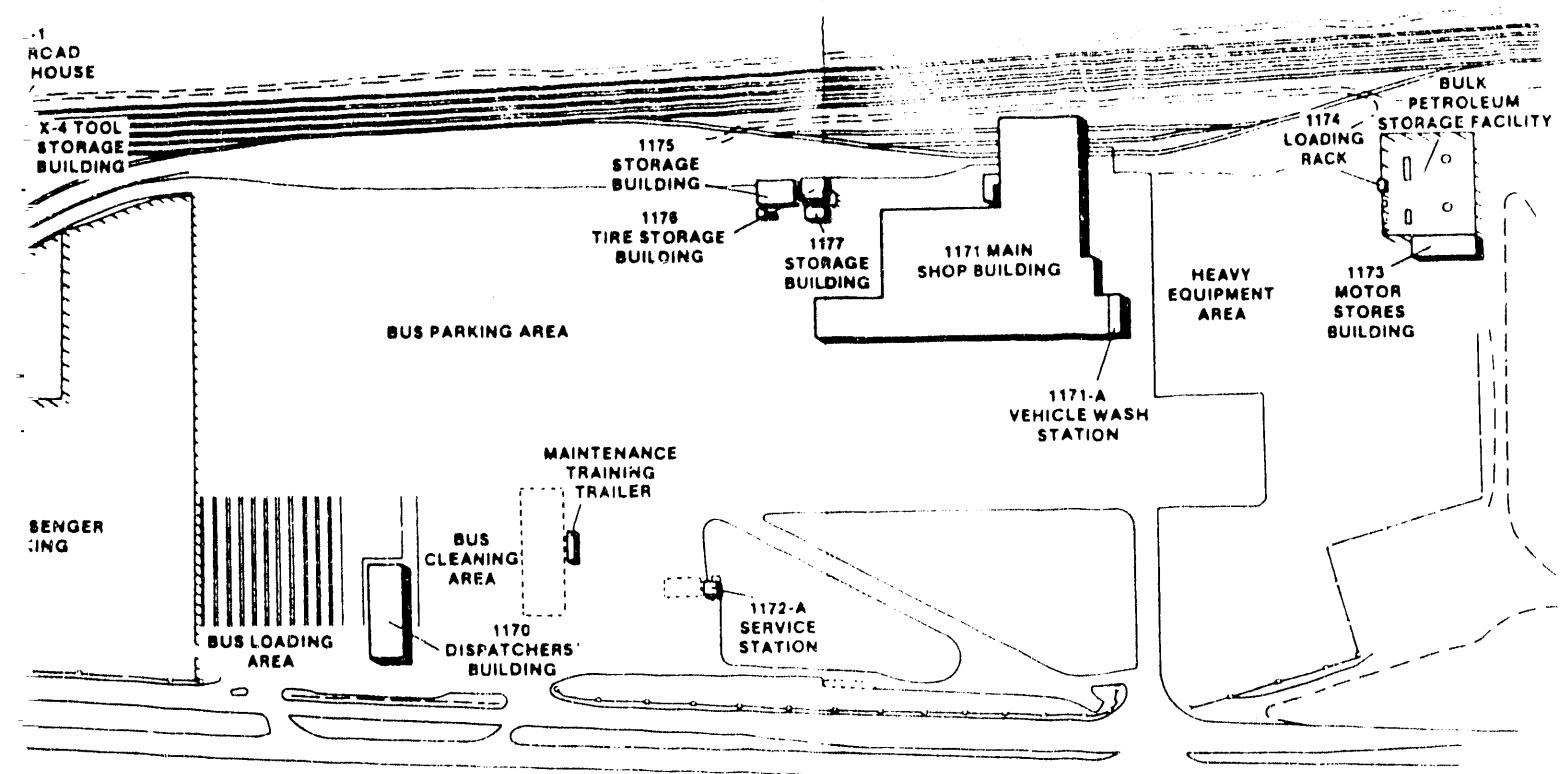





## 3000 AREA

REVISED 4/07

0 100 200 300


SCALE IN FEET

B-25/B-26



BUILDING LIST

| BLDG. NO. | DESCRIPTION                          |
|-----------|--------------------------------------|
| 1161      | NITROGEN BOTTLING BLDG.              |
| 1162      | FLAMMABLE STORAGE BLDG.              |
| 1163      | MAIN WAREHOUSE                       |
| 1164      | HAZARDOUS MATERIAL STORAGE FACILITY  |
| 1166      | CENTRAL STORES WAREHOUSE AND OFFICES |
| 1167      | STORAGE                              |
| 1167-A    | EXCFSS SALVAGE OFFICE BUILDING       |
| 1168      | CYLINDER STORAGE BUILDING            |
| 1169      | CHEMICAL STORAGE BUILDING            |
| 1170      | DISPATCHER'S BUILDING                |
| 1171      | SHOP BUILDING                        |
| 1171-A    | VEHICLE WASH STATION                 |
| 1172-A    | SERVICE STATION                      |
| 1173      | MOTOR STORES BUILDING                |
| 1174      | LOADING RACK                         |
| 1175      | STORAGE BUILDING                     |
| 1176      | TIRE STORAGE BUILDING                |
| 1177      | STORAGE BUILDING                     |

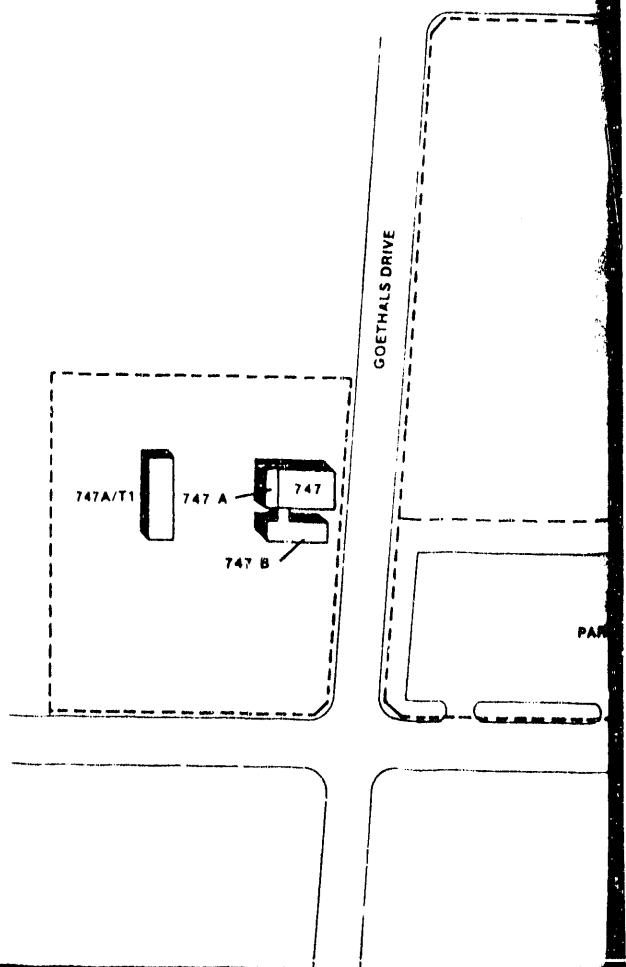


## 1100 AREA

0 50 100 150 200 250  
SCALE IN FEET

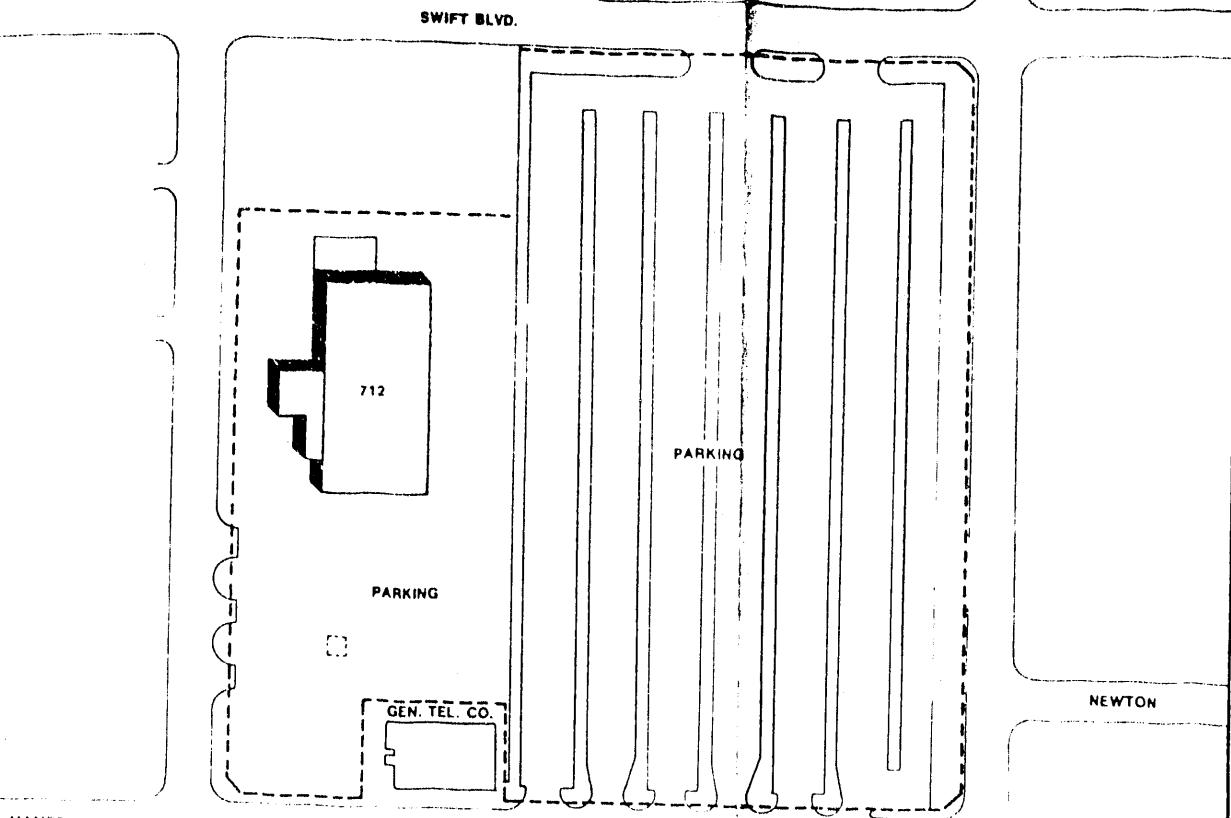
REVISED 4/87

BUILDING LIST

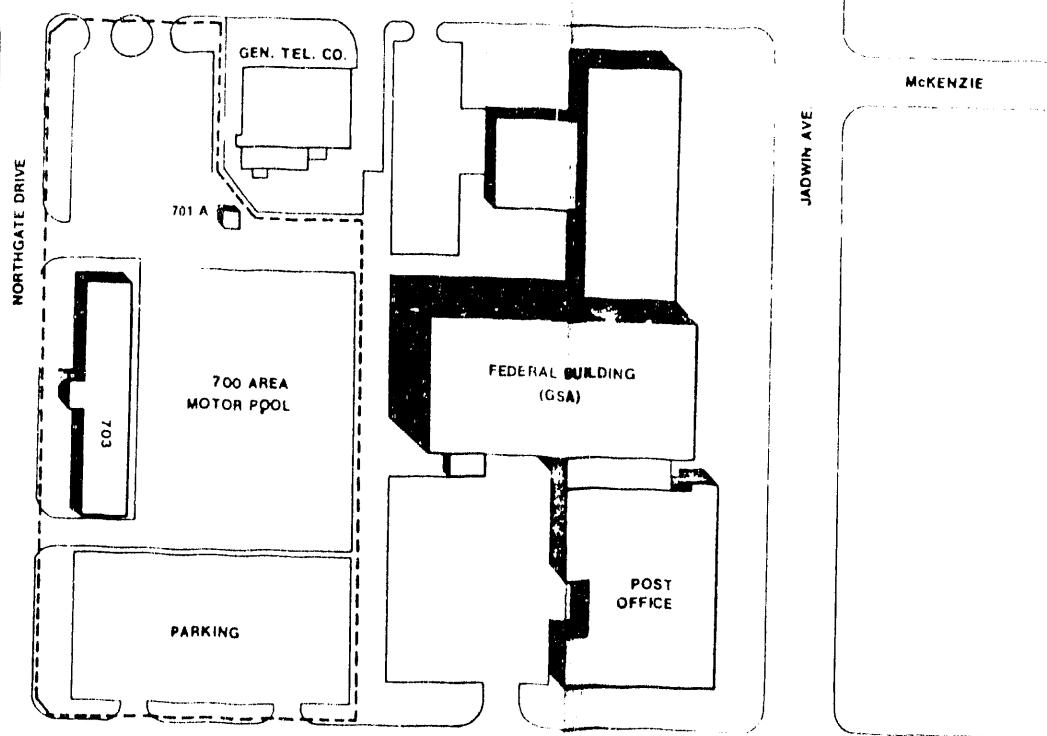

| BLDG.<br>NUMBER | DESCRIPTION                                                      |
|-----------------|------------------------------------------------------------------|
| 701A            | ELECTRICIANS SHOP                                                |
| 703             | DOE OFFICE BUILDING                                              |
| 712             | RECORDS CENTER                                                   |
| 747             | ENVIRONMENTAL HEALTH SCIENCES<br>LAB/FILTER TEST FACILITY (HEHF) |
| 747 A           | WHOLE BODY COUNTER (PNL)                                         |
| 747A/T1         | OFFICE TRAILER                                                   |
| 747 B           | OFFICE ANNEX (HEHF)                                              |
| 748             | EMERGENCY DECONTAMINATION<br>FACILITY (HEHF)                     |

700 AREA

REVISED 2/86


0 50 100 150 200' 250  
SCALE IN FEET

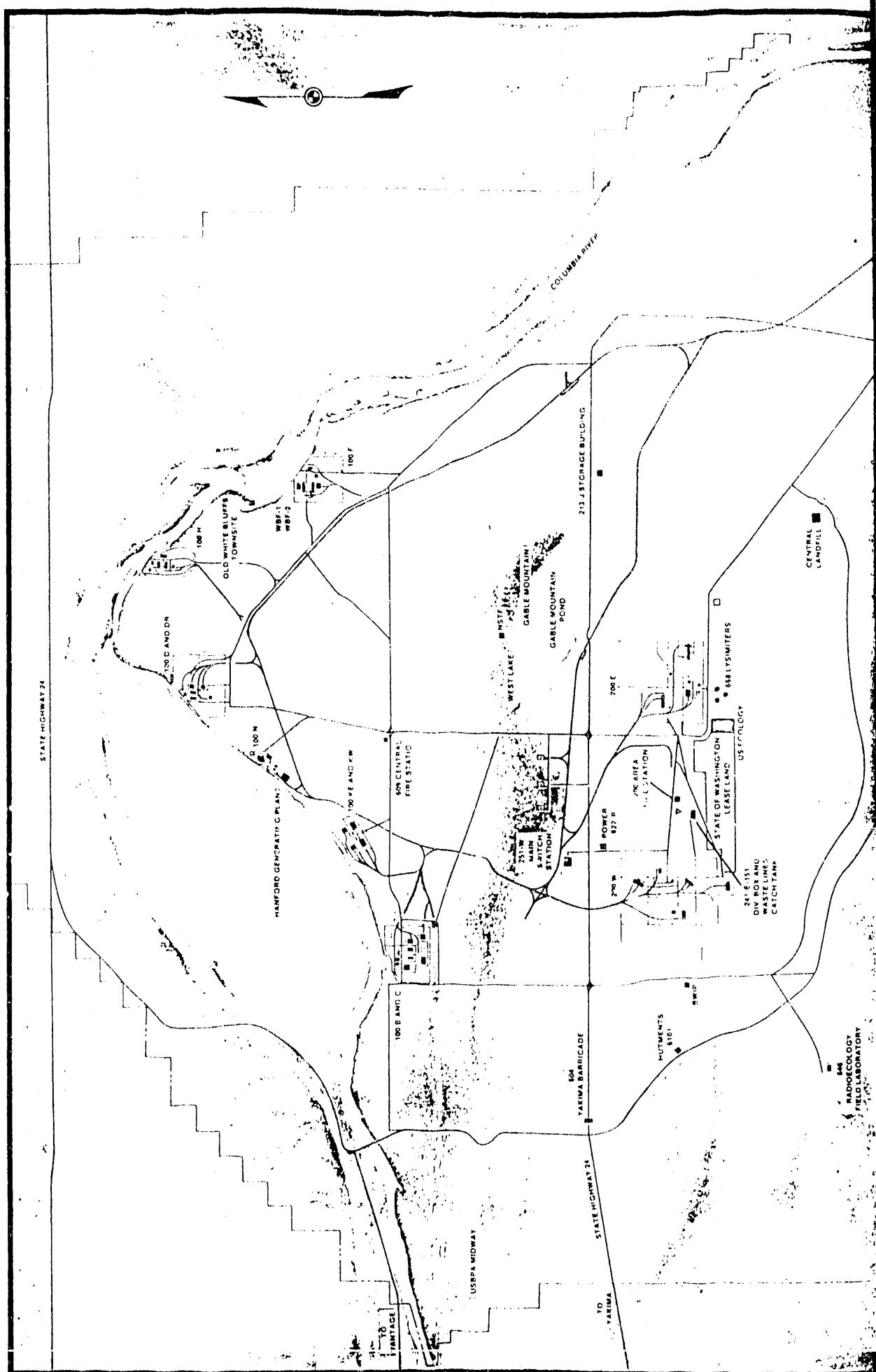
DOE PROPERTY

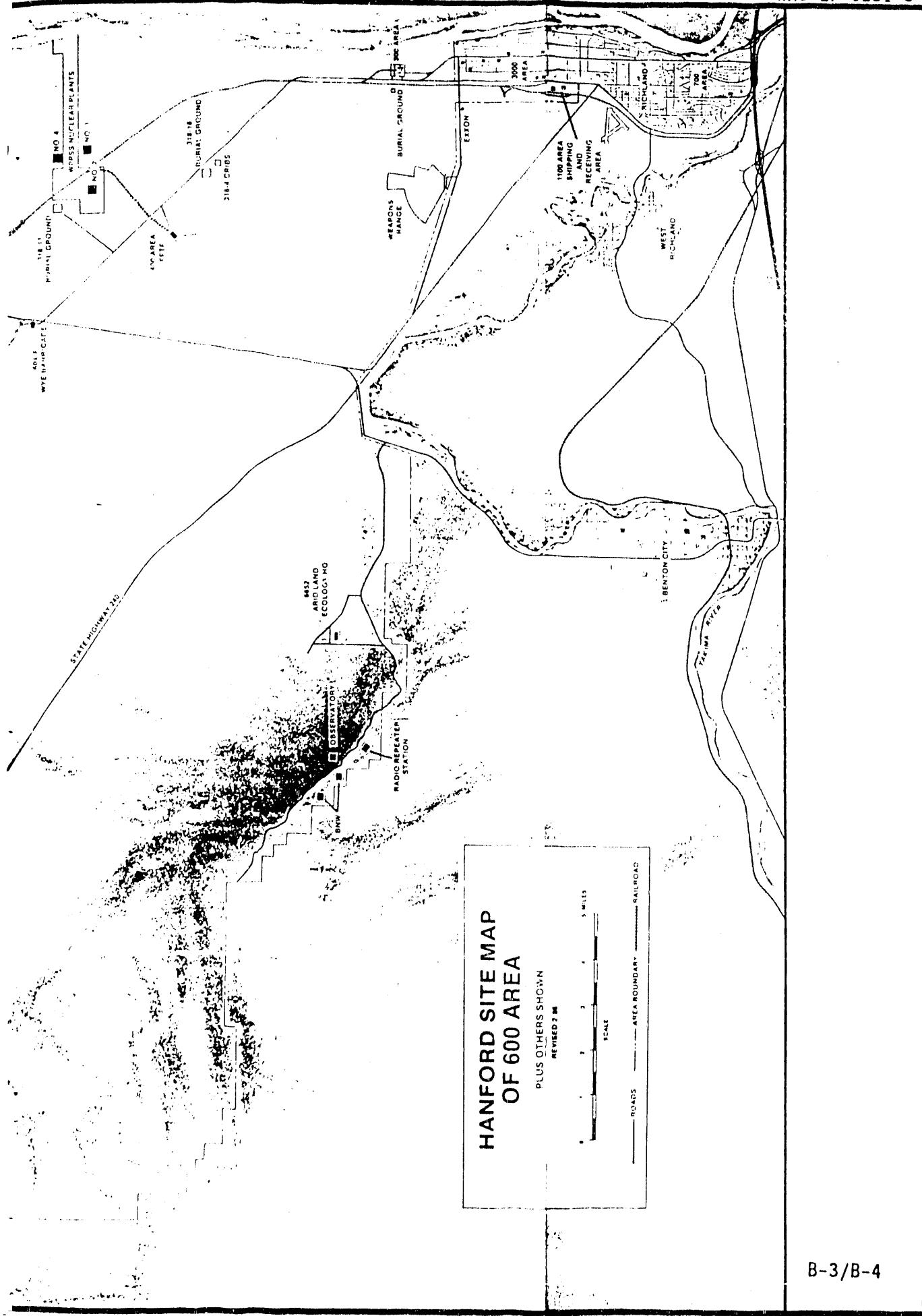



WHC-EP-0231-3

SWIFT BLVD.




MANSFIELD ST.




ING

KNIGHT STREET

B-29/B-30





Columbia River

181-B

105-B EFFLUEN

ASH DISPOSAL

188-B

| BUILDING LIST                            |                                     |
|------------------------------------------|-------------------------------------|
| BUILDING NUMBER                          | DESCRIPTION                         |
| 103-B                                    | FUEL STORAGE BUILDING & RIGGER LOFT |
| 104-B-1                                  | STORAGE BUILDING                    |
| 104-B-2                                  | STORAGE BUILDING                    |
| 105-B                                    | REACTOR BUILDING                    |
| 110-B                                    | PRESSURE STORAGE-STRUCTURE          |
| 115-B                                    | GAS RECIRCULATION BUILDING          |
| 116-B                                    | REACTOR STACK STRUCTURE             |
| 117-B                                    | EXHAUST AIR FILTER BUILDING         |
| 119-B                                    | EXHAUST AIR SAMPLE BUILDING         |
| 185-B                                    | WATER LABORATORY-STRIPPED           |
| 151-B                                    | PRIMARY SUBSTATION-RHO              |
| 161-B                                    | RIVER PUMP HOUSE-RHO                |
| 182-B                                    | RESERVOIR & PUMP HOUSE              |
| 183-S                                    | FILTER PLANT-STRIPPED               |
| 183-B                                    | CLEAR WELLS                         |
| 184-B                                    | COAL PIT (RUBBLE PIT)               |
| 190-B                                    | PUMP HOUSE-STRIPPED                 |
| 1621-B                                   | EMERGENCY ALTERNATOR-STRIPPED       |
| 1701-BA                                  | LUNCH ROOM-1                        |
| 105-C                                    | REACTOR BUILDING                    |
| 117-C                                    | EXHAUST AIR FILTER BUILDING         |
| 183-C                                    | FILTER PLANT FACILITY               |
| 190-C                                    | MAIN PUMP HOUSE                     |
| 1702-C                                   | BADGE HOUSE                         |
| 1713-C                                   | SOLVENT STORAGE                     |
| RADIOLOGICAL UNDERGROUND SITES (RETIRED) |                                     |
| 118-B-1                                  | B-BURIAL GROUND                     |
| 119-C-1                                  | C-BURIAL GROUND                     |
| 118-B-2                                  | CONSTRUCTION BURIAL GROUND          |
| 118-B-3                                  | CONSTRUCTION BURIAL GROUND          |
| 107-C                                    | C RETENTION BASIN                   |
| 107-B                                    | B RETENTION BASIN                   |
| 118-B-4                                  | DUMMY BURIAL                        |
| 118-B-5                                  | BALL X BURIAL GROUND                |
| 116-B-1                                  | B-LIQUID TRENCH                     |
| 116-B-2                                  | C-LIQUID TRENCH                     |
| 116-C-1                                  | LIQUID TRENCH                       |
| 116-C-2                                  | PLUTO CRIB                          |
| 116-B-5                                  | 108 CRIB                            |
| 116-B-6                                  | 108 BURIAL GROUND                   |
| 116-B-2                                  | B STORAGE BASIN CRIB                |
| 116-B-4                                  | DUMMY DECONTAMINATION CRIB          |
| 116-C-3                                  | CHEMICAL WASTE TANK                 |

SOLID WASTE  
BURIAL GROUND  
118-B-1

182-B

RESERVOIR

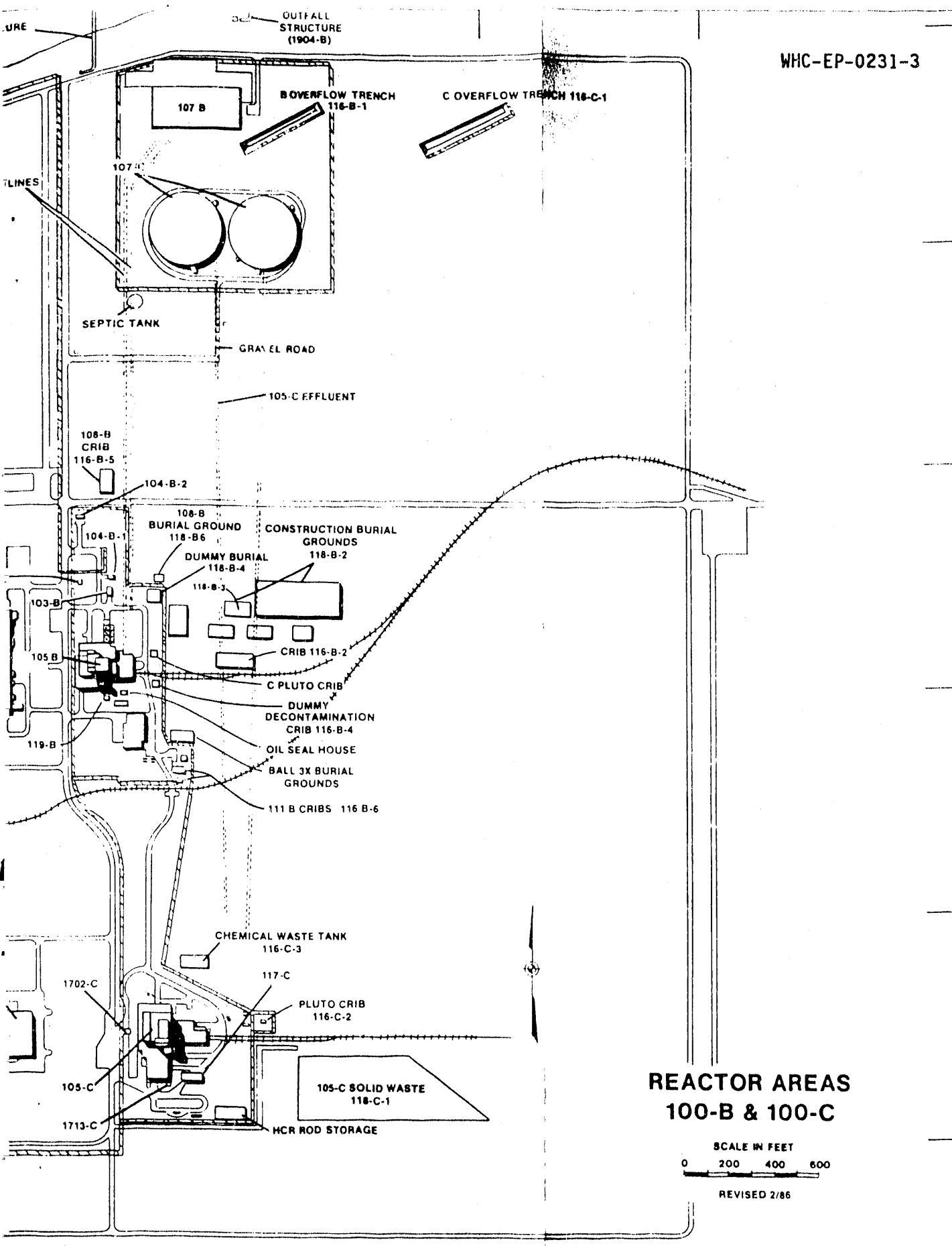
183-B

183-B CLEAR WELLS

185-B

190-B

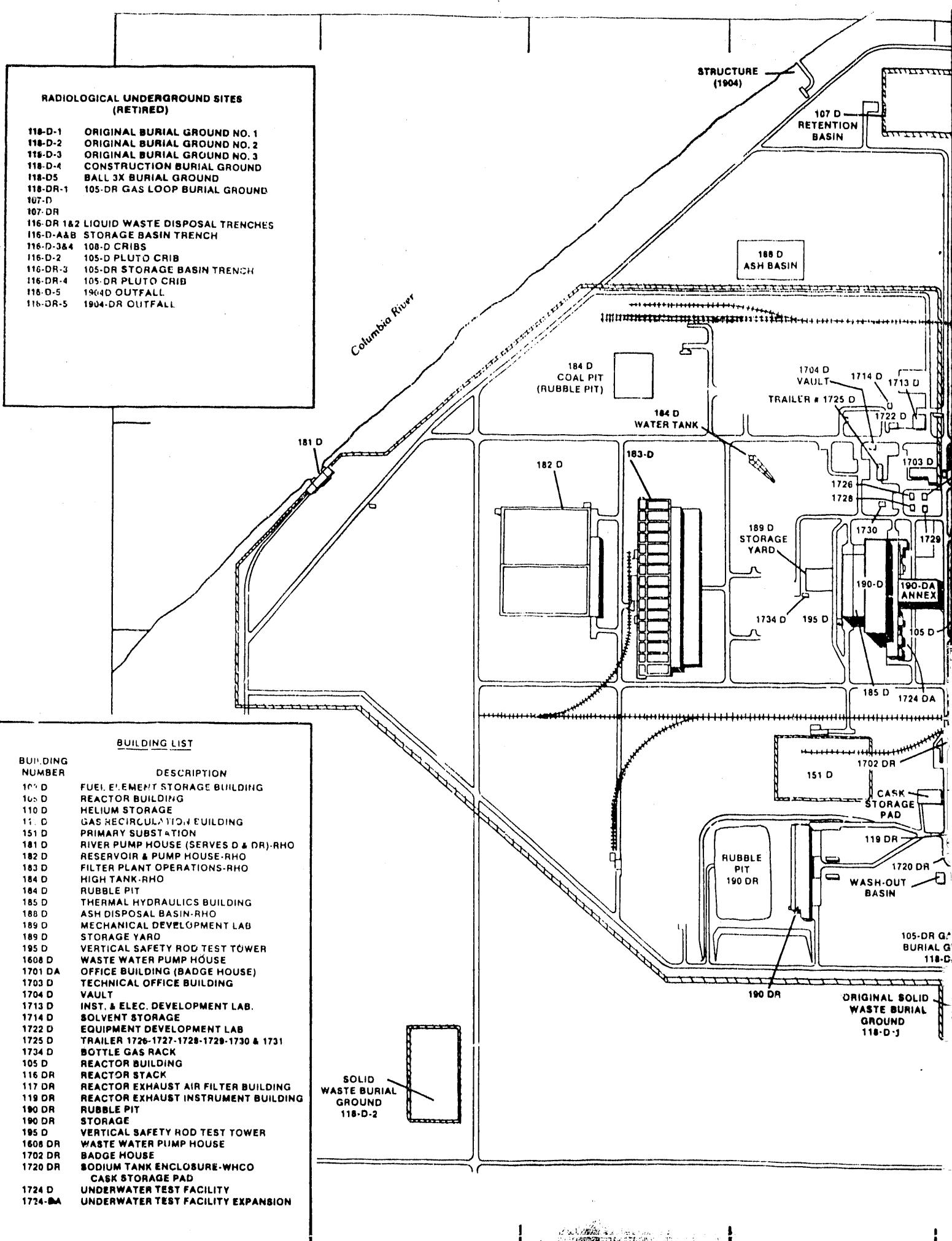
1701-BA


151-B

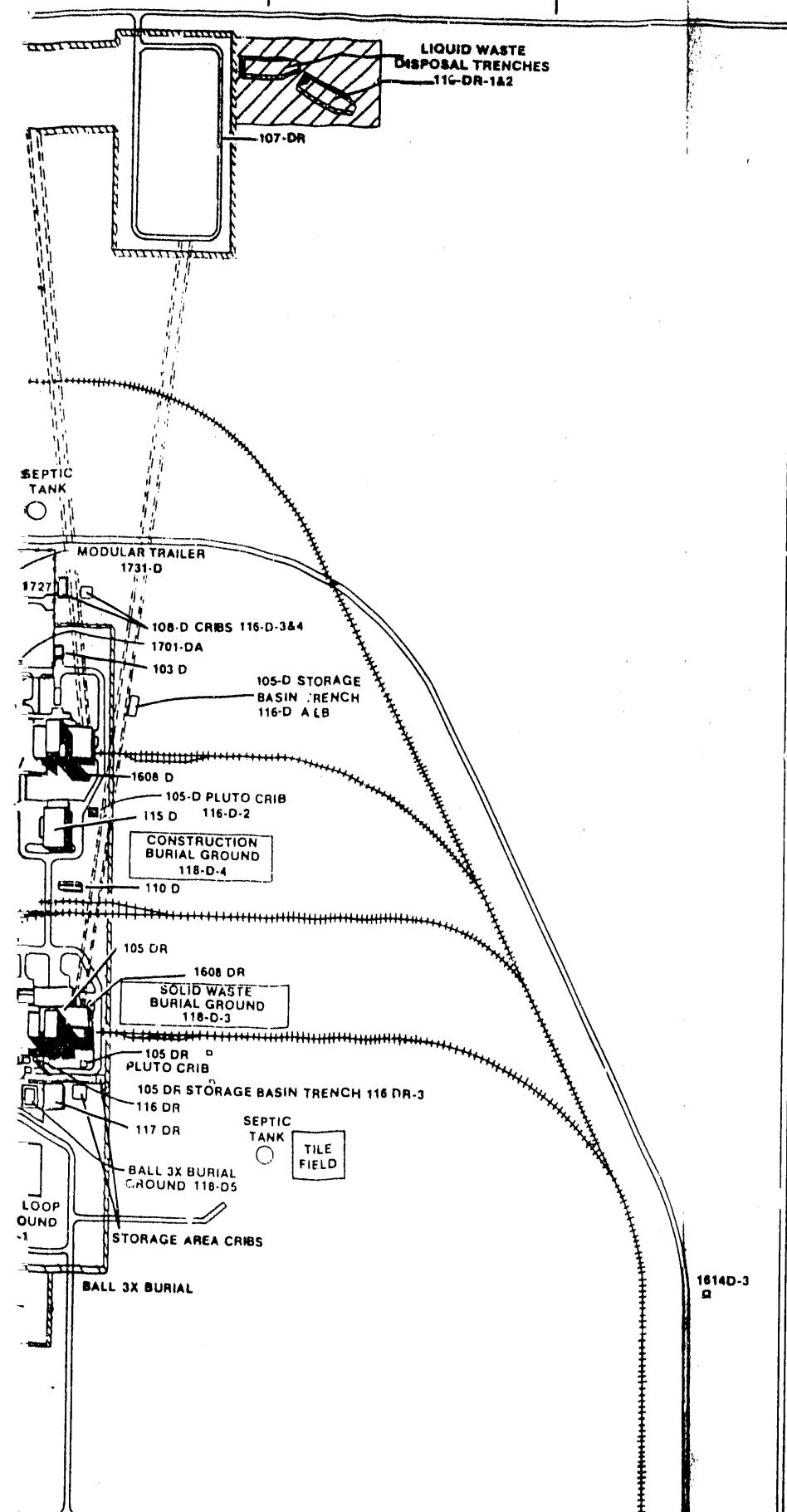
183-C

190-C

188-B


WHC-EP-0231-3




B-5/B-6

**RADIOLOGICAL UNDERGROUND SITES  
(RETIRED)**

- 118-D-1 ORIGINAL BURIAL GROUND NO. 1
- 118-D-2 ORIGINAL BURIAL GROUND NO. 2
- 118-D-3 ORIGINAL BURIAL GROUND NO. 3
- 118-D-4 CONSTRUCTION BURIAL GROUND
- 118-DS BALL 3X BURIAL GROUND
- 118-DR-1 105-DR GAS LOOP BURIAL GROUND
- 107-D
- 107-DR
- 116-DR 182 LIQUID WASTE DISPOSAL TRENCHES
- 116-D-A&B STORAGE BASIN TRENCH
- 116-D-3&4 108-D CRIBS
- 116-D-2 105-D PLUTO CRIB
- 116-DR-3 105-DR STORAGE BASIN TRENCH
- 116-DR-4 105-DR PLUTO CRIB
- 116-D-5 1964D OUTFALL
- 116-DR-5 1904-DR OUTFALL



WHC-EP-0231-3



**REACTOR AREAS  
100-D & 100-DR**

REVISED 2/86

0 200 400 600  
SCALE IN FEET

WHC-EP-0231-3

**APPENDIX C**  
**LONG-RANGE COST/SCHEDULE PROJECTION**

Table 1. Hanford Decommissioning Baseline Long-Range Projection.  
(\$000) (sheet 1 of 7)

Table 1. Hanford Decommissioning Baseline Long-Range Projection.  
(\$000) (sheet 2 of 7)

Table 1. Hanford Decommissioning Baseline Long-Range Projection.  
(\$000) (sheet 3 of 7)

Table 1. Hanford Decommissioning Baseline Long-Range Projection.  
(\$000) (sheet 4 of 7)

Table 1. Hanford Decommissioning Baseline Long-Range Projection. (\$000) (sheet 5 of 7)

| PROJECTS                                                  | WBS                         | PHOA  | FY 90 | FY 91 | FY 92 | FY 93 | FY 94 | FY 95 | FY 96 | FY 97 | FY 98 | FY 99 | FY 00 | FY 01 | FY 02 | FY 03 | FY 04 | FY 05 | FY 06 | FY 07 | FY 08 | FY 09 | FY 10 | FY 11 | FY 12 | FY 13 | FY 14 | FY 15 | FY 16 | FY 17  | TEC   |             |
|-----------------------------------------------------------|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------------|
| 200 Area Major Process Support Buildings                  |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 201-C Process Building                                    | Cost includes all buildings | UE503 | 9850  | 1200  | 1574  | 2465  | 1937  | 3082  | 100   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        | 21853 |             |
| 215-C Gas Preparation Structure                           |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-C Fan House                                           | ALREADY DEMOLISHED          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 2707-C Storage and Change House                           | ALREADY DEMOLISHED          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 241-CX-70 Tank                                            |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 241-CX-71 Tank                                            |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 241-CX-72 Tank and Tap                                    |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-C-1 Stack                                             | ALREADY DEMOLISHED          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-C-2 Stack                                             |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 233-S Plutonium Concentration Facility*                   | UE502                       |       | 212   |       | 150   | 165   | 500   | 1600  | 3000  | 4000  | 3532  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 115558 |       |             |
| 233-SA Emergency Air Filter Building                      |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-S-7 Stack                                             |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| *Cost is for all three facilities)                        |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 233-S Capital Equipment                                   | UEZ99                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        | 500   |             |
| 224-B Plutonium Concentration Facility                    | UE505                       | 488   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       | 1036        |
| 212-N Storage Building                                    | UEA10                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 212-P Storage Building                                    | UEA11                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       | 1036        |
| 212-R Storage Building                                    | UEA12                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       | 1036        |
| 241-SX-401 Condenser Loadout Facility                     | UE401                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       | 1250        |
| 241-SX-402 Condenser Loadout Facility                     | UE402                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       | 1250        |
| 200-C Canyon Building (REDOX) Cost includes all equipment | UE501                       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       | 19093134860 |
| 294-S San House and Filter                                |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-S-1 San House                                         |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-S-2 San House                                         |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-S-3 San House                                         |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| 294-S-4 San House                                         |                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |       |             |
| SUBTOTAL UE                                               |                             | 10438 | 1412  | 1574  | 4715  | 5704  | 85543 | 2717  | 3000  | 4000  | 3532  | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0     |             |

Table 1. Hanford Decommissioning Baseline Long-Range Projection.  
(\$000) (sheet 6 of 7)

| PROJECTS                                                              | WBS   | PROR | FY 90 | FY 91 | FY 92 | FY 93 | FY 94 | FY 95 | FY 96 | FY 97 | FY 98 | FY 99 | FY 00 | FY 01 | FY 02 | FY 03 | FY 04 | FY 05 | FY 06 | FY 07 | FY 08 | FY 09 | FY 10 | FY 11 | FY 12 | FY 13 | FY 14 | FY 15 | FY 16           | FY 17  | TEC |
|-----------------------------------------------------------------------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|--------|-----|
| <b>200-Area Major Process Support Buildings - Cont</b>                |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 232-Z Waste Incinerator Facility                                      | UEA04 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 507    |     |
| 221-U Canyon Building (U P110) <small>Contractors at subwork</small>  | UEA01 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 4956   |     |
| 278-U Solvent Handling Facility                                       |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 10312  |     |
| 271-U Office Building                                                 |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 126720 |     |
| 291-U Fire House and Fire Station                                     |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 296-U-1 Stack                                                         |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 296-U-6 Stack                                                         |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 296-U-10 Stack                                                        |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 241-C-801 Cesium Loadout Facility                                     | UEA03 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 565    |     |
| 276-S Solvent Handling Facility <small>Contractors at subwork</small> | UEA01 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 708    |     |
| 296-S-5 Stack                                                         |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 278-S-147 Remote Storage Tank                                         |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 278-S-147 Remote Storage Tank                                         |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 |        |     |
| 222-T Office Building                                                 |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 1775   |     |
| 205-S Silica Gel                                                      | UEA06 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 371    |     |
| 241-A-531 Tank Farm Ventilation Building                              | UEA07 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 718    |     |
| 242-B Facility                                                        | UEH01 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 1274   |     |
| 222-U Office Building                                                 | UEB02 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 1775   |     |
| 242-B Facility                                                        | UEA09 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 1985   |     |
| 242-B Facility                                                        | UEA06 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 1985   |     |
| 242-B Facility                                                        | UEK01 |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |                 | 41     |     |
| * SUBTOTAL UE (page 2)                                                |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 0               |        |     |
| SUBTOTAL UE (page 1)                                                  |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 103725          |        |     |
| TOTAL UE                                                              |       |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 255121560313600 |        |     |

Table 1. Hanford Decommissioning Baseline Long-Range Projection.  
(\$000) (sheet 7 of 7)

C-9/10

END

DATE FILMED

12/21/90

