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| PREFACE

This is the third in a series of Final Reports submitted on the
Thin Film Optical Shutter (TFOS) project. The first Final Report
included discussions of the thermodynamic :limitations of TFOS, the
quantum mechanical methods developed for calculating the dielectric
constant and imaginary refractive index as a function of frequency for
macroconjugated macromolecules (MCMM) and the thermochromic mechanisms
which cbuld be used for switching MCCM [1]. The second Final Report
included discussions of additional quantum mechanical methods which
had been developed and the results of calculations on polyynes and
pol}enes [2]. Where full development of the theory is not required
for understanding results, equations from these'Final Reports will be
cited. Except for this limiation; this Final Report is self-contained.
A specific embodiment of MCMM, the poly (p-phenylene)'s, has been chosen
as the one most likely to meet all of the requirements of TFOS. The
reason for this choice are included in this Report. Ih order to be
able to make meaningful calculations of the thermodynamicc and optical
properties of the poly (p-phenylene)'s a new quantum mechanical method
was developed =~ Equilibrium Bond Length (EBL) fheory. Some results

of EBL Theory are included in this Report.
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I. INTRODUCTION
A. REQUIREMENTS FOR ?AéSIVE THERMAL MODULATION
The earth recéives energy from the sun at a rate estimated
to be 5.4 x 1024 J6u1e5°year-l. This 1s about thirty thousand times
the currently used sources 6f energy [3]. Even if only one thousandth
of one percent of the solar energy is utilized, the sun éould supply
30%Z of the present energy requirements. The present problem, therefore,
is not that insufficient solar energy is AVailable, but rather the
available technblogy is inadequate for the task, especially when the
economics of the available technology is considered. We are, however,
on the vergé of the development of adequate technology f§r the thermal
modu}ationlof buildings by means of solar energy.
There are logically three approaches for this thermal modulation.
The first is by uée of the photovoltaic effect to convert solar
energy directly to electricity an& the sﬁbsequent use of the electricity
for ghe thermal modulation. 1In thevother twb approaches, %espectivel&
called 'active' and 'passive' modulation, the‘solar radiation is absorbed,
converted to Qibrational energy and re-emitted as iﬂfrared radiation.
Prof. W.W.S. Charters of the University of Melbourné distinguisheé
between active and passive modulation by
'An active system ... (is) one in which it is
essential to supply input energy in the form of
electrical power or mechanical work in order to
transfer the collected energy from the point of
collection .directly to the interior of the build-
ing or to an assigned thermal storage ... the
basic feature of a passive system is that no

input of energy is required to perform this
transfer/storage task.' [4]




He then goes on to say,

'Because of their deceptive engineering simplicity
little attention has been paid to the potential

of passive heating systems, and engineers have
favored the more complex active systems that are
inherently more capable of regulation and
control.' [5] '

Finaly he declares,

'The basic problems to be overcome are those of
thermal storage, which has to be designed into any
such structure, and the associated fact of internal
temperature control to achieve acceptable standards

of temperature variation in the internal living
quarters .... To assist with this control problem,
one can use ventilation techniques in winter to

reduce possibly unacceptable high temperatures and
external shading devices in summer to prevent a larger
proportion of the solar gain due to the large variation
in the summer and winter solar angles.' [6]

.

The use of 'external shading devices' such as overhangs, bushes
and trees has the disadvantage that they are not susceptible to
feedback control. On a cloudy summer day they cannot be moved out
of the way to permit more sunlight to enter the structure. Blinds
and drapes require the intervention of a person, who may not be
available at the appropriate time, or a thermostatically controlled

"motor, which requires the input of additional energy.

The ideal solution to the excessive solar gain problem is an
'optical shutter', a device which switches from being highly transmissive
to solar radiation to being highly reflecti&e to solar radiation when
a critical temperature is reached in the enclosure. The switching
occurs because one or more materials in the device undergo a phase

transition at the critical temperature.




'B. THIN FILM OPTICAL SHUTTER (TFOS) 
A reasonable 'first guess' set of requirements for an optical
shutter are: |
1. The transition from the 'low' temperature state to
the 'high' temperature'state shall occur between 23°
and 27°C (73.4° and 80.6°F);

2. In the 'low' temperature state the transmission of

solar radiation shall exceed 807 of the incident radiation;
3. In the 'high' temperature state the reflection of solar
radiation shall exceed 90% of the incident radiation;
4. In both states the absorption of solar radiation shall
be less than 2% of the incident radiation; and
5. The system shall be chemically and photochemicaily
stable in the presence of corrosives potentially
present in the atmosphere and/or solar radiation in
general and ultraviolet radiation in particular.

The traditional 'comfort zone'-on room thermostats is given as 72°
to 78°F. The range specified above is a little higher and a little
broader than the 'comfort zone'. It is, however, sufficiently close to
not be considered unreasonable. The second and third requirements are
set to maximize solar gain when the room is 'cool' and to minimize
solar gain when the room is 'warm'. The ultimate, but unrealizable,
goal would be 100% transmission in the 'low' temperature state and 100%
reflection in the 'high' temperature state. The values actually set

are practical compromises.




Since the absorption of a significant proportion of the incident

radiation by the optical shutter would cause the shutter to switch

to the reflective state even though the foom is too cool, it is
éssential that the shutter absorb less radiation than is necessary to
cause self-switching. The 2% value is a 'guesstimate'; The maximum
allowable absorptivity will have to be determined experimentally. In
any case the absorptivity can be minimized by having‘the phase transi-
tion material in thin film form. Thus, we are logically led to TFOS,

the Thin Film Optical Shutter.

‘C. THERMODYNAMIC REQUIREMENTS FOR TFOS
It has been found that the 807 tramsmissivity and the 907
reflectivity requirements force severe thermodynamic restrictions on
optical shutters [7,8]. If each 'zone' in the shutter matieral which
is in the-lower-temperature state-contributéd 100% to the transmissivity,
and if each zone in the shutter material which is in the higher tempera-
ture state contributed 100% to the reflectivity, the maximum allowable

value of the factor Q would be

(I-1)

O
]

Ny
G,

20/80

0.25 ,

where ‘;J




(1-2) : N, = the number of 'zones' in the lower temperature
ctate

'zones' in the higher temperature

N2 = the number of
state, and

= the 'lower' temperature, 23°C.

A 'zone' ig an atom, a section of a molecule, or ﬁhe entire @p%ecu;e.
If the shutter were exactly one 'zone' thick, equation (I-1) would
apply, at best, only in the ideal case. Since the shutter cannot be
expected to be exactly one 'zone' thick, we must require that the
maximum allowable value of Q be consi@grablytlower. If we also

require that

N
(1-3) Q =C'N—") ’
where

(I-4) u = the 'upper' temperature, 27°C ,

the data of TABLE I-1 can be gglculapéd. In making these calculations

of the well-known thermodynamic functions

-S

3G, _
)P = g

(I-5) GT
and

(1-6) N, = N, exp(-4G°/Nk T)

1




TABLE I-1 : S

Thermodynamic Analysis
of ‘ .

TFOS Requirements

Q 5G, qu o as®
Joules-moief¥ "Jc.\'ules»-,molef‘l . Joules;mqle-l-deg-l
107t 5.669 x 10° -7.476 x 10° 3.28 x 10°
1002 1.134 % 10% 0 -1.322.x 104:, . 6.140 x 10°
103 1701 x 104 . -1.897 x 10° - 8.99 x 10°
1074 2,268 x 10 . -2.471x10* . 1.185 x 10%
-5 4 4 -

10 * - 2.835 x 10" . -3.046 x 10" - - 1,470 x 10" .

t

(N, /N ) = /M)y
number of 'zones'in the lower temperature state
number of 'zones'.in the upper temperature.state.

the lower temperature,'23fC';

-the upper temperature,. 27°C

standard Gibbs free energy of transition at temperature a

standard entropy of transition




are used, where

the Gibbs free energy

G =

T = the absolute temperatufé (°K)

P = the ﬁressure B =

S = the entropy

N = Nl + N, and
ko = Bdl;Zmann's constant, 1.38066 X 10_23 Joules~deg-1

-moleCule-l.

The only way in which such.very large values ‘of° -AS° can be’

géneratéd”is by electron delocalization. - It should be noted that

the breéking of a chemical bond générates about 102 JOules~mbl-l'deg-1

of entropy. Thus; a Q = l()-l'7 would requiré the breaking of about

3 Joules-mole-']Wdeg-1 is:

33 bonds per molecule! If a value of 7 x 10
taken as a nominal value for 4s°, ;ﬁd if the phase transition material
~ié a seﬁicéhdﬁétor'such-as silicon,:this vaiué.of as® r?quiréé the
dislocalization of 15.377 eléctrons‘per<a£om. The ridiculousness of
this number becomes apparént when one cﬁnsiders that silicon has only
14 electrons per atom. There is, ‘however, a typé?of macrbmoléculé for

‘which such delocalization entropies are not unreasonable — .the macro-

conjugated matromolecules.

D. MACROCONJUGATED MACROMOLECULES
A 'macromolecule' is a molecule consisting of a large number

of atoms. A 'polymer' is a macromolecule which can be considéered con-

ceptually to be made up of identical or similar small molecules called




'mers’. If one permits the usage of referring to individual atoms as

mers, then there is no distinction between a macromolecule and a polymér.

A single plane in a graphite crystal is a macromolecule, but it is
a polymer only if the individual carbon atoms are considered to be mers.
A molecule is said to be 'conjugated' if the structure of the
molecule permits the interaction of m=-bonds with adjacent w-bonds
and/or localized p-electrons'pr, d-electrons on adjacent atoms. A
macromolecule is 'macroconjugated' if the conjugation extends over a
large region of the molecule. A macroﬁolecule of graphite is macro-
conjugated. A macromolecule of polystyrene is not macroconjugated.
The benzene rings are conjugated 1ndividually, but there are no inter-
ring interactions intra-molecularly. Since "macroeonjugated macro-
molecule' is a rather cumbersomeexpreésion, we have abbreviated it as
'MCMM'. [As ghe inventors of this 'word' we envoke the privilege of
also setting its rules of grammar. Wé hereby declare MCMM to be both
singular and plural. Thus, we one one MCMM and many MCMM.]
When an MCMM 1is switched from loéaiized =bonding in a mer to
totally delocalized n-bonding, a delocalizion entropy of 7 X 103 Jouleé-

mole-ljdeg or even 14 x 103 Joules-mole-l-deg_l can easily be attained.
In TABLE I-2 are listed the number of delocalized electrons per mer which
are required to generate these two vaiues of 4S° on delocalization.

Since polyenes, polyynes and poly (p-phenylene)'s have two, four and

'six delocalizable electrons per mer, respectively, it is clear that

suéh MCMM with suitable switches are pbtential candidates for the

optical shutter material. There are, hbWever, potential problems

F}




“TABLE I-2
MCMM Matching
of

TFOS Thermodynamic Requirements

q o n - n
- (eléctrons per mer, ' = (electrons per mer,"
o
- 85% = 7 x 10 Joules.. .45° = 14 x 10° Joules-

(mers per molecule) _ mole-lodeg-l) - mole-l.deg-l)




which must be corisidered with regard to the use of MCMM.for optical

shut;ers.,

Even though thermodynamics predicts that a given MCMM will switch
- in the required temﬁerature range it makes no prediction as to
..;he rate at which the switching occurs. An MCMM which switches‘
within seconds of reaching the transition teﬁperature is quite valuable,
but an MCMM.which takeé an hour to switch is worthless for an optical
shutter. Since an MCMM switches by changing its geometry, it is
necessary for adjacent molecules to "'get out of the way' for the .
switching to occur. Such a concerted reorgani;ation in bulk material
may be very slow. It is planned, therefore, that the first generation
of optical shutters .be TFOS for. this reason as well as.the potential
absorption problem. The rate of reorganization in a film of MCMM.of
the order of 100-x 10710 neters (100 K) thick can be expected to be
reasonably fast.

- The second problem which must be considered relates to the'requ;:e-
ment that the optical shutter be chemically and- photochemically stable.
The macromolecules which are used commercially at the present time
are with few exceptions notoriously unstable.in the presence of sun-
light. A TFOS which is photochemically unstable in the presence of .
sunlight is of rather little utility. Fortunately, there are ways in
which this problem can be circumvented. We shall discuss the étability
problemvin considerable detail when we tre#t the theory of poly (p-phenylene).

Macrocgpjugat;on also gives a macromolecule some rather unusual

. propertiess; The simplest molecule with a n-bond is ethene. There is

one bonding m-orbital and one anti-bonding n*-orbital. By Equilibrium

Bond Length (EBL) theory, which we shall discuss in great detail in this

10



Report, the quantum numbers for these orbitals are =<1.114 and +1.114,
respectively. In butadiene the quantum numbers would be -1.114, ~1.114,
+1.114 and +1.114 if the w-bonds did not interact. For the fully

planar molecule the quantum numbers-are -1.618, 40.737, +0.737 and +1.618.
For the ten double bond homolog the values are -1.943, ..., -0.223, +0.223,
Mooy +1.943, where '...' represents:eight values. For the fifty double
bond homolog the values are -1.965, ..., :~0.083,.+0.083, ..., , 1.965;

and for the hundred double bond homolog the values are -1.965, ...,
-0.069, +0.069, ..., +1.965. - Thus, the-highest and ‘lowest values of

the quarntum numbers reach a constant value. Similarly, the middle -
quantum numbers approach asymptotes. Thus, as the molecule becomes:
longer more and more energy levels aréupla¢ed between che'extreme‘vélues
-1.965-and -0.069 for +0.069 and +1.965. Thus, the 'distance'’ between
adjacent-energyAlevels-decreaSes. The ﬂ-orbitél systems of the.polyenes,
thus, approeach the condition referred to by the solid‘stgtevphysicists

"as 'bands': 'There is a bonding mn-band and an antiébOndingf ﬁ*-bana.

The 'distance’ between the top of the bonding w-band and the bottom of
the anti-bonding w-band is the 'band gap'. Photons withfan energy less
than the band gap energy cannot be absorbed, whereas photons with an
energy greater than the band gap énergy ‘éan be absorbed. -Since the

number -of electrons which can be promoted to energy levels in the -

anti-bonding n*-band by photons with erergies greater than the band

"""- gap energy is quite large, these molecules have quite large absorptivities

for these photons. As we shall show later large absorptivities yield
high reflectivities when specular reflection is possible. Thus, the MCMM

‘*'éanly161d quite high reflectivities.

11




If seqtions of the molecule can be made to change their geometries.
as the temperatﬁre'changes, the MCMM can be made to switch between the
microconjugated and macroconjugated states. Thus, the MCMM can be made
to switch between low aBsorptivity (high transmissivity) to high
absorptivity (high refleétivity) with an increase in temperature. This
is, howeveér, precisely the type of material behavior which is required
for the fabrication of the optiéal shutter: We shall, therefore, now

turn to a discussion of MCMM'theofy.

12




II. MCMM THEORY
A. SWITCHINC MERS
An MCMM can be considered to be made up of two kinds of mers

—— delocalizing mers and switching mers. The delocalizing mers must,

of course, contain at least one w-bond. They may be linear such as
the ethenic and ethynic linkages, cyclic such as the p-phenylenic link-
age and polycyclic such as the l;a—naphthalénic linkage. In addition
the cyclic and polycyclic linkages may be heterocyclic. With respect

to geometric variation the ethynic linkage is the simplest. There are
no geometric variations which are possible. For the ethenic linkages
cis— and trans-isomers are~possible. For the cyclics and polycyclics
rotational variations are possible.

The switching mers must undergo reversible geometric rearrangements
with temperature in such a way that there is m-bond coupling in one
arrangement but not in the other. A change in mn-bond coupling in a
molecule will result in a change in the spectrum of the molecule in
thenear ultraviolet or in the visible. The change of spectrum witﬁ a
change in temperature is known as 'thermochromism' [9-12]. Three of the
known mechanisms of thermochromism have been found to be potential
candidates for the thermal switching mers. They are the keto-enol
isomerism, spiro atom isomerism and restricted rotation about a carbon-
carbon bond [13]. Since the fifth requirement for TFOS is chemical and
photochemical stability, the first two thermochromic mechanisms are
probably poor choices. Carbonyl groups are well-known as sites for

photochemical attack. We are, therefore, left with the third mechanism.

13




-

Restricted rotation about a carbon~-c¢arbon bond is the cause of the =~ *

'optically active' biphenyls [14]. Since the p-phenylenic linkage
can act as both the deldtalizing mer and’ as the switching mer, Boly
(p-phenylene) is an ideal candidate for an initial MCMM for TFOS. ¥
B. ABSORPTIVITY AND REFLECTIVITfVJ
In addition to being able to switch at the specified temperature
MCMM for TFOS must also have the required high reflectivity in the 'high'
temperature state. We shall, therefore, now consider the properties

necessary for high reflectivity and whether MCMM can have these properties.

The generalized vector wave equation may be written as [15]

: - 2 > :
(11-1) ?e-L2 2.0,
¢’ at .
|
a sqlution of which is
|
> > ‘ : ‘
(1I-2) ® =2 exp(-1 <klx>) ,
here , . N . . R
(11-3) i=v-1l,
el = i
(II-4) <kl = <k;, ky, Ky, — ‘
(I1-5) (x> = le, X, Xq5 ict> ,
and w 1is the angular frequency of the wave. In terms of more

traditional symbols

14



(11-6) . <klx> = KeF - et .

kK 1s the 'wave propagation vector'. The wave number,Akj, is related

to the wave length by
(II-7) | kj =5

The angular frequency, w, is related to the frequency, v, by

. (1I-8) o Cw@=2my .
Thu.s,-,

w 2nv

= N
b I G
h
= vki

='(::] .

1f <, is the speed of light in vacuum, an 'index of refraction' may

be defined by

. | 5
\ (II-10) nj< cj .

vaom (11-7)




¥
<

M
=«2nv
c
h| .
2nn,v
=1
%o
and (II-4) becomes
2nv |
(11-12) <kl === <n;, n,, 04, .1,| .
o ‘ :

For convenience the direction of ptopagation_may be taken as
perpendicular to the surface of the material medium with Xy as the
direction of propagation. If should be understood that the equatiomns
below must be modified if the direction of propagation is not normal to

the surface. Thus,

2
(II-13) k| = % <0, 0, ny 1 ,
. , o . ,
and (II-2) becomes o
iy, .. L
(1I-14) ® = @o exp[c—o (cot - n3x3 ] .

If there is attenuation (absorption) iﬁ the medium, then -
ar-15) 0 Py =Py = 0) P
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whefe B 1s the 'attenuation constant'. The function ¢ is squared
in (II-15) because it is the cnergy o[ the wave which is attenuated,
and the energy is proportional to the square of the amplitude of the

wave. The combination of (II-14) and (II-15) yields

2 2 4uiv
(11-16) d (x3) @o exp[}z—— (cot

(o]

n3x3)] * exp[-fx,]

, Bco
@2 exp[aziv (c.t - nx ]

T~ e . O 33 T Zniv *3
’ ic B
2 4riv o
=¢ p[ o ( ot i o Wy 2w x3)]

il
&
N
Y
s
<
~
~
o
t
|
-
wﬂ
F
»
w
N’
—
-

where.
(I11-17) K, =57 ,

is the imaginary part of the index of refraction. The real part of

the dielectric constant is related to n and K by
2
Let the subscripts 'i' and 't' represent the medium in which the

incident réy is found and the medium in which the transmitted ray is

found, respectively. The reflectivity of the interface is given by
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(2 ,
(nj-n. )" +n, =€,

(11-19) R =

(o 20 N 1 g i\

C 2
(ni-i-nt) +n -.et

(16]. If the incident ray medium is air, ny 2 1. The subscripts are

now superfluous, and (II-19) can be written as

(11-20) | pol=-2n+ ;m? - ¢ )

1+ 2n+ 2n2‘— €

It éﬁodld be h@féd from (II-18) that the maximim fosaibie value for ¢
for a given value of n is ¢ = nz.
From (II-20) we obtain
aR —4n

(11-21) = . B,
1+ 2n+ 2n" - €)

and

2,4

3R _=4+ 8n
(1L 4+ 2n + 2n2

an

(11-22) 5 .

Since n: is also positive, (II-21) is negative definite. By definition

the maximum possible value of R is +1.00. Thus,
(11-23) "R>+41.00 as &+ =,

From (II-22) we see that, if & 1is large in mégnitude and negative

in sign, the slope is negativé for all reasonable vaiues of n. Thus, -

we haveée




(11-24) R+ +1.00.  .as n~0.00, for ¢ << O .

We shall.consider an.example of (II-24)., Let n = 0.1 and ¢ = -5,

then
(11-25) .~ R(a=0.1, & ==5) =0.936 .

Thus, we: see that (II-24) is the guide to use for the attaining of the
> 90% reflectivity for the upper temperature State. . Iq_shou;diye
noted en passant that (II-19) does not require that the highly e
reflective material be highly conductive (i.e., a metal). All that
it requires is that the material be highly abso;ptive.

It will be instructivé to ekaﬁiné the data for some specific metals.
The data are all for Eggg_gilgg of the metals. The data are listed
in TABLE II-1 through TABLE II-4. The 'whité' metals aluminum and silver
meet the reflectivity requirqneﬂtsuduiteﬁﬁell except around 4 X 1014 ﬁg:tz
where aluminum is somewhat béloé'épeéificétion. The 'yellow' metals,
gold; and copper are quite good until around 6 X 101? He;tz;wbgremtheub
reflectivity becomes poor. In all cases the.failure ocgursnpegaungghe:.
material is not sufficiently absorptive!

If a material is highly absorptive [B very large, or bf (II-lZ),'w
K Qery large] in the visiBle and the surface is rough, the material is
black. -.If. the surface is sufficiently smooth.so. that specular reflection

occurs; the material is highly reflective.  Thus, the 'blackness' of a..

material in bulk form can be taken as indicative of high reflectivigy

in smooth thin film form.




TABLE II-1

Optical Data for Aluninum

v na K2 sb RS
14 1
1 x 10 4.20  23.45  -532.26  98.0
2 1.92  12.90  -162.72  97.8
3 1.54 9.30 - 84.12  94.0
4 1.80 7.12 - 47.45  88.6
5 1.05 7.22 - 51.03  9L.1
6 0.67 5.57 = 30.60  91.8
7 0.46 4.78 - 22.59  92.3
8 0.36 4.13 - 16.93  92.5

(a) Data taken in part from [17].

(b) Calculated.

(¢) The data are experimental values and were not
calculated by formula. xhe data were taken

from [18].
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TABLE II-2

Optical Data for Silver

\Y n
1x 0%  1.38
2 0.46
3 10.25
4 0.08
5 0.06

6 0.05
7 0.06
8 0.05

20.30
10.20
6.81
5.05
3.75
2.87
2.22

1.80

=-410.
-103'

- 46.

(a) Data taken in part form [19].

(b)  Calculated.

(c) The data are experimental values and were not

calculated by formula.

from [18].

.24
.95

.24

99.4

. 99.4

99.4
99.1
98.6
97.9

96.5

91.7.

The data were taken




TABLE: II-3 .

Optical Data for Gold

v n? K2 sb R®
1 x 10t  0.93° 16.70  -278.03  99.3
2 3 0.42 . - 8.39 - 70.21 99.1
3 C 0.31 5.58° - 31.04 98.6
4 0.14 - 4.27 - -18.21.  97.4
5 0. 20 2.90 - - 8.37 91.9
6 . 0.84 1.84 - 2.68  47.7
7 1,40 1.83 . < 1.37 38.7
8 . 1.41 1.68 - 0.84 37.4

(a) Data taken in part from [20].

(b) Calculated.

(c) - The data are experimental values and were not
calculated by formula. The data yere taken

from [18].
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TABLE 1I-4.

Optical Data for Copper-

v n? K2 eb RS
1x 10"  1.22  17.10 . -290.91  98.6,
2 0.51 8.76 . - 76.45  98.6
3 . 0.20 6.27  -39.27:  98.5
4 . 0.16° 4.46 - 19.87°  97.9
5 0,19 2.98 - 8.85 93.3
6 0.88 2.42 - 5.09 60.0
7 0.87 . 2.11 - 3.71 52.1 3
8 1.07 - 2.13 - 3.37.  43.8

(a) Data taken in part from [21].

(b) Calculated.

(c) The data are experimental values and were not:
calculated by formula. The data were:taken -

from [18].
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Since poly (p~phenylene) is the MCMM of choice for the thin film

optical shutter, we shall continue our discussion of the theory of

MCMM by diécussing the theory of poly (p-phenylene).
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ITI. POLY (p~-PHENYLENE) THEORY
" A. INTRODUCTION A
Sévéral objéctions éan be raised agéinét the use of pély
(p—phenylend)for TFOS. Ahéﬁg £ﬂése ofjéctions’ére."~ o
1. The inter-ring coupling in poly (p-phenylene) is too weak
to provide the reflectivity required for the upper temperature
state. In support of this claim one can cite
a. The polyphenyls are planar in their crystals,
b. They are colorless,
¢. The limiting value for xhax for thé polyphenyl series
is in the ultraviolet,.and
d. The black poly (p-phenylene)'s are black because of
impurities and/or cross linking.
2. The poly (p-phenylene)'s are too reactive to provide the
required chemical and photochemical stability, and
3. The energies requifed to planari;e non-planar poly (p-phenylene)'s -
are too great for use as fFOS switches.

We shall develop the theory of the poly (p-phenylene)'s in the context

of replying to the above objections.

B. PLANARITY OF POLYPHENYLS
Although it is well known that the ortho-substituted polyphenyls
and poly (p-phenylene)'s déviate from inter-ring coplanarity, it is'widely
believed that the unsubstituted compounds are inter-ring co-planﬁr at least

| in the solid state. The argument given is that the intermolecular inter-

actions in the crystal force the inter-ring co;planarity. In 1949




0. Bastiansen reported the dihedral angle for biphenlein the vapor
phase to be 40-45° [22]. The following year Fhe‘valﬁg 45 + 10° was
reported [23]. Late; the value 41.6 + 2.0° was reported [24]. For a
biphenyl solution in n—heptane Suzuki estimates:the dihedral angle
tp‘be 19 - 23° [25].

The early x-ray studies by Dhar indicated tha; the‘dihedrai angle
in crystalline biphenyl is exactly 0° [26]. A more recent study by
Trotter reported the same value [27]. The:same year, however, Robertson
reported that the dihedral angle in crystalline biphenyl is' 0.834° '[28].
In recent years there have been published a series of papers on the
crystal structures of various polyphenyls [29-35]. In each case
.double-well potentials are found for the.varipqs rings. For example,
for p-terphenyl the central-ringupotential wells are at + 13° at 200°K
and 300°K. [32]. :The.barrier height between the two wells is 0.65.kcal.
mole-l'and 0;54-kcal-mole-l, respectively, for the two temperatures.

Noren an& Stille [36] report that EPR spectra of polyphenylene show
: that electrons are delocalized over a few .(three to five). benzene
rings. If we assume that the plane of each ring is 13° off of the
pléne of the previous ring and that the ;wists‘are all in the. same -
-direction, the sixth ring will be 65° off of the plane of the first
ring. A non-coplanarity of 45°’1$ probably sufficient to decouple the:
sixth from the first . ring. Noren and Stille also report that NMR data
on polyphenylene are consistent with the lack of inter-ring co-planarity
[37]. Thus, it -is clear that neither the polyphenyls nor the poly

‘ (p—phenylene)'s can be assumed to be totally co-planar in the solid
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at room temperature. We now turn to the question of inter-ring coupling

when the rings are co-planar.

C. INTER-RING' COUPLING

If a magnetic field is applied perpendicular to the plane
of a closed ring cop&uctor, an electric cﬁrrent will be induced in
the conductor. The induced current has associatéd with:it.avmagneticﬁ
.-field which opposes the .impressed magnetic field. This is-the 'standard'
model for diamagnetism. In a molecule the 'ring circuits' will be
around . individual atoms. except in'the case of molecules such as benzene.
If the magnetic field is perpendicular to the plane of fhe ring, the
entire ring is the 'ring circuit'- for the. n-electrons. ' The. difference
between the sum of the atomic 'ring circuits' magnetic suceptibilitieg;
and the 'm-ring circuit' susceptibility is the anisotropy. For - 2
benzene the anisotropy is 54 X 10_6 [38]. If there is no inter-ring

" interaction for.biphenyl, the corresponding value 'should be 108 x 10-6.

London's value, however, is 119 x 10-6

. Since there is. no 'ring circuit'
for the carbonate ion, the anisotropy would'bevexpectedito be identically
zero. ' The -experimental value however, is 4 ><_10-6 [39]. The reason
for these "excess" anisotropies has been shown to be .that in the prgsencé
of ' the' magnetic field the interaction between non-bonded atoms.is much
greater than would be expected by virtue of the value of the overlap
integral {40]..

" Wheland has-reported the- values of resonance energies for various

compounds. calculated from heatS'ofcombustionAusihg the method of Klages




and the method of Franklin [41]. For benzene the respective values

are 36.0 and 36.4 kcal-mole-l. For co-planar, non-interacting rings,
one would expect for biphenyl the values 72.0 and 72.8 kcalomole-l,
respectively. The values reported by Wheland for solid biphenyl, however,
are 71.0 and 71.5 kcal°mole—l, respectively. Thus, it would appear

that not only do the rings not interact, but that planarization requires
an expenditure of 1.0 - 1.3-kcal-mole-l. Fluorene can be considered

to be a biphenyl molecule with an 0, o'-methylene bridge. This bridge
would be expected to force co-planarity of the two rings. The crystal
structure of fluorene shows that this is the case except that the angle
between the 1, 1' bond and the 1, 4 and 1',4' rays is 168° rather than

the 0° found in biphenyl [42]. The resonance energies for fluorene

reported by Wheland are 75.9 and 77.7 kcal-mble_l, respectively. Thus,
the 'excess' resonance energy of fluorene over twice the bénzene value
is 3.9 - 4.9 kcél'mole-l. Again we find a significant inter-ring inter-
action when the rings are co-planar.

The rate at which molecular chlorination occurs in acetic acid for
various biphenyls can be compared to that for benzene [43]. ' For methyl

benzene, biphenyl and fluotrene the relative rates are 356, 422, and 113,000,
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respectively. For 2, 2'-dimethyl diphenyl the relative rate drops to
292, whereas for 9, lO-dihydrophenahthgepe the relative rate is
12,200. Whether the mechanism for this chlorination is free radical
or electrophilic, it is to be expected that strong inter-ring inter-
actions will increase the rates of the reactions. It should be ﬁoted'

that 9, 10- dihydrophenanthrene is not quite planar.

9,10- DIHYDROPHENENTHRENE

D. SPECTRA OF POLYPHENYLS AND POLYPHENYLENES

We shall discuss the three spectral objections together here.
Both the data cited by Suzuki [44] and the data cited by Noren and
Stille [45] indicate that the p—polyphenyls which have beén stu&ied
are colorless in solution: These data are listed in TABLE III-l. The
numbers. listed aié the values of 1\, in .nm, for the lowest energy peak
observed. Thé calculated values were obtained by the use of Kuhn's
"foot law' [46] which is obtained from the very simplest form of semi-
empirical molecular orbitai theory. The agreement betwéen the thedry
and the experimental data is remarkable. There are, however; some
serious difficulties.which preclude one from accepting the 343.8 mn

asymptote value for poly (p-plienylene).
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Ca TABLE III-1

Ultraviolet Spectra of p-Polyphenyls - - - .

- Compound ~ - .. . Xmax‘:’ Observed, mm . Xméx, Calculated, nm
Ref 44 Ref. 45 . Ref. 45
* Bedzene © °©  ° 203.0 - o T
Biphenyl ~ 247.4 2515 ' 2517
p-Terphenyl ~ ~  276.5  280.0 " 280.0
p-Quaterphenyl’ ° 292.0 ©  300.0 o 298.0
p-Quinquiphenyl - 310.0 309.7
p-Sexiphenyl 308.0 317.5 317.6
p-Septiphenyl - - R ¥ 5

ﬁ-Polyphenyiéne - - ' 343.8
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The data cited by both nguki and by Noren and Stille are for
-sqlution and not for the solids. As we have indicated in SECTION III.B
the dihedral angle for biphenyl in solution;is around 20°. Thus, the
thépry is predicting the values of kmax for noq—plgnar,molecules.

For thin films of hiphenyl.Dale reportsAﬁhe existence gf a 'hidden'

band with the Xmax of 275 nm [47]. Furthermore, fluorene has a peak
at about 300 nm as does 9, lo-dibydrophenaﬁthreng although_the extinc-
tion coefficient for the latter mglecule is much smalle; [48].

One could argue tha; the 'hidden' band is ;he result of a transi-
tion other than a w-mn* transition, or that it is a m-m* tra#sition
which is forbidden. Since it is not reasonable for these types of
molecules to assume that there are electronic ;fansitions wﬁich are
lower in energy than the least energetic of the n-nf transit;ons, the
first éuggestion is not very probable.» The second suggestion, however,
does have merit and ‘should bg invegtigated. We, therefore, made our
own analysis of the 'n;electronic structure of benzgne and planar
biphenylf We assumed that all C-C. bond lgngths in planar biphenyl
are the same as the C-C boﬁd length in benzene. We did not, however,
ignore adjacent 5tqm ovgriap integrals as is the practice~in the simple
Huckel molecular orbital treatment. Furthermore, we ignored the energy
required to planarizé the biphenyl. Because of these approximations |
we dq.not‘have the right to assume that our calculation of transition
energies will be very close to the oﬁserved transition ene¥gies. Whether
a transition is allowed or forbidden is, howeve;, a group theoretic .
matter, and group theqretic results are a func;ion only of thg symmetries

assumed.




The relationship between the quantum numbers, Xj, obtained from

the secular determinant, and the m-orbital energy is given by

where‘ vy 1is a ﬁbdifiéd exchaﬁgé integral:and is neg;tive; ;ﬁd 0.2455 B
is fheyvalue fofithe oQérlép infégréi fér adjacén;‘ 2p&-orbitals for B
carbon atoms in benzene. For benzene the highest occupied molecular
orbital has the quantum number -1. The lowest unoccupied molecular
orbital has the quantum nﬁmber +1.' Thus, we calculate a m-n* transition

energy for benzene of
(III-2) ' AEg(benzene) = =2,128y .

We obtain the value of y by assoclating this transition with the 203 mu
peak of benzene. “

The structure taken for biphenyl is

The lines a and b represént the symmetry planes for planar biﬁhenyi;
If the electric field vector is perpendicular to the-b-plané,\botﬁ'rings

are involved 1n‘absb}ption. The allowed transitibﬁsvére
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a,% + a,b and a,b > a,% R

where a,g represents an orbital which is symmetric with respect to

the a-plane and anti-symmetric with respect to the b-plane. Similarly,

a,b represents an orbital which is symmetric with respect to the a-plane
and symmetric with respect to the b-plane. Other allowed transisions
are _

a,b+3,b and  &,b~+3,b.

The values of the quantum numbers of the various m-orbitals of planar
biphenyl and their symmetries are listed in TABLE III-2. The

-0.705 (a,b) + +0.705 (a,b) transition energy is

(111-3) - AEg(biphenyl) - -154'54 Y .

Using the value of ¥y obtained from the benzene calculétion, we caiculate
a wavelength of 297.1 nm. This is remarkably close to the 300 nm value
cited above for fluorene and 9, 10-dihydrophenanthrene. The crudeness

of the approximations, howeveé; preélude.our expecting so close a
correspondence. It should, however,‘ be noted th_at this transition is

the lqyest'in energy of all w-w* éran;itigns, g;loved or forbidden.
Tﬁ#s,‘ourncéléulgti;ng suggest,“pug do.not in any way‘pravé, that the
a;ymptétic vélué édf Fhis'transition in fully plan;rizéd p;ly (b-phenylene)

N

is at a much lower energy than is beliéved at the present,
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TABLE III-2

. m=-Orbitals,Planar Biphenyl

Quantum Number ‘ Symmetry
42278 . - a,E
891  ab
+1.317 : . --a,;
;1.900 | a,b
©+1.000 | a,b
+0.705 a,b
© =0.705 o a,b
v‘:“-l.ooo asb
. =1.000 - ~a,b
-1.317 a,b
-1.891 o a,b
-2.278 o a,b
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If our hypothesis is correct that the 'band gap; for fully
planailzed poly (p-phenylene)'s is in the infrared and not in the
ultraviolet, several 'color' phénomeﬂa should be observed for the
poiy (p-phenylene)'s.. -

1. Polyphenylenes which cannot be planarized because of

steric hindrance should be colorless.

2. Polyphenylenes which can be fully plana;ized, but are not,
should become darker when compressed. The compression
energy will»fbrce the rings to assume a more co-planar
configuratioﬁ. | B

3. Fully planarized poly (p-phenylene)'s should be a Shiny.
black, and -

4. Derivatives of fully planarized poly: (p-phenylene) s
which do not interfer wifh planarization should also be

“-black. This requirement ensur# that the 'blackness' is not
cause by impdrities. It does not, howevér,”guarantee that
the 'blackness' is not caused by extensive.cross-linking

between chains.

By means of a Diels-Alder coupling the reac;ion

r

has been carried out [49]. Because of the pendant benzene rings the

product cannot be planarized. It would, therefore, be expected to be
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colorless. Clear, colorless, films of ghg product have been cast
from chloroform.

Grey to brownish black polymers have been synthe;ized by the
anodic oxidation of benzene at the interface between benzene and
anhydrous HF to which a small amount of water or KF was addéd [50].
Chemical énalyses of ﬁhe products indicate that they are polyphenylenes
with some fluorine and some oxygen. In some cases the infrared spectra
indicate that the linkages are para.

An attempt to produce a poly (arylene sulfones by the Friedel-
Crafts reaction of m-benzene-disulfonyl chloride and biphenyl in
nitrobenzene yielded a black polyphenylene of a molecular weight of
3000 - 4000 Daltons [51]. The oxidative cationig polymerization of
benzene with aluminum chloride and cupric chloride yields a brown
product with no evidence of ortho, meta or non-aromatic linkages in
the infrared spectrum [52]. On compression blue-black pellets were
obtained.

A poly (p;phenylene) of about 100 mers was obtained by the
- chlorination of poly (1, 3- cyclohexadiene) with subsequent dehydrochlorination

[53]. A shiny black polymer of composition (C6H3.78C80.31)n"was obtaiﬁed.
The polymer was sulfonated with hot concentrated sulfuric acid. ~The
polymer obtained was soluble in methanol and in concentrated sﬁlfuriq
‘acid, and was also black. The method of synthesis and the chemical
analysis precliide a significant amount of cross-linking. Furthermore,

the color of the soluble sulfonated polymer indicates that the'cqlof is

not the result of impuritiés.
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E. CHEMICAL AND PHOTOCHEMICAL STABILITY
'The excellent resistance of pdly (p-phenylene) and poly(phenylene)

type polymers in general to oxidation, radiation, and thermal degradation
is one of their most'attracfive characteristics,' [54] 'One of the
most important properties of the polyphenylenes is their thermal
stability ...' [55] . Thermal and thermo-chemical degradations are, however, h
not the same as photochemical degradations. The thermal degradations are
initiated by excitiﬁg vibrational transitioms, whereas‘pﬁotochemical
degradations are initiated by exciting electronic transitions. In order
to be justified in envoking thermal stability as proof of photochemical
stability we must be able to show that the raté"limiting'step in the two
types of degradation are the‘same. o |

For degradation to occur either a bond muéé be directly broken or
. a new bond must be formed, the result 6f which isrthe breaking of a
different bond. In the gas phase the combined kinetic energies of two
.colliding molecules can be sufficient to break a bond of one of the
moletulés. In the solid state such an event is not very likely. The
',.kinetic energy of a gas phase molecule colliding with thé surface is
usﬁally-converfed to a vibrational excitation which involves the vibra-
tions of many atoms. The probability @f ;he'localizatién of the vibra-
tion is quite small. If the kinetic energy of the colliding molecule
is sufficiently high, as is the case with plasm; etching, an atom can
be knocked out of the surface directly. Thus,‘ﬁeithe; in thermal, nor
in photochemical degradations at the eﬁergies of ipte;est here is there

a significant probability that direct homolytic bond cleavage occurs.
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A free radical reaction can occur with-a benzene ring if an
effectively localized m-electron can be produced in the activated
complex. Thus,

H
+H

{C1

excitation is effectively to a singlet state. Conservat;oﬁ of ahguiar

.....

momentum in the pl}gton _.ab‘sorption case requires that tﬁgbéffectively
iocalized ﬁleéSF??H%Q structure must bg a triplet,; Ihé‘apove ¥ea¢tiop.
can be initiated in two wayé. The approaching free radical éaq induce ’
a ﬁolarization of the m-electron system or the w-electron system can
by polarized first by the absorption of a photon or a phonon. Since
the room temperature oxidation of of poly (p-phenylene)'s by ox&gen
is not observed, thé presence of the oxygen biradical 1s not sufficient
to induce polarization. Thus, the polarization must'belindhcéd by a
phonon (thermal degradation) or by a photon (photochemical degradation).
For benzene such polarizations are rather easily inducéd. For
poly (p-phenylene), however, how easily can such polafizations be

induced? The energy required to p¢larize benzene to
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is -3.112 v. (It should. be recalled that vy is negative.) The differ-
ence is =0.429 Y. The ektré resonance stabilizationwenérgy of biphenyl
over bénzene is, however, only +0.117 v. Thus, if it is true that

poly (p-phenylene)Lis‘ﬁlénar beéause of the high fesonance energy

TN .

Vs s N

stablization, pol§‘(p-phenylene) should be extrénély unreactive to
‘photon or phonon induced polarization because of the very high polariza-

tion energy.




F. THERMODYNAMICS OF PLANARIZATION.
1. INTRODUCTION
We now turn to the last of the objections against the use

of poly (p-phenylene)'s for TFOS — the'energies required to planariée.ﬁ'
poly (p-phenylene) s are too great for their being used as TFOS switches.
For convenience we can consider polarization to occur in two steps
although they are actually simultaneous. First, the rings are distorted
to permit the planmarization. Second, the=e1ectrons which are localized
in the individual benzene rings are now allowed to delocalize. The free

energy change for the total process is, therefore,

(III-4)  AG(planarization) = (AH, + AH)) - T(ASy + 8S) ,
where 'd’ and e' designate 'distortion and electronic , respectively.
Since planarization requires the input of energy and decoupling

of ortho-groups (when ortho-group coupling is present) from the benzene

rings,

(III-5) Aﬂd >0
.. and

(IIIf6) ASd < 0.

Furthermore, the energy of a delocalized electron is less than that
for a localized electron, and the entropy of a delocalized electron

is greater than that for a localized électron. Thus,
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(II1-7) MH, <O,

and
(III-8)' ASe >0.
At the transition temperature AG = 0, and‘ )
R - AHd + AHe o R
(I11I-9) T= —mmm™ ,
co o - ~AS + AS Tlve A o
e d :

<

where-the bar over<a tern indicates that theiterm is negative.

For bixanthylene, for which the planar configuration is the 'lowerv
temperature form, 8H, and Zﬁ; have been estimated to be 20 kcal-mole$
and =23 kcal- mole 1, respectively [9]. The values of AS and AH

are strong functions of the amount of inter-ring coupling in the poly

(p-phenylene) S. It is important, therefore, that we have an independent

o

B®

BIXANTHYLENE

means of estimating the amount of coupling. Fortunately, the optically

active biphenyls provide such a means.




2. ESTIMATION OF ASt FOR OPTICALLY ACTIVE BIPHENYLS

An optically active'moléculg is concgptﬁally not super-
imposable with its mirror imagef When an optically active biphgnyl
molecule planarizes, the two 'optically"a.ctive configurations arev
equally probaﬁle as the form assumed when the molecule dg—planarizgs;
Evéntually, therefore, a solution of an pptical;y active biphenyl
;ontains equal numbers bf the twb configqrgtiogg. The éoluﬁion is now
no longer optically aétivé. This phenoménon 1s=calléd 'racgmizagion.'

The rates of racemization have been megsgred for several biphenyls.
From the temperature dependence of the rate constant the entropy of
activation, AS:, can be calculated. Since the 'transition state' of
the raéemizatioq is the planar state,

AS

3
(111-10) .- 88T =4S+ 15, .

Thus,;we can check the validity of our model for calculating AS.e +.ASd
by ¢o£par1gg the calculateh value ﬁith'thg gxpe:imeﬁtal value. Values
of as® for sevefal biphenyls have been tabulated by Hall and Harris [56].
We have studied t;o models which,wé have called.the 'strong coupling
model' and the 'weak coupling model'. ‘In the stfong-cou#lipg-quel we
assume that in the planar st;ce theg nrelectron;'are dist;ibuted in a
closed loop of 14 paris. In the:weak couplingfmédel we Assgme two |

closed loops of 6 parts each. In the perpendicular state for both models

each benzene ring consists of six parts.
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10 * © 8.
STRONG COUPLING MODEL

WEAK COUPLING MODEL’

The nitro, ‘carboxylate and carboxylic acid groups are assumed
to have two interacting electrons, three parts when interacting with
the benzeng rings (when the benzene rings are not co-planar) and two
parts when not interacting with thé:benzené’rihgé (when the benzene

rings are co-planar).

0 ' 0
C :(f{//? (+)///
—N {<—>—N
EERR NG
o NiTRo GROUP S

e 0o ) . _b

. Y AR
.\<-> ,\<-)

R . ;

P L ".CARBOXYLATE .GROUP




//0 0
— C// > — C//

\, . ,\&4__)

0-H 0-H

CARBOXYLIC ACID GROUP

The 'two parts' are the nitrogen - (or carbon -) oxygen bonds. The
'third part' is the nitrogen- (or carbon-) ring carbon bond.

- For the methoxy group (rOCHé or -0Me) we assume one interacting

electron and one part whether interacting with the ring or not inter-
acting with the ring. The diagram below shows why a one electron inter-

action is assumed here.
Me Me

/- /

0 < > (- =0

The various entropy terms are calculated by

(I11-11) S =nR In p ,
where
(I11-12) n = number of electrons ,

' ' -1 -1
(III-13) R = 1.987 cal-deg "‘mole = ,
and

number of parts .

(I1I-14) P




For Case I for the strong coupling model the entropy for the co-

planar. state is

(I1II-15) S(I, Il , strong)

S(p—9) + 25(—co;) + S(-NOZ)

12R 1n 14 + 2(2R 1n 2) + 2R 1n 2

71.2

and for the weak coupling model

(I1I-16) S(I, |, weak) 12 R 1n 12 + 3(2R 1n 2)

67.6 .

(I1II-17) s, D

S(<:Z::Z§) * s(co;/jC>)

10R 1n 12 + 8R 1n 9

84.3 .

Thus, the values of 4S = S(/l) - s(]) are given by




(111-18) AS(I, stromg) = 71.2 - 84.3 .
= =-13.1 cal-deg-l-mole-1

and

(I1I-19) AS(I, weak)

67.6 — 84.3

= -16.7 ca].-deg_]'-mole-1 .

The value reported by Hall and Harris is -11.2 cal-deg_l-mole—l. For .. -

this case the strong-coupling model gives the closer value.®

OMe OMe

- con "‘—’CO-"' o o T A Dot

CASE II R 3

(III-20)  AS(II, |, stromg) = S(4=4) + 25(-C0,) + 25(-OMe)

+
]

"12R 1n 14 + 2(2R 1n 2)_+ 2(R 1n 1)

68.4 ,

(II1-21) AS(II, ||, weak) 12R 1n 12 + 4R 1n 2

64,8, 1 o Tl
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(I1I-22) s(1I, |).

OMe
2s(2<:£ )
co;

= 2(9R 1n 10)

= 82.4 ,
and

(111-23) AS(iI, strong)

68.4 - 82.4

= -14.0 éal’deg-;-mole-l
and . B S SRRy

(I1I-24) AS(II, weak) = 64.8 - 82.4

= =17.6 cal‘deg_'l-mol_e’-1 .

The observed value is -12.3 cél;degflsmole-l. Agéin the strong coupling

model gives the closer value

NO, . OMe

CASE III

(I11-25)  S(III, ||, strong)

S(¢—¢) + S(-NO,) + S(-CO,H) + S(-OMe)

12R In 14 + 2R I1n 2+ 2R In 2+ R 1In 1

68.4 ,




(11I-26) S(I1I, ||, weak)

12R In 12 + 2R In 12 + 2R In 2 + R In 1

= 64.8 ,

s

OMe i
s((:z . )+SC D)

(11I-27) S(I11, |) =
= 10R 1n 12 + 7R 1n 7
= 76.4 'y
and
(I11-28) AS(III, strong) = 68.4 - 76.4
= -8.0 c:al°deg-]'-mole-1
and
(I1I-29) AS(III, weak) = 64.8 - 76.4

= =11.6 cal-deg ‘-mole !

The observed value is -7.3 cal-deg-l-mole-l. Once again the strong
coupling model gives the better value. For our final example we will
consider a binaphthyl. The strong’ coupling model requires 22 parts

for the co—planar case. The weak coupling model requires 20 parts

for the co-planar case.

48



CASE IV

(1I1I-30) S(1v, ||, strong) = S(binaphthyl) + ZS(—CQ;)1
= 20R 1n 22 + 2(2R 1n 2)

= 128.3 ,

(I11-31) S(IV, ||, weak).

20R 1n 20 + 4R 1n 2

= 124.6 ,

P R : co; T I
(I11-32) s, D) =2s( )

= 2(12R 1n 13)

= 122.3 ,

and

128.3 - 122.3

(111-33) ‘AS(IV, strong)

= +6.0 cal-deg-l-mole-l s




and ' : P

(I11-34) AS(IV, weak) = 124.6 - 122.3

= +2.3 ca'l-deg'-]'-mole-l .

Hall and Harris report +9.2 ca1°deg-l°mole-1. In each of the four
cases the strong eoupling nodel gives the closer value. Furthermore,
the experimental value in each casé is algebraically greater than the
values for either model. Thus, the‘inter-ring coupling is actually

greater than that of the strong coupling model.

3. AS FOR POLY (p-PHENYLENE)
Let q be the number of benzene rings, each of which
supplies six electrons. In the strong coupling model the first ring
in the fully planar state supplies six parts. The subsequent rings»

supply eight parts each Thus,

(II1-35) number of electrons, planar state = 6q ,
(1I1-36) number of parts, planar state = 6 + 8(q-1)

= 8q-2 ,

: ano; by (III-11),
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(I1I-37) S(|l) = 6qR 1n(8q-2) ,

q(6R ln 6)‘- . e . ceae \ .:’"» .

(I11-38) s() =

= 6qR In 6 ,
and E
(I11-39) .. . - ..-_Ase = 6qR 1n(§%2_) ’\ g

' 6qﬁ.infﬁ%;l)'.

For poly (p-phenylene) itself. ASd ='Oiieince tne hydregene.ere not

‘coupled to the rings by = -linages.

4. sE FOR POLY (p-PHENYLENE)

;.,"

The energy of the J-th energy level for the one dimensional

FE-MO (Free Electron—Molecular Orbital) model is given by [57]

n, 2

I1T- = k(L
(I11-40) O K(p)

is the quantum number of the energy

j 3 l v .
level and p 1is the number of parts given by (III-36) Since two

where K 1s a constant, n

electrons occupy each energy level,




: K 2
(III-41) E == ] n

~ 2
TOTAL ;2 4oy i

(8q-2)% j=1
X 3q ,
s—— I 3°.
2(4g-1)2 521
Since
(111-42) 3 j? - R EmD
. L

we may write (III-41) as

K__ . 393qtl) (6q+1)
A

(I11-43) E 7

TOTAL

K ., g(3q+l) (6g+1)
(4q-l)2

For benzene, q = 1. Thus : |

- : _kK _ 4(7)
(I1I-44) .ETOTAL(BENZENE) A 'R
= 7—K
9 L]
For biphenyl, q = 2. Thus,
- _KkK  2(7)(13)
(I1I-45) ETOTAL(_BIPHENYL) =% IOy 7D
_ 13k
14
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Since thefe is very little volume .change in the solid on planarization,
we may equate. E and the enthalpy. Since biphenyl consists of twe

benzene rings,

(I1I-46) AH_ (BIPHENYL) = E (BIPHENYL)

TOTAL (BENZENE)

=~ ZEroraL

13K 14K

14 9

-0.627K.

In SECTION III.C we indicated that the 'excess' resonance energy of
fluorene over twice benzengis 3.9 - 4.9 kcgl-molefl, where resonance

energy is taken as a positive number. Thus, we now take

(LII-47) 0, (BIPHENYL) = 4.4 keal-mole ™ ,
and

b4
(I11-48) K = 5637

7,02 x 10° calwmole T .

For q mers there are gq~1 inter-mer bonds. If AH, 1is the

d

value for one bond, then




(BENZENE)

(I11I-49) . AH = (q-=1) AHd + ETOTAL -q ETOTAL

I

K q(3q+1)(6q+l) _ 7Kg

- (q=1) AH, +
(4q+1)? 9

d 4

- 3 [q(3q+l) (69+1) _ 7q]
(g-1) AHy + 7.02 x 10 [ LR 9] .
4 (4q-1)

We may now substitute (IiI-49j and (III-39) into (III-9)

and obtain

(q-1) AH, + 7.02 X 103[Q(39+1)iGQ+1)‘- Zﬂ]

|
|
\
|
5. T (TRANSITION) FOR POLY (p-PHENYLENE) = o
|
|

- . d . 2 9
: . 4(4q-1)
(111-50) T rrrany — - .
(TRANSITION) 6qR 1n (4%_1)_
If q = 40‘ and AHd - 1.8 x 164 cal'mole-l; thén
(11I-51) T(q = 40, AH, = 1.8 x 10%) = 299°K .

d

If q =100 and AH

= 1.8 x 10¥ cal-mole™l, then

1

(III-52) T(q

"

: = 1.8 x 10%) = 246°K .

100, AH

Thus, we see that we can make a poiymer which ﬁill switch at 25°C or a

polymer which is switched on all of the time just by changing the>

polymer length.
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In TABLE III-3 are listed the various data which have been
obtained by the use of equation (TII-50). The values which have been
circumscribed with rectaﬁgleé are_those which are closest to the
switching temperature of 298°K (25°C).. The last row in the TAﬁLE has
tﬁe change in the~swi€ching-teméeréturelper unit-change in the number
of mers. Sincé it is m§s£ unlikely that a préduction process will
'produée a very ﬁarrow distriﬁution of chain lengths, this number
should be as small aé possible.

The average value of AH‘ for the biphenyls listed by Hall
and Harris [56] is 22.2 kcal'mole-l. ‘Since this already inclues a
Zﬁ: 6f about -4.4 kcai'gole-l, 1f is estimated from their Aéta that
AHd

than the ones which we would use, a value of H in'(iII;éo)‘of

23-25 kcal-mole.l is not unreasonable. It should be noted ﬁhat the

is 26-27‘k¢al'moie-}; Since their ortho-substituerits are larger

AHd

reasons it may be*désifable to have different values of AHd for

used in equation (III-50) is an averaged value. For pfactical

various inter-ring bonds.

. For AHd = 23 kc:al-mole-1 and q = 187 the transition temperature
ié 2§8.0°K. The temperature change per unit change injthe number of
mers 1is 0.28. If we assume a 15 mer spread in the chaiﬁ lengths,
the spread in the tranéifion témperatu;e would be(4.2 AQgrees.

The above analysis, while reésonable, is ingompléte. There are
factors which hafe not been takeﬁ inté coﬁsider;tisﬁ. for exampie;

the variations .of bond Iengthé and. ‘angles which occur as a result of
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planarization effect the o-bond energies as well as the w-bond

energies. A more exact method for calculating the AH's and AS's
is most desirable. As an aid to the attaining of this goal we have

developed 'Equilibrium Bond'tength' (EBL) theory. '
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15
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
250
290
300
310
320

Deg/
Mer

524.6 623.6 673,1 970.1 1019.6 -
406.8 443.1 479.5 515.8 552.2 588.5 624.9 661.2 697.6 734.4 770.3
334.3 363.7 393.1 422.6 452.0 481.0 510.9° 540.3 569.7 597.2 628.6
299.9 |326.2 352.4 378.7 405.0 431.3 457.6 483.8 510.1 536.4 562.7
278.6 [303.0[ 327.4 351.7 376.1 400.5 424.8 449.2 473.5 497.9 522.3
252.5 274.6| 296.6 | 318.6 340.7 362.7 384.7 406.8 428.8 450.8 472.8
236.4 257.0 277.6 |298.2 |318.8 339.4 360.0 380.6 401.2 421.8 442.4
225.0 244.6 264.2 283.8 |303.4] 323.0 342.6 362.2 381.8 40l.4 421.0
216.5 235.3 254.1 273.0 291.8 310.7 329.5 348.3 367.2 386.0 404.9
209.6 227.9 246.1 264.4 282.6 |300.8 |319.1 337.3 355.6 373.8 392.1
204.0 221.8 239.5 257.3 275.0 292.8 310.5 328.3 346.0 363.8 381.5
199.3 216.7 234.0 251.3 268.7 286.0 303.3 320.7 338.0 355.3 372.7
195.3 212.2 229.2 246.2 263.2 280.2 [297.1] 314.1 331.1 348.1 365.1
191.7 208.4 225.1 241.7 258.4 275.1 291.7 308.4 325.1 341.8 358.4
188.6 205.0 221.4 237.8 254.2 270.6 287.0 303.4 319.8 336.2 352.5
185.8 201.9 218.1 234.2 250.2 266.5 282.7 [298.8] 314.0 331.1 347.3
183.3 199.2 215.1 231.1 247.0 262.9 278.8 294.8 310.7 326.6 342.6
181.0 196.7 212.4 228.2 243.9 259.6 275.4 291.1 306.8 322.5 338.3
178.9 194.4 210.0 225.5 241.1 256.6 272.2 287.7 303.3 318.8 334.3
176.9 192.3 207.7 223.1 238.5 253.8 269.2 284.6 300.0 315.4 330.7
175.2 190.4 205.6 220.8 236.1 251.3 266.5 281.7 [296.9] 312.2 327.4
173.5 188.6 203.7 218.7 233.8 248.9 264.0 279.1 294.1 309.2 324.3
172.0 186.9 201.8 216.8 231.7 246.7 261.6 276.6 291.5 306.5 321.4

295.0

287.8  301.8
300. 2
297.0

5.6 4.5 2.5 1.7 1.4  0.90 0.58 0.43 0.32 0.21  0.16

TRANSITION TEMPERATURES ‘2’

(a) Degrees Kelvin

TABLE III-3

(b) Kc;al-mole-l
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IV. EQUILIBRIUM BOND LENGTH' THEORY
A.- INTRODUCTION

In addition to our need to have a mofe exact theoretical
understanding of the poly (p-phenylenes) recent advances}In the synthesis
of thin. films of polyacetylene have brought up again the question of
-the velues'of the various bond lengths in MCMM such as the.polfenes
[58]. "As the length of the polymer molecule is increased, dq the.
carbon-carbon bond lengths tend to 'even out', or does the alternating
bond length pattern of small molecules such as butadiene contInue?.
Ab InItIo calculations for such large molecules are prohibitively
expensive. It is, therefore, desirable to develop an approximation
method which can be used to address this queetion.

One of the simplest cases of the application of Schradinger'e
equation to solve is the ‘'particle in a box'. [In SECTION III we
referred to the particle in a box problem as the FE*MD.mefhod. Although
the letter'name is the one ueed'ﬁost ffequently, the former name is
more accurate sinceAit is assumed that .there are no Coulombic inter-
actions eﬁong the particles.]' Here it is assumed that Ehe potential
energy is uniformly zero inside the box and positively infinite every—
where outside of the box.. If‘the box is a rectangular.pazaIlelOpiped, .

the eelutions for the kinetic energy of the particle are given by .

20 2 0,2, n,2-
(Iv-1) - - E(kinetic) ag—'m[czl) +(22_) +(a_3) ]
o A | 3 -
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where h 1is Planck's constant, m 1is the rest mass of the particle,

a, Is the Carteésian coordinate dimension of the box for the j-th

3
coordinate, and 'nj. is the quantum number associated with the j-th
coordinate.

-If each of the a,'s is reduced by a factor.of two, the kinetic

3
energy of the particle is increased by a factor of four. ' In anthropo- .
morphic terms the particle becomes more agitated as the size of the

roém decreases.. The particle may, therefore, be coqsidered to have
claustrophobia, and the energy of equation (IV-1) may be considered

to be the 'claustrophobic energy'. From -the viewpoiﬁt‘of the mathematics
or the physi¢s such picturesque terminoclogy is unnecessary, but it

does have considerable didactic utility. ..

From the viewpoint of Coulomb's equation,

-1
(IV-2) Coe s Vo= me )T YT qea /T, s P e
°0  § gy 173 ]

where ¢  1is the permittivity of vacuum, 9y is the charge on‘théfi-th

particle; qj is. the charge on the j~th particle, and r, . is the distance

1]
between' the centers of charge, many systems of 'point' charges should
collapse to a single point. - Why such a catastrophe does not occur
in the hydrogen atom was one of the difficult -questions facing the

founders of quantum mechanics. The claustrophobic energy answer is

that, although the pétentiéihenergy"decreases{AS' r,/, approaches

13

zero, the claustrophobic energy increases. The equilibrium value of

r is that for which the total energy of the system is minimized.

ij




Since the kinetic energy cannot be zero, the system will oscillate

about the equilibriuﬁ value of r

1]

B. THE HYDROGEN ATOM

At least three different radii can be defined for the hydrogen

atom

*
(Iv-3) - £r>» =fu rudt ,

(IV=4) Verds

L l;'«rzu dr] 1/2 ,

and the 'most probable value' which is obtained by the solution of

dP(r)

(Iv=5) ar

=0,
where P(r) 1is the radial probability distribution function for the
hydrogen atom [59].

The radial wave functions for the‘first'three s—orbitals of hydrogen

are
= aea y3/2 -0
(IV"‘6) Rl,O = 2'(a0) e .
(IV"?) RZ,O = (2)"3/2 (ao)‘3/2 (2—p) e_p/<2 ,
and
(=8 Ry =22 @7 @7 - 180+ 26D 2,




where

(Iv-9) o =r/a,
and
o _ sohz
(Iv=10) ao =3 >
: ffm e
o o

where o and e, are the rest mass and the magnitude of the charge
of the electron, respectively. a, is the 'Bohr radius'. The relation-
ship between P(r) and Rn P) is given by

?

(IV-11) P(r)dr = [Rn B(r)]z r2 dr .

For n = 1,

av-12) < =% 2P ar
a0
o
i% I é_ZB(aop)3~d(a o)
. o
a_ 0 -

= 4a [ e-zp p3 dp
°y :

- -2
4ao[-e T {20)° + 3202 + 6(20) + G}T
(2) 0

6
4ao [E

3a /2,
o




| e L al/2
v-13) V< = [—"— ;o b dr]
0

7 _ =2p e o . < 1/2
- 43(2,[ ® (20" + 420)° + 12(20)7 + 24(20) + 24}D
v R (2) )

7/
= 432 (_25_ L2
[ 07327}

-V3a,,
and
dP(r) _ 4 -2r/aop 2 2 ..-2r/a;o‘
Ir 3 (2r e 3 r e )
a o
=0 ,
2
2r = 2r_ s
a
o
or - '
(Iv-14) r(most probable) = a,

e

For 'n = 2,
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(IV-15) {x> = —-— f

830

dr -

(2-0)% e 3

a o0
= 'T° I Gmbpto®) 00 &P dp
4 0 o . S : .
I
T° ) (493-4pl'+ps) e
0 .

ao .
"% [“‘

°do

—e-p 3 2 '
—4(9 + 30% + 60 + 6]}
(1) ‘

3

1)

4 3

-e P :
+ = (o> + 50" + 200 + 600

(1)

a
=5 [24 - 96 + 120]

= 6a_,
o

(v-16) V< = [

[%

[8 [4{-e p(p + 4p3 + 12p

1/2
(2-p) -P r:4 dr]' _

N
O

1/2
J (40 -405+o6) epdp] '

2

-4{-eﬁp(p5 + 5p4

+ {-€ p(p6 + 605

5
A
-2
[8

V42 a_ ,
o

(96 - 480 + 720)]1/2- <

+ 3Op4 + 1200

2+ 120 + 120]}T
7o

+ 24p + 24)}

+ 200° + 60p% + 1200 + 120)}

1/2
+ 360p + 7200 + 720)}




and

,]= 0 ’ -
,r.
202 - 5 2 @- ai)2 2 ’
) . o = 2r(2 - JL)Z

a a ‘ -a ’

o o o
2-5y

2r2 + 3, 21(2 I
a a =2r2 - )
o o >0

“ZrZa + (2a_-r) r2
o o

2
Zr(?ao’- aof).,

2a r2 + 2a r2 - r3 = 4a2r -2ar°,
(o) o . . o A -

LS

o o ST
-r/a
- 2r(2 _.lL)z e w/ o]
o a,’ , . . = -
|
|

r3 - 6a r2 + 432r o, ae
T .0 :?.Oa T,

r=20, r274 6aor + 432 =0,

6a +V36a> - 16a°

r= - 2

]
w
P
+
S
[
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or
(IV-17) r(most probable) = 0, (3 -V5) aj, (3 +V5) a .

For n = 3,

-]

(1V-18) o> = ————3—-—§-f (729 = 9720 + 4320% = 720° + 40%) = 2°/3 34p
19,683 aJ 0
ba, o 3 4 5 6 7. =20/3
=22 [ (72907 - 9720" + 4320° < 720% + 40') do
19683
L% 729¢3)% (3'$~- 972(3)° (4')'+?4;éé1)6 (5!)
19,683 2 ' 7). (4 7 :
-72(%)74(6!) + 4(%)8 (7:)]
4a
[o]

= m [66,430.125]

13.5 a; .
2 .

: - 4a o . " o - ' 1/2
(v-19) V<r?> 1_96_803 I (72904 - 9720° + 4320% = 7207 + 408y &72°/3 dp]

?
5 0 A

2
o 4ao

B 3’5“\‘_'. 36» ' 39 '
= | 157683 {7297 &%) - 972(3)" (51) + 432(3) ,(6')

i 1/2
- 72(%)9 an + 4(%)9 (sz)ﬂ

S P

. o . .
- Ligjggg (1;018,595.25)]

[207 ai] 1/2

=V207 a, ,




and

d Cga .2
19,683 a,

2

+ (270 - 180" + 20°)2 63-)

=0,

2(27p - 180% + 20%) (27 - 360 + 60°) - 2 (270 - 18p

=2

de(r) S [2(279 - 180% + 20%) (27 - 36 + 60°) e

é52::/3]

2

2(27 - 360 + 60°) - %-(270 - 1802 + 20°) = 0 ,

27 - 36p + 602 - 90 + 602 -

3 2

3

2
3p=0’

-2 v120® - 45042720

or
30° - 3602 + 1350 = 81 = 0 ,
and from ‘
| 27p - 180° 3

+ 20" =0
2 C
p=0, 20 - 18p + 27

The roots of these equations are

(1V-=20) " p = 13.074 , r =
p= 4.186 ; r =
o= 0.740 , r =

66

13.074 a
o

4.186 a.
o

10.740 a ,

-2p0/3

+ 203)2 =0,




(1V-21) b=0, r=0

and ‘ )
18 + V324 - 216 18 + V108
(Iv-22) ) p = 3 = 3
9+ V77
r=—7p &
The results of these calculations are summarized in TABLE Iv-1. 1It
is to be noted that the values of (r> are in the ratio 1:4: 9 = 2 22 32.

The correct geometry to use for the kinetic energy term for the
hydrogen atom is, of course,‘the sphere.“We shall, however, restrict
our present discussion to equation (IV-1) as written. We shall treat
the one dimen51ona1 case and the threehdimensional case. It should
be noted that aj is effectively a diameter and not a radius. We

shall, therefore,. take a =’f£, where the value of 'f is to be

3

determined.

For the one dimensional case,

h2a? ‘ei L
(1v-23) E(total) = — - -,
am f21_2 4re ¢
(]
- 2
dE(total) _ _-2n%i%’ 4 "o
dr 2 2 2




TABLE IV-1

RADIUS VALUES FOR HYDROGEN s-ORBITALS

(in units of ao)

n {r> ' <r2> r (most probable)

1 1.500 1.732 1.000
2 6.000  6.481 5.236

0.764

0.600
3 13.500  14.387 13.074
7.098
4.186
1.902
0.740

0.000
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nh €, n2
(Iv-24) rF 2 32
m e £f>
o0 '
2 2
" an
= [by (1V-10)] .
f

Since this r 1is proportional to nz, we assume that it is <r2.

'

Thus, for n =1

ma
1L.5a, =—5
- f
£2 = n2/1.5
and
(1V-25) £ =2,565 .

The Van der Waals radius of hydrogen is 1;22 [60] . In Bohr radii
this value is 2.268 B.-r. The ratio bg;weén this value and <r> is

- 1.512. Since f . is a diameter factor rather than a radius factor,

(Iv-26) f (experimental)

2(1,512)

3.024 .

For the three dimensional model with =n, s'n, =

a, = 83 = fr, we have
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‘ 352 o S
(Iv=-27) E(total) = g = >
8n fgrz 4ﬂs°r
om o
N 9 ‘eZ
dE(total) _ -3h + 0
dr .~ 2.2 2
- ~4m £7r" " 4me
o o
=0,
. . 3w a,
(1v-28) r=—7p ,
f
and o
(1v-29) £ = 215112

4.443 .

Since the Van der Waal diameter would correspond id the body diagonal
of the cube, but a is the edge dimension, we must divide f by V?.'

Thus,

St |

(1v-30) ' £
= 2.565 ,

which is exactly the same as the one dimensional, model value. This

value is 15% less than the 'experimental' value. When one considers

the crudeness of the model used here, this degree of agreement is -

fortuitous or fantastic!
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C. THE HYDROGEN MOLECULE ION
vFor Lhe hydrogen molecule ion we shall cake r, as the
distance between the protons. We shall assume tﬁa; the e;éctron is on
the plane mi&way between the protons and perpeﬁdicular_tbnthe lige of

centers. The perpendicular distance from the electron to the line of

centers is r_/2. Thus,lthe distance between a proton and the electron

is
1,2, 21/2
(1v-31) d=5 @+,
and
-
.4 n? (L2 ®o (4 1y

. = —_— ) - . - —

(1v-32) E(tc:tal) 2 rz) e, —
o + - Vr +r_

where the factor of 2 in the kinetic energy term is the result of our
taking two Cartesian coordinate axes perpendicular to the line of

' centers coordinate axis. We now divide (Iv-32) by e§/4ﬂs°‘ to obtain

(IV=33)  E(total) ( lmad/ecz) }

+ -
_ m2(5.2018 x 10”11y 'C_i_+;2__‘) 4,1
‘ 2 . A N S — T
2f r T : ]*2 2 T+
+ - r++r_
=10 ;
_ 2.6114 x 10 (L+2) -4+ 1
= 2 2 2 r, °
£ S *L2+r2 +

71



[-] B
L3

If we now take r, and r_ in A units iﬁgtéad of in meters,

(IV-34) E(total)

c 26114, 1 . 2 g 1
S2fllecl 2y 6,1

2
f r, r_ /r2+r2 +

A

We shall now minimize the Left hand side of (IV-34) for a given value

of f by varying the values of r,

analysis are given in TABLE IV-2. The experimental value for .the

and r_. The results of this

equilibrium bond length for .the hydrogen molecule ion is 1.06 &,10-

meters [61]. If 3.024 is taken as the correct value for f, the value

2.913 is 3.7% to low, a remarkably good correspondence.

D. THE HYDROGEN MOLECULE

We shall assume that .the electron added to the hydrogen molecule

ion to form the hydrogen molecule is on.the other side of the line of

centers of the protons from the first electron but at the same distance

from the line of centers, This doubles the kinetic energy term and

the attraction potential energy term. It also adds a néw repulsion

energy term. Thus, (IV-34) becomes

tme x 1010
[o}

7

e‘o

(IV-35) .f(total)

5.228° 1 2 8 1 1. .
== (5 +-3) -ttt

2
f r, r_ /r2+r3 + -
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TABLE IV-2

Equili brium Bond Length of Il;
as a Function of  f .
f r, X 1010 meters r_ X 1010 meters
3.628 0.685 0.634
©3.500 ©  0.73% 0.680"
3.400 0.778 - : 0.720
'3.200 0.877 7 0.812"
3.000 C 0999 T T U 70.924 7
2.950 U 1.034 - gL957 vt
2.913 © 1.060 Y 0.981"
TABLE IV-3
Equilibrium Bond Length of H, R
"as a Func't;ién of f '
£ r;x 1000 meters  r_ x 10'0 neters
2.913 0.925 | 1.045
3.000 0.873 | . 0.987 \
3.223 0.755 0.853
3.251 0.742 0.838

3.255 0.740 .. 0.836




The results‘of this analysis are listed in TABLE IV-3. The experimental

value of the equilibrium bond length for the hydrogen molecule is

0.74 x 10-19 meters [62]. If again 3.024 is taken as the correct

value for ‘f, the valuev3.255 is 7.6% too high. Again we have a remarkj
ably good corregpondence. Since our primary interest in this study is
not diatomic molecules, we shall not purse this subject further here.

e
Instead, we shall proceed to the analysis of polyenes.

E. MOLECULAR ORBITAL THEOR¥
The APPENDIX to this report, '"Molecular Quantum Mechanics' is
essentially SECTION III of TFOS-B. Two equations which we shall use.

extensively here are

(A~48) E =4 - 1—_)‘1;—&

in which Ek is the energy of the k-th molecular orbital d, $ and X

are the Coulombic integral adjacent overlap integral and modified

adjacent exchange integral for Zpﬁ—orbitals in benzene, and Xk -is :

the quantum number for the k-th molecular orbital, and g

(A-52) 5101240 = &'Ziw

or
(1V-36) Oy 654 ¥ pji')|Zik>-

in which § is the Kronecker delta [5 1 00 for j = i and

i ji ]

531 0.00 for j # i}, |Z > is the eigenvector for the k—th molecular

orbital and



- | = i ji
(IV 37). o p{i ,3 =

where $§

i1

If both of the atomic orbitals are carbon 2p -orbitals, $

is the overlap‘integral for the j-th and i-th atomic orbitals.
ji is given
by (A—140) and (A—141)

The $ integrals were evaluated using Slater orbitals for the

ji .
carbon 2pﬂeorbitals, taken as 2pyeorbitals,

- v
(1v-38) . u(2p,) = 1.899y e 1.625c'

where r' 1is the distance between the atoms in Bohr radii (0 529 x 10 -10
meters) [63, 64, 65]. The results of these calculations are summarized
in TABLE IV-4, which is TABLE A-1 in terms of r rather than a (meters
rather than Bohr radii). | L |

| The relation between r and $§ 1is not quite 1inear. Within the
accuracy of the methodology used here, however, the error introduced

by assuming linearity is not serious. If the function were linear,

A$ | __0.3454 - 0.1902 *
- (1,545 - 1.185) x 107

4.311 x 10° .

If this value is used with the equation;

A$

si ),

(r -r

;(llbl‘—40) ‘ $ T
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TABLE IV-4

Carbén—Carbon 2§y—2py Overlap Integrals as a Function

of the Interatomic Distarice .

r x 1010 meters $ r X lblo meters $ r x 1010 meters $
1.185 0.3454 1307 0: 2849 1.428 0.2327
1.190 0.3425 1.312 0.2824 1.434 0.2306
1.196 0.3398 1.317 0.2800 1.439 0.2285
1.201 0.3370 1.322 0.2776 1.444 0.2265
1.206 0.33%42°  1.328 0.2752  1.449 0.2245
1.21i 0.3315 1.333 0.2728 1:455 0.2224
1.217 0.3288 1.338 0.2705 1.460 0.2204
1.222 0.3261 1.344 0.2681 1.465 0.2184
1.227 ©0.3234 -1.349 0.2658 1.471 0.2164
1.233 0.3207 1.354  0.2635 1.476 0.2145
1.238 ~ 0.3180 1.360 . 0.2612 1.481 0.2125
1.243 0.3154 1365 0.2589 1.486 0.2106
1.248 0.3127 1.370 0.2566 1.492 0.2087
1.254 0.3101 1.375 0.2544 1.497 0.2067
1.259 0.3075 1.381 0.2521 1.502  0.2048
1.264 0.3050 1.386 0.2499 '1.508 0.2030
1.270 0.3024 1.391 0.2477 1.513 0.2011
1.275 0.2998 1.397 0.2455 1.518 0.1992
1.280 0.2973 1.402 0.2434 1.524 0.1974
1.285 0.2948 1.407 0.2412 1.529 0.1956
1.291 0.2923 1.412 0.2390 1.534 0.1938
1.296 - 0.2898 1.418 0.2369 1,539 0.1920
1.301 0.2873 1.423 0.2348 1.545 0.1902
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10

with r, = 1.365 x 10 and $b = 0.2589, the errors in the éalculated

10

10

values of $§ for r = 1.185 x 10 ~° aid r = 1.545 x 10~ are 2.58%

and 4.68%, respéctively. A better 'end points' fit is obtained if

the slope is taken as -4.168 x 109. In this case (IV-40)Abecomés

10

(IV-41) 35 0.2589 + 4.168 x 10° (1.365 % 10 10 = )

0.8278 = 4.168 x 10° T s

and the 'end points' errors are 3.32% for both end points. We, therefore,
used (IV-41) in the present investigation.
The values reported for the carbon-carbon bond length in benzene

0 0

by Almenningen et al. are 1.3974 x 10-1 and 1.3968 x 10-l meters

for an average value of 1.3'9‘7.1><'10-10 meters [66]. Thus, we have
(1V-42) $(benzene) = 0.2455 .

Division of (IV-41) by (IV-42) yields

(IV=43) oy = 3.3719 - 1.6978 x 1010 T
or
' (IV=44) ry = 1.9860 x 10710 _ 5.4900 x 107! o5 -




F. -EIGENVALUE SECULAR EQUATIONS FOR POLYENES

A polyene is-a topologically linear.polymer in which-the .
carbon-carbon bonds are alternately double and single bonds. -Both -~ ...

end bonds are doub1e~bqnds} We shall consider ‘here only those cases

in whichAgll of the carbon atoms are co-planar, and the molecule has

a center of symmetry or a central plane of symmetry. In these cases
group theory’permitsifhe factofiné of the-déte¥miﬁaﬁtial_secular
equation of (IV-36) into two secular equations ~-~ one for the symmetric
wave functions and one for the antisymmetric wave functioms. . Thus, :

we may write

X Py -0 0 . . e
Py A ‘;2 0
(IV-QS) : . . = 0.0 ,
. R Y
| Jpn;l Xibn

where pj is really p(j;?j+l) ,éndt,.

(IV-46) | ‘;..D(j ,: 3+1) =§£i._.‘é+_1)_ .

P

The plus value at the n,n position is taken for the symmetric wave
functions, and the négativg value is taken for the antisymmetric wave

functions.
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By means of standard row operations the determinant of (IV—45)
can be converted to the. upper triangular furm. When thisAis done the
numerator of fhe n,n. term, when set equal to zero,‘is,the eigenvalug
polynomial. If the first row is mgltiplied'by_ —pI/X and added to
the seéond row, the new second row is | . |

~o, (V) o (0)  A-p?
1'F1 1
R X = 000, X- X = X 9 pz’ 0’ LI W) .

(v-47) oy +

The next three terms on the diagonal are

pg)\ A3 - (pi.i- pg)l
(IV-48) = A - =— = R ,

2 2 2 2

X--pl AT - pl A

. pg(kz-pz) A - (oi+p§+p32))\2 + pio‘;'

(1V-49) N L2 3 1 ,

AT = (e )N AT = (py+p)A
and

AR !

(Iv-50) X -

4 2. 2, 2,.2 2 2
A - (pl+pz+p3)k + P1P3

5 2,.2,.2, 2.3 22 2.2 2
) A7 = (ppHoptegte, )N + {"1"3""’4("1*"2)})‘
2, 2

4 ' 2, 2.,2, 22 ‘ '
AT = (pytey o)A +0, 0y .

If the specific term is to be the n,n term for the symhetric wave

function determinant, the next higher p, 1is édded. Thus,

3




Xz—pi X2+b2X-pi
(Iv-51) __)\_'+ p2 = >
2, 2. , . 2, .2 2 .
Ao B 0 a3+ 0% - (P2 - olo
1 P2 _ 3 1 P2 173
(IV-SZ) 2 2 + Py, = 2 b
A"=p > A2-p
1 _ 1
A - (pi+p§+o§)>\z + piog
(IV-53) 3 3 3 + 94
AT = (pytey)A
4 3 2. 2,2..2 2 2 2 2
_ Mo = (pyHopte )N - 0, (py+oy)N + 005
- 3 2. 2... ’
AT - (ol+pz)X
and
2, 2 2
Az - '(p<2+p +p )X3 + {pzpz +pz(p +pz)}>\
17273 173 T4 1772
(IV-54) . — + 0
’ 7\4_(2+2+2))\2+ 2 2 5
‘ P TP TPy 1P,
5 4 2,2, 2, 2.3 2,2, 2.2
=[X + psk - (91+pz+o3+p,‘)k - °5(°1fp2+°3))‘

+{¢§p§ + pZ(pi+p§)X + piogps ]/

4 2, 2, 2.2

2 2
(" - (pl+pz+p3)7» +plp3] .

The eigenvalue polynomials, thus, are

.2 2
(IV-55) TN +p2 91 =0,
3. 2 .2 2 2
(IV-56) Ao A - (ol+02)7\’- PPy =0,
/
4, 3 . 2.2.2.2 -, 2. 2. . 22
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and

| S, 4 _ 2.2 2 2.3 2.2 2.2
(1Iv-58) N +psl - (o +0,+03+0, )" - os(pl+c>2+p3)}

22, 2,2 2 22

For ethylene itself the polyndmial is

(1V-59) - "liz-piA= 0.

By Descartes' rule of signsi(IV-59) has one positive aﬂd'ggg negative
root; (IV—SS) has one positive and one negative root; (iV-56) has one
positive and two negative roots; (IV-57) has two positiye and two negative
roots; and (Iv=58)vhas two poéitivé and Eﬁggg.negative ?o&ts. For
convenience later we shall ‘number the roots starting with the most

negative. Thus, in general,
(Iv-60) Xl < XZ 4 X3  sve KA
The latter roots are, of course, positive.

Any polynomial can be written as a product of factors. Thus,

n
(IV-61) T (-\,)=0.
4 j=1 j

For the fifst five degrees of polynomials these products are
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Y _ 32 . =
(IV-62) (7\-7\1) (X—)\z) =\ = (X1+X2)XA + Xlkz 0,

2 -
(Iv-63) A -(X1+X2))\ + Xlkz] (X—X3)

3 . ; 2 ‘ . - =
=\~ = (;1+x2+x3)x + ;{)‘.1)‘2+)f3(7‘1+7“2)}7‘ x1x2x3 0,

PR 3 2 4 % 1 (e
(IV=-64) 0= 0P, AN 4 DRk A ()1 = AR O-%,)

=\ - (x1+x2+x_3+x4)?\ + {x17\2+7\3 (Xl+x2) + xa(x1+x2+13)}x N
= DA, TN

Dorgtr AR Q)T + AR, = 0,

1 2
and -

A 4 ; 3 i CoL % 12
(IV-65) N - (X1+X2+X3+X4))\ + {X1X2+X3 (X1+7\»2) + XA(‘X1+X2+X3)})\.

= AR LS O )] P+ A AR T (L)

5_ b ooy S -
= \ -..(x1+x2+x3+x4+x5)x + {.xlxz+x3 (xl+x2) + xa(x1+x2+x3)

. . . 3 . :

+ XS (X1+X2+X3+X4) - {X1X2X3+14 [X1X2+7\3 (X1+X2) ]
. 2

+ XS[X1X2+7\3 ()\1+)\2) + )\4 (X1+X2+)\3) 1%

+ {X1X2X3X 4+X5[X-1X-2X3+)\ 4 [X1X2+X3 (X1+X 2)] 1 -X1X27V3X 4)\5 i

= 0 L ]
1f (IV-59) and (IV-62) are compared, the results are
(1V-66) AN, = =p2
1M2 % 7FL
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and

(IV-67) X1+X2 =0 or X, = -\ 4

If (IVLSS) and (IV-62) are compafed,'thé results are

(Iv-68) Py = ‘(X1+X2) >

and
2 _
(1V-69) L= My

If (IV-57) and (IV-63) are compéred, the results are

(Iv-70) - Py = = + 2, +2)

= 2
. : ‘ 2 ~ o
(IV—?J.) .- o1 + Py _.-{Xll)‘z +4>.~3()’»:1+X2)} .
and

(IV-72) = A A,

- P1P3 = M hotg

, . St : L e

If (Iv-57) and (IV:64). are compared, thevresults‘gre

(1Iv-73) p4 = -(Xl + Xz + X3 + X&) .

(IV-74) p1+pz+p3 = {Xlkz + X3(X1+X2) +,X4(X1+X2+X3)} .




2 2, _
(IV-75) 94(pl+p2) = xlxsz + XQ[XLXZ + xg(xl+x2)] :
and

22 _
(1v-76) P1Py = X1x2X§X4 .

t

Finally, if (IV-58) and (IV-65) are compared, the results are

(IV-77) ps = ~O\FA NS
(IV-78) 02 oeo2t0? = —Plh + M OLHN) + N, O N L)
1TPoteate, = — Ay + A O+, + A, AT

T W WV I

2, 2.2 :
(Iv-79) os(pl+oz+o3) = K1X2X3 + X4[K1K2 + X3(l1+lz)]

+ XS[X]}\g + X3§X1+X2) + Xé(kl+}zfxs)] s

2 2 2,2, 2
(1v-80) 9193 + 9@(9}*92)

= xikzxaxé + x5[xlx2x3 + x4[}lx2 + Asgxl+x2)yl ,
and
(IV-81)  020%0c = = MM AN
81) 130 M1M2%3% s
For (IV-68) and (IV-69) the equations are invariamt if o, N
and X, are replaced by their additive inverses, For (IV=70), (IV-71)

2
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32 Xl, XZ and X3 are

rcplaced by thelr addirive inverses. Siﬁilariy, for (IV-73), (IV-74),

and (IV-72) the equations are invariant if o

1’ XZ’ X3

are replaced by their additive inverses. Finally, (IV-77)

(IV-75) and (IV-76) the equations are invariant if 0y A
and X4
through (IV-81) are invariant if Pg and the ‘Xj's are replaced by
their additive inverses. Thus, the positive roots of the symmetric
wave functions determinant are the negative of the negative roots of
the anti-symmetric wave functions determinant. This is a generally

valid theorem. We shall, however, not give the proof here. In what

follows below we shall use the convention
(IV-82) ‘ X, = =\, .

In this way we shall need to gonsideq‘only the symmetric wave functions
’ {

determinants. |

: [It should be noted that much of the mathematics developed in this

and subsequent SECTIONS Was necessary in this study. As a result of

administrative difficulties the contract for this study was not awarded

until the study was almost complete. . As a result no funds were available

for computer calculations. Most of the work in this study was done
on a TI-59 programmable calcula;or. It was, théréfore, necessary for
us to develop many theorems from the theory of'eduations, a branch of

mathematics which computers have made obsolete.]
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G. CLAUSTROPHOBIC ENERGY THEOREM FOR CONJUGATED SYSTEMS.
1. INTRODUCTION

In a bonding o-orbital the electrons are 'concentrated'
along the axis between the two atoms as we have indicated for the H;
and Hz cases. Classically, the ﬁotential energy of such a system
would decrease without limit as the .distances between the particles .
decrease. Quantum mechanically such a collapse of the universe to a
. point cannot occur. As the volume in which a particle is'effectively
contained decrases the claustrophobic energy increases. The balancing
of these opposing effects results in the o-bonds having definite
equilibrium bond length values (which are, of course, functions of
teﬁperature). As we have indicated above the o-bond is, thus, an
oscillator. = For small deviations from the equilibrium bond lengths the
oscillator can be treated as thoughji:were a harmonic oscillator.
Actually the o-bond oscillators are anharmonic. as is well knowm from‘
infrared spectral analyses.

When' - m—orbitals are also present, the o-equilibrium is perturbed
in at least two ways. Saturated ca?bon atoms use hybridized'.sp3-orbitals
to form the o-orbitals. The carbon atoms invqlved with w-orbitals,
however, use spzforbitals (double bonds) or. sp-orbitals (triple
bonds) to form the o-orbitals. Thus, we should expect different vilues
for the force constants for the harmonic oscillators in the three cases.

Furthermore, the w-~electrons introduce an additional negative potential,

energy term. Since these électrons are not 'concentrated’ along the
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axis between the bonded atoms, the w—-potential energy will be smaller
in magnitude than the correspoindiug o=electron poténtial energy. This
factor is reflected in the fact that the bond energy for a carbon<carbon
single bond is 83.]'.'kca1-mole-1 (347.7 kJoules-mole_l), whereas those -
for the double and triple bonds are 147 and 194 kc'al-mole_1 (615.0
and 811.7 kJoules'mole-l), respectively [67]. A single m-bond con-
tributes 63.9 kcal-bond-l-mole‘-'l (267.4 kJoules-bOnd-mole7l) whereas
a pair of n-bonds (triple bond) contributes 55.4 kcal'bond_l-mole.'i
(232 kJoules-bond—l-mole_l).

The presence of this additional potential energy term also results
in the equilibrium bond lengtﬁs being smaller. ,Thﬁs, the carﬁon—qatbon

0 heters in ethane [68], 1.3971 x 10710 peters

in benzene [66] 1.334 .x 10-10.meters in ethylene [69] and 1.205 X 10-10

bond length is 1.536 X 10-'l

meters in acétylené [70].

In the present treétmeqt we shall represent the o-bonds by harmonic
'osciilatofs.. The energy of the mw-=electrons will be dbtainéd by. semi-."
empirical LCAO-MD (Linear Combination of Atomic Orbitals - Molecuiar
Orbital) théory inc}uding adjacenf overlap. The various bond lengths
are then obtained by minimizing the energy of the molecule with respect

to the bond lengths.

2. THE o-BOND ENERGY
If the deviations from the equilibrium bond iengﬁh of a

o-bond are sufficiently small, the claustrophobic energy—ﬁohdllength

function may be approximated by that of a harmonic oscillator




=1 )2
(1IV-83) Ek(harmonic oscillato?) =3 ke(r re) .

where ke is the 'force constant' and r, is the. equilibrium bond
length. For the carbon-carbon sp3-sp3 o-bond ke may be taken
as 4.9 x 102 Newtons-meter-1~bond_l [71].

A more accurate value of Ek can be obtained by using the

anharmonic oscillator equation of Morse [72].

(Iv-84) E = De[l exp{-b(r re)}] .
De is the zero point energy plus 1/2 hve, where Vo is the harmonic

oscillator frequency. The ke of (IV-83) and the b of (IV-84) are

related by

(1v-85) _ k

]

2b™ D

In the present treatment, as we have indicated before, we shall use
(Iv-83). The total o-bond energy will be taken as

k
- —© (ror V2 _
(IV-86) E (total) = - (r-r) D,

where Do is the zero point energy.

3. THE w-BOND ENERGY
The derivation of the eigen-determinant by the semi-
- empirical LCAO - MO is given in the APPENDIX. If we replace .Ek in
(A-48) by € > we have
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YA
(1IV-87) €y = qd - 1-rs "
k

Equation (A-49) gives the value of Y used in previous studies. 1In
this study we shall find it convenient to use —4ylke as the empirically
determined parameter instead.

If there are 2n m-electrons and p oJ-bonds in the mn-lattice
the set of atoms involved with w-orbitals in the specific molecular

configuration), the 'total' energy is

(IV-88) E.=E + _zl Ec(j)

E . xk
2nd - 2y —
k=1 1~ st

k, P
e 2
+— ) (r,-t.))" -pDy
2 j=1 j e
where brj is the length of the j-th bond. Since neither 2nd nor

pDo are functions of the rj's, (IV-88) may be rewritten as

(1v-89) AET = ET - (2nq - pDy)
n A k
k e 2
=-2r ] 7T s+v3 § (r.~r )
k=1 1 st 2 j=1 J e
n A k (5.8900 x 10"11)2
=2y ) Tt 5 ) (0,-0,)?
k=1 k j=1 3
[by (IV-44)]
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or

‘ 2 E,
(IV-90) AE,'r =

k,(5.8900 x 107 1)?

n A
k 2
=f ] —_——-+§ (p,=0 )"
= 1 st j=1 j e ‘
where
| -AY
(Iv-91) £ 112 *

k,(5.8900 x 10 ")’

In the present treatment both f and p, are paraﬁetgrs which are

evaluated from experimental data, a topic to which we now turn.
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‘V. SMALL MOLECﬁLE ANALYSES
A. BUTADIENE
Since we have.two pérameters to evaluate, we must take the
case of a molecule for which the symmetry factored eigen-determinant
is at least a 2 X 2. The eigen-determinant for butadiene is a2x2,

It is, therefore, a logical case to consider. By (IV—68) and (IV-69)

_2
= 1
2 Xl N
p2‘
1
-0, = A, = T— s
2 1 Xl
2 2
Xl + ple - pl =0,
or
| - 0, 2 Vo) + bo;
(V-1) A= 5 .

The two values of (V-1) are actually kl- and XZ. We now invoke

(Iv-82). Thus,

=0, -V p2 + 4pi

2




Since Py represents the 'double' bonds in butadiene, and since

there are two 'double' bonds and one *single' bond, (IV-90) is for

the butadiene case

-(p +sz+402)/2
v 2 2 1
AE! = £ .

T
|
|
|
|

(V=4)

1- 0.2455{-(02 +\/o§ + Api)/z}

(e, ‘”9% + {.pi)/z L
1- 0.21.5'5‘{(92 -\/"-p§ + 45%)/'2}

2. 2 )
+ 2(pl—pe) + (pz-pé) ’

+

where (IV-42) has been taken as the valué of $. We shall now rearrange
(V-4) to a somewhat more convenient form, take the partial derivatives

' .
of AET with respect to and Pys and set the derivatives equal to

P
zero. Since the mathematics is straight forward, we shall present it

without comment.

2
T

2 + 0.2455 o, + 0.2455V 05 + 4o?
o -y p2 + 4p§

. |: -oZ-Vp2+40.i
AE, = £

+ 2 2 :
2 - 0.2455 bz + 0.2455 Vpg + 492
[
2 ; 2 |
+ 2(01=pg)" + (py=p)) |
(continued)
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2

2
2

[ -0, Vol + Imi
= f o N

(2 + 0.2455 Vo2 + lmi) +0.2455 p,

' pz-\/p§+4pi ]
$ — : ,

2

2 :
2 + 491) - 0.2455.02

(2 + 0.2455 Vo

, .2 2
+ 2(pl-pe) + (p, )

2 2

2

[ -2V + Imi (2 + 0.2455 \/pg + z.pi) + 2 X 0.2455 o> ]
) , .

(2 + 0.2455) ‘pi + Imi’)z - (0.2455 0,)

2 2
+ Z(pl-pe) + (oz-pe)

2

[ 4V o + Api -2 x 0.2455(9‘; + lsoi) + 2 X 0.2455 pg ]
£ . -
2
)

4+ 4 x 0.2455V 0% + 4ol + (0.2455)% (0] + 40]) - (0.2455 o,

A 2 2
+ 2(ol-oe) + (pz-oe)

[ -4sz+4pi-8xo.2455 02 ]
g — D

_ 2 1
4+ 4 x 0.2455V g + 4pi + 4 x (0.2455)2 pi

2 S 2
+ 2(pl-pe) + (pz-pe) s




2 1

1 + 0.2455V pg + 4pi +(0.2455)% o

: Vol + 462 + 2 x 0.2455 p? :
—f 1 '

2

1

' 2 2 : " - |
+ 2(py=p )" + (oz-pe)AA o |

[ Vol + 4p% + 0.4910 o2 ]
s 1
2 2
[}

_ 2 * 4P
1+ 0.2455V 05 + 4p2 + 6.027 x 107° o

2 2
+ 2(pi-pe). + (0y=P) "

SAE. 2@ o) //jpg + 4o2 + 2 x 0.4910 p;

a_pT = 4(py-p,) "f\:
C e -
1 1+ 0.2455V 02 + 40> + 6.0270 x 1072 o

2 1

_{\/ 02 + 4o2 + 0.4910 pi} | |
3L 4y 20.) (0.2455) Mo + 402 + 2 x6.0270x 1020
-} 2 At S AR ¢ ) 1

l ) 14

_2-
s 02455 V02 + 407 + 6.0270 1072 02| ] ,
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T = - -

1+ 0.2455V0% + 407 + 6.0270 x 1072 o

JAE;, . { -é— (292)/\/ pg + ‘Api

2

/ 2 2 2
-{ o 4p1 + 0.4910 pl 1

. % 1 (20 (0.2455)V 02 + lmi}

=27
‘l 1 + 0.2455 \/pg + 4pi + 6.0270 x 1072 2} J .

For 1,3-butadiene the experimental values of the 'single'and 'double'
bond lengths are 1.467 x 10_]"0 meters and 1.343 x ‘10'-10 meters, respectively

[73]. By (Iv-43) these bond iengths correspond to

(v-5) o, = 3.3719 - 1.6978 x 10°° x 1.343 x 107°°
= 1.0918
apd
| (v-6) p, = 3.3719 - 1.6978 X 1010 x 1.467 x 10710

= 0.8812 .




aAEé
(v=7) —_ = 4(1.0918 - p,) - 1.1400 £

ap
1lp.=1.0918
=0.8812

1
)
= 4.3672 - 4p_ - 1.1400 £

= 0.00

pl=1.0918

and
aAEé
(v-8) —_ = 2(0.8812 - pe)i- 0.1276 £
pz=0.8812

= 1.7624 - Zpe - 0.1276 £

= 0.00 .
From these equations we obtain

\

0=4.3672 - 4pe - 1.1400 £

0 = 3.5248 - 4pe - 0.2552 £

0.8848 £ = 0.8424

or

(V-9) £ = 0.9521 .
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By (V-7)

4De = 4.3672 - 1.1400 (0.9521)

or

(V-10) p_ = 0.8205 .

By (IV-43)

(v-11) r = 1.9860 x 100 = 5.8900 x 10-11 (0.8205)

1.5027 x 10710 peters .

As we have noted above the experimental value for the carbon-carbon bond

10

length in ethane is 1.536 x 10 ° meters. If we identify r, with

the ethane value, it is in error by only 2.2%. Actually the identifica-
tion is not correct since the o-bond in ethane is sp3 - sp3 where as

r, is for a o-bond with sp2 - sp2 hybridization.

B. ETHYLENE

With the values of (V-9) and (V-10) equation (IV-90) now becomes

. n Xk 2
(V-12) AEy = 0.9521 + (p. - 0.8205)° .
k=11 - 0.2455 % j=1 J ,

By (IV-66) and (IV-67)

(V-13)




Thus,

=18

Although this

using the minimization technique of differential calculus, we devélobed
a machine prdceduré for the TI-59. Since our goal is to study polymers,.

the calculis technique is not really a viable choice as a general pro-

' 0.9521 }1 2
AET(ethylene) =1 = 0.2455 © + (Xl + 0.8205) .

1

equation is so simple that there is no difficulty in

k)

cedure. In the machine procedure we calculate AET for various

values of Xl

and choose the value which gives the lowest value of .

) ] .
AET. The minimum value of AET,,-0.746720, is obtained with Xl

Thus,

(V-15)

and by (IV-43)

(V-16)

pl = 1.114

r. =1.9860 x 1010 — 5.8900 + 10711

1 x 1.114

=1.3299 x 1010 peters .

As we have noted above the experimental value for ethylene is

1.334 x 100

0.31%.

meters. Thus, the error of the calculated value is
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C. HEXATRIENE
In 1?3,5,—hexatrieﬁé'the outer "double' bonds may be trans-
or cis-relative to the central 'double' bond. The ﬁond lengths for
both cases ﬁave been détermined experimentally. For-the'trans-form

the outer 'double' bond length, the 'single' bond length and the inner

10 10 10

'double' bond length are 1.337 x 10 and 1.367 x°10 ~° -

, 1.457 x 10~

meters, ‘respecitvely [74]. For the cis-form the corresponding values
10 10 |

are 1.336 x 10 — and 1n362X~10-lo meters, respectively

, 1.462 x 10
[75]. Since we have neglected non-adjacent interactions in the present.
investigation, we cannot distinguish.bétween the two forms. _We shall,

therefore, use the averages of the two sets of values — 1.3365 leO-lof

10

1.4595 x 10— and 1.3645 X 10‘-10 meters, respectively.

From (IV-70) through (IV-72) we have

(v=-17) py = X3 - Xl - XZ
=A',
2,2 =
(Vv-18) p1+p2 = XB(XI+X2) - Xlkzm

(V-19)




(V-20) Py = C/A
=D s
2
(v-21) Py = Dl/ ’
' 2
(V-22) o, = B-D ,
and
(v-23) o, = a-0)t/2 .
Thus, (V-12) now becomes
\J
(v-24) AET(hexatriene)
- A 1y . X
1 2 3
= 0.9521 L - + - + — ]
1 - 0.2455 Xl 1 - 0.2455 XZ 1 - 0.2455 X

3

+ 200, - 0.8205)% + 200, - 0.8205)% + (p3-0.8205)2

: M — o+ — 2 — + % -[
1-0.2455 % ~ 1-0.2455%, ° ; _ (9455 X J

0.9521[
3

+ 202 - 0.8205)2 + 2¢{B-p}*/? - 0.8205)>

+ (A - 0.8205)% .

The minimum-value of AE&,A—2.355237086, i's obtained with
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(V-25) A, = =1.780

1
A, = -0.556
X3 = -1.279 .

Thus,

(V—26). p, = 1.0859
e, = 0.8933
Py = 1.0660 ,

and by (IV-43)

-10 11

1070 - 5.8900 x 107 x 1.0859

“(v-27) . r; = 1.9860 X
= 1.3464 x 10710 meters , -
“(v-28)  r,=1.9860 x 1070 —'5.8900 x ‘1071 x 0:8933
= 1:4598 x 10720 neters
and
(=29) .ty =1.9860 x 1070 - 5.8900 x 107" x 1.0660
= 1.3581 x 10710 peters .

With respect to the averaged experimental values' the erréfs in the

calculated values are 0.74%, 0.02% and 0,47%, respectively.




© D. OCTATETRAENE

From (IV=73) through (IV-76) we have

(v-30)

Py = Ay T A3 T Ay = M
= A .
V=31) o2+p24p? = (L) (4K.) = A, - KX
| Pyteyte, 1t (AgA, 1M ~ MM
= B ’
(V=32) o, (02402) = (A 4\)) XX, = A A, (X 4%)
2) (R +o, 17220 ARy = ARy (Aghhy,
= C ,
) 32 .. <. »
(V-33) 017 = AKX,
=D ,
2. 2.
(V=34) pyte, = C/A
= E ’ ,
2
(v-35) Py = B-E
= F R
(V-36) oy = FH2,
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(V-37) pi = D/F

= G ’
(v-38) o, = 6%/ -
S 2 : ‘
(V-39) Py = E-G ‘
| | |
= H
and
(V-40) oy = gl/2

Thus, (V=12) becomes

(V-41) AEj(octatetraene)
= 0.9521 0/ (- 0.2455 1))
+ 2/ (@ - 0.2455 2,

+ 2,/ (1 - 0.2455 1]

+2,/(1 - 0.2455 Xl"]]

+ 2(c*? - 0.8205)?

+ 2(@’? - 0.8205)°

1/2

+ 2% - 0.8205)°

+ (a - 0.8205)% |
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. . B
The‘minimum'valué:ofﬁ“AET$'63.16850039,nis~obtaiﬁed with

(V=42) “e ey AN, =-=1.849 . -
A, = -1.033
X, = -0.449

BRSNS X .=.=1.524 .

Thus, °. ety

e

(V-43) = 1.0823
= 0.8971
= 1.0563 .

= 0.9090

and By (Iv=43) .

(V-44) Cry = 13485 x 1070 meters
T, = 1.4576 xl10'1° meters.
r; = 1;3638 X lo-lo‘meters

= 1.4506 x io‘lo_meters :

At this point in our study we had three choices -- continue developing
the algebra for each molecule individually, develop a sét of general

recursion formulae or by means of a set of computer programs:
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1. Choose a set of p.'s.

A

2. Using these. 's calculate the eigenvalues of (IV-45).

®3
3. Using the p?, the Xk's and (V-12) calculate AE%.
4. Using a minimization program vary the values of the
pj's.and with steps 2 and 3 find the minimum value of
E. '4
A T.
Since at this juncture we did not yet have any computer funds, we

proceeded to develop gemeral recursion formulae.: We shall, therefore,

now turn to a discussion of the theory of equations theorems which we - -

developed.




VI. GENERAL RECURSION FORMULAE
A. THE ENERGY EQUATION
Let >m be the number of electronsviﬁ w—lattice, and let n
vbe the number of bonds in the 'n;lattice. fhe reduced form of the

total energy is given by

' ' m ‘ a n
(VI-1)  AE, = 0.47605 )} X\ /(1 - 0.2455 X)) + J (o, - 0.8205)2 .
| T 1=1 1 ' S =S T

Moot

This equation is'more-general’ than (V-12) since it is not  assumed .that

all electrons -are paired. Using the spectral data for bgnzepé'welhaVE“ -

- Y
found that the relation between. AE;, and AE, is™

: ) , : )
(VI-2) -AET1=~7;969 x 10 19 AET Joules molecule 1 .

For polyenés'which‘are néutral' m is also equal'to‘;he number
of carbon atoms in the w-lattice. There are, therefore, m-1 bonds,

. " of which there are (mf2)/2 'péired bonds-and'one‘unpaired'bond when

symmetry factoring is applicable. In the ground state of the molecule

" there are two electrbns per w-orbital.- Thus,

m/2
- (IV-3) AEY, = 0.9521 ] A /(1= 002455 1))
‘ i=1
+ 2 j£1 (pj - 0.8205)° + (pm/2 - 0.825)° .

We now take
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(VI-4) ‘ n=mn/2,

and
(VI-5) ... - AE = 0.9521. 2 A /(L = 0.2455 \))
- i=1
n-l 2 2
+2 ) (pj = 0.8205)" + (o -0.8205)" .

I

i=1

When symmetry factoring is ueed, two seculat determinants are generated,

the "Mpo ' determinant and the. '"A=p ! determinant.. Each of the deter- ..
minants yields n. values of  p,: As we‘have indicatedvin~SECTION-IVYF |

the values of A from the second determinant -are the negative of those . .-
from the first determinant. We may, therefore, restrict our considera- °
tione to the 'X+p ' determinantbif the,sighé are changed for the positive

values of A for the first summation in (VI-S)

Thus, if. p. 1is. the number of \'s with positive -values; -

TR

' n=p n
(VI-6) . AE_ =.0.9521 ) -\ /(l.= 0:2455:), ) = 0.9521 ... ). A /(L#%:0.2455 X))
T i i i
i=1 : ) 1-n+1-p .
n-1
S 2 , 2
+2 ) .(p, - 0.8205)". + (p_ ~ 0.8205)". .
j=1 noo

.In what follows we shall find it.convenient-toltake

vIi-7y - R My= -'Xi”'.

Thus, (VI-6) becomes




, i) ' n ) . _ ‘ n-p .
(VI-8) AET = 0.9521 Z; ui/(l - 0.2455 ui) - 0.9521 z: ui/(l4-0a2455 ui)

i=n+1-p i=1
n~-1 .
' 2 2
+2 7 (pj,- 0.8205)° + (o - 0.8205)° .
=1

The goal of EBL theory is to find the values of the p's which
' - ' ’
minimize AETa In order to do this it is necessary to express the u's
as functions of the p's of, as we shall do here, express the p's as

functions of the u's.

B: THE EIGENVALUE POLYNOMIAL IN TERMS OF THE u's

The eigenvalue ﬁolynomial may be written as

(VI-9) ’ A"+ a, L a_ V<o,
or, if we take
(VI-10) ’ a, = +1-,
o n-i
(VI-11) - I a AN "=0
1=0
If A, -+ Ay -+., A are the roots of the polynomial,
) n
(VI-12) T (-\,) =0,
e 4 ’ 1
=1
or by (VI-7)
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(VI-13) ' n (X+ui) =0 ,
The results of the first few multiplications in (VI-13) are
N a2, |

A+ = 3, (] | . 2 5.
Ovhia) Ocbin) Oty ) = A0 + (g b -

+ [y (eobpy) + i, () IN + gty

and
Ot ) (g Y Ovtie,) Oy )

-—-.X4

+ (u4+u3+u2+u1).>\3

N 2
+ [k, (Mgtpgtiy ) + g Gyt ) + py (k1A
+ [ué{u3§u2+u1) +u,(u) )+ u3{u2(ul)}]>x
* My Halgly

The values of the a(i,n)'s of (IV-11) are genérated by the

folloWing:élgorithm

(Iv-14) a(O,n) =1
a(i,n) = 0, i>n
a(i,n) = o a(i-1, n-1) + a(i, n-1) .

The use of this algorithm is exemplified by




. .a(l_s,l)' P»la(O,O) + 3(1,-0),; .

*

_— [a(0,0) = 1, a(1,0) = 0] ,

a(1,2) = i, a(0,1) + a(1,1)

.gﬁ,uz + uli’?'

TS () ” ?3'_'@dﬁj=mﬁ

a(1,3) =y, a(0,2) +a(1,2)

a(2,3)

Hq a(l,2) + a(2,2) P : 3o

= u3(u2 + ul) + uz(u1)~, | | | | n

and

a(3,3)

ey a(2,2) + a(3,2)

= Kq (1) (ul) .
C. THE EIGENVALUE POLYNOMIAL IN TERMS OF THE p's
In terms of the pj's the secular.de;erminant is given by (IV-45)
with X+pn~ as the n,n term. If this determinant is transformed to
an upper triangular form, the value of the determinant will be simply .

the pfoduct of the diagonal terms. Let Nj and Dj’ respectively, be
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the numerator and the denominator of the transformed j-th diagonal

term, then

. . N : .
coe 31 93 e [t;ansformed j=th row]:

_ (VI-,].S)
. pj | x ' gj+i | [oz.'j.ginal | (jjl-l)-st row] .

The j=~th row is multiplied by Kj’ and the product is added to the -

(j+1)-st row. Kj 'is chosen so that the term to the left of the diagomal

term becomes zero qh transformation. Thus,

N y
+Kj(5-i) =0

P
i ]
or
-pD
- =41
(V1 }6) Kj N, .

' N
- i .2
(VI-17) D, - A+ ijj

Thus, "




(VI-18)
and

(VI-19)
which yield

(VI-20)
or

(VI-21) ...

“p
o

2z
|

>

b~
|

41T 5 T P

Py T Ny

j+l h| j_'j-..lL

.t

For the final diagonal term we have

(VI-22)

and
(VI-23)
Furthermore,

(VI-24)
and

(VI-25)

R AN

(X+pn)Nn-1 -

A+ pn + Kn-l pn—l

2
o)

. -1 n-l
A+ o -=-- I
- n Nn—l
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D. THE EIGENVECTORS
The molecular orbitals, |¢k>; are téken as linear combinééioﬁs
of the atomic orbitals, Iui>. Thus,

. zik I u"i> l’

o~

(A-25) Iy, > =
k i=1

where the bar over the coefficients, z 'is used to indicate that the

ik’
molecular orbitals are not normalized. The secular determinant, (IV-45),

i

comes from (A-52) rewritten as

(VI-26) e +p

where, for example, P1p = oy in{(iV—QSi, and- Sij.~is the Kronecker
delta. Equation (VI-26) representé n simulataneous linear equations.

For the polyenes the first equation is e

(VI—27) | Xk 2 + pl Zy = 0 ;
the n-th is
(V1-28) Pa-1 Zo-1,k ¥ PitPp) 7m0

and the remaining n-2 equations can be represénted by

(VI-29) o(i) Z(3,k) + (k) Z(+1,K) + p(41) Z(+2,K) = 0 ,

j=1, «vuy n=2 ,




where the format has been changed to permit somewhat easier réading. - -
\

N

From (VI-27) we obtain

(V1-30) i = 2R G

and from (VI—é9) we obtain

(vi-él), 22,0 - 2D z‘jp§;+z)*(k)<‘(j+1 k) y=1, o, 2.

For j =1, (VI-31) becomes

(vi-sz) zZ(3,k) = zo(1) 5(1253 - A(k) Z(2,k)
o}

=) 30,0 + D2 TAM] vy wisor

Thus, we. see that ail of the ;(j,k)fs‘ are proportional to z(1,k)
and that (VI-QS) ié hot hséd.._sincé (VIAZS) is not uéed, we can use
(VI-31) to obtain all of the Z(j,k)'s provided that wé change the
signs of the A(k)'s for k.Z n+l-p. Furthermote, withAho loss of SRR

generality we can assign z(1,k) the value
(VI-33) Z(1,k) = 1.0 .

Using (VI-7) we obtain
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(VI-34). : - E(zik)‘=.E£El
1

-0(i) z(i,k) + p(k) z(i+l,k)

(VI-35) z(j+2,k) = oDy
and
(VI-36) Z(2,k) = :Eﬁkl
f1 - ‘ )
. = ek Ss aep, i
_ = io 1y =0() Z(i,k) < p(k) Z(j+l,k)
(VI-37)  z(j+2,k) = Lkl s

The normalized values of the 'z(j,k)'é are given by

(VI-38) 2(3,K) = N(K) 2(j,K) ,
where
S AT = S - ©)-1/2

(VI-39) N(k) = )} z(L,K) 4.2 .1 z(G,k) z(HL,k) $G,i+) .

?) ) lj=1 : Foydp i) zJrd,k) 213, oo
where . |
(VI-40) $(3,3+1) = $ p(§,3+1)

= $0(3)

0.2455 o(§)
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For the polyenes with symmetry factoring (VI-39) must be modified ‘to

n n-1
(VI-41) NGO =12 § ZG.k)7 +0.982 ] 2(3,k) ZGHL,K) p(3)
j=1 j=1

-1/2

?

+0.2455 2(n, k)% p(n)

where the factors of two have been introduced because (IV-45) represents
" only half of the molecule. The last term is the result of the inter-
action between the two halves of the molecule. The plus sign is used
when k=1, ..., n-p, and the minus sign is used when ‘k = n+l-p, ..., 0.
"It should be recalled that n is only half the number of carbon atoms
[cf. (VI-4)]. Because of symmetry
(VI-42) z(j,;k) = + z(@mtl-j, k) ,
where the plus sigﬁ'is used'fbf the symmetric cases [k =1, cees n=pJ, ..
and the minus signAis used for the antisymmetric ¢ases [k = n+l-p, ..., n].

The sign factor of (V;642) plays a role ofily in the last term of (VI-41).

E. EXAMPLES OF o-POLYNOMIALS

l. n=2
By (VI-23)
N(n = 2) = - o2
(VI-4?) . N(n = 2) = (X+pz)Nl. oy No
= (o I\ - o) [by (VI-24) and (VI-25)]

2 2
AT+ pzk - pl
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Thus,

(VI-44)

and

(VI-45)

(VI-46)

Thus,

- (VI-47)

(VI-48)

and

(VI-49)

3 % Py
- _ 2 .
) Ph-1 °

By (VI-23) and (VI-21)

N(n = 3) = OvbopN, - p§Nl

2 2
(X+p3) ()\Nl - plNo) = PNy

3.2 2,
(X+o3) 0 —pl) = Pyh

_ .3 2 2, 2 2
= A +p3>\ - (pl+pz)7\.- 0301
31 % Pp»
L2 2,
s = o o2
3 pn Pn-2

The p's in terms of the a's are




(VI-50)

© (VI-51)

and
(VI-52)
pr.

(VI=53)

2 2
Ny = A-pps

(VI-54)

Thus,

By (VI-23)

N(n - 4)

]

and (VI-21) with. the recognition that

(Mo, )Ny = 03N,
(vto,) (mZQD;f_ﬁl) - o§(i2-bf)

Ostp,) WAP=pl} - pr) E bgi.xz;pi)
(w,p A - (oHoin) - o2%-od)

4, .3 T, 2 2.2.2 2. 2, 22. .
A+ p4X ;-.(pl+92+p3)k -.pa(plfpz)X +.p3pl v
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1 n
(VI-56) a, = -(oﬁ;_l»+' pﬁ_z + bﬁ_3) ,
‘(V"I'-sn . a; = '%‘pf;-z' o),
and
(VI-58) a, = °:-1 03_3 .

The p's in terms of the a's are obtained by

(VI=-59) P, =3y o
(V1I-60) (p2 + 2-~ +‘p2 ) = -a,.. tb (Vi-56)]
4 - Pa1 T Ppad TPpa3l 27 o IPY RTRTIRID
, 2 - 2 ~ ‘ L
(VI-61) : (pn_z +'pn_3) = --a3/al [by (VI-S?) and (VI-57)] ,
(VI-62) pz = -a; + a./a
n—l'_ : 2 A3 1°?
(VI-63) o2 . = a,/0? [by (VI-58) and (VI-62)]
" Pn-3 ~ %%'Fo-1. - Loy »
and .
" 2 2
(VI-64) - P2 = ~23/31 = P 3

2
-a,/a; -<a4/pn'_1




4. SUMMARY OF a(di, n)'s AS FUNCTIONS OF p(n=j)'s
The above examples for n = 2,3, 4 demonstrate the algebraic

manipulations which are required to obtain a_'s as functions of the

i
pj's and vice versa. Thé oniy purposeAwhich can be served by looking
at further examples is the determination of patterns in the relations.
Instead of deriving more eiamplés here we shall list the results for

n = 10. As an aid to the attaining of results later we shall write

ai(n = ) -as a (i,n). "Thus, as1(n = 10) 'will be written as  a(5,10).

(VI-65) - a(l,10) = p(n)’
n-1
(VI-66) a(2,10) ='- Z p(n-3)>
. , =1
n-1
(VI-67) a(3,10) = -a(1,10) J o(n-1)2
j=2
' n-3 n-1 2 . |
(VI-68) " a(4,10) = Z o= T pw)?, |
~ j=1 k=j+2
’ ] ' n-3 n-1 2
(VI-69) a(5,10) = a(1,10) ) p(n-J) ] p(n-k)
‘ ‘ C3=2 o k=j+2
. n=5 : n-3 5 nzl 9
(VI-70) a(6;10) = - J p=-* ¥  6(n-k) }  p(n-2)
. 1 k=j+2 2=k+2
~ n-5 n-=3 2 n-1 2
(VI-71) a(7,10) =-a(1 10) Z 0(n-j)> }  p(n-k) I p(m-2)°,
=2 k=j+2 L=k+2
. : , n-7 : n-5 , 03 , 0zl
(VI-72) a8,10) = J oD% ¥ o0l T o@w? T 2w

n=1 k=j+2 L=k+2 n=2+2
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n-7 n-5 n-3 n—i

(VI-73) a(9,10=a(1,10) . o@-D> I o@w? I . @n? ] o@m?
j=2 k=3j+2 A=k+2 m=2+2

. T -

' ' n-9 T ﬂ-é. ' , ':é n;5 2
(VI-74) a(10,10) = - § o@D I p@k)T ] p(n-2)

‘ j=1 k=j+2 L=k+2
: n-3 -n-i‘A: -
I eww? T e@m? -

m=2+2 p=m+2

It will be convenient for. use to introduce a symbol from Fortran
at this time. If 1 4is an integer and is even, MOD(i,2) = 0. If 1
is an integer and is odd, MOD(i,2) = 1. For MOD(1,2) = 1,:a(i,n) has .
a factor of a(l,n), and for the MOD(i,Z) = 1 sequence thé sign

alternates starting with minus for 1i = 3. If we take .
(VI-75) i=2.+1,

we can write the MOD(i,2) = 1 sequence starting with. i =.3 in the

general form

k21 ‘ n+4-1

(VI-76) a,m) = (D% a@n) § e-ip? 1 pta-i?
| =2 b ogmpe 2
» 1° - 37y
n-1. ' ,é T
.o ) p(n-3 )° , MOD(4,2) = 1
i=j_+2 P
TP P—l o

Similarly, for MOD(i,2) = O,
(VI-77) - 1 =28 ,




and : : - ‘ - " !

n+l-1 . n+3-1

(VI-78). - ad,m = (-1 ] e@ip® T oGegy?
j,l =1 ; j2=j 1+2
R
) a1 )?,  mMOD(L,2) =0
jq.=j q_1+2 :

F. GENERATOR FUNCTIONS FOR p(n-j)'s Aé FUﬁC'IfIONS OF 'a‘(i,n)"slv
1. -INTRODUCTION | | |
We shall now introduce two sets of abbreviationelwhich
will expedite the writing of the mathenatics and make the reading of

it less of a chore. "The expressions

e(a,n)/p(n.B)z p(n—y)? p(n-§)2

and

a(@,m)/p() p(a-8) p(a-1)? p(n-6)7

will be written as (a/B,y, §) and (a/0, B, Y, §), respectivelf.

Furthermore, the instruction - ' o e -
() - (), + 2]

- shall be taken to mean subtract equation (y) from equation (x) and

divide the difference by the term é'. Thus,‘for n =10, .
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9 .
WI-79) § e@-1% = - [(VI-66) * -1] ,

i=1
9 ) o
(Vi-80) ] o(m-1)" = -(3/0) - o - [v1-67) # -a(1,10)] ,
3=2 . - |
(VI-81) p(n-1) = =(2) + (3/0) [(VI-79) - (VI-80)] ,
7 o 9 )
(Vi-82) ] p(-3)" ] p(-k)" = (5/0) [(VI-69) * a(1,10)] ,
- 3=2 k=j+2 : _ _

. 9 2 o o . a ) -
(VI-83) [} p(n-3)7 = (4/1) - (5/0,1) o o [(VI-68). - (VI-82) »
(VI-84) p(n-2)2 = =(3/0) - (4/1) + (5/0,1) . - [(VI-80) - (VI-83)] ,

. 5 , 1 s 9 . .

(vi-85) ] (@1 I ek ] p@L" =-(6) [(VI-70) * -1] ,
=1 k=j+2 R=k+2 o
5 , 1 , 9 2 o ,
(Vi-86) )} p(-1N° ] ek ] p@-2)" =-(/0) [(VI-71)* -a(1,10)] ,
: j=2 k=j+2 L=k+2 '_ _ '
, s o - )
(vi-87) [ p-1)° [ ek =-(6/1) + (7/0,1)  [(VI-85) - (VI-86),

j=3 k=j+2 ' 2
S L far %p(n-l) ] ’

p-1)7 = (5/0,2) +6/1,2) - (7,/0,1,2) . [(VI-82) - (VI-87)

| 9
(Vi-88) ]
@271 ,

j=4

1-89) p@-3)7 = (4/1) - (5/10,1) - (5/0,2) - (6/1,2) + (7/0,1,2)

. ‘ e ‘~[(VI—835‘— (VI-88)] -,
5 7 9 '

3 |
wW1-90) I s I s@w? I cpe-n?. I o@m® = (9/0) -

[(VI-73) ¢ a(1,10)] , -




(VI-91)

(V1-92)

(VI-93)

(VI-94)

(VI-95)

(VI-96)

(VI-97)

5
) ;p(n-j)2
j=3

-1 :
1 e@p?

j=4

l ~10

p(n-j)z‘

j=5

7

]

k=j+2

-9

)

k=3j+2

2 2 2 -
p(n-k)* }. p(m-2)° = (8/1)-(9/0,1)
L=k+2
[(VI-72) - (VI-90), p(a-1)%] ,
o(n-k)2 =

-(7/0,2) ~ (8/1,2) + (9/0,1,2)

[(VI-86) - (VI-91), p(a=2)?] ,

-(6/1g3) + (7/0g1r3) + (7/0’2’3) + (8/19293) - (9/03192’3)

[(VI-87) - (VI-92), % p(n-3)?] ,

pom-4)% = (5/0,2) + (6/1,2) + (6/1,3) - (7/0,1,2) - (7/0,1,3)

9
!

k=i+2

- (7/0,2,3) - (8/1,2,3) + (9/0,1,2;3)

[(VI-88) - (VI-93)] ,

o 1 , 9 5
pa-k)” I om-2)" ] o(m)“ =-(10/1)
2=kf2 . m=2+2
[(VI-74) * p(a-1)?] ,
9 L,
p(a-k)° }  p(m-)° = (9/0,2) + (10/1,2) "
: 2=k+2 '

[(VI-90) - (VI-95), * p(a-2)"1 ,

p(n-l0? = (8/1,3) - (9/0,1,3) - (9/0,2,3)
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- (10/1,2,3) [(VI-91) - (VI-96), * p(n-3)°] ,




9
I o2
126

(VI-98)

(VI-99) p(a-5)° =

Il >~

(VI-100) o (i-1)2

i=3

U 2
(VI-101) ] p(n-j)
j=

6

2 2
(VI-102) ) p(n-j)
=7

Py

J

~(7/0,2,4) - (8/1,2,4) - (8/1,3,4) .-
+(9/0,1,2,4) + (9/0,1,3,4) + (9/0,2;,3,4)

+ (10/1,2,3,4) [ (VI-92) - (VI-97), : p(n=4)2] ,

(6/1,3) + (7/0,1,3) + (7/0,2,3) + (7/0,2,4)
(8/1,2,3) + (8/1,2,4) + (8/1,3,4)
(9/0113293) - (9/091,2,4) = (9/0a1,394) = (9/0’2:334)

(10/1329394) [(VI‘93) - (VI_98)] ’

! 2 2 2 -
! p(n-k) ] p(@-R)° = =(10/1,3)
k=j+2 - 2=k+2

[V1-95) + p(a-3)7]

9
T e(m-k)? = (9/0,2,4) + (10/1,2,4) + (10/1,3,4)
k=j+2 - '

[ (VI-96) - (VI-100), % p(n-4)°] ,

= (8/1,3,5) - (9/0,1,3,5) - (9/0,2,3,5) - (9/0,2,4,5)

- (10/1,2,3,5).— (10/12,4,5) - (10/1,3,4,5)

[ (VI-97) - (VI-101), + p(n=5)2] ,




(VI-103)

(VI-104)

(VI-105)

(VI-106)

(VI-107)

and

(VI-108)

o-6) =

4 9/0,1,2,4) + (9/0,1,3,4) + (9/0,2,3,4) + (9/0,1,3,5)

=7

9
Y pin-j)
8

- (7/032’4) - (8/19294) - (8/1,394)47'(8/19395)

pes

+ (9/0,2,3,5). + (9/0,2,4,5) + (10/1,2,3,4) + (10/1,2,3,5)

+ (10/1,2,4,5) + (10/1,3,4,5)  [(VI-99) - (VI-102)] ,

2

9

! p(n-3) I pm=k) = -(10/1,3,5) : [(VI-100) * p(n-5) 1 ’

=j+2
= (9/09294,6) + 110/1:2:496) +’(i0/1’3’4’6)

+(10/1,3,56) [(VI-101) - (VI-104), t p@-6)2] ,

p(n—7)2 = (8/1,3’5) - (9/0911395)4- (9/0g2,3,5)'- (9/0)2’495)

o(n-9)2

o(n-8)

- (9/0,2,4,6) - (10/1,2,3,5) - (10/1,2,4,5)
- (10/1,3,4,5) - (10/1,2,4,6) - (10/1,3,4,6)

- (10/1,3,5,6) [ (VI-102) - (VI-105)] ,

- (10/1,3,5,7) [(VI-104) # p(a-1)?] ,

(9/0:23436) +.‘19/192;4,6) +:(10/1:39436)‘5

4 (10/1,3,5,6) + (10/1,3,5,7) [ (VI-105) - (VI-107)] .
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.2.. SIGNS

For the prga¢nt we shall consider only the presence or
absence of the va;ious a(i,n)'s and, when preéent, their‘signs relative

to~a'3pec1fic-p(ﬂ-j)2 [or p(n) 1tse1f]'fo; n ="10. Thus,

(VI-109) = +a

n-1 -a, . .+a

n-~3 +a -a —ag +a

4 5 7
n-4 +;5 : +a6 -a, '-38 +a9
A 9-5 -a6 +a7 +a8 —a9 -alo

n-7 +a, -a, -a

8 9 10
n~8 +ag +alo
“’?, -a10

Three trends can be seen easily from (VI-109)s For each p(n-j) the

lowest valqé of 1 1is j+l. The highest value.of i 1is 2j+1 or n,
whichever is smaller. The'vert;cal sign pattern starting from the top

is +--++ - -4+ etc., ﬁhere after the first singleton + ‘all -

signs are in pairs.




" We shall consider first the cases for which MOD(i,2) = 1. The

first portion of the '(j,1) sign' array is

(VI-110) (0, 1)+
1,3+
@2,3)- (2,5)%
(3,5)- 3,1+
(4,5)+ O N (4,9)+
(5,7)+ 5,9- (5,11)+
(6,7)- | (6,9)+ (6,11)- (6,13)+
For’a“constant i a 5j = 1 causes a change of sign. For é cons;ané 3j
a léi = 2 causes a change.of sign. Thus;'the sign factor in terms of
the &'s 1is | )
L TR T
(VI-111) -1 - (-1

The lowest value of j 1s O, and the lowest value of i 1is 1.
Furthermore, the sign'bf (0,1) is ¥. Thus,ﬁthez MOD(i;Z) = 1 sign
factor is ‘ w

(1-1)/2 _

(VI-112) 13 1) - (-1)@itH-D/2

MOD(1,2) = 1

- For MOﬁ(i,Z) =0 the first ﬁoftidn’df'thé "(j;i)'sign"array:isl
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b (Vi-113) (1,2);

(2,4)=
Gt (3,6)-
‘ (4,6)+ (4,8)-
(5,6)- (5,8)+ . (5;10)~ 
(6.8)- (6,10)+
(7,8)+ (7,10)-
RCET T E

(9 ’klo)-‘

Fpr a constant i and Gj =1 causes a change of sign: For a constant
j a 61 = 2 causes a change_'of sign. Furthermo;‘e,,_ !:he sign of (1.,2)
is -. Thus, the sign factor is

) (2j+i+2)/2

(VI-114) @D o et @ ,  MOD(1,2) = 0 .

3. GENERAL FORM OF THE GENERATOR FUNCTION
If MOD(i,2) = 1, we may take
- (VI-115) A S 1= 2K+l ,

wh‘e_fi'e the k's are a sequence of cardinal numbers. The first and .

last members will be determined later. If MOD(i,2) = 0, we may take




(VI-116).-- 1=2 ,

where again the i's are a sequence of cardinal numbers. The general

form for p(n-j)2 may noﬁ be written as.
wi-111)  p-? = § 13 DF a]t K@) a(2kD)
k

+3 1) 13 P L) aew
[ :

2 03 [T DX K@) akH)/a)
: k

-7 YLy a2yl ,
2

' where K(k) and L(%) are products of the type p(h—a)-z p(h-B)2 ere

Foliowing (VI-109) it was noted that the boundary conditions 6n i

are
(VI-118) J4L <1 < 2341
or
(VI-119) » 41 <1i<n ,

depending upon whether n < 2j+1 or 2j+l1 < n.

130




We m&& now distinguish two cases, MOD(j,2) = 1 and MOD(j,Z)“;:O;z'
For MOD(j,2) = 0, j+1 is odd, and the lowest possible value of i is

odd. Thus, (VI-115) .is used, and - :

(VI-120) 2k (min) + 1 = j+1

or
(VI-121) k@in). = §/2 , . : MOD(3,2) =0 ,

and |

(VI-122) ' 2% (min) = j+2

or )
(VI-123) ¢ -~ . L(@in) =:(+2)/2 , MOD(j;2) =0 .

For MOD(j,2) = 1, MOD(j+1,2) = 0. Thus, (VI-116) is used, and

(VI-124) * 20 (min) = j+1
or .
(VI-125) L(min) = (§+1)/2., - - MOD(j;2) =1 ,

and

(VI-126) _ 2k(min) + 1 = j+2




(VI-127) k(min) = (3+1)/2 ,
These minimum valﬁe results are
(VI-128) " MOD(j,2) = 0

k(min) . jl2

2 (min) (j+2)/2

We now define two new functions

MOD(j,2) =1
summarized by
MOD(j,2) = 1

(§+1)/2

(G+1)/2

J"*;'2 - MOD(3,2)

(VI-129) 2r =
and
(VI-130) 2s = j + MOD(j,2)

Thus, for all j°

(VI-131) " k(min) =
and
'(VI-132) . | 2 (min) =

From (VI-109) it is found that

132

(VI-118) applies if




(VI-133) jLINIG -1,

where INT(z) 1is 'round down' integer related to z. For example,
INT(+ 2.1) = +2, INT(+ 2.0) = +2 and INT(- 3.5) = -4. The function
p was introduced in (VI-6). It can be defined by

(VI-134) ' p = INT('%) .

Equation (VI-119) applies if

(VI-135 |

| v
o

For (VI-118) the upper value of i 1s always odd. Thus,

(V1-136) 2k(max) + 1 = 2j+1

or
(V1-137) k(max) = j , 2j+1 < n

and

tVI-lBS? . 2% (max) = 2j |
or

(VI—139) L(max) = j , 2j+1 < n .




For (VI-119), if MOD(n,2) = O,

(VI-140) - | © 20(max) = n

or
(VI-141) % (max) = n/2
| - ; , MOD(n,3) =0 ,
and |
(VI-162) - 2kmax) + 1 = nl
or |
(VI-]‘.43.)_ ‘k(max) = (n-2)/2
.
= p + MOD(n,2) - 1 [since MOD(n,2) = 0] .

For MOD(n,2) = 1, |
(VI~144) ' 2k(max) + 1 = n

or
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(VI-145) k(max) = (n=1)/2

=P

= p + MOD(n,2) - 1

[since 'MOD(n«,Z) = 1] s

and
(IV-146) 2% (max) = n-1
or
(VI-147) 2 (max) = (n-1)/2
=p , | MOi)(n,Z) =1,
If we define
(VI-148) q=p +MOD(n,2) -1 ,

the bounds of k and £ may be written as

= 8, eees Q3 2j41l > n
'and
(IV-150) L=r, euey 33 2§+l < n

=T, vesy P} 2j+12h




4. GENERATOR FUNCTION FOR K(k)

The symbol (4;3) 1,2 1is to be taken to mean that for
j=4 and k=3 (1 =17), K(k) has the term p(n-l)-2 p(u—Z)-2 in.
it. With this symbolism the data of SECTION VI.F.1 for MOD(i,2) = 1

and n = 10 are represented by

(VI-151) , 2,21 3,2)1 (4,2)2
| L | L |
G¢,9)1,2 4,3)1,2 . (5,3)1,3 (6,3)2,4
1,3 2,3
2;3 2,4
(4,4)1,2,3 (5,4)1,2,3 (6,4)1,2,4 C(7,8)1,3,5  (8,4) 2,4,
o 1,2,4 0 1,3,4 2,3,5
1,3,4 2,3,4 2,4,5
2,3,4 1,3,5 - 2,4,6
2,3,5
2,4,5

The pattern of (V1-151) may be rebfesented by

(VI-152) K(i,k) = K(3=2; k-1)/[p (nt+2-5)1>

+ KG-1, k=1)/Ipe-11?

with-the boundary requirements
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(VI-153) K(j,k) = 0, k>3 or 3> 2%

and
(VI-154) K(1,1) = K(2,1) =1 .

The use of these rules will be demonstrated by a few examples,
WI-155)  K(2,2) = K(0,1)[p(m1% + K(1,1)/[p(@-1)1?

[p(a-1)]"2

- since K(0,1) = 0 by (VI-153) [1 > 0]..

WI-156)  K(3,2) = K(1,1)/[p(-1)1% + K(2,1)/[p(n-2)]1?
= @D+ [p-217% .
VI-157)  K(4,2) = K(2,1)/[p@-2)1% + K(3,1)/[p(n-3)12

[p(n-2)12

since K(3,1) = 0 by (VI-153) [3 > 2-1].

1f MOD(j,2) = O, (VI-153) translates to

(VI-158) jl2<k<y .




If MOD(§,2) =1, (VI-153) translates to

(VI-159) G+1)/2 < k & 5.

These results are the same as (VI=149) So no new requirements are

introduced here.

5. GENERATOR FUNCTION FOR L(2)’

For MOD(41,2) = 0 and n = 10 the data of SECTION VI.F.l

are represented by

(VI-160) » @,21 3,21
(3,3)1,2 4,3)1,2 (5,3)1,3
4 1,3 |
4,4)1,2,3 = (5,4)1,2,3 (6,4)1,2,4 7,6)1,3,5
1,2,4 1,3, -
1,3,4

(5,5)1,2,3,4  (6,5)1,2,3,4 (7,5)1,2,3,5

1,2,3,5
1,2,4,5

1,3,4,5

1,2,4;5

1,3,4,5

1;2,4;6 ’

1,3,4,6

: The pattern of (VI-160) may be represented by
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1,3,5

(8,5)1,2,4,6  (9,5)1,357
1,3,4,6
1,3,5,6



(VI-161) L(1,2) = L(3-2, z-li/[p(qtzfj)13a+ L(jf13.2-l)/lo(n+1—j)12 ;)
with the boundary‘requiremgnts

(Vi-162) - -  L(j,%) =0, . . . 2>3 or. 3> 22‘?1. R
and

(VI-163) : L(1,1) =1 .
A few examples of these rules are

(VI-164)  L(2,2) = L(0,1)/[o(@1? + L(1,1)/[p (a-1))?

= P11
since L(0,1) = 0 by (VI-162) [1 > 0]

VI-165)  L(3,2) = L(L,D/[e(-D]? + 12,1/ [p@-2)1?

= [p@-DI% .

since L(2,1) = 0 by (VI-162) [2 > 2°1-1].

(VI-166)  L(3,3) = L(L,2)/[p(a-D)1% + L(2,2)/[p(a-2)}°

L2,/ [p(-1%

lo-1)1"2 [p(a-2)1" [by (VI-164)]




since L(1,2) = 0 by (VI-162) [2 > 1].

(VI-167) L(4,3) = L(2,2)/[p(@-2)]% + L(3,2')'/[p(n~3)12

[p(n—l}l'z [p@-217% + [p@-1)]72 [p(n-3)]-2l'..
If MOD(j,2) = i, (Vi-l62) translates to

(&I—l68) (j+¥)/2 5_% <3 .

If MOD(j,Z)A= 0, (V19162)vtranslates to

(VI-169) G2

These results are the same as those of (VI~150) so no new requirements

are intrgduéed.here.

We now have all of the neceéssary functions to apply EBL Theory

to the polyenes.
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VII. EBL THEORY RESULTS FRO POLYENES

By (IV-45) there are ?n=1 bonds in a sywmerrié¢ polyene. We!have
used the functions of SECTION VI in combination with a minimization

. t .
program to calculate the minimum value of AET [cf. (VI-8)], the

values of Xj and rj for n=2, ..., 25, n =50 and n = 100.
Because of the lack of sufficient funds for computer time, we were

not dble to continue the study to larger values of n. In TABLE VII-1

are listed the algebraically smallest value of Xj (lowest filled

energy level), the algebraically largest negative value of Xj (highest

filled energy level) and the equilibrium bond length of the central bond.
Several interesting trends are apparent. The value of Xj Vfor

the lowest filled energy level is asymptotic to- -1.965, or some

value close-to it. The value of Kj for the highest filled energy level

also appears to approach an asymptote, but it is not clear how mﬁch

thaﬁ.value Qiil differ from -0.069. If the central bond is a 'single'

bond, the asymptotic value is 1.426 x 10-10 metefs or some Qalue close

to it. If the central bond is'a.'double' bond, the asymptotic value

0

is 1.386 x 10-'1 meters or some value close to it. In SECTION IV.G.l

we noted that the carbon-carbom bond lengths for ethene, benzene and
ethylene are 1.536 x 10 -0 meters, 1.397 x 10 10 meters and 1.334 x 10710
meters, respectively. The average. of the ethane and ethylene values
is 1.435 x lb’lo meters. Thus, we see that the central 'single' bond

length tends to a value somewhat smaller than the average of the single .

and double bond lengths, and that the central 'double' bond length tends

to a value slightly shorter than the benzene value. Thus, while an




TABLE VII-1 - L

EBL THEORY RESULTS .

FOR POLYENES .

o
'n N N ot Un ugit;s of 10.-]:0 meters)
2 lie18 0 -0.737 T 1.467
3.0 =1.779 - -0.556 - e 071,359
4 -1.850 -0.450 1.451
5 -1.887  -0.380 | 1.369
6 -1.908 . -0.330 1.443
7 -1.922° - -0.293 ¢ ~* - . 1.375
8 -1.931  -0.265 1.438
9  -1.938  -0.242 ©1.378
10 -1.943  -0.223 T 1.43s
11 -1.946  -0.208 -+ 1.380
12 -1.949  -0.195 T 1.433
13 -1.952  -0.184 . 1.382
14 -1.953 -0.174 ¢ 10432
15  -1.955  -0.166 ‘ 1.383
16 -1.956  -0.158 o 1.431
17 -1.957  -0.151 1.384
18 -1.958  -0.146 ,. . 1.430
19  -1.959  -0.141 1.385
20 -1.959  -0.136 1.429
21 -1.960 -0.132 | 1.386
22 -1.960  -0.128 1.429
23 -1,961  -0.124 1.386
24 '-1.961  -0.121 ' 1.428 -
25  -1.962  <0.118 . 1.386 |
50 -1.965  -0.083 1.426
100  -1.965  -0.069 1.426
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equilization of the 'single' and fdouble' bond lengths dqes‘not occur,
neithef 1s it true that there is no mixing. In the 'ﬁo mixing' model
all 'single' bonds are the samé length as that of butadiene (1,46? X 10-10
meters) and all 'doublé' bonds are the same iéng;h'as ﬁhose of butadiene
(1.343 x 10710 meters). For - n = 100 there is a.sort of ;no ﬁixing'A‘
model AECer'ope is about ;/S-Ch of the way into the po}ecule (cf. o
TABiE VII-2). The bond Lgngths are,'however, differeﬁt from those of
butadiene. |

The 'no miiing"model of polyene used by Grant and Batra [58]
predicts a.'band gap' pf 1.2 eV. Since 1 eV is 1.602 x 10-19 Jouie#,
their 'band gap'.energy is 1.92 x ;0-19 Joules-eleétron-l. By (Iv-87)
with $ = 0.2455 the energy gaﬁ between the highgsf'fiiled orbital

and the lowest empty orbital for n = 100 is

0.069 ~0.069
(VII-1) AE(band gap) = ~Y[T~—5569(0.2455) ~ T + 0.069(0.2455))

=-1.38x 1071y .

For the Grant and Batra value of .AE(band gap)

19
1

- 1.92 x 1of
1.38 x 10

(VII-2) vy(Grant and Batra) =

- -1.39 x 10-18 JouleSoelec.t:rgm-1 .

By (VI-1) and (VI-2)




TABLE VII-2

EQUILIBRIUM BOND LENGTHS FOR n = 100

..(in units of‘lO_10 meters)

1.350 26 1.427 51 1.388 76 1.426
1.454 27 1.388 52 1.426 77 1.389
1.369 28 1.427 53 1.388 78 . 1.426
1.442 29 1.388 54 1.426 79 1.389
1.376 30  1.426 55 1.388 86 1.426

' .1.437 31 1.388 56  1.426 81  1.389

© O N U W

RORNN N NN BFE B R R R
w & @GN H O W ® N o L & W N O

1.380 32 1.426 57  1.389 82  1.426
1.434 33 1.388 58  1.426 83  1.389
1.382 34  1.426 59  1.389 84  1.426
1.432 35 1.388 60  1.426 85  1.389
1.384 36  1.426 61 - 1.389 86  1.426
1.430 37  1.388 62  1.426 87  1.389
1.385 38  1.426 63 ~ 1.389 88  1.426
1.429 39  1.388 64  1.426 89  1.389
1.385 40  1.426 65 1,389 90  1.426
1.429 41 - 1.388 66  1.426 91  1.389
1.386 42 1.426 67  1.389 92  1.426
1.428 43 1.388 68  1.426 93 - 1.389
1.387 46  1.426 69  1.389 94  1.426
1.428 45 1.388 70  1.426 95  1.389
1.387 46  1.426 71 - 1.389 96  1.426
1.427 47  1.388 72 1.426 97  1.389
1.387 48  1.426 73  1.389 98  1.426
1.427 49  1.388 74  1.426 99  1.389
1.387 50  1.426 75  1.389 100  1.426
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19

(VIi=3) Y (This Study) = - 0.47605 x 7.969 x 10

- 3,j94,x 10-]'9.Joules-.electl:'on-1 s

which is 27% of the Grant and Batra value. The value of - ¥ given in

the APPENDIX IS _ o ‘ o '
(A-49) y(Traditional) = -2.779 x 10 12 Joules-electron L .

Thus, we must conclude that the "no mixipg'.mode¥ of Grant and Batra is
in error.

With the value of v of (VII-3)

1 19

(~3.794 x 10

(VII-4) AE(band gap) = -1.38 x 10 )

"= 5,236 x 10'20 Joules-electron .

which corresponds to a frequency of

. 5.236 x 10°%°

h

wI-5) oy

20

6.626 x 1074

_"5.236 x 10_

7902 x 10%3 Hertz ,

which is in'the near infrared.




At tﬁié point we must end this REPORT. When funds are available,

EBL Theéty will be appiiéd to the study of the optical and thermodynamic

properties of the poly (p-phenylene)'s..
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APPENDIX
. MOLECULAR QUANTUM MECHANICS
A. GENERAL PRINCIPLES
sir Isaac Newton, we are told, wrote to Robert Hooke, 'If I
have seen further, it is by s;aqdihg upon -the shoulders of Gianfsl't?@] -

The modesty of the author of the Philosophiae Naturalis Principia

Mathematica resulted in this self denigr;tion of his mqmentous(achigye-
ment. Only twice since Newton have the contributions of a single ﬁan
begn sb g;ea; that he hag Begn honored by the associétibn of his QAme
with an entire Sranch‘of'physics. . These two cases are J.C. Maxwell and
the conjunction of .electromagnetic theory and optics“and A. Einstein
ahd-the theory of felativity. [The fact thaf both Newtonian mechanics
and Maxwellian electromagnetics are derivable today from relativity thebry
in nb Gay degrades the sighificanée of the work of Newton and,ﬁaxwell.]:'
The fourth‘greQE'SYQEéﬁ besidesAﬁewtoniah méchanics,'Méxwellian
electrohggnetics and ﬁinsteiniénhmechaniés is quantum_méchaniés; Unlikg
thelother three systems, however, we cannot associate a single name with
the sysﬁem.- No one great name stan&svbut. This is thgi;esult, at least
in pért,'bf the fact that qugntnm4mechénics is an unfinished system.
Potentials, masses and changes are }ntroduced.;n an ggyggg way. [In
non-relativistic quantum mechanics spin also is introduced in an gglhgé
way.] For energies'of the order Qf~magnitude of 10-1.3 Joules per particle
present aay quantum mechanics is less thaﬂ satisfadtory{ For energies
of the order of 10'-19 Joules per pgrticle, however, present day quantum -
mechanics in spite of all of its fnadequacies wotk; quite well. This, it

should be noted, is the regionof the energies of the chemistry of atoms

and molecules.




-

In quantum mechanics the state of a system is represented by a veétor
(function). The measuring of the value of a physical parameter of the
system is represented by a'matrix (operator).’. If the result of multiplying
the vector by the matrix (or the operating on the function with the
operator) ‘is the vector (or function) itself multiplied by a number, the
number is called an eigenvalue, and the vector (function) is called an

eigenvector (eigenfunction). The eigenvalue is the value of physical

parameter which is obtained each time the measurement is made on the system
when it is in the specified state (within experimental error).

If the result of the multiplication of the vector by the matrix is
not the original vector multiplied by a number (scalar), then a différent
value will be obtained for the physical parameter each time the measurement
is made. These concepts are represented ﬁathematically by the following.
Let le> be the vector represehting the system in the j-th state, and let
>.(§)- be the matrix representing the measurement of a specific physical

parameter. If IYj> is an eigenvector of .(M), then
(A-1 Sl >=mly>
( ) '()IJ j|J |

where mj is the eigenvalue.

We now multiply ( A -1) on the left by the dual vector <Yj|. Thus,

O 1ADNY.> = m<r | lv.>
j O D R MO

which is abbreviated



A -2) QO IMIY.> = m T 1¥.>
( | Rt O A R T

'The eigenvalue appears outside of the vector multiplication because it . .

is a scalar. The asterisk indicates complex conjugation. This is

necessary since the components of the vectors'can be complex numbers.
(The functions can be complex functions.) Equation ( A -2) can also

be written

. x .~ '
Y IMIY,>
(A—3) m.a—j*-—-_j—
Io¢rlen
i3

In the operator-function notation ( A .-3) becomes

* ~

fy, MY, dQ

( A-4) my = j* i
¥, ¥, de
R

If |Yj> is not an eigenvector of (ﬁ), then ( :A -1) no longer apﬁlies,
but ( A-3) and ( A -4) still do. In these cases the mj's are 'expectation
values' (mean values) rather than eigenvalues. If the operator is 'integrate
over the region r', then |

| T Yy, 4
(A—S) mj=—-1—J—

*
LY, ¥, dR
J 3]

is the probability that the system when in the j-th state will be found
in the region r.

The operators are generated by making the following replacements in

the classical expression for the physical parameter:




( A-6) . j > b2 . (j-th component of the linear momentum)

9x
3
'xj +> x:i (j-—th component of the position vector)
E + j_h ait ' ' (energy of the system) ,

1/2 =34

Qhere i= (-1) and h 1is Planck's constaht divided by 2n (L.0546.-X' 10
Joule sec). For a one particle'system in the presence of a po;eht;[al energy,

V, the classical express'ion' is
~ 2
( A-7]) om + V=E

In the quantum mechanical formulation this becomes

( A-8) s 7 ¢+ vy = 14 A

.2 )
[——V +V]‘Ir ih—

If the system consists of N particles, ( A -8) becomes-

2 e o oo BY
- j+v]‘1’—ihat“,

.- 2 N
(. A-9) —i;_'— ) Ly
: =1 ™

where Vj refers to the coordinates of the j-th particle. The potential
energy, V, is a complicated combination of the»qogrdinates of all of t;he_

particles. Because of this ( A -9) ‘cannot be solved directiy for most .



gystems. Various approximation techniques, however, have been developed.
To avoid thé necessity of writing all of the ( A -9) each time it is

~usqa11y abreviated

VR ) |
( A.-lO)‘ S HY = ih ot °
" where °
o CN 2 N
(Afl‘l) : Ha-p-z—azmivi.*.v_:.
‘ ‘ i=1 7}

is the 'Hamiltonian operator’.

If the enérgy of the system is stationary with respect to time, the
spacial and temporal functions of the state func;ionSpcan%bemseparatgd;,
Thus,

> + -i(E/h)t

( A -12) Y&, = y@ SHEME
where E 1is the energy of the system. The substitution of ( A-12) into
( A-10) yields
~iE
h)

e-i(E/h)t -1 ¢(

cLE/ME

Ry




It should be noted thatAthé Hémiltonian operator does not contain time
explicitly when the energy of the system is~stationary. This is why the
‘exponéntial can be factored out.  In operator- equations only; terms.to.: .
the left of the opefators can be factored out.

Generally an equatibn like ( Arl3)'has a large number of solutions

(eigenvalues and eigenvectors) in which case it is written
A -14 Hy, = E

[cf. ( A-1)]. The 'j' here refersvto the j-th eigenvector and not,
as it did in (A=9) , to the j-th particle.

In any vector space a vector can be represented by a linear comﬁina—
tion of a set of vectors called 'basis vectors'. Thus, in Euclidean
3-space any vector,,¥, can be written as
( A‘15') T = rxéx + ryéy + rzéz ,
where the &'s apeG'unit vectors' as well as basis vectors. This principie
also applies to Hilbert spaces which are infinite dimensional as they
freqﬁently aré in quantum. mechanics. Altﬁough basis vectors need not be
orthogonal, it is convenient if they are.

An operator is said to be 'Hermetian' if

16 QD> = <« T >
( A- ) . \l’k \l’J - \Vk ‘I’j ’




whefe ﬁ* is the complex cOnjuggté of .ﬁ. . All the operaCO;s 6f duéntuﬁ
mechanics are Hcrmetian; Having ail of the operators Hermetian ensures
that all eigenvalues are real which they must be since ;hey are the
results of measureménts. The real propépty of eigenvalues of Hermetian

operators is shown by the following:

Hlv.> = E.|v.> W = By
&l D> = E v S IHN DS = B’ vy
VylHivy> = E vy iYy ViRV = EjCyy 1Yy

*,~ * ~k * . %
<\yj|u|\yj> - <q/j|a l\yj> (E,-E.) <\|,J.|\yj> .

Since H is Hermetian, the left side of the equation is zero. Since

x, » .k 4 . .
<¢j|wj) is not zerd, E qu must be zéro. This, however, can only be

3

the case if E. 1s real.

3

If the eigenvalues for two eigen&ectors are not equal, then

»u~l\|rj> E Iqrj,> <\yklu = E, <V |

"Iy, > ="k, | Ny Iy,
My =y il = By

o~y - x  ~k ' *
<vklnlq;j> - <\ykl-u Al\y_j> (Ej___-r-:k) <\yk|\pj>

By ( A=16 ) the left hand side of the equation is zéro. Since Ej # E»




(A-17) . : A <\yzl\yj> =0

Thus,'eigenveccqrs,with;different:eigenvalues afe automatically,ortﬁogonal.
It is soméwhat difficult ‘to work with a complete set of basis veétprs

when there are an infinite number of vectors in the set. Ihe'problem of

workiﬁg with infinite basis sets can ngaliy»be circﬁmvented-§y the

judicious choice of an ;ﬁﬁroximate.finiée bésis set. Assume tﬁat there

is a Hamiltonian opergtor;fﬁ', which is similar to, but not identical with,

the § of ( A -14)'and that - . = .. .. . .4
(A -18) H'z = EZ

is not easily solved directly. We take 2 as a linear combination of the

¥'s. Thus,
( A-19) ‘ Z= ) a;V,.
, j=p 33
oy = - A
H jgl as V¥ EJZl a5 ¥ by ( A -18)]
o Sk P .- g
(Za\y)H'(z )=() a¥,) ECY a,V.)
1 Jlj SIS = R
and
(a0 ] 1 af el =2 I o} L2y
T = I ~i=1 §=1 ©
- o x .-
E jgl aj aj‘ ,




where the last result is obtained on the assumption that the V's are
both nrthogonal and norwalized (ortho-normal).
. -The a's.are chosen so as to minimize E.- The real ground state of

‘the system will have the lowest‘possible value of E. Thus,

T oagyly>=-L 7 ala +2 [ a .
jfl ™ 4 aaI“jfl 3 ?, j=1 3

*
It should be noted that a is linearly independent of a Thus,

i i’
L. '
aai/a_a1 = 0. Since the minimum value of E 4is desired, aE/aai is set

equal to zero, and

by * ~, |
( A-21) & a ““_’1'“ I\yj> - E8;) =0,
. where
( A-22) 5ij = +1 ; 1=
=0 , 143 ,

and is known as the 'Kronegker delta'. ?he Kronecker dgica is the matrix
element of the '1d¢ntity' matrix. For (A-21) to haveva non-trivial
;olu;ion the determinéﬁt of the matrix must bg equal to zero;

- Since thg ¥'s are known, the integrals <¢Ir§'!wj> can be evaluated
-- at 1é#st by numerical integration. Generally oniy the negative vaiued
iniegrals are retained. .In this way thé inf;nité a'é pfobléﬁ is reduced

to a finite a's prbblem. The variation technique just described can also

be used for equationssuch as ( A-10).
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B. MOLECULAR APPROXIMATIONS

-Tﬁe simplest molecule, t,he» hydrogen molecule ion, H;, is a chrgez ‘
boay‘problem. The variables of ( A -9) are not sepa;ab}e'byhaqy known
tecbnigues for more than two bodies. Thus, all of molecular quantum
mechanics involves the use of approximation techniques. The first approxima-
standardly envoked is the 'Born-Oppenheimer approximation' £773. Since the
nuclei.arg so much heavier than the electrons, the electrons will cqmplete
many oscillations in the time required for a pucleus to cpmplete one
oscillation. 'Thus,.;he nuclei are assumed to be stationary, and the
prppgrties of the electrons are studied relative to the 'statignary",
nuclei. This analysis can be repeated for various nuclear positions.
Standardly, however, only the equilibrium positions of the nuclei are
considered.

The ne#t approximation envoked is the separétion'of the 'inner' electron
(which are not involved in bonding) for the 'outer' electrons (which are
involved in bonding). The inner elg;trons are taken toge;ﬁer with the
nuclei as 'nuclear cores'. The outer electrons are separated by symmet;y.
Those electrons which are concentrated_between the atoms which are bonded
together and have qylindFical symmetry around the line conneéting thg
nuclear centers are designated as 'g-electrons' [sigma éléctrons]. . The
bonds beCWeen the hydrogens énd the carbon of me;hane are o-bonds.

Inethylene(ﬂzc = CHZ) the bonds bgtween ;he hydrogens and the carbons
are c-ponds. Oqe of the bonds between the carbon atoms is a o-bond. The
six atoms of e;hy%ené in their equilibrium positions are co-planar. The

second carbon-carbon bond is antisymmetric with respect to the plane of

.A_lo




the atoms, The eigenvectors for these electrons afé'positive above the
plane and negative below the plane.n They are identically zero in the
plane of the atoms. This type of bond is designated as a *n-bond" IpiA
bond, pronounced 'pie' in English and 'pea} in Greek], and the electrons
are designated as 'y-electrons'. The o-bond of ethyléﬁe (two electrons)
has a binding energy of 3.47 x 105'J6u1és per mole (83 kcal molebl). ‘The
fr- bond (twerle;trons) has a binding energy of 2.64 ><'10S Jbules mo].e“1
(63 kcal molé-l). The difference in binding energies is 8.3 X 104 Joules
mole-1 (20 kcal mole_l). This energy difference is sufficiently—largé to
permit the treatment of the w-electrons separately from the o-electrons.

In this study only the m-electrons are analyzed.

C. LCAO-MO METHOD

In the LCAO-MO (linear cdmbination of atomic orbitals - molecular
" orbital) method the eigenvector of (. A-18) is a molecular orbital and k
the basis vectors of (.-A--19) are atomic orbitals. For a ¢omplete basis
vector set all of the atomic orbiﬁals of all of the atoms should be used.
This is, however, an infinite set. To avoid the pfoblém 6f'doing an
infinite number of calculations we use an inéomgleté basis 'vector set.
For the w-molecular orbitals only the Zpy— or 2pz¥ Qtdﬁic'orbitalslare
used. Furthermore, it should be noted, the basis vectoréiére not orthogonal.
Equaéion ( A -21) does not, therefore, apply. Except for‘aAnull vector
any vector cah be normalized to one.“ We shall, thereforé; assume here

thaﬁ the atomic orbitais ﬁave been so normalized.
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. Let lwk>’ k=1, ..., n, be the eigenvectors (the molecular orbitals)

ThuS ’ ! ’ . : ‘

of the Hamiltonian operator H.
. 4 i

¢ A -23) Wy = B v
or
(A -26) Wy [Hhy> = E W IV -

- It should be noted that we have mﬁltiplied ( A-23) on the ieft by <Wk|
and not <W:|. This is because we plan to use only real fﬁnctioné.for,the
molecular orbitals.

Let lu;>, i=1, ..., n, be the set of atomicAorbifals. Since the
basis vectors coﬁstitute an éppréximately complete set, other atomic
orbitals making only minor conc:iButions, we may write

n

( A-25) > = '151 2, Ju>

The bar is placed over the coefficient. Zi

are not'normalized. When we carry out the normalizations, we will remove

to remind us that the |Wk}'s

the bars.

The substitution of (.  A'~25) into ( A -24) yields

n n

A - = '
( A-26) le 1§1 jk 1Y [Hlu> = E 321 121 ik EAR jIu >




Eqﬁatibn'( 'A-26) has two integrals which.are elements of matrices. The

first, the 'overlap' iutegral is
( A-27) (uj|ui> =f ugugdr=5.
$ince the vectors are normalized,

( A-28) $54 = *1.00 for j =1 .
?FurtherMOre,'iet $ be a 'standard' ‘integral so that the off;diagonal

elements may be written as

( A-29) +. oo A$;.’=v$pj oo : 35 I O SRR

By virtue of ( A -28), and for later convenience, the diagonal elements

of (éji) are taken to be zero,~';hns,j. : ‘ Sl

( A= . S : - =0, .

( A=30) p;4 ='0.00

[Note: The numbers of A -28) and A -30) are written as +1.00 and
0.00, respectively, rather than +1 and 0. .This is-because' the theory is

developed here for computer use, and computers dlstingulsh between real

numbers (+1.00 and - 0. 00) and integers (+1 and 0). ] j(éji) is the -

identity matrix, the matrix df the overlap integrals may be written as




( A -31) (354 = (Gji) + $(“oji)

"By virtue of ( A -27) ($ji)’ and hence (pji), is a symmetric matrix, i.e.,

(. A-32) ) $Ji= $ij

7z

The other integral of ( A -26) is the 'exchange' integral,

¢ A=33) <uj|H|ui> = f uy Hou, dt = Bji

Since () 1s Hermetian, (Bji) also is a symmetric matrix. The assump-

tion is standardly made that
¢ A34) By = BOyy o B R RO

where is a 'standard' integral.
L g

Traditionally Bii is represented a4 ‘énd is’ called the 'Couloybic'

integral, the 'standard’' value of which is. 4. ([The slash in { is té."

" distinguish between 4, the standard value of the Coulombic inEegral,fﬁh

and q, the nqmber.éf mers in the molecule.] A new 'standard’ integnéL_u

is now defined in terms of the three whigh_have been degingd azl_re,ady,‘;T
( A-35) ' Y = B-48 .

The general form for the diagonal terms of (B.i) will Be taken as .




( a- 36) Byg = dj; =4+ 8y

where 51 is an‘empirically determined parameter of the order of magnitude

of one. The matfix of the exchange integrals now may be written as

(A -37) (Bsy) = (4 + 8;¥1 859) + B(pji)

= ({4 + §i[B-d$]} 5j1) + a(pji) “[by ( A -35)]
= ({4[1 - $56,1 + 86,1} 5j1) +'B(pji)
= ({doy + 85} 5,0) + Blog,)

where

( A-38) | o, = 1 - $6,

or

(A 739) ' ; = ci + $6i

At this junctyre thg coefficients Zik of ( A -25) are not known.

They are determined by requiring that the E,

's in ( A -26) are extrema
with pgspgég to the Eik'g, This requires the taking of partial derivatives

ik

with respect to z, and setting JE,/dz,

equal to zero. This yields




( A -40) izl‘zik Bji =,Ek 151 Ziw $j:l; j=1, ess M
' (by ( A -23) and ( A-27)]

or

(A-41) By 125> = B (820
(A-42)  [Cidoy + B85} 85,0 + Bloy )11z,

= (E (6, + $E (o D1z, >
(A=43)  [(doy + 85, - B} 6,0 + (1B = $E.} oy 11Z,p0

\

i
when ¢ A -31) and ( A -37) ate ;séd, ( A= 41) becomes |

= @Iz
where (0) is the null inat‘r.ix, or —- Qy §1r:§g, of ( A'-39) -
CA-4h) Lo, + BB, - E (o, + saQ.} 5,0

& B - 's.EI;}.ngpil.l‘zigS‘ sl . ‘

( A-45) t({&i(éi - ) +5,(6 - $£)) 55)

+ (B - S, } pji)‘l'liﬂg = ~‘(z°’--'213>-~ ;

A .16 -



éﬂan if B - SER #'O’

(A-66)  [Uaghy + 6,3 6,0 + (o11Z,> = @7
Vﬁere

. 1-5

(CA-an) M B - sE

The soluﬁion of ( A_.-46) will yield the eigén’valueé )‘k and the eige'm'rectbrs

. I-z.ik>; k= 1' eec ey ﬂo

From ( A.-lg7) we have

B - SEN=d-E .

Ek(l -'$xk) = 4.' Bxk ’

or .
A
kT T - SN
A= (A N
= 1,- S)\k -
(-9 -y
1 _,$Xk :

LS
=q-1—':§x—‘:-

( A -48) g

-

It should be 'no't'_.e__d‘ ‘that

“{by ¢ A-35))




( A -49) .Y ==2.779 ><v10-19 _Jg')ules'molecule-1

= 26,022 X 1023"x"2.779’$< 10~

19
.5 -1
= -1.674 x 10 Joules mole

= -1.674 x 105/'4’.'184 x 10>

= -40.00‘k¢al mo]'.e_l

If ( A -46) is to be solved by a computer technique, it is dseful

to reartange it to

( A=50) [(51511) + (pji)]lzik> = (-oixk5j1)|z1k>
or
( A-51) [(-5:5:4) + (-oji)vllzﬂg = (cixkaji)lzik>
1f 6, = 0.00 for all i, o, = +#1.00 for all i by ( A-38).
this case ( A -51) simplifies to
( A-52) ' (—pji)lzik> =\ lz >

If (pji) is tridiagonal, ( A -52) can be solved by the 'EISPACK'

In

(EIgensystem Subroutine Package) driver subroutine RST which yields the

eigenvalues in ascending order as well as the'eigenvectors. If (p

i1

is not tridiagonal, the driver subroutine RS can be used. In this routine




o . ’ . Sy
a real symmetric matrix is reduced to a symmetric tridiagonal matrix for

which the eigenvalues apd eigenvectors are then.obtained.

If & #0.00 for all i, then the driver subroutine RSG must be

" used. The RSG subroutine determines the eigehvalués and eigenvectors for

'the real symmetric g‘eneralized éigenprqblem A*X = (LAMBDA)*B*X. This is .
not as horrendous as it might aﬁpear to be at first since only the upper
triangles of the A and B matrices are us:'ed‘.'

The computer programs for the solution of ( A -46) or ( A -51)
generally do not yield values of the |z,,>'s such that

ik

( A-53) . <\yk|\yk> = 41.00 ; k=1, ..., n.

Thus, ( A -25) should be rewritten as

S S
(A -54) » > = N ) ziklui>
i=1
or
n
( A -55) N;k) = ) zik|u1> ,
i=1
where
( A -56) 4 z N, z

The substitution of ( A -54) into ( A -53) ')"i'_el'ds




(A-57)  +1.00 = <y, |y, > = Z Z u,Jug>
. . k' VK K 42y gm1 25k ik Y.
SHEE
= N, - oz, 2z, $ » [by ( A-27)]
koy2) gey dk ik T3t _
or '
_— | .. 1/2
(" A'-58) N : N, {(z Ijil ik>}
If (sji) is tridiagonal,
n : n-1 o
| . =2 -1/2 |
(' A-59, tridiagonal) M= LY 2z +2 1 25 2045 40 8 ! ;
1=1. ™ i=1
and, if (sji) is pentadiagonal,
‘ n 9 n-1 - - ) i
( A-59, pentadiagonal) N, = )] z 2y T 2 Z Zik 2141,k V4,141
i=1 i=1
. n-2 - - "1/2
R 1 T R T | B

If the electrons are :assumed to be .uncorrelated except fogy;hgwRauli
exclusion pr;nciple f?&l eléctron transitions can bejtrga;ed«asgone
electron transitions between ind;yidugl‘molecula:yogbicalé}»JThqs;,the.
transition frequeﬁcyufo; the traﬁsiﬁion from the .r-th-state-to the

t-th state, by virtue.pf (»A-as),lisfgivgn~byh:~
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( 4 -60) CVep =R - B

h-l(q'- e g - s )
Toe, "1 TToe )

_Yh-l( ‘xt _ Xr ) "
T T |

¢

' . ’ " N ’ X e x .
14 t o
4.194 x 10 ( I-$r " T- sxr> ’

where

6.62§ x 10-3é Joule sec. ,

=
]

( A -61)

and Y 1is given by ( A =49).

b .éﬁNERAL Tﬁgbggﬁs ON goéRDINATE SYSTEMS
In the analysis which we shali begin in the next SECTION coordinate
systems‘o§héi chan'thévCartesianlcgordinate syécem'will be used. ;t will,
therefqre;.be~gsgfgl-to<defiVe hgré’;ﬁg-genetal Eﬁeorems dp éoordinate
systémé.anQ"apply‘ﬁhep to=the'sphérica1=pqlar-coqrdih&te system ahd the
ellipqical coordinate syétgm. w¢ s;ét;*ﬁith the concept of a vector in

é 3-space as an ordered triple,'(xl,»*Z,Lgé).-sqcﬁ that = = - -

( 4-62) alxps xps %9) = (ax), ax,, ax,)

and




( A -63) (xl’ xz’ x3) + (}'1: Yz, Y3)= (x1+y1, x2+y2, x3+'y3) >

where a .1s a scalar (a number) and (yl, yz, y3)~ is another vector. .-

Furthermore, if we now use the Dirac notation for vectors,

( A-64) s Xy x5ly5, v, ¥4 = Xy * x2y2~f kyyye

If (xl, Xy X3) = (yl., Y55 ¥3), then X) =Yy Xy =Yg Xy = ¥4, -and

2
1P ¥pr X2 TR R

[
Hd
+
»
+
b

(A ~65) ' <x1, X5 x3|x

where x 1is thé ﬁagnitude of the vector (xl, Xy x3).

The 'cosine'.funétidn may be defihed by
( A-66) - <xly> = xy cos(x,y)

For siﬁplicity in writing we shall use the foll&wing convention

0, 0> =

( A-67) : le’ £ |x1>
lq, Xy, 0> = |x2>
“lo, 0, x> = Ixy>

Thesé three vectots are orthoghal, i.e.,




where 6, =0.00 if i# j, and 8,4 = +1.00 if i=3j [the Kronecker
délta, which is also == as noted previously -~ the elements of the unit

matrix].

Anothér set of vectors can bé defined in terms of the orthogonal set

( A-69)

where the Einstein summation convention is used in the last line. If the

determinant of the matrix (é_i) is not zero; there exists another matrix
: ai . , .

sucﬁ that

AL > = Ay,
( 70) lxj | bjBlyB>.

Let the symbol I§i> represent a unit vector in the 'direction' of

[xi> and |d¥i> a vector in the 'direction' of ]xi> of magnitude dx, .

1f




( A-72) < <xj|ya> = aa£<xj.|.xi> :
.aai'ajil [by ( A-68) and the unit
SR magnitude of the vectors]
= aajA
or
( A=73) cos(xj, ya) = aaj'r; [by ( A -66)‘and the unit
magnitude of the vectors] .
By the calculus we have
ax
A-74  dx, = —1 ay,
CAa7H *3 Ty, B
B
since, by ( A-70),
A-T75 dx,> = b, ldys>
( A-75) | ldx, AJ@"{B‘ 4
ox, '
—1 g > = b,,ldy,> , by ( A-=74)°
and
‘ ax, .
—1 ldy.> = b dy,>
3 layg js'?fe,b g
. ax‘
A— 76 a b =—j- .
( 4778) 387" 3y,

'-Thg"differegéial displacemént lds> has the magnitude




( A-77) ‘ ds® = <dx ldxi>
axi 'ax
= {(—= d — d b A -74
ax ai
R SR §
= dy d
3y, 3y, Ya yB

= YQB dyq dyB s
where
( A-78) Y === .,

The distance between two points on a coordinate line in the |ya}

system along the vector |ya> is given by .

Y% g

( A=79) ‘ _ dsa e Yo

The éosihgzo/f the vectors <§B| and”'|§a> is gliven. by

( A-80) cos(YB. y,) = <yB|ya>
= . “ % r A
'aBj'aaing!x1>A- by { A-69)]
=a,, a_,?b - [by ( A~68) and
Bj. ai .ji, . . - the.unit magnitude
R of the vectors] -
~ %3 %a3 |

= COS(y,B’ ?,(j) c'os(ya,A xj) (by ( -A -?3)]
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By ( A-64) <yB|x > 1is a scalar. ';"hﬁs‘, by the "commﬁt::ai:i\'rity of the

multiplication of real numbers

A- = v
( A-81) | - <yB|x > = <x |yB> ,
and \

A— ,A ) ) ': -] .
( 4 82) | cos(yB, xJ,) Ac,os(xj, YB)

Thus, by ( A -80), we may write

.dsa) cos(x,, ds,)

( A-83) cos(ds'va',‘ dsB) = cos(x 3 8

j’
By the combination of ( A-73) and ( A -76), we may write

9x, 9x
( A-84) cos(ds , ds ) —i—i
os a B

By the calculus

ax 9x, 0
1 y

( A-85) i Y o
. asa ayY asa
and by ( A-7§)
: : 4 . oy, -
( A-86) O T I=Y1/2’6'
asa aa Ya

Thus 'y




8 = 3t 5o o © by C A -84))
a B ‘

( A -87) cqs(dsa,_ds

ax, dy, ax, dy o
= aXJ a'yY axJ a>'5 [by ( A-85)]

" dx, ox o
| 3 Y-l/Z 5 Y-l/Z 5

3y, dyg Yr ya 65 6B [by (_~A,-8§?‘]

-y Y—-1/2 Y—1/2

¥S “vr. ya- . 66 [by ( A78)]

S

_ -1/2 -1/2
" Yag Yoo Ypg -

ERPO S

If |dsa> and |d53> are orthogonal, the cosine is .equal to zero, =

and
( A-88) Y =0 .

Thus, for orthogonal coordinate systems 6n1y the Yaa terms in ( A-77)

appear. In such a coordinate system the volume elemént is given by .
(A -89) dr =11 dsa

1/2 g
= vy (A -
g Yoo g by ( 79)]

In the spherical polar coordinate system the radius vector |;> . makes

an angle © with the X4 axis. Thué,

(A -90) 0<Oo<m.




The projection of the  |1:> vector on the x. ,x'z-plane has the magnitude
r sin 8. The |r sin 8> vector makes an angle ¢ ‘with the xi-a’xis. :
" Thus,
( A-91) | 0<¢ <20 ,
and furthermore
( A-92) ‘ X, =t sin g cos ¢ -
x2-= r sin 0 sin & -

X4 = T cOS e .
By geometric arguments it can be shown ;hat lde>, 1de> and |dé>:
are a mutually perpendicular triad. We shéll, however, use ( A'-88) to

A pfove it. By (II1-92) and the calculus we have

1 ' » o | g

A - — = — : | —— 2D -

( 9'3) 3c sin 6 cos ¢ 30 r cos O cos ¢ % ~ sin 0 sin ‘d’
ax2 ax2 } ax2 _
—a;:—=sin9sin¢ —a?-=rcosOsin¢“-3¢—,--rsin9cos¢
9x 9x : -} S
—3— = ) -——3 = - -—3 =
Y cos 0O 55 - T sin 6 3% - o, - .

r sin 0 cos 6 c‘osz¢+' r sin 6 cos © sin2d>-' r sin 6 cos 6

( A-=94) Y

t sin 0 cos 8 - r sin 6 cos @
= 0 R

A -28




and
( A-96) Yoo

The expression

( A-97)

( A-98)

( A-99) .

T

' 00

¢

=0 R

—r'sin’ 0 sin'd cos ¢ + r sih’ 0-slh ¢ cos P+ 0

i

-r'z sin 6 cos 6 sin ¢ cos ¢ + r2 sin.6 cos O sin ¢ cos¢ +0

= 0 .

for dt is obtained from ( A-89). Thus,

Sin2 0 cos2 ¢ + sinz, 0 sin2 ¢ + cosz 0

1]

sin29+éos26_ - .

= r c’t::'s2 ] c::os2 ¢ + rz .cosz 6 si'n2 o + 1:2 sin2 0

= rz c'cns2 0 + r2 sin2 )

=r sinz\ ] 'Sin"z é -+ rz sin2 ;) co‘s2 ¢ +0

= Sinze, '




( A -100) gt = M2 @) HY? o) (x? sin? )% w9
2
= r sin 6 dr d6 g¢ .

The geometry of the elliptical coordinate system is developed in
termg of the points (=a, 0, 0) and .(%a, 0, 0). The distances from

these points to an arbitrary point (x%y, X,, X3) are r, and T,,

1
respectively. The distance between the arbitrary point and the xl-axis
is h. Since |h> 1is perpendicular to |§1>, it is parallel to the xz,
xy-plane. Thus, the magnitude of its projection on the x,,xy-plane is

also h. The angle between the projected h vector and |§2> is 0.

Thus, we immediately have

( A-101) X, = h cos @
and
(A -102) x, = h sin ¢

The intersection of the h - vector with the ﬁi?axi§ is at the paint.
(xl, g, 0). The giSt§g¢e from this Poiyt_;o (-g{ 0, 0) is.>]a¢x|. The
" triangle formed by the points (-a, O, 0),-(51, X9 53) and (xl, 0, 0)
is a right tr;anglg w;;h the right angle at (51, o, d), Tb?s,.by the

Pythagprgan relation

( a-103) 2 2%+ (amx)?
_ 1 2ATXy
2. 2 2
= ho +at+ 2ax, + ¥

A =30




Similarly, for the triangle formed By the points (+a, 0, 0), (xl, X5 x3)

and (xl’ 0, 0)»

hz + (a-x

NN
]

(A -104) Cox 1)2

2 2 2
h™ + a~ - Zax1 + x1 .

if we subtract ( A -104) from ( A -103), we obtain

2
or ' : "
'rz-r%
R WY
( A —lqs) . xl T "‘-}:A‘at;a
= ag"l ’
where - ;
: r.+r
) | .o 1 "2
( A-106) ey
and
o r.-r
‘YT _ 1 "2
¢ A-107) n =g

'If we add ( A -104) and (. A -103), we obtain

2 2 _ .2 2,2
ry +. ?2 = 2h” + ;a + 2x1 ,




2; 2
r,+r., )
( A -108) R L xi-
T o Y L e
2 a 4a y
| N Ir X AT I SR A SUer I |
| S \ ) 8a'r, + 8a r2.-,16§_ =r +ayr, -,
._16a2‘
o2 o L2 20 2 22
. (r1 + 2rlr2.+zr2 43‘)_(43 r, + Z%LfZ '.FZ)
16a2 '
2 25 -2 : 2
) [(r 4r,)" - 4a%) [4a" - (r;-r,)"]
, -1632
. .', e 2 ‘ I . _ ) 2 )
16a° rtr A 17T,
= 2l\7z= /) " Y[t-\"=
16a ' o A
= a2[€2°1] [l‘flzl K [by ( A ~106)

and (A -107)] .
Thus, by ( A-108),.( A-101) and ( A-102),

/ .1/2

( A -109) x, = a(EZ-l)l

2 andH? cos 0
and
( A-110) x, = a1 anhHM 2 sin e .

In order té’use (' A-88) for the mutual,o;thogonélityvtgst, we must

first derive the partial derivatives matrix. Thus,

- A-32




( A-111) | RECEER | N

ax ' ‘ ax oX.
1. : ‘1 . 1
A E e 3 0
3%y 1/2 : ax | ﬂ/ 3x = .
(1~n )% cos 8 972  ~an(z -1) cos 6 72 a(gz 1 / (1 2,1/2
- = - = - - -n ) sin
ak 2,172 ax 1/2 . ax
aE ag(l n ) l/;i K aq3 - fn(e_: -1; 1/28’;1“' ) a 3 _ a(e; 2,1 1/2 (1-n2)1/2 cos 6
| &>t , (5" .
from which we derive
(Au2). Y, = a2 - a’tn cos® 0= a%en stn’ @
= a’ng - a’ng
=0 R
. 2 : 9 i R N PR , -
(A ~-113) Yge = -a"E(1Nn") cos 6 sin & + a"E(1-m") sin 6 cos O
=0,
and
L 2 ,.2 : 2 .2 -
( A -114) Yne = an(E°-1) cos 6 sin 8 - a™M(¥°-1) sin 6 cos O
=0 .

Thus, we have a muthélly'o¥£h6§§ha1 triad and can use ( A -89) to calculate

dv,




) ' 2
2.2 2222 (115

( A-115) Y., = a’
O ety
- . 2.2 . 2.2 (-1
CA-116) v =a%?+aly? EED
. =)
(A-117) Yy = alEDaD
and ' ; 4 .
2 2
o o ST 2.2 2.2 (1’ - g2
o Em L (€71, "
s [32(52“1) ('l-nz)':]
= a2 + £2a%1?
SR N B FR X K
- 262 - n21?
Thus,

(A -119) T lape ad[E? - 02 dE an de

A =34



E. EVALUATION OF ATOMIC INTEGRALS

Since every atom beyond hydfogén‘constitutes a mﬁiti—body problem,
( A -9) cannot be solved for atoms as:well as for molecules (except for ;he
hydrogen atom, of course). It is, therefore, necessary to introduce approxi-
mations for the atomic orbitals. For this pgrposé.gg have used what are
known as 'Slater orbitals' [63, 64, 65]. The rules for sétting up Slater
orbitals are fairly complicated sincé they.are used fqr any. orbital for
any éfbm. Since we shall bé interested in juét 2p—orBiCals, we ‘shall
consider only the rules for these orbitals.

The Siater orbitals are hydrogen-iike,orbitals which have been modified
to take into account the partial shielding of the nucleus by the other
electrons in the atom. In gnits of a full electron chargé of 1.00, for
2p-electrons the shielding factor is 0.85 for each 1ls electron and 0.35
for each of the other 2-shell electrons. With the 'effective nuclear
charge', w, the 2p-orbitals are given by

( A-120) u(ij) = sz Xy e"m'/2 R

where N is the'normalization factor, xj~ is the j-th Cartesian coordinate,

2p
r 1s spherical polar radial coordinate and is in units of the Bohr

ll meters).

radius (5.29 x 10
For carbon the nuclear charge in electron units is 6. There are two

ls~electrons and three other 2-shell electrons. Thus,

6 - 2x 0.85 -3 x 0.35

( A-121) w(cgrbon)




Similarly,
(A -122)

and

L (A1)

w(nitrogen) .

= 3.90 ,

w(oxygen) =

4.55 .

8~ 2x0.85=~5x 0,35

=7-2x0.85 - 4 x 0.35

The form of ( A -120);indicate5'théf~the same hormaliiation factor

is used for all three Zpefunctions. We shall now dgmonscrate that this

is indeed the:case. For j =1

( A-124) f u'udt

—wr

S xi'e dt -

- N

= N S r? sinz 0 cos2_¢ e

"Ny SIS r2 ;1n2'e cos2 é

AR

I r4 sin3 6‘co§2 ¢

ALY

wm L, n ;
/ <cqsz 0 do f sind
o 0

0
SEE

-wr
. e -
[ 5
w

Ni(n] - M-

sin 39]2"
4

. [-cos
0!

() + 4

1

3
]

1
+1 - 3]

2[5_11
173

5

N ] [24w-

5] .‘: B

A=-36

2 -
N1[32n )

[by ( A -129)]

vr dt

[by ( A-92)]
e—wr r2 sin 6 dr d6 d¢

e "' dr do d¢

0 de f r4 e T 4r
0
3 u
cos™ O
o + o2 0]
3 2 N
(wr)” + 12(wr)" + 24wr + 24}]°°
. 0

[ (26)]

[by ( A-100)]




Wwhen the integral is set equal to one,

( A -125) L Ny = wemMio
For j = 2,
x . R S U L o
( A-126) Ju udt = Ng f xg w4t [by ( A -120) ]

=~N§ [~r2 gin% e‘sin%;¢ efytzdx\., o« by € A-&Z)]

o

Ng Irr 1:2 sin2 0 sin2‘¢- e VT r2 sin; 0 dr:d6 d¢ .

[by (A -100)] -

Ni I r* sin’ @ sin’ ¢ eV dr.de.ds. -

2 ) o | - 00 _
:N‘;'f sin2'¢d¢f' sin3edef r'l'ewrdr
0 0 -0
| sin2 o 4 -5
= N ¢ - ——Q- . [—'] [24 W, ]
2. 4y 3" .

g

. 2 . -
wz [32n w




IR
L

FOr j=3,

, * - |
CA-127) S wudt =N S xh & ar | by ( A-120)]
= N§ I r2 cos2 2 e-wr‘drv . ' " [by ( A-92)]

wr

- N§ I[rf rzaposz e.eT : r2 sin 6 dt d6 d¢p [by ( A-100)]

2 W 7 2 ® 4 -ur
3 1 dp¢ f sin 6 cos“ 9.d6 f r e dr
0 0 0

= N

. ' 3 v
= N2 (2] - I:lc"—si—] . (26 w)
gtem. 3 _
0
1 5

= N(zn] - ) (200

3 ]

= N§ [321’! w-sl

For theié§aluation of overlap integrals we must consider the case
in which the values of"Q 7a;e the<sgmé for the two atomic orbitals and
the case in which the values of w aré~differgnt. Let vwl be the value
of w for the orbital.ét - (-a, 0, 0) and. v, be the value of w for

the orbital at (+a, 0, 0). For the sake of specificity we shall assume

( A-128) . W L+ 28,

=y

2

‘where

A -38 . .




¢ A-129) 430.

The factor of two in ( A~-128) is for cofivenience as wii.l be seen-.'éhortly.
We shall assume that the atomic ox_‘b:italé are 2p2-orbi;'als. By
(A -120))

S NZ?‘Z e N;x, e dt

( A-130)  <uylup>

—-w :1/2 - (wl+f2A)r2/2

=N, faee Tl e ar [by (A -128)]
s —w, (r,+r,)/2 -t.A.
=N, f 2@ cosoe 1T e 2

by (A -109)]

NN, 15 a’@%-1) (1n?) cos? 6

-w, (r +r,)/2 -r. A ' '
e 17172 e 2 33(52-712) d€ dn d6

[by (A -119)] -
. .

NN, & 117 (21 an?) (82n) cos?

-w, (r,41,) /2 ~r,A
R A P P

By ( A -106) and ( A-107)

( A-131) ‘ o pedr = 2af

énd




E-n = _ag
or
( A-132) r, = d(gn) ,
'Fu;thermore,y v
(a-133) - Q=) @EPnd) = b @Bm? +at

Thus, ( A -130) becomes.

2n . e =y af _
N,N; a> [ . cos’ [ e o eagA(Ez-l)

( ¢ A-134) <u,juy
' 2'71 172 0 +H

+1 9.
-1

o —(w.+A)aE . 41
NNy a'n foe b GD S
+1 -1

I

el . @lin? +1') an g .

DI S T
we shall consider three cases of (A -134) -- both uy and u, are

carbon orbitals,.qlz is .a carbon orbital and;:yz

and uy is a carbon orbital and u, is an ox§gen orbital.

‘is a-nitrogen orbital,

3

A 40




F. THE CARBON-CARBON OVERLAP INTEGERS

For the carbon-carbon case A =0 in ( A -134)

o«  -w.af .+
NMadm f e © @k s

2 (&% % +1yn%m*) an a
. +1

( A -135) (u2|u1> .

© -waf 2,003 5L
Natns e © 2nfed _L§¢§m_+n;I dg
’ +1 A : -1

b

c

b & © =w.,af . 2.
vg ' £ e Chp[zt - A6 L B g

o N
2 5 |
ZNC a’m o -wCaE_: 2 2 9 - .
=—t— 1 e (8°-1) [1567-5E"-5+3] d&
: +1 .
ZNé -asry > -w.aak 2
= —T f e (5 "1) (105 ‘2) dE
+1 :
'I.N(Z: asn oo -wcag 2 2
=—g5—/ e 7 (§-1(("-1) d
+1
2

5 .
4N, a"n o -w.ak
o —C . ! e c "(554-6524-1) daE
By -

where the subscript '1' has been replaced by the subscript 'C' for carbon.
At this point it is necessary to invoke the st:anda.r@ indefinite integral °

ax

(- A=136) [ Xt e¥ dx = ef\+1 '[(ax)n"-"n(ax)n-l + ﬁ(nfl) (ax-)n-z
_ . | a

- e+ (-1 1),




where  n is a non-negative integer. The three integrals of interest are

'
N .

o -y at -w,.ag
Ca-13) 7t \ez-c Tag ==L € |
LH - Wed +1
‘ -w,a
= (wca)-1 e C ,
o0 -‘:1 ak -wcag :
( A-138) S  £2 e c dg = [2——ff—§,{c-wca£)2 - 2(-wba§) + 2}]:
IS, - S =(-wea) e 1.
-wca:‘ N
= —?—;3 {(wca)z + Z(Wca) + 2}
w.a .
¢
-w,.a .
=e (@™ ¥ 2wt + 20w}
and
‘ c .k -wcaE
(A -139) f £%e © ag =|f—— {(w.aB)? - 4w a8) + 12(w.a8)?
+1 (v’ ¢ ¢ ¢

- 24(-wcag) + 24}]:
1

~w.a

2 |
=8 5.{(wca)4 + 4(wca)3 +12(uga) +26(ya) + 24)
(w.a) ,
c
—w a :

eﬂ’c*{kwca)-l + 4(§Ca)-2 --I—.12(wca)-'3

+ Zh(wca)-42+ 24(wca)-5} .

We now evaluate ( A -135) as

A-42° o



| , 2.5 —v.a l
c .

} . . w. 4N aziﬁ.“ C L -1 v RPN ‘._2~-;; - o b ._3
. ( A =140) <u2|u1> =715 [5 e {(wca) + a(wca) + ~12(wca)

. . . .- .; N '--w
+ 24(wca)—4 + 24(wqa) 5} -~ 6e ©

a ‘. .
{(ﬁba)-l + zgwca)'2

-w:a ’
+ z(wca)’3} +e © (wca)-l]

5 , E
C c

4N a’n - -w_ a o9 : _3 : _4
15 [e ] [ﬁ(wéa) + 48(wca) + 120("4Ca;) '

=

+‘120(wca);5]

-w.a '
=15 [e ¢ ] [(wca)-2 + 6(wca)-3 + 15(wca)-4

1 fhlsgwca)’s]

Sinc'e
(A -121) Ve = 3.25 ,
and
(a-125) - . ono= (/3o
. . c e
2 5
. . 32N . W
vW'(A—llol) C____32n_ C
15 15 32
w5
C

]
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We shall be interested in carbon-carbon distances from 1.19 x 10-'10

10

meters t6 1.47 x 10~ meters. The parameter a is half this distance

1

measured in Bohr radii (5.29 x 10~ meters). Thus, the range of interest

of a 1is 1.12 to 1.39. The values of § for these values of a are

meters. In Béht radii this is 2.628. Thus, a for benzene is 1.314. The
value of $"in TABLE A -1 for & = 1.315 is 0.248. This is the reason
that the 'traditional' value for the cérbon-cafbon overlap integral is

taken as 1/4.

A .44

\
1
listed in TABLE A -1. The carbon-carbon distance in benzene is 1.39 x 10-'10



TABLE A-1

© CARBON-CARBON

OVERLAP INTEGRALS

é.iin Bohr radii) - $

.o 1.120 . 0.345
1.125 0,343
11.130 10.339
1,135 7 '0.337
1.140 0.334
1.145 0.332
1.150 0.328
1.155 ©0.326
1.160 0.323
1.165 0.321
1.170 0.318
1.175 0.315
1.180 . /0.313
1.185 © 0.310
1.190 0.307
1.195 0.305
1.200 0.302
1.205 0.300
1.210 0.297
11.215 0.295
1.220 0.292
1.225 0.290
1.230 0.287
1.235 0.285
1.240 . 0.282
1.245 0.280
1.250 0.277
1.255 0.275
1.260 © 0 0.273

#U.S. GOVERNMENT PRINTING OFFICE: 1981-740-145/2204

a (in Bohr radii)
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1.265 .

1.270
1.275

1.280-

1.285
1.290
1.295
1.300
1.305
1.310
1.315
1.320

1.325

1.330
1.335
1.340
1.345
1.350
1.355
1.360

©1.365

1.370

1.375

1.380
1.385
1.390
1.395
1.400

. 0.

O O O O O O o

271 -
... 0.268

0.
AR/ B
0.
0.
.257
.254
0.
.250
.248
.246
0.
0.
.239
0.
0.
.233
0.
0.
.227
224 -
.222
.220
.219
.216
.214
.213

266
264
261 .
259

252

244
241

237
235

231
228





