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PREFACE 

This is the third in a series of Final Reports submitted on the 

Thin Film Optical Shutter (TFOS) project. The first Final Report 

included discussions of the thermodynamic :limitations of TFOS, the 

quantum mechanical methods developed for calculating the dielectric 

constant and imaginary refractive index as a function of frequency for 

macroconjugated macromolecules (MCMM) and the thermochromic mechanisms 

which could be used for switching MCCM [1]. The second Final Report 

included discussions of additional quantum mechanical methods which 

had been developed and the results of calculations on polyynes and 

polyenes [21. Where full development of the theory is not required 

for understanding results, equations from these Final Reports will be 

cited. Except for this limiation, this Final Report is self-contained. 

A specific embodiment of MCMM, the poly (p-phenylene)'s, has been chosen 

as the one most likely to meet all of the requirements of TFOS. The 

reason for this choice are included in this Report. In order to be 

able to make meaningful calculations of the the;rmodynamicc and optical 

properties of the poly (p-phenylene)'s a new quantum mechanical method 

was developed -- Equilibrium Bond Length (EBL) Theory. Some results 

of EBL Theory are included in this Report. 
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I. INTRODUCTION 

A. REQUIREMENT!) FOR PASSIVE THERMAL MODULATION 

The earth receives energy from the sun at a rate estimated 

24 . -1 
to be 5.4 x 10 Joules·year This is about thirty thousand times 

the currently used sources of energy [3]. Even if only one thousandth 

of one percent of the solar energy is utilized, the sun could supply 

30% of the present energy.requirements. The present problem, therefore, 

is not that insufficient solar energy is available, but rather the 

available technology is inadequate for the task, especially when the 

economics of the available technology is considered. We are, however, 

on the verge of the development of adequate technology for the thermal 

modu~ation of buildings by means of solar energy. 

There are logically three approache·s for this thermal modulation. 

The first is by use of the photovoltaic effect to convert solar 

energy directly to electricity and the subsequent use of the electricity 

for the thermal modulation. In the other two approaches, respectively 

called 'active' and 'passive' modulationt the solar radiation is absorbed, 

converted to vibrational energy and re-emitted as infrared radiation. 

Prof. W.W.S. Charters of the University of Melbourne distinguishes 

between active and passive modulation by 

'An active system ••• (is') one in which it is 
essential to supply input energy in the form of 
electrical power or mechanical work in order to 
transfer the collected energy from the point of 
collection ~irectly to the interior of the build­
ing or to an assigned thermal storage •.. the 
basic feature of a passive system is that no 
input of energy is required to perform this 
.transfer/storage task.' [4] 
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He then goes on to say, 

'Because of their deceptive engineering simplicity 
little attention has been paid to the potential 
of passive heating systems, and·engineers have 
favored the more complex active systems that are 
inherently more capable of regulation and 
control. ' [ 5] 

Finaly he declares, 

'The basic problems to be overcome are those of 
thermal storage, which has to be designed into any 
such structure, and the associated fact of internal 
temperature control to achieve acceptable standards 
of temperature variation in the internal living 
quarters ...• To assist with this control problem, 
one can use ventilation techniques in winter to 
reduce possibly unacceptable high temperatures and 
external shading devices in summer to prevent a larger 
proportion of the solar gain due to the large variation 
in the summer and winter solar angles.' [6] 

The use of 'external shading devices' such as overhangs, bushes 

and trees has the disadvantage that they are not susceptible to 

feedback control. On a cloudy summer day they cannot be moved out 

of the way to permit more sunlight to enter the structure. Blinds 

and drapes require the intervention of a person, who may not be 

available at the appropriate time, or a thermostatically controlled 

motor, which requires the input of additional energy. 

The ideal solution to the excessive solar gain problem is an 

'optical shutter', a device which switches from being highly transmissive 

to solar radiation to being highly reflective to solar radiation .when 

a critical temperature is reached in the enclosure. The switching 

occurs because one or more materials in the device undergo a phase· 

transition at the critical temperature. 
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B. THIN FILM OPTICAL SHUTTER (TFOS) · 

A reasonable 'first guess' set of requirements for an optical 

shutter are: 

1. The transition from the 'low' temperature state to 

the 'high' temperature state shall occur between 23° 

and 27°C (73.4° and 80.6°F); 

2. In the 'low' temperature state the transmission of 

solar radiation shall exceed 80% of the incident radiation; 

3. In the 'high' temperature state the reflection of solar 

radiation shall exceed 90% of the incident radiatio~; 

4. In both states the absorption of solar radiation shall 

be less than 2% of the incident radiation; and 

5. The system shall be chemically and photochemically 

stable in the presence of corrosives potentially 

present in the atmosphere and/or solar radiation in 

general and ultraviolet radiation in particular. 

The traditional 'comfortzone'~on room thermostats is given as 72° 

to 78°F. The range specified above is a little higher and a little 

broader than the 'comfort zone'. It is, however, sufficiently close to 

not be considered unreasonable. The second and third requirements are 

set to maximize solar gain when the room is 'cool' and to minimize 

solar gain when the room is 'warm'. The ultimate, but unrealizable, 

goal would be 100% transmission in the 'low' temperature state and 100% 

re~lection in the 'high' temperature state. The values actually set 

are practical compromises. 
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Since the absorption of a significant proportion of the incident 

radiation by the optical shutter would cause the shutter to switch 

to the reflective state even though the room is too cool, it is 

essential that the shutter absorb less radiation than is necessary to 

cause self-switching. The 2% value is a 'guesstimate'. The maximum 

allowable absorptivity will have to be determined experimentally. In 

any case the absorptivity can be minimized by having the phase transi-

tion material in thin film form. Thus, we are logically led to TFOS, 

the Thin Film Optical Shutter. 

C. THERMODYNAMIC REQUIREMENTS FOR TFOS 

It has been found that the 80% transmissivity and the 90% 

reflectivity requirements force severe thermodynamic restrictions on 

optical shutters [7,8]. If each 'zone' in the.shutter matieral which 

is in the lower temperature state· contributed 100% to the transmissivity, 

and if each zone in the shutter material which is in the higher tempera-

ture state· contributed 100% to the reflectivity, the maximum allowable 

value of the factor Q would be 

(I-1) 

= 20/80 

= 0.25 , 

where 
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(I-2) N
1 

= the number of 'zones' in the lower temperature 

ota.tc 

N2 =the number of 'zones' ~n the higher tempera~~r~ 

~tate, and 

= the 'lower' tem~~rature, i3°C. 

A 'zone' is an atom, a section of a molecule, or the entire molecule. 
·"' • . t. • ' ~ . •, ·~: • :, • 

If the shutter were exactly one 'zone' thick, equation (I-1) would 

apply, at best, only in the ideal case. Since the shutter cannot be 

~pected to be exactly one 'zone' thick, we must requir~ that the 

maximum allowable value of Q be consi~~rably lower. If we also 

require tpat 
. ' . . ~ 

where 

u = ~~~ 'upp~r' temperature, 27°C , . . 

tne data of TABLE ~~1 can be calculated. ~n making these calculations 
· • .. •· • , • . , ~; • , • • e . t::" • ~, ;, ~ · · · 1 · 

of the well-known thermodynamic functions 
. • " ~;: " • ; i ' ~ ' I ·, · ·. ~ ,"f • 'i ', • • 

(I-5) 

and 

(~-6) 
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Q 

10-l 

10-2 

10-3 

10-4 . 

10-5 . 

TABLE I-1 

Thermodynamic Analysis 

of 

TFOS Requirements 

!::.Go !::.Go !::.So 
t u .. 

. -l . -1 Joules.•_mole· .· Joules;·mqle -1 ·deg -1 
Joules•mole · . 

5.669 X 103 -7.476 X 103 
.... 

3.28 X 103 

1.'134 X 104 .' -1.322 x. 104 - 6.140 .. x 103 

1. 701 X 10~. ··. -1.-897 
. . 4 
X .10 8.994 X lb3 

2.-268 104 . -2.471 .x 4 1.185 10
4 

.. X . 10 . X 

2.835-X 104 -3.046 )( 104 1.470 X iQ4 

N
1 

=number of 'zones'in the lower temperature state 

N
2

i= number of '~ones'.in the. upper temperature-state 

.·t, = the lower temperature,· 23°C · · 

·" u =·.the upper temperature, .. 27°C 

. ·. 

!::.~ = standard Gibbs free e~el:'gy of trans~~ion at teinpera~ufe a 
a 

t::.S0 = standard entropy of transition ... 
. •. 

"".; .. ,... 
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are used, where 

G = the Gibbs free energy 

T = the absolute temperature (°K) 

P = the pressure 

S = the entropy 

N = N
1 

+ N2 , arid 

k = Boltzmann's constant, 1.38066 x lo-23 ·Joules·deg -i 
0 

. 1 . 1 -l ·mo ecu e • 

The only way in which such.·very large values 'of' ·!!.S0 can be 

generated is by electron delocalization. · It should be noted that 

. 2 . -1 -1 
the breaking of a chemical bond generates about 10 Joules·mol •deg 

of entropy. Thus; a 
-1- .. 

Q = 10 · would· ·require the breaking of about 

33 bonds per molecule! 
3 -1 -1 . 

If a value of 7 x 10 Joules·mole •deg is 

taken as a nominal value for !!.S0
, and if the phase transition material 

·is a semiconductor· such-as silicon, this value of /!.S~ requires the 

dislocalization of 15.377 electrons per-atom. The ridiculousness of 

this ntimber becomes apparent when one considers that silicon has only 

14 electrons per atom. There' is, 'however, a type'of macromolecule for 

·which such delocalization entropies are not unreasonable ~.the macro-

conjugated matromolecules. 

D. MACROCONJUGATED MACROMOLEcULES 

A 'macromolecule' is a molecule consisting of a large number 

of atoms. A 'polymer' is a macromolecule which can be considered con-

ceptuaily to be made up of identical or similar·small molecules called 
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'mers'. If one permits the usage of referring to individual atoms as 

mers, then there is no distinction between a macromolecule and a polym~r. 

A single plane in a graphite crystal is a macromolecule, but it is 

a polymer only if the individual carbon atoms are considered to be mers. 

A molecule is said to be 'conjugated' if the structure of the 

molecule permits the interaction of rr~bonds with adjacent rr-bonds 

and/or local~zed p-electrons or d-electrons on adjacent atoms. A 

macromolecule is 'macroconjugated' if the conjugation extends over a 

large region of the molecule. A macromolecule of graphite is macro-

conjugated. A macromolecule of polystyrene is not macroconjugated. 

The benzene·rings are conjugated individually, but there are no inter-

ring interactions intra-mole~~larly. Since 'macroconjugated macro-

molecule' is a rather cumbersomeexpression, we have abbreviated it as 

'MCMM'. [As the inventors of this 'word' we envoke the privilege of 

also setting its rules of grammar. We hereby declare MCMM to be both 

singular and plural. Thus, we one one MCMM and many MCMM.] 

When an MCMM is switched from localized rr-bonding in a mer to 

totally delocalized 

-1 -1 

. 3 rr-bonding, a delocalizion entropy of 7 x 10 Joules• 

mole •deg or even i4 x 3 -1 -1 10 Joules•mole ·deg can easily be attained. 

In TABLE I-2 are listed the number of delocalized electrons per mer which 

are required to generate these two values of 6S0 on delocalization. 

Since polyenes, polyynes and poly (p-phenylene)'s have two, four and 

six delocalizable electrons per mer, respectively, it is clear that 

such MCMM with suitable switches are potential canqidates for the 

. -
optical shutter material. There are, however, potential problems 
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TABLE 1..:2 

MCMM Matching 

of 

TFOS Thermodynamic Requi~·ements 

q 

(mers per molecule) 

160 

150 

140 

130 

120 

110 

100 

90 

80 

70 

60 
.. 

50 

40 

30 

20 

10 

n 

( elec trona· per mer, '· 
0 3 

t.S . = 7. x 10 Joules•. 
-1 -1 

mole ·deg ) 

1.1 

~.2 
,•'. 

1.3 

1.4 

1.5 

1.7 

1.9 

2.1 

2.4 

2.9 

3.5 

4.3 

5.8 

8.3 

14.1 

36.6 

9 

·; -

n 

(elec~rons per mer, 
0 3 

t.S = 14 x 10 Joules• 
-1 -1 mole ·deg ) 

2.1 

2.3 

2.5 

2~7 

3.0 

3.3 
... 

3.7 

4.2 

4.8 

5.7 
... 

6.9 

8.7 

11.5 

16.5 

28.2 

73.2 



which must be considered with regard to the use of MCMM:for optical 

~butters. 

Even though thermo<lynamics predicts that a g~ven MCMM will switch 

, in the required temperature range it makes no prediction as to 

.. _the rate at· which the switching occurs.. An M~ which switches 

within seconds 'of reaching the transition temperature .is quite valuable, 

but an MCMM which takes an hour to switch is worthless for an optica~ 

shutter. Since an MCMM swi,tches .by changing .its geonu~try, it is 

necessary for adjacent molecules to 'get·out of the way' for the 

switching to occur. Such a concerted reorganization in bulk mater~al 

may be very slow. It is planned., ther~ore, that the first generation 

of optical shutters .be TFOS for .. this reason as well as the pot;ent:f..al 
. . 

absorption.problem. The rate of reorganization in~ f~lm of MCMM.of 

the order of 100·. x 10-lO meters (100 A) thick can be expected to be 

reasonably ·fast.· 

. The second problem which must be considered .relates to the r~quire-

ment that the optical shutter be chemically aiJ,d· photochemically ~tabl~. 

The macromolecules which are used cpmmercially at the present time 

are with few exceptions notoriously unstable:i~· the presence of sun-

light. A TFQS which is photochem~cally unstable in th~ .presence of . 

sunlight is.of rather little utili~y. Fortunately, there are ways in 

which this prob~em can be.circumvented. We shall discuss the stab~lity 

problem in considerable detail when we treat the theory ~f poly (p-pbenylene). 

Macrocp~jug'!ltion also gives a macromolecul.e some ratqer unusqal; .. . ·~ 

properties•: The simples~ ~~l:ecule ~th a rr-bond is ethene. Th.~re, is 

one bonding rr-orbital and one anti-bonding rr*-orbital. .BY Equilibrium 

Bond Length (EBL) theory, which we shall discus~ in great detail in this 
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Report, the quantum numbers for these orbitals are ..:.1.114 and +1.·114, 

resv~ctively. In butadiene the quantum numbers would be -1.114, -1.114, 

+1.114 and +1.114. if the n-bonds did not interact. For the fully 

planar molecule the quantum numbers.·are -1.618, ~0.737, +0.737 and +1.6la. 

For the ten douQle bond homolog the values. ~te -1.943, · ••• , -0.223, +0.223, 

+1~943, where' .•. ' represents-eight values. -·' .. ... ' For"the fifty double 

bond homolog the values are -1.965, •••. , ;-.0.083,.+0 •. 083, ••• ~-, 1.965; 

and for.the hundred double bond homolog the values are -1.965, ••• , 

-0.069, ·+0. 069, •• ;, +1. 965. · Thus, the··highest and ·lowest val~es .of 

the quantum numbers reach a constant value. Similarly, the middle 

quantum numbers approach asymptotes. Thus, --as the molecule becomes 

lange~ more and ·more energy levels are.placed between the ·extreme·values 

-1.965 ·and· -0.069 for +0. 069 and +l. 965. Thus, the 'd'istancer between· 

adjacent-energy levels-decreases. The TT-orbital systems of the.polyenes, 

thus, approach the condition referred to by the soli~ state physicists 

··as 'bands'... 'There is a bonding n-band and an apti..;.bonding: n*-band. 

The.-~distance'·between the-top of the bonding TT-Qand arid the bottom of 

the anti-bonding TT-barid is the !band gap'. Photons with an ene~gy less 

than the band gap·energy cannot be absorped, whereas photons with an 

energy greater than the· band gap energy ·can be absorbed·. Sine~ the 

number·of electrons which can be promoted to energy levels in ~he 

anti-bonding n*-band by photons wit11 energies greater than the band 

gap energy is quite large, these mo;Lecules have quite large· absorptivities 

for these·photoris. ·As we ·shall.show 1ater large absorptivities yield 

high reflectiyities when specular· ·reflection is possible. Thus, the .MCMM 

':.··can· yield quite high reflectivities·. 

11 
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If se~tions of the molecule can be made to change their geometries. 

as the temperature changes, the MCMM can be made to switch between the 

microconjugated and macrocon]ugated states. Thus, the MCMM can be made 

to switch petween low absorptivity (high transmissivity) to high 

absorptivity (high reflectivity) with an increase in temperature. This 

is, however, precisely the type of inated.al behavior whi·ch is required 

for the f'abrication of the optical shtitter. We shall, therefore, now 

turn to a discussion of MCMM theory. 
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II. MCMM THEORY 

A. SWITCHING MERS 

An MCMM can be considered to be made up of two kinds of mers 

delocaliz'ing mers and switching mers. The delocalizing mers must, 

of course, contain at least one rr-bond. They may be linear such as 

the ethenic and ethynic linkages, cyclic such as the p-phenylenic link­

age and polycyclic such as the 1,4-naphthalenic linkage. In addition 

the cyclic and polycyclic linkages may be heterocyclic. With respect 

to geometric variation the ethynic linkage is the siinplest. There are 

no geometric variations which are possible. For the ethenic linkages 

cis- and trans-isomers are possible. For the cyclic:s and polycyclics 

rotational variations are possible. 

The switching m:ers must undergo reversible geometric rearrangements 

with temperature in such a way that there is rr-bond coupling in one 

arrangement but not in the other. A change in rr-bond coupling in a 

molecule will result in a change in the spectrum of the molecule in 

the ri.ear ultraviolet or in the visible. The change of spectrum with a 

change in temperature is known as 'thermochromism' [9-12]. Three of the 

known mechanisms of thermochramism have been foun:d to be potential 

candidates for the thermal switching mers. They are the keto-enol 

isomerism, spiro atom isomeriSm and restricted rotation about a carbon­

carbon bond [13]. Since the fifth requirement for TFOS is chemical and 

photochemical stability, the first two thermochromic mechanisms are 

probably poor choices. Carbonyl groups are well-known as sites for 

photochemical attack. .We are, therefore, left with the third mechanism. 
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.Restricted rotation about a carbon.;..carbon·· bond' is the· cause of the· · · ·· 

'optically active'biphenyls [14]. Since the p-phenylenic linkage 

can· a·ct as both· •the del6ccali~ing mer ~nd' as· the. sw:ftch'ing mer' p~ly 

(p~phenylene) is an ideal candidate for an initial MtMM' for. TFOS. i:'· 

B. ABSORPTIVITY AND REFLECTIVITY' · 
. .. . " . 

In addition to being able to switch at the specified temperature 

MCMM for TFOS' must also ·have the ;r:eq\liied high reflectivity: in the' 'high' 

temperature state. We shall, therefore, now consider the properties 

necessary for high reflectivity and whether·· MCMM can have these pro.p'erties. 

The generalized vector wave equation may be written as [15] 

(II-1) 

a solution of which is 

(II-2) 

~ _. : . 

where 

(II-3) 

(II-4) 

(II-5) 

+ + 
~ = ~ exp(-i <klx>) , 

0 

., .: 

i =V-I ' 

<kl = <kl, k2' k3' iool 
' c 

lx> = lx1 , x
2

, x3, ict> 

·' .• ~ , .: .. ,!r. 

..... 
' 

' 

and oo is the angular frequency of the wave. In terms of more 

traditional symbols 
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(II-6) I 
++ 

<k x> "" k·r - cot 

+ 
k is the 'w~ve propagatio~ vec~or'. The wave num~er,.kj' is related 

to the wave length by 

(II-7) 

The an~lar frequency, co, is related to the frequency, v, by 

(II!-8) co "" 2TTv .• 

Thus;. 

(II-9) 

... c 
j 

If c is the spee~ of light in vacuum, an '~ndex of refraction' may 
0 

be defined by 

c 
(II-10) n = ....2. • . j. c' 

. j 

From ~rr .... 7) 
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(II-11) 
' . ~ :'. 

. ( 

and (II-4) becomes 

(II-12) <kl 2nv < il 
= -c- nl' n2' n3' - • 

0 

For convenience the direction of propagation may be taken as 

perpendicular to the surface of the material medium with x3 as the 

direction of propagation. If should be understood that the equations 

below must be modified if the direction of propagation is not normal to -

the surface. Thus, 

(II-13) <kl = 2nv <O 0 il 
c ' ' ~ ' 

0 

and (II-2) becomes ~ ~ . . 

(II-14) 

If there is at"tenuation (absorption) in the medium~ then 

(II-15) 
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whe~e @ is the 'attenuation constant'. The function ~ is sq~ar~d 

in (II-15) becauRe :f.t is the energy uf the 'fl7ave which is attenuated, 

and the energy is proportional to the square of the amplitude of the 

wave. The combination of (II-14) and (II-15) yields 

(11-16) 2 = cp2 {4niv (c
0
t- DJx3)] • exp[-~x3 ] cp (x3) ex--

0 c 
0 

cp2 [4triv ~co J = 0 exp-- (c t - n3x3 - 4niv x3 co 0 

= cp2 {4TTiv ic0~ J ex -- (c t - n3x3 + 4~v x3) 0 co 0 

'? cp2 . {4niv (c
0
t- [n3-!RJ1 x3>] , ex--

0 c . 
0 

., ... ... 

where. 
'; ~ ·" 

(II-17) 

is the imaginary ,part of the index of refraction. The real part of 

the dielectric constant is related to n and K by 

(II-18) 2 i e = n - K • 

Let the subscripts 'i'. and 't' represent the ~edium in which the 

incident ray is found and the medium in which the transmitted ray is 

found, respectiveiy. The reflectivity of the interface is given by 
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(II-19) 
- & t 

[16]. if ·the incident ray meditim is air, ni ~ 1. The subscripts· are 

now superfluous; and (II-19) can be written as 

(II-20) 
1 - 2n + 2n2 - & R = .:....-=_:...-=~--=-
1 + 2n + 2n2 - & 

It should be rioted from (II-18) that the maximiml possible value for & 

for a given value of· n 

From (ii-20) we obtain 

(II~21) 
aR -4n -- ----~~~--~ 
a& (1 + 2ii+ 2n2 - &) 2 

and 

(II-22) 
t . 

_a_R = _-..;.4_+.:.....;8:.:n=--..;.+_·..;.4&;-...._~ 

an (1 + 2n + 2n2 - &) 2 

Since n, is also positive, (II-21) is negative definite. By def.inition 

the ··maxiiD.um possible value of R is +L 00. Thus, 

(II-23) R + +1.00 as 

From (II-22) we see that, if & is large in magnitude and negative 

in s~gn, the slope is negative for all reasonable values of n. Thus, 

we have 
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(II-24) R + +1.00, . as n + 0~00. for e << 0 • 

We sh~,ll., co~sidE!r .. an<example of (I~~2.4) • , Let ~- = 0.1 and e = ~5, 

then .- ''! . . 

(II-25) R(n = 0 .•. 1, .t = .-5) = q. 936 

Thu.s, .w:e:. see. that. (II-24) iS. the .guide .to .~se for .the attaining ~f. ~he 

' > 90% reflectivity for the upper tempera~ure state. 1 It;. should be 

noted ~ passant that (II-19) does not require .that the highly . . ... . ~ • ,,: ' •• <r 

reflective materi"al be highly conductive (i.e. t a metal). All that 

it requires is that the material be highly absorptive. 

It w~ll be instructive to examine the data for some specific metals. 

The data are all for thin films of the metals. The data are listed 

in TABLE II-1 through TABLE II-4. The 'white' metals aluminum and silver 

14 
meet the reflectivity requirements .. quitewell except around 4 x 10 H~rtz 

~ 

where aluminum is somewhat belo~ specification. The 'yellow' metals, 

gQ~ct. 'a~4. cpp_p,er ar~ ,qu~t~ good until around 6 x 101~ Hertz ·,.w~~re. the 

reflectivity becomes poor. In al.l cases ~:~e.fa:q~re oc~urs __ bec;ause.l:he. 

material is not sufficiently absorptive! 

If a material is Qighly absorptive [~. very large, or by (II-17), 

K very large] in the visible and the surface is rough, the material is 

black.-· ,.,If:., l:he. surfa~e is suff~ciently smooth so. that ... spe~ul~r reflection 

occur·s.;,· the material. is hig\"lly; refl.ective .. Thus, the .'blackness' of a. 
• • • • • " .... c • • •. • • 

material in bulk form can be taken as indicative of high reflectivi.~y 

in smooth thin film form. 
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TABLE II-1 

Oftical D~ta for Aluminum 

a ka b 
'J ~ ~ 

1 X 1014 4.20 23.45 -532~26 

2 1. 92 12.90 -162.72 

3 1.54 9.30 - 84.12 

4 1.80 7.12 - 47.45 

5 1.05 7.22 - 51.03 

6 0. 67 5.57 - 30.60 

7 0.46 4.78 - 22.59 

8 0.36 4.13 - ~6. 93 

(a) Data taken in part from [+7]. 

(b) Calculated. 

R~ 

98.9 

97.8 

94.0 

88.6 

91.1 

91.8 

92.3 

92.5 

~~~ ~~e; d~t~ are exper~e'f\ta+ valu~s ~I\~ ~~fe ?Ot 

calcula~e9 by f9rmul~. ~he ~~t~ ~~r~ ta~en 

~rom [18]. 
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v 

1 X 1014 

2 

3 

4 

5 

6 

7 

8 

T~LE II-2 

Optical Data for Silver 

a Ka b 
n e 

1.38 20.30 -410.09 

0.46 10.20 -103.92 

. 0. 25 6.81 - 46.32 

0.08 5.05 - 25.49 

0.06 3.75 - 14.06 

0.05 2.87 - 8.24 

0.06 2.22 - 4.95 

0.05 1.80 - 3.24 

(a) Data taken in part form [19]. 

(b) Calculated. 

Rc 

99.4 

. 99.4 

99.4 

99.1 

98.6 

97.9 

96.5 

91.7 

(c) The data are experimental values and were not 

calculated by formula. The data were taken 

from [18]. 
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TABLE· II-3 

Optical Data for Gold " 

a Ka b 
v n e 

1 X 1014 0.93 ' 16 •. 70 -278.03 

2 0.42 8.39 - 70.'21 

3 0.31· s.sa· - 31.04 

4 o~14 4. 27' - 18.21· 

5 a·. 20 2.90 8.37 

6 0'.84' 1.84 2.68 

'7 1.40 1.83 - 1.37 

8 '' 1.41 1.68 0'.84 

(a) Data taken in part from [20]. 

(b) Calculated. 

Rc 

99.3 

99.1 

98.6 

97.4 

9i.9 

47.7 

38.7 

37.4 

(c).· The· data are experimental values and were not 

cal~ulated by formula. · The data were taken 

from [18]. 
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TABLE II-4. 

Opticai Data for Copper· 

a Ka b v n e 

1 x io14 1.22 17.10. -290.91 

2 0.51 8.76 - 76.45 

3 0.20 6.27 -39.27: 

4 0.16" 4.46 - 19.87• 

5 0.19 2.98 - 8.85 

6 0.88 2.42 5.09 

7 0.87 2.11 - 3.71 

8 1.07 2.13 3.37. 

(a) Data taken in part from [21]. 

(b) Calculated. 

Rc 

98. 6 .. 

98.6 

98.5 

97.9 

93.3 

60.0 

52.1 

43.8 

. . . ~ . ., 

(c) The data are ~perimental values and ·wer.e:not 

calculated by formula. The data were:taken 

from [18]. 
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Since poly (p-phenylene) is the MCMM of choice for the thin film 

optical shutter, we shall continue our discussion of the theory of 

MCMM by discussing the theory of poly (p-phenylene). 

\ · .... 

~ ,t ' .~· 
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III. POLY (p-PHENYLENE) THEORY 
; 

A. INTRODUCTION 

Several objections can be raised against the use of poly 
. ,·. 

(p-phenylen~ for TFOS. Among these objections are 

1. The inter-ring coupling in poly (p-phenylene) is too weak 

to provide the reflectivity required for the upper temperature 

state. In support. of this claim one can cite 

a. The polyphenyls are planar in their crystals, 

b. They are colorless, 

c. The limiting value for A. 
max 

is in the ultr~violet,.and 

for the polyphenyl series 

d. The black poly (p-phenylene)'s are black because of 

impurities and/or cross linking. 

2. The poly (p-phenylene)'s are too reactive to provide the 

required chemical and photochemical stability, and 

-~ -1 
I 

3. The energies required to planarize non-planar poly (p-phenylene) 's ,· 

are too gr~at for use as TFOS switches. 

We shall develop the theory of the poly (p-phenyl~ne)'s in the context 

of replying to the above objections. 

B. PLANARITY OF POL YPHENYLS 

Although it is well known that the ortho-substituted polyphenyls 

and poly (p-phenylene)'s deviate from inter-ring coplanarity, it is widely 

believed that the unsubstituted compounds are inter-ring co-planar at least 

in the solid st~te. The ar$ument given is that the intermolecular inter-

actions in the crystal force the inter-ring co-planarity. In 1949 
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. 0. Bastiansen reported the dihedral angle for biphenyl· in the vapor 

phase to be 40-45° [22]. The follow:J_ng year the va~ue 45 + 10° was 

reported [23]. Later the value 41.6 + 2. 0° was reported [24]. For a 

biphenyl solution in n-heptane Suzuki estimates•the dihedral angle 

to be 19- 23° [25]. 

The early x-ray studies by Dhar indicated that t~e· dihedral angle 

:J_n crystalline biphenyl is exactly 0° [26]. A more recent study ·by 

Trotter reported 'the sa~e .value [27]. -The: same year, however, Rob'ertson 

reported that the dihedral angle in crystalline biphenyl is·0.834°.[28]. 

In recent years there have -been published a ser:J.es of papers on the 

crystal structures of various polyphenyls [29-35]. In each case 

.double~well potentia~s are found for the. variou,s rings. For example, 

for p~terphenyl· the central· ring-potential wells are at+ 13° at 200°K 

and 300°K. [32]. :The. barrier height between. the two wells is 0. 65. kc~l· 

-1 -1 mole ·and 0.54·kca~·mole , respectively, for the two tenperatures. 

Noren and Stille [36] report that EPR spectra of polyphenylene show 

·that electrons are delocalized over a few (three to five), benzene 

rings. If we assume that the plane of each ring is 13° .off of the 

plane of the previous ring and that ·the .twists are all in the.same 

direction, the sixth ring will be 65° off of the plane of the first 

ring. A non-coplanarity of 45° is probably sufficient to· decouple the· 

sixth from the first·. ring. Noren and Stille also report that NMR data 

on polyphenylene are consistent with the lack of inter-ring co-plana~ity 

[37]. Thus, it·is clear that neither the polyphenyls nor the'po~y 

(p-phenylene)'s can be assumed to b~ totally co-planar in the solid 
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at room temperatu:re. We now· turn to the question of inter-ring coupling 

when the rin~s are cn~planar. 

C. INTER-RING· COUPLING 

If a magnetic field is applied perpendicular to the plane 

of a closed ring conductor, an electric current will be induced in 

the conductor·. The induced current has assoc-iated with: it. a magnetic< 

,. field which. opposes the :impressed magnetic fteld. This.· ·±s··the· 'standard' 

model .for .diamagnetism. In a molecule the 'ring circuits' will· be 

around. individual atoms. except· in· the case of molecules such as benzene. 

If the magnetic field is perpendicular to the plane of the ring, the 

entire ring is the 'ring circuit'·· for the. TT-electrons·. · The. difference 

between the sum of the atomic' 'ring circuits.' magnetic suceptibilities.' 

and .the ·'rr.-ring circui~! susc~ptibility is the anisotropy. For 

benzene· the anisotropy is .54 .x 10-6 [38]. If there ·±s no·. inter-ring 

-6 interaction for.biphenyl, the corresponding value ·should be 108 x 10 ·• 

-6 London!s :value, however, is 119. x 10 • Since there is .. no 'ring circuit' 

for the carbona~e ion, the anisotropy would ·be expected·. to be identically 

-6 zero.·· .The ·experimental value however, is 4 x 10 [3.9]. The reason 

for these "excess" anisotropies·~s been shown to be:that in the presence 

of·the·magnetic field the interaction between non-bonded atoms is much 

gr.eater· than would be expected by virtue of the value :of the .overlap 

integral '[ 40~ •. 

Whelan4 has reported the· values of resonance energies for various 

compounds calculated from heats of combustion. using the method qf Klages 

27 



and the method of Franklin [41]. For benzene the respective values 

are 36.0 and 36.4 kcal•moie-1 • For co-planar, non-interacting rings, 

-1 
one would expect for biphenyl the values 72.0 and 72.8 kcal•mole , 

respectiveiy. The values reported by Wheland for solid biphenyl, however, 

-1 are 71.0 and 71.5 kcal•mole , respectively. Thus, it would appear 

that not only do the rings not interact, but that planarization requires 

-1 an expenditure of 1. 0 - 1.3 kcal•mole • Fluorene can be considered 

to be a biphenyl molecule with an o, o'-methylene bridge. This bridge 

would be expected to force co-planarity of the two rings. The crystal 

structure of fluorene shows that this is the case except that the angle 

between the 1, 1' bond and the 1, 4 and 1',4' rays is 168° rather than 

the 0° found in biphenyl [42]. The resonance energies for fluorene 

4' 

FLUORENE 

reported by Wheland are 75.9 and' 77.7 kcal·mole-1 , respectively. Thus; 

the 'excess' resonance energy of fluorene over twice the benzene value 

. -1 . 
is 3.9- 4.9 kcal·mole • A~ain we find a significant inter-ring inter-

action when the rings are co-planar. 

The rate at which molecular chlorination occurs in acetic acid for 

various biphenyls can be compared to that for benzene [43]. For methyl 

benzene, biphenyl and fluorene the relative rates are 356, 422, and 113,000, 
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respectively. For 2, 2'-dimethyl diphenyl the relative rate drops to 

292, whereas for 9, lQ-dihydrophenahth:r~ne the telati:vP l:ate i& 

12,200. Whether the mechanism for this chlorination is free radical 

or electrophilic, it is t.o be expected· that strong iriter-ring inter­

actions will increase the rates of the reactions. It should. be noted 

that 9, lo- dihydrophenanthrene is not quite planar. 

9, lQ- DIHYDROPHENENTHRENE 

D. SPECTRA OF POLYPliENYI.S AND POLYPHENYLENES 

We shall discuss the three spectral objections together here. 

Both the data cited by Suzuki .[ 441 and the data cited by Noren and 

Stille [45] indicate that the p-polyphenyls.which nave been studied 

are colorless in solution• These data are listed in TABLE III-1. The 

numbers listed are the values of X, in nm, for the lowest energy peak 

obser.Tecf. The calculated values were obtained by the use of ·Kuhn's 

1root law' (46] which is obtained from the very simplest form of semi­

empirical molecular orbitai theory. The agreement between the the0ry 

and the experimental data is remarkable. There are, however; some 

serious difficulties. which preclu.de one from accepting the 343.8 nin 

asymptote value for poly (p-phenylene). 
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.TABLE III-1 

Ultraviolet Spectra of p-Polyphenyls 

Compound .... ·.A Observed,- nm . A. ' Ca-l'culated, Illli max max 
Ref 44 Ref. 45 Ref. 45 

Benzene 
.. 203.0 

.. -
·~ - .. 

Biphenyl 247.4 . 251.5 251.7 

p-Terphenyl 276.5 280.0 280.0 
.. .. 

p-Quaterphenyl' 292.0 300.0 298.0 

p-Quinquiphenyl 310.0. 309.7 

p-Sexiphenyl 308.0 317.5 317.6 

p-Septiphenyl '323: 1 

p-Polyphenylene 343. 8'' . 

". 

. : 
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The data cited by both Suzuki and· by Noren and Stille are for 

solution and not for the solids. As we have indicated in SECTION III.B 

t~e dihedral angle for biphenyl in solution·. is ar~und 20°. Thus, the· 

theory is predicting th~ values of A for non~planar.molecules. max 

For thin films of ~iphenyl Dale reports the existence of a ':hidden' 

band with the A of 275 nm [47]. Furthermore, eluor~e has a peak 
max 

at about 300 nm as does 9, lQ-dihydrophenanthrene alt~ugh the extinc-

tion coeffic~ent for the latter ~olecule is much smaller [48]. 

One could argue that the 'hidden' band is the result of a transi-

tion other than a n-n* transition, or that it is a n-n* transition 

which is forbidden. Since it is not reasonable for t~ese types of 

molecules to assum~ that there ar~ electronic ~ransitions which are 

lower in energy than th~ least energetic of the n~* transitions, the 

first suggestion is not very probable. The second suggestion, however, 

does have merit and ~hould be tnv~stigated. We, therefore, mad~ our 

own analysis of the n-~lectronic structure of benzene and planar 

biphenyl. We assumed t~t all C~ bond lengths in planar ~iphenyl 

ar~ the same as the C-C bond length in benzene. We did not, however, 

ignore adjacent atom ov.erlap integrals as is the practice in the simple 

~ucke~ molecular orbital treatment. Furthermore, we ignored the energy 

requi~ed to planarize the biphenyl. Because of these approximations 

we do not·have ~he right to assume that our calculation of transition 

energies will be verY, close to the observed transition energies. Whe~her 

a transition is allo~~d or forbidden is, however, a group theoretic 

matter, and group the()retic results are a function only of the symmetri~s 
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The relationship between the quantum numbers, Aj' obtained from 

the secular determinant, and the rr~orbitai energy is given by 

(III-1) Ej = 1- 0.2455 Aj ' 

where y is a mo~ified exchange integral and is negative, and 0.2455 
. . . . . 

is the value for the overlap integral for adjacent 2prr-orbitals for 

carbon atoms in benzene. For benzene the highest occupied molecular 

orbital has the quantum number -1. The lowest unoccupied molecular 

',• ~ 

orbital has the quantum number +1. Thus, we calculate a rr-~* transition 

energy for benzene of 

(III-2) 6E (benzene) = -2.128y • 
g 

We obtain the value of y by associating this transition with the 203 m~ 

peak of benzene. 

The structure taken for biphenyl is 

b 

. ,.· .. 
The lines a and · b represent the symmetry planes for planar biphenyl • 

. . , 

If the electric field vector is perpendicular to the b-plane, both rings 

are involved in abso.rption. The allowed transitions are 
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"" "" a,b + a,b and a,b + a,b , 

"" where a,b represents an orbital which is symmetric with respect to 

the a-plane and anti-symmetric with respect to the b-plane. Similarly, 

a,b represents an orbital which is symmetric with respect to the a-plane 

and·symmetric with respect to the b-plane. Other allowed transisions 

are 

a,s + a,b and a,b + a,'b . 

The values of the quantum numbers of the various rr-orbitals of planar 

biphenyl and their symmetries are listed in TABLE III-2. The 

-0.705 (a,b) + +0.705 (a,b) transition energy is 

.·· 

(III-3) 6E (biphenyl) = -1.454 y 
g 

Using the value of y obtained from the benzene calculation, we calculate 

a wavelength of 297.1 nm. This is remarkably close to the 300 nm value 

cited above for fluorene and 9, 10-dihydrophenanthrene. The crudeness 

of the approximations, however, preclude our expecting so close a 

correspondence. It should, however, be noted that this transition is 

the lo~est in energy of all rr-rr* transitions, allowed or forbidden. 

Thus, our calculations suggest, ~u~ do not in any way prove, that the 

asymptotic value for ~his transition in fully plan~rized poly (p-phenylene) 

is at a much lower energy than is believed at the present. 
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TABLE III-2 -n-orbitals,Planar Biphenyl 

.. 

Quantum Number Symmetry 

+2.278 a,b 

+1.891 a,b 

+1.317 · a,b 

,.. 
+1.000 a,b 

+1.000 a,b 

+0. 705 a,b 
~ . . . 

,.. 
.. -0.705 a,b 

. . . ~ 

-1.000 a,b 
... 

,.. 
~1.000 a,b 

-1.317 a,b 

,.. 
-1.891 a,b 

-2.278 a,b 
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If our hypothesis is correct that the. 'band gap' for fully 

planQ.rl~ed poiy (p-phenylene)"'·s is in the infrared and not in the 

ultraviolet, several ·'color' phenomena should be observed for the 

poly (p-phenylene) 's •. · 

i. Polyphenylenes which cannot be planarized because of 

steric hindrance should be colorless. 

2. Polyphenylenes which can be fully planarized, but are not, 

should become darker when compressed. The'compression 

energy will force the rings to assume a more co-planar 

configuration. 

3. Fully planarized poly (p-phenylene)'s should be a shiny 

black, and 

4. Derivatives of fully planarized poly (p-phenylene)'s 

which do not interfer with planarization should also be 

'·black. This requirement ensurs that. the 'blackness' is not 

cause by impurities. It does not, however, guarantee that 

the 'blackness' is not caused by extensive,cross-linking 

between chains. 

. . 
By means of a Diels-Alder coupling the reaction 

c-@-c = c-H + 

@-l ... 

has been carried out [49] .. Because of the pendant benzene rings the 

product cannot be planarized. It would, therefore, be expected to be 
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colorless. Clear, colorless, f~lms of ~h~ prqdu~t have been cast 

from chloroform. 

Grey to brownish black polymers have been synthesized by the 

anodic oxidation of benzene at the interface ~~tween benzene and 

anhydrous HF to which a small amount of water or KF was added [SO]. 

Chemical analyses of the products indicate that _they are polyphenylenes 

with some fluorine and some oxygen. In some cases the infrared spectra 

indicate that the linkages are para. 

An attempt to produce a poly (arylene sulfone) by the Friedel­

Crafts reaction of m-benzene-disulfonyl chloride and biphenyl in 

nitrobenzene yielded a black polyphenylene of a molecular weight of 

3000- 4000 Daltons [51]. The oxidative cationic polymerization of 

benzene with aluminum chloride and cupric chloride yields ~ brown 

product with no evidence of ortho ~ meta or no~-"'!-.rOm"'!-tic linkages iri 

the infrared spectrum [52]. On compressio~ blue-Qlack pellets were 

obtained. 

A poly (p-phenylen~) of about 100 mers w~s obtained by the 

chlorination of poly (1, 3- cycloh~adiene) with subsequent dehydro.chlorination 

[53]. A shiny black polymer of composition (c6~. 78ct0 • 31)n. ·was obtained. 

The polymer was ~ulfonated with hot conceJl~rated sulfuric acid .. ·The 

polymer obtained was soluble in methanol and in concentrated sulfuric 

acid, and was also black. The method of synthesis and th~ chemical 

analysis preclude ~ significant amount of cross~linking. Fur~hermore, 

the color 9f the soluble sulfonated potymer indicates that the color is 

not the re~ult of impurities. 
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' ' 
E. CHEMICAL AND PHOTOCHEMICAL STABILITY 

'The excellent resistance of poly (p-phenylene) and poly(phenylene) 

type polymers in general to oxidation, radiation, and thermal degradation 

is one of their most attractive characteristics,' [54] 'One of the 

most important properties of the polyphenylenes is their thermal 

stability ••• ' [55] . Thermal and thermo-chemical degradations are, however~ 

not the same as photochemical degradations. The thermal degradations are 

initiated by exciting vibrational transitions, whereas photochemic~l 

degradations are initiated by exciting electronic transitions. In order 

to be justified in envoking thermal stability as proof of .photoch~ical 

stability we must be able to show that the rate limiting· step in the two 

types of degradation are the same. 

For degradation to occur either a bond must be dir~~tly bro~en or 

~ new bond must ~e formed, the result of whicn is t\le br~akJ.ng of a 

_different bond. In the gas phase the combined kinetic ~nergi~s of two 

-colliding molecules can be sufficient to break a bond of one of the 

molec~les. In the solid state such an event is not very likely. The 

.. ~etic energy of a gas phase ~ole~ule colliding with the surface is 

usually·conve~ted to a vib~~tional ~citation which involves the vibra-

tions o£ ~any atoms. The probabilitY of ~he +ocalizat~qn of ~he vibra-

tion is quit~ ~11. If the kinetic en~rgy of t~e cqllid;pg molecule 

is suffici7Htly high, as is th~ case wit~ plasma etching, an ato~ ~an 

be knocked out of t~e su~f~ce directly. Th~s, neithe; in the~al, nor 

in plwtocQ.eJI1ical degradation~ at the energ~es of ip.tere~:~t here is there 

a significant probability t'Qat direct homolytic bond cleavage occurs. 
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A free radical reaction can occur witha benzene ring if an 

effectively localized n-electron can be produced in the activated 

complex. Thus, 

li H- .· ~ H ·H H H 

i-H 
H H. + Cl. + 1-Cl ++ H + 

1-Cl 

H H. H H 

+ H Cl + H 

j 4 ., 

where the small ax:rpw_s.:i.ndicate electro.n spins. In this case the 

eXCitation is ef_f,~~~~vely to 9 singlet state. Conservat~on of anguiar 

momentum in ~h,e p~~ton absorption case requires that th~.effectively 

localized n-electronic structure must be a triplet. The above reaction . ~ . :· . - .... ~· 

can be initiated in two ways. The approaching free radical can induce 

a polarization of the n-electron system or the ·n-electron system can 

by polarized first by the absorption of a photon or a phonon. Since 

the room temperature oxidation of of poly (p-phenylene)'s by oxygen 

::i.s not observed, the presence of the oxygen biradical is not sufficient 

to induce polarizat~on. Thus, the polarization must ,be-induced by a 

phonon (thermal degradation) or by a photon (photochein:i.cal d.egradation). 

For benzene such polarizations are rather easily induced. For 

poly (p-phenylene); however, how easily can such polarizations be 

induced? The energy required to polarize benzene to 
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·Ot 
is -2.683·y, whereas the energy required to polarize planar biphenyl to 

is -3.112 y. (It should be recalled that y 'is negative.) The differ­

ence is -0.429 y. The extra resonance stabilization 'energy of biphenyl 

over benzene is, however, ori.ly +O.ii7 y. Thus, if it is'.·true that 

poly (p-phenylene) is,planar because of the high resonance energy 

stablization; poly (p-phenylene) should be extr~ely'·.-~reactive to 

photon or phonon iriduced polarization because of· the;very high polariza­

tion energy. 

,· 
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F. THERMODYNAMICS OF PLANARIZATION 

1. INTRODUCTION 

We now turn to the last of the objections against the use 

of poly (p-phenylene)'s for TFOS-- the energies required to planarize 

poly (p-phenylene)'s are too great for their being used as TFOS switches. 

For convenience we can consider polarization to occur in two steps 

although they are actually simultaneous. First, the rings are distorted 

to permit the planarization. Second, theelectrons which are localized 

in the individual benzene rings are now allowed to delocalize. The free 

energy change for the total process is, therefore, 

(III-4) 

., 

where'd' and 'e' designate 'distortion' and 'electronic', respectively. 
· .... 

Since .Planarization requires the input of energy and decoupling 

of ortho-groups (when ortho-group coupling is present) from the benzene 

rings, 

(III-5) 

and 

(III-6) .tlSd < 0. 

Furthermore, the energy of a delocalized electron is less than that 

for a localized electron, and the entropy of a delocalized electron 

is greater th~n that for a localized electron. Thus, 
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(III-7) 

and 

(III-8) 

fiH < 0 e 

liS > 0 • e 

'. 

At the transition temperature fiG = 0, and 

(III-9) ' 

... 

. . ' ,. .~ 

·, ... '"-

where the bar over a term indicates that the term is negative. 

For bixanthylene, for which the planar configuration is the ,.lower' 

temperature fo~.' .fl~d· and 
. -1 

. -1 
fiH have been estimated to be 20 kcal•mole 

e 

and -23 kcal•mole , respectively [9]. The values of as e 
and fiH e 

are strong functions of the amount of inter-ring coupling in the poly 

(p-phenylene)'s. It is important, therefore, that we have an independent 

-~ .. ~ . .' . 

BIXANTHYLENE 

means of estimating the amount of coupling. Fortunately, the optically 

active biphenyls provide such a means. 
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2. ESTIMATION OF ~s* FOR OPTICALLY ACTIVE BIPHENYLS 

An optically active molecule is con~eptually not super-

imposable with its mirro~ image. When an optically active biphenyl 

molecule p1anarizes. the two optically active configurations are 

equally probable as the form assumed wh~n the molecule d~-planarizes. 

Eventually, therefore, a solution of an optically active bi~henyl 
. . : 

contains equal numbers of the tWo conf~gurations. The solution is now 

no longer op~ically active. This phenomenon is'called trac~ization.' 

The rates of racemization have been ~easured for severa~ biphenyls. 
. . . . .. · ' .. 

From the te~perature dependence of the rate constant the entropy of 

* activation~ ~S , c_an be calculated. Since the 'transition state' of 

the racemization, is the planar state, 

{III-10) 

Thus, we can ch~ck the validity of our model for calculating ~s.e + ~Sd 

by comparing the calculated value with the experimental value. Values 

of ~s* for several biphenyls have been tabulated by Hall a~d Harris [56]. 

We have studied two models w~ich.we have called the 'strong coupling 

model' and the 'weak coupling model'. In the strong•coupli~g model we 

a~urume that in the planar state tl.te, n~electrons are distributed in a 

closed loop of 14 parts. In t.he weak coupling.· model we assume two 

closed lopp~ of 6 parts each. I~ the·perpendicular state for bo~h models 

each benzen~ ring consists of s~ parts. 
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.. '; 13 3· 

10 ·8 ' 
STRONG COUPLING MODEL 

. 'loll i~.;.;o-2 J_ 

9 .. . . 4 
. '• ' . . . " '~ 

~· .. ·~ ' •. ' 

8 5 

WEAK" COUPLING MODEL' 

~ . ; :: 

The nitro, 'carhoxylate and carbox)rlic acid groups are assumed 

to have two interacting electrons, three parts when interacting with 

the benzene rings (when the benzene rings are not co-planar>. and two 

parts when not interacting with the .. benzene· rings (when the benzene 

rin~s are co-planar). 

. ~ .. 

' ' . :> .• 

I .. 

; ... (-) .. 6 .. . 0 

. :<:>/ (+)/ 
- N <->- N 

, . ~~>. •J ' 

0 0 

NITRO GROUP 

/o 
<->·-c. 

.'-<-> 
0 

.. CARBOXYLATE·: GROUP 
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0 

/ 
-c 

\ 
0-H 

0 

. / <->-c 
'"+) 

0-H 

CARBOXYLIC ACID GROUP 

The 'two parts' are the nitrogen- (or carbon-) oxygen bonds. The 

'third p~rt' is the nitrogen- (qr carbon-) ring carbon bond. 

· For the met~oxy group (-QCH) or -OMe) we assume one interacting 

electron and one p~rt whether interacting with the ring or not inter-

acting with the ring. The diagram be.low shows why a one electron inter-

action is assumed here. 

The various entropy tei:ms are calculated by 

(III-11) 

where 

(III-12) 

(III-13)· 

and 

(III-14) 

S = nR ln p·, 

n = number of electrons 

-1 -1 
R = 1.987 cal·deg ·mole 

p = number of parts • 
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----------------------------------------------------~----------------------

CASE I 

For Case I for the strong cou~ling model the entropy for the co-

planar state ~s 

(III-15) S(I, II, strong) = S(¢-q,}" + 2S(-co;) + S(-No
2

) 

12R ln 14 + 2(2R ln 2) + 2R ln 2 

- 71.2 , 

and for the·weak co~pling model 

(III-16) S(I, ·11; weak) = 12. R ln 12 + 3(2R in 2) 

= 67.6 • 

(III.,...l7) 
NO 

S(I, 1> = S( a: . :) + S( _ ~) 
co

2 
co2 

= lOR ln 12 + 8R ln 9 

= ~4.3 . 

Thus, the values of 6S = S (II) - S Cl) are given by 
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(III-18) 

and 

(III-19) 

~S(I, strong) = 71.2 - 84.3 
, ... 

-1 -1 = -13.1 cal•deg •mole 

~S(I, weak) = 67.6- 84.3 

- . . . -i . ' ~i; 

= -16.7 cal•deg •mole 

-.. . . -
-1 -1 

The value reported by Hall and Harris is -11.2 cal•deg ·mole • For 

this case the strong. coupling model-gives· the closer·valtie.' 

(III-20) 

(III-21) 

OMe OMe 

co-:· 
'2 

CASE II 

··"' •• 0:, •••• :;.t".-

~s (II, II, strong) = s (4>~) + 2S (-co;> + 2S ( -OMe) 

= 12R ln 14 + 2(2R ln "2). + 2(R ln 1) 
.': . ·~. . . ~ -- . . 

= 68.4 

., .. 

~S(II, II, weak) = 12R ln 12 + 4R ln 2 

= 64. a· ' .· .. _ 
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(III-.22) 

and 

OMe 

S (II, 1> = 2S ( Q ·.:_) · 
co2 

= 2(9R ln 10) 

= 82.4 ' 

(III-23) ~S(II, s~rong) = 68.4 - 82.4 

. -1 -1 
= -14.0 cal•deg .·mole 

and 

(III-24) ~S(II, w~ak) = 64.8- 82.4· .. ·.;,:·· 

-1 -1 = -17.6 cal•deg · .mole 

. . ·-1 -1 
The observed value is -12.3 cal•deg ~mole ·• Again the strong coupling 

model g~ves the closer value 

(III-25) S(III, II, strong) = S(cfJ-tP) + S(-N02) + S(-co2H) + S(:-OMe) 

= ~2R ln ~4 + 2R ln 2 + 2R ln 2 + R ln 1 

= 68.4 
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(III-26) 

(III-27) 

and 

(III-28) 

and 

(III-29) 

S (III, II , weak) = 12R ln 12 + 2R ln 12 + 2R ln 2 + R ln 1 

= 64.8 

= lOR ln 12 + 7R ln 7 

= 76.4 ' 

., 
~S(III, strong) = 68.4- 76·.4 

-1 -1 
=.-8~0 cal•deg ·~ole 

~S(III, weak) = 64.8 - 76.4 

. -1 '-1. = '-11. 6 cal·deg •mole · . 

. -1 -1 
The observed value is -7.3 cal•deg •mole • Once again the strong 

coupling model gives the better value. For our final example we will 

consider a binaphthyl. The strong' toupling inddel requires 22 parts 

for th~ co-planar case. The weak coupling model requires 20 parts 

for the co~planar case. 
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CASE IV 

(III-30) S(IV, II, strong) = S(binaphthyl) + 2S(-CQ;), 

= 20R ln 22 + 2(2R ln 2) 

= 128.3 ' 

(III-31) S (IV,,, II,. weak) =. 20R ln 20. + 4R ln 2 

= 124.6 ' 
. ! ·, . -~...... ... . .. 

. r, : 

(III-3Z) , . s(Iv, l> = ~s(g-co;) 

C• ', ', 

= 2(12R ln 13) 

= 122.3 ' 

and 

(III-33) 6S(IV, stronW = 128.3 - 122.3 

-1 -1 = +6.0 cal•deg ·mole , 
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and 

(III-34) ~S(IV., weak) ~ 124.6 - 122.3 

.. -1 ~1 
= +2.3 cal•deg •mole • 

.. -1 -1 
Hall and Harris report +9.2 cal•deg •mole • In each of the four 

cases the strong coupling model gives the closet value. Furthermore, 

the eXperimental value in each case is algebraically greater than the 

values for either model. Thus, the inter-ring coupling is actually 

greater than that of the strong coupling model. 

3. ~S FOR POLY (p-PHENYLENE) 

Let q be the number of benzene rings, each of which 

supplies six electrons. In the strong coupling model the first ring 
.. ' .... ' 

in the fully p~anar state supplies six parts. The subsequent rings 
'' ' 

supply eight parts each. Thus, 

(III-35) number of electrons, planar state·= 6q , 

(III-36) number of parts, planar stat'e = 6 + S(q-1) 

= Sq-2 , ·. 

· and; by (III-il), 
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(III-37) 

(III-38) 

and 

(III-39) 

.. 
·~ .. . . . 

S( II ) = 6qR ln(Sq-2) , 

s<l> = q(6R ln 6).' · 

= 6qR ln 6 , · · 

.. · fls e = 6qR ln (8q6~2) 

(" . 

' r '-! ·~ • ~ ' • • ( • . • ,\ 

':·' 

. ;. . .. ~. ( 

For poly (p-phenylene) itself fiS = 0 ·since the hydrogens are not 
d 

·coupled to the rings by TT -linages. 

:.· : ~' ,. ·· ... 
4. 6 H FOR POLY (p-PHENYLENE) . . 

.::.' *' f : ; .. : ·, .. ~~ . ,, 
:~: ... . , 

The energy of the j-th energy level for the one dimensional 
• l \ 4.•,.; ' • • • ' <" J . : ~ ~ .,.. • •' 'I 

FE-MO (Free Electron-Molecular Orbital} model iS given by [57] · 

(III-40} 
n 2 

E = K(:i) 
j .. p 

., : : ~' ·: ~-· ·~· -

' 

where K is a consta~t·'· nj is the quantum ntimber of the ~nergy 
I •' o 0 j ; ~ 0 0 0 i • 

level and p is the number of parts given by (III-36). Since two 

electrons occupy each energy level, 
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crri: ... 41) 

Since 

(III-42) 

K ·6g 2 
ETOT~ = 2 I p.j 

. p j=1 

= 2K. 
3
[ j2 

(Sq-..2) 2 j=1 

'K 3q 2 
=-~-2 r j • 

2(4q-1) j=l 

n I j2 = n(n+1)(2n+1) 
j=1 6 ' 

we may write (III-41) as 

(III-43) 
E :. K • 3q pg+l) (6g+1) 

TOTAL 2(4q.,.1)2 · .b ... 

K =-· . 4 
q(3g+1)(6q+l) 

(4q~1) 2 

Fo~ benzene, q = 1. Thus 

(III ... 44) .ETOTAL (BENZENE) 

F~r biphenyl, q = 2. Thus, 

K 4(7) 
=~. --

4 9 

7K =g· 

(III-45) ETOTAL (BIP$NYJ.) K 2(7) (13) = 4 • 7 (7) 

13K 
= 14 
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~~~~~ there is ¥e~¥ litt~~ ygl~me ~h~~ge ~~ the solid ~n plana~~~a~ion, 

we may equate. E and the enthalpy. Since biphenyl consists of twQ 

benzene rings, 

(III~46) 6He (BIPHENYL) = ETOTAL (BIPHENYL) ~ }ETOTAL (BENZENE) 

13K 14K 
= 14- 9 

= -0.627K. 

In SECTION III. C we indicated that the 'e~cess t .resonance energy of 

fluo~ene 
-1 over t~ce benze~is ~~9- 4.9 kc'll·mole , where re,~onance 

energy is taken as a positive number. Th~~' ~e now tak~ 

(III-47) 

and 

(III-48) 

6H · (BIPHENYL) ··e ... 
-1 = -4.4 k~al·mole 

-4.4 
K = -0~627 

,. 

For q m~rs tqere ~re q-1 in~er-mer bon~s. tf AHd is the 

v~lue for ?ne bond~ then 
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(III-49) . 6H = (q..;.l) 6Hd + ETOTAL -· q ETOTAL (BENZENE) 

I . 

= (q-l) !1H + K q {3q+l).(6g+l) _ 7Kq 
d 4 (4q+l/ 9' 

= {q-1) 6Hd + 7. 02 X 103 [q (3g+l)(Gg+l) ~ 1.9..] 
4(4q-1) 2 9 

5. T (TRANSITION) FOR POLY (p-PHENYLENE) 

We may now substitute (III-49) and (III-39) into (III-9) 

and obtain 

(q-1) 6H + 7.02 X 103[q(3g+l)(6q+l).- 1.9..
9

] 

(III-50) T(TRANSITION) = 
. d. . .· 4(4q-1) 2 

.4n-1 
6qR ln <1>-· 

If q = 40 and 

(III-51) 

If q = 100 and 

(III-52) 

. 4 -1. 
6H = 1.8 x 10 cal•mole ~ then 

d. 

. . 

T(q = 40, 6Hd = 1.8 X 104) = 299°K • 

4 -1 6Hd = 1.8 x 10 cal•mole , then 

' ..... 
Thus~ we see that we can make a polymer which will ~witch at 25°C or a 

polymer which is switched on ail of the time just .!?z changing the 

polymer length. 
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In TABLE III-3. are·listed the various data which have been 

obtained by the use of equation (UI-50). The values which have been 

cii:ctunscribed with rect"angles are those which are clos~st to the 

switching temperature of 298°K (25°C). The last row in the TABLE has 

the change in the switching temperature per unit-change in the number 

of mers. Since it is most unlikely that a production process will 

produce a very narrow distribution of chain lengths, this number 

should be as small as possible. 

The average value of 6H* for the biphenyls listed by Hall 

and Harris [56] is 22.2 kcal•mole-1 • Since this already inclues a 

6H e 
. -1 

of about -4.4 kcal•mole , it is estimated from their data that 
. -1· 

is 26-27 kc~l·mole .• Since their ortho-substituerits are larger 
. . 

than the ones which we would use, a value of Hd in ·(III-SO) of 
. -1 

23-25 kcal·mole is.not unreasonable. It should be noted that the 

6Hd used in equation (III-50) is an averaged value. For practical 

reasons it may be,desirable to have different values of 6Hd for 

various inter-ring bonds. 

For 6Hd = 23 
-1 kcal•mole · and q = 187 the transition temperature 

is 298.0°K. The temperature change per unit change in ihe ntunber of 

mers is 0.28. If we assume a 15 mer spread in the chain lengths, 

the spread iri the transition temperature would be 4.2 degrees. 

The above analysis, while reasonable, is incomplete. There are 

factors which have not been taken into consideration. For example, 

the variations .of bond lengt-hs and angles which occur as a result of 
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planarization effect the a-bond energies as well as the n-bond 

energies. A more exact method for calculating the 6H's and 6S's 

is most desirable. As an aid to the attaining of this goal we have 

developed 'Equilibrium Bond Length' (EBL) theory. 

-~. 
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TABLE III-3 

TRANSITION TEMPERATURES(a) 

~ 15 16 17 18 19 20 21 22 23 24 25 

2 524.6 574.1 623.6 673.1 722.6 772.1 821.6 871.1 920.~ 970.1 1019.6 . . . 

5 406.8 443.1 479.5 515~8 552.2 588.5 624.9 661.2 697.6 734.4 770.3 

10 334.3 363.7 393.1 422.6 452.0 481.0 510.9 540.3 569.7 597.2 628.6 

15 299.9 326.2 352. 4 . . 378. 7 405.0 431.3 457.6 483.8 510.1 536.4 562.7 

20 278.6 303.0 327.4 351.7 376.1 400.5 424.8 449.2 473.5 497.9 522.3 

30 252.5 274.6 296.6 318.6 340.7 362.7 384.7 406.8 428.8 450.8 472.8 

40 236.4 257.0 277.6 298.2 318.8 339.4 360.0 380.6 401.2 421.8 442.4 

50 225.0 244.6 264.2 283.8 303.41 323.0 . 342.6 362.2 381.8 401.4 421.0 

60 216.5 235.3 254.1 273.0 291.8 310.7 329.5 348.3 367.2 386.0 404.9 

70 209.6 227.9 246.1 264.4 282.6 l3oo.8l3i9.1 337.3 355.6 373.8 392 •. 1 

80 204.0 221.8 239.5 257.3 275.0 292.8 310.5 328.3 346.0 363.8 381.5 

90 199.3 216.7 234.0 251.3 268.7 286.0 303 .• 3 320.7 338.0 355.3 372.7 

100 195.3 212.2 229.2 246.2 263.2 280.2 1297.1] 314.1 331.1 348.1 365.1 

110 191.7 208.4 225.1 241.7 258.4 275.1 291.7 308.4 325.1 341.8 358.4 

120 188.6 205.0 221.4 237.8 254.2 270.6 287.0 303.4 319.8 336.2 3S2~5 

130 185.8 201.9 218.1 234.2 250.2 266.5 282.7 1298.8 J 314.0 331.1 347.3 

140 183.3 199.2 215.1 231.1 247.0 262.9 278.8 294.8 310.7 326.6 342.6 

150 181.0 196.7 212.4 228.2 243.9 259.6 275.4 291.1 306.8 322.5 338~;3 

160 178.9 194.4 210.0 225.5 241.1 256.6 272.2 287.7 303.3 318.8 334.3 

170 176.9 192.3 207.7 223.1 238.5 253.8 269.2 284.6 300.0 315.4 330.7 

180 175.2 190.4 205.6 220.8 236.1 251.3 266.5 281.7 1296.91 312.2 327.4 

190 173.5 188.6 203.7 218.7 233.8 248.9 264.0 279.1 294.1 309.2 324.3 

200 172.0 186.9 201.8 216.8 231.7 246.7 261.6 276 .. 6 291.5 306.5 321.4 

250 1295. ol 
290 287.8 301.8 

300 300.2 

310 1298.61 

320 297.0 

Deg/ 5.6 4.5 2.5 1.7 1.4 0.90 0.58 0.43 0.32 0.21 0.16 Mer 

(a) Degrees Kelvin (b) Kcal•mole -1 
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IV. EQUILIBRIUM BOND LENGTH· 'PfEORY· 

A. · INTRODUCTION 

In addition to our need to have a more exact theoretical 

understanding of the poly (p-phenylenes) recent advances in the synthesis 

of thin .. films of polyacetylene have brought up .again the question of 

the values of the various .bond lengths in MCMM such as the .polyenes 

[58]. ·As the length of the polymer molecule is increased, do the. 

carbon~carbon bond lengths tend to 'even out', or does the alternating 

bond length pattern of small molecules such as butadiene continue? . 

Ab initio calculations fqr such large molecules are prohibitively 

expensive. It is, therefore, desirable to develop an approximation 

method which can be used to address this question. 

One of the simplest cases of the application of S~hrodinger's 

equation to solve is the 'particle in a box'. [In SEC~ION III we 

referred to the particle in a box problem.as the FE~Mo m,ethod. Although 

the latter name is the one used·most frequently, the former name is 

more accurate since it is assumed that.there are no Goulombic inter-

actions among the particles.] Here it is assumed. that the potential 

!!nergy. is uniformly zero inside the box and positively infinit~ every-

where outside of the box. If the box is ·a rectangula~. ~arallelopiped,. 

the solutions for the kinetic energy of the particle are given by . 

(IV-1) = h2 [ n1 2 + n2 2 + n~ 2] E(kin. etic) ( ~ ( :"\ ( · 8m a "J a "J a · :' 
. 1 2 3 . 

'· 
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where h is Planck's constant, m is the rest mass of the particle, 

4j 1~ the Cartesian coordinate dimension of the box for the j-th 

coordinate, and 

coord~ate~ 

n. is the.quantum number associ~ted with the j-th 
'J 

· If each of the aj ',s is reduced by a fac·tor .·of two; the kinetic 

energy of the particle is increased by a factor of four. · In anthropo-

morphic term·s the particle become's more agitated as the size of the 

room decreases.. The particle may, therefore·, be considered to have 

claust·rophobia, and the energy of equation (IV-1) may be considered 

to be the 'claustrophobic energy'. From ·the viewpoint of the mathematics 

or thephysics such picturesque terminalogy is unnecessary, but it 

does have considerable. didactic utility. 

From· the viewpoiP,t of Coulomb's equation,. 

o:v~2> 

where e 
0 

is .the permittivity of vacuum, q1 is the ·charge on ~he .i-th 

part·icle, ·qj is. the charge· on the j-th particle, and· rij is the· distance 

between· the center.s of charge, many systems of 'point' charges should 

collapse ·to a .single p.oint. , WhY .such a catastrophe does not occur 

in the ·hydrogen atom was one ·of the difficult questions facing the 

founders of quantum mechanics. The claustrophobic energy answer is 

that, although the pote~tial ener~:r·decreases :as· rij approaches 

zero, th~ claustrophobic energy increases. The equilibrium value of 
' 

rij is that for which the total energy of the system is minimized. 
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Since tqe kinetic energy cannot be zero, the ~ystem will oscillate 

about the equilibrium value of 

B. THE HYDROGEN ATOM 

At least three different radii can be defined for the hydrogen 

atom 

(IV-3) * <r:> = f u· ru4't" , 

(IV-4) ~ * 2 1/2 v<r-> = [J u r ud't"] ' 

and the 'mo.st pr~]?abl~ v~l_.ue' whic·h ;is o\>ta~~ed by the solution of 

(IV-5) 
dP(r) 

dr· = 0 , 

wher~ l?(r) is the radial probability distribution function for the 

hydrogen ~tom ~59]. 

The radial wave functions for the first three s-otbitals of hydrogen 

are 

(IV-6) Rl,O = 2ca )-312 -p 
. 0 e • 

(IV-7) a2,o = (2)-3/2 (ao)-3/2 (2-p) -p/2 
e ' 

and 

(IV-:-8) R3,0 = 2(3)-9/2 (a ) -3/2 (27 - 18p + 2p2) -p/3 
0 

e . ' 
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where 

(IV-9) 

and 

(tv~io) 

· p = r/a . 0 

e h2 
0 a = ____,.;:...,___ 

0 . 2 · · 11m e 
0 p 

where m
0 

an~ e
0 

are the res~ mass an~ the magnitu~e of the charge 

of the electron, respectively. a is the 'Bohr radius'. Th~ relation­
a 

ship between P(r) and Rn,t is given by 

(IV-11) P(r)dr 2 2 = [R t(r)] r d~ n, . 

For ·n = 1, 

(Iy-12) - ..i.. 
00 

-2p 3 <r> - 3 f e r dr 
a 0 

0 

00 

.;. .:.i. f e-2~(a p) 3 ·d(a p) 
a3 0 o o · 

0 

00 

-2 3 = 4a f e P p dp 
0 0 

3a /2 
0 
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(IV-13) 1""2:" [ 4 00 -2 4 . ]1/2 
V <r ... > = a 3 ~ e P r dr 

0 

= \13 a 
0 

and 

-2r/a0 e-2r/ao) 
:.-.· 

dP(r) 4 (2r 2 2 =- e --r 
dr 3 a 

ao 0 

= 0 t 

; 

2r 2 
2r =- t a 

,.:.. 

0 

)" 

or· .. 

(IV-14) r(most probable) = a 
- ··o 

.. 

For· .n = 2~ 
!• ... 

~ . ( 

/ ·. 
·:::· , 

' '. 
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(IV~15) 

00 

1 2 ""'p 3 <r> = - f (2-p) · e r dr · 3 . . 
Sa. 0 

0 

ao 
00 

3 4 5 
=- f (4p -4p +p ) e-p dp 

8 0- . . 

a [ -p ~ o -e 3 2 
= 8 4{~ p + 3p + 6p + 6J} 

. (1) 

e -p t' 4 3 2 ) 
- 4{=---5 lP. + 4p + 12p + 24P + 24 } 

(:1.) . ' . 

a 
= 8° [24 - ~.~ + :1:20] 

= 6a , 
0 

r-?' [ 1 00 . 2 -p 4 ]1/ 2 
(IV-16) V <r-> = - f (2-p) e r dr 

8 3 0 . . ao 

2 

[
ao 00 4 5 6 ]1/2 = 8 f (4p - 4p + p ) e -p dp. · 
. 0 

2 . .. ·fo -p 4 3 2 · ·· · = La [4{-e (P + 4p + 12P +, 24p + 24)} 

-4{-e~P(p5 + 5p4 + ~op3 + 60p2 + 120p + 120)}. 

2 

+ {-e'""t:>~ + 6p5 + 30p
4 + 120p

3 t 360p
2 + 720p + 720)} ~112 

= t'so (96 - 480 + no>)112 
· 

=V42a ' 0 
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and 

dP(r) = __ 1 __ [-2 (2 _ ~) e-r/a0 2 
dr 3 a a r 

. Sa ·o · o · 
0 

-r/a0 2 e r 

= 0 

r 2(2 - -) 
a 

0 

a 
0 

2 r 

r 2 e-~/ao] - 2r(2- -) a . 
0 

;.. 

(2 - ~)2 2 r 
a r 2 o. 

+ = 2r(2- -) 
a . a 

0 0 

r 2 (2- -) r 
2 a 

2r + o. r = 2r(2 - -) 
a a ao ·o 0 

·' 

2 (2a -r) 2 2 - a r) · 2r a + r = 2r(2a 
0 0 0 

3 
r 

r 

r 

0 

= 

= 

= 

2 2 6a r + 4a r = 0 
.Q :.·0· .. 

' ! 

0, 
2 . 

6a + 4a 
2 0 r· - r = , 

·o 

6a + J36a
2 16a 

2 -·o. 
... 2 

3a · + Vs a o- 0 
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,. ,: 

or 

(IV-17) r(most probable)= 0, (3 "':' YS) a
0

, (3.+ YS) a
0

• 

For n = 3, 

(IV-18) <r> = 

4a oo · · 

= 0 
f (729p3 - 972p4 + 432p5 .:. 7"2P6 + 4/) e - 2P/3 dp 

19683 0 

4a · · ' · · ·· .. 

= 19,6~3{729(~) 4 
(3:) - 972(~) 5 

(4:) + 432(;) 6 (5:) 

. ' 

4a 
0 = 19,683 [66,430.125] 

= 13.5 a· , 
9 

.; 

{729(~) 5 <"4:) - 972(~) 6 -(5:) + 432(~) 7 

Jl/2 
... - 72(~)~ (7:) + 4(~) 8 (8!)~ 

· ... 4a2 : ·. ... . ' .. · . . 1/2 

= l19 , 6: 3 (l;Oi8,595.-25)J · 

= [207 a~ 112 

= V207 a
0 

, 
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and 

2 3 2 (-
3
2)· e· -. 2p/3]. + (27 p - 18p + 2p ) 

= 0 ' 

2 2 2 3 
27 - 36p + 6p - 9p + 6p - 3 p = 0 ' 

2 3 2 - 3 p + 12p - 45p + 27 = 0 ' 

or 
. 3 2 2p - 36p + 135p - 81 = 0 

and from 

The roots of these equations are 

(IV..;.20) p = 13.074 ' r = 13.074 a 
0 

..... p = 4.186 r = 4.186 a. 
0 

I 
·{ 

P= 0.740 ' r = · 0.740 a
0 ' 
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(IV-21) 

and 
.'i 

(IV-22) p = 

r = 

p = 0 

18 + v324 - 216 

4 

9+V27 

2 
a 

0 

= 

r = d 

18 + v'I'0'8 
4 

.... · ... 

The results of these calculations are summarized in TABLE IV-1. It 
~ ... . 
~~ .. 

u • I. t •. ~ ~ 

is to be noted that the values of <r> are in the ratio 1:4:9 

The correct geometry to use for the kinetic ~nergy term for the 

hydrogen atom is, of course, the sphere. We shall,· however, restrict 

our present discussion to equation (IV-1) as written. We shall treat 

the one dimensional case and the three dimensional case. It should 

be noted that a. is effectively a diameter and not a radius. We 
J 

shall, therefore,. take aj = · fr, where the value ·of · f i:s to be 

determined. 

For the one dimensional case, 

2 I 

(IV-23) E(total) 
h2ri2 .eo 

= 2 2 -Sm. f r 4TT e;
0 

r 
0 

-2h2~2 . 
2 

dE(total) e 
0 = + dr 8m f 2r 2 4ne; 
0
r 2 

0 

'· 

= 0 
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TABLE IV-1 ,. . 

RADIUS VALuES FOR HYDROGEN s-OR~!TAL~ 

n <r> M r(mo~t probable) 

1 L500 1. 732 1.000 

2 6.000 6.481 5.236 

0.764 

0.000 

3 13.500 14.387 13;.()74 

7.09f3 

4.1~~ 

1.902 

0.740 

o.ooo 
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2 
rrh e 2 

(IV-24) Q n 
r 2 2 

m e f·· 
0 'Q 

2 2 
rr an 

0 = 
f2 

[by (IV-10)] • 

Since fhis is r 
,.· :· 

Thus, for n 1 

and 

(IY-25) : , . 

Pf~po_rq.qf1a1 1:0 

2 rr a 
0 

1.5 a
0 

= --2-
f 

2 2 
f · = rr /1.5 

f = 2.5q.5 

2 that :!-t n , we q~sum~ 

0 

The V~p- d~r Wa:a1s rad:!-ps -of }\y~r~~~~ is 1.2A [ 60] ~-

is <r>,. 

In Bohr radii 
; •• 'I 

th:!-s vat~~ fs 2.26~ B·r. The r.at:~o b~t:w~en this value a~4 <r> is .. -
1. .5.1,.2. Si~c~ f . i~ a diameter factqr rf!-ther than a radius f~ctor, 

{l:V-2~) f (experime~t~1) 

= ~-PZ4 . 

for t~e ~qr~~ Himen~iop~1 ~pde+ ~~h ~1 ~2 = n3 
1, ~n_d 

~l ~2 = ~3 = fr, we hav.~ 
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Since the Van derWaal diameter would correspond to the body diagonal 

of the cube, but a ~s the edge dimension, we must divide f by VJ . 
. .. .... · .. '.;," 

Thus, . ~.. . ' 

(IV-30) f 
f' = --

..;:s 

= 2.565 , 

which is exactly the same as the o.ne di.Diension.:U, model value. This 

value is 15% less than the 'experimental' value. When one considers 

the crudeness of t~e model used here, this degree of agreement is 

fortuitous or fantastic! 
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C. THE HYDROGEN MOLECULE ION 

Fo1: Lht! hydrogen molecule ion we shall take r+ as the 

distance between the protons. We shall assume that the el~ctron is on 

the plane midway between the protons and perpendicular _to the line of 

centers. The perpendicular distance from the electron to the line of 

centers is r /2. Thus, the distance between a proton and the electron 

is 

(IV-31) 

and 

(IV-32) E(total) = 

where the factor of 2 in the kinetic energy t'erm is the result of our 

taking two Cartesian coordinate axes perpendicular to the line of 

centers coordinate axis. We now divide (IV-32) by e2/4rre · to obtain 
0 0 

(IV~33) 

·~ ' ~ •• 1 

2 . ._11 . . ' .. = rr (5. 2918 x .10 ) (...!... + _l_ ) _ 4 

2f 2 · r 
2 

r 
2 ~· ·2 2 

+ - r++r_ 
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If we now take r+ and r 

(IV-34) 
4rre x 10-IO 

0 
E(totai) 

- ·. ·~· = 2. 6114 (...!.. + ~) 
2 2 2 

f r+ r_ 

We shall now minimize the left hand side of (IV-34) for a given value 

of f by varying the values of and r • The results of this 

analysis are given in TABLE IV-2. The experimental value for ,.the 
•' 

equilibritDD bond length for .the hydrogen molecule. ion is 1. 06 x 10-lO 

meters [61]. If 3.024 is taken as the correct value for f, the value 

2.913 is 3.7% to low, a remarkab~y good corre~pon.dence. 

D. THE HYDROGEN MOLEC~E 

We shall asstDDe that .. the elec.tro.n adde_d to the ~ydrogen molecule .. 
ion to form the hydrogen molecu~e ~~ on ._the other . side of the line of 

centers of the protons from the first electron but at the same distance 

from the line of centers. This doubles the kinetic ~nergy term and 
• ~ ~ ::1. ~-.. .>: ' •••• •, • 

the attraction potential energy term. It also adds a new repulsion 

energy term. Thus, (IV-~4) becomes 

(IV-35) 

.. ,) .. · 

4TY e X 10-lO_ 
0 E'(total) 

2 
~0 

= 5.228' (...!.. + ~) 
'"2 2 2 
f· r+ r 
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f 

3.628 

3i500 

3.400 

'3. 200 

3.000 

2.950 

2. 913 

2. 913 

3.000 

3. 223 

3.251 

3.255 

TABLE IV-2 

Equilibri~~ Bond Length of u; 

as a Func tio.n of t . 

10 10 
r+ X 10 meters r .X. 10 meters 

·o. 685 0.634 

0.734 0~ 680·: •'· 

o. 778 0. 720 '. 

0.877 . O.fH2"' 

0.999 
·.~- 0. 924 ' ... 

1.034 · · ··o. 957 .. ·. 

1.060' '' 0.981 

TABLE IV-3 :·• .. '' 

Equi1ibtiwn Bortd Length of·· H2 
., I: . 

• • '· to' • 

as a Function of f' 

0.925 

0.873 

Q.755 

0.742 

0.740 
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' ~· 045 '' 

0.987 

_0.853 

0.838 

Q.836 



The results of thi~ analysis are listed in TABLE IV-3. The experimental 

value of the equilibrium bond length for the hydrogen molecule is 

-10 0.74 x 10 . meters [62]. If again 3.024 is taken as the correct 

value for f, the yalue 3.255 is 7.6% too high. Again we have a remark-

ably good correspondence. Since our primary interest in this study is 

not diatomic molecules, we shall not purse t~is subject further here. 
/ 

,: ; . •,. 

Instead, we shall p~oceed to the analysis of polyenes. 

E. MOLECULAR ORBITAL THEORY: 

The APPEND!~ to this report, 'Molecular ·Quantum Mechanics' is 

essentially SECTION III of TFOS-B. Two equations which we shall use . 

extensively here are 

(A-48) 
·-y~·· 

~ = ~- 1- $~ 
' . ~ .. 

in whic~ ~- is the energy of the k-th molecular orbital," ~' $ and ).. 

are the Coul~mbic. integral, adjacent overlap integ~al and modified 
. ; 

adjacent exchange integral for 2pn~orbita~s in benzene, and ~ ·is 

the quantum number for the k-th molecular orbital, and .. . . ~ . -

(A-52) 

or 

(IV-:36) 

in which Qji 

oji = o.oo for 

orbital and 

. ' 

is the Kronecker de+ta for j = i and 
\ . 

j 1: i], lzift> is the eigenvector for the k-th 1J!.Olecular 
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(IV-37) 

where is the overlap integral for the j-th and i-th atomic orbitals. 

If both of the atomic orbitals are carbon 2prr-orbitals, $ji is given 

by (A-140) and (A-141). 

The $ji integr~ls were evaluated using Slater orbitals for the 

carbon 2p ~orbitals, taken as 2p ~orbitals, 
rr Y 

(IV-38) U(2p ) 1 899 -1.625r' = • y e 
. y. 

where r' is the distance between the atoms in Bohr radii (0.529 x 10-lO 

meters) [63, 64, 65]. The results of these calculations are summarized 

in TABLE IV-4, which is TABLE A~l in terms of r rather than a (meters 

rather than Bohr radii). 

The relation between r and $ is not quite linear. Within the 
I ,' ·~ 

accuracy of the methodology use4 h~re, however, the error introdu~ed 

by assuming linearity is not se~ious. If the function were linear, 

(IV-39) 

= 4.311 X 109 
o 

If this value is used with the equation, 

(IV-40) $ = $. ~ ·.6$ (r -~ ) 
j o -6r., o. j 
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r x 

TABLE IV-4 

Carbon-Carbon 2p -2'p Overlap 1ritegra1s as a Function y y 

of the Interatomic Distance 

10 10 meters $ r x ·10 
10 meters $ r x 10 10 meters 

. ·~ . 
1..185 0.3454 l.Jo:J o·. 28.49. i.428 

1.190 0.3425 1.312 0.2824 L434 

1.196 0.3398 1.311 0.2800 1.439 

1.201 0.3370 1.·322 o. 2776 1.444 

Li06 b~3342 1.328 0.2752 i.449 
, .. 

0.3315 1.333 1.211 0.2728 L455 

1.2i1 0.3288 1.338 0.2705 1.460 

1.222 0.3261 1.344 0.2681 1.465 

1.227 0.3234 , i. 349 0.2658 1.471 

i.233 0.3207 1.354 0 •. 2635 1.476 

1.238 0.3180 1.360 o. 2612 1.481 

1.243 0.3154 1.365 0.2589 1.486 

1.248 0.3127 1~370 0.2566 1.492 

1.254 0.3101 L375 0.2544 1.497 

1.259 0.3075 i.381 0.2521 1~502 

1.264 0.3050 1.38'6 0.2499 LS08 

1.270 0.3024 1.391 o. 2477 1.513 

1.275 0.2998 1.397 0.2455 1.518 

1.280 0.2973 1.402 0.2434 i..524 

1.285 o. 294 8 1.401 0.2412 1.529 

1.291 0·2923 1.412 0.2390 1.534 

1. 296 0.2898 1. 4•18 ·a. 2369 L539 

1.301 o. 2873 i.423 0.2348 1.545 

76 

$ 

0.23i7 

0.2306 

0~2285 

0.2265 

0.2245 

0.2224 

0.2204 

0.2184 

0.2164 

0.2145 

0.2125 

0.2106 

0.2087 

0.2067 

0.2048 

o. 2030 

0.2011 

0.1992 

0.1974 

0.1956 

0.1938 

0.1920 

0.1902 



with r = 1.365 x 10-lO and $. = 0.2589, the errors in the calculated 
0 0 

values Qf $ for r = 1.185 x 10 -lO aiul r = 1. S4.J x 10'""10 are 2. 58% 

and 4.68%, r~spectively.- A better 'end points' fit is ob-tained if 

9 the slope is taken as -4.168 x 10 • In this case (IV-40) becomes 

(IV-41) $j = 0.lS89 + 4.168 X 1o9 (1.365 x 10-'10 .-. r.) 
J 

= 0.8278 - 4.168 X 109 r. 
J 

and the 'end poirits' errors are 3.32% for both end points. We, therefore, 

used (IV-41) in the present investigation. 

The values reported for the carbon~carbon bond length in benzene 

-10 -10 .by Almenningen et al. are 1. 3974 x 10 and 1. 3968 x 10 meters 

.- ,., -10 I l for an average value of 1.397~x 10 meters 66 • Thus, we have 

(!V-42) $(benzene) = 0.2455 • 

Division of (IV-4i) by (IV-4i) yields 

(IV-43) pj = 3.3719- 1.6918 X 1 n10 
. rj 

or 

(IV-'44) 1. 9S60 X 1o-10 - s.s9oo x -11 
rj = 10 pj . 
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F. -EIGENVALUE SECULAR EQUATIONS FOR POLYENES 

A polyene is·a topologically.linear.polymer·in which·the. 

carbon-carbon· borids are alternately double and single. bonds. . Both "· 

end bonds are double·bonds. We shall consider,here'only those cases 

in which all of the carb9n atoms are co-planar, and the.molecule. has 

a·center of symmetry or a central plane of symmetry. In these cases 

group theory permits the factoring of the-determinantial secular 

equation of (IV-36) into two secular equations -- one for the symmetric 

wave functions and one for the antisymmetric wave functions •. Thus, 

we may write 

0 0 

0 

(IV-45) 

' ' 

where is really p{J, 
0 

j+l) . ~nd · 

- ~ : :·~ ; 

(IV-46) p{j' ?+1) = $ ~j z ft-ll 
$ 

!' 

p 
n-1 

p· 
n-1. 

A.+p -n 

= o.o 

-· 

The plus value at the n,n position is taken for the s~etric wave 

functions, and the negativ~ value is taken for the antisymmetric wave 

functions. 
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By means of stand~rd row operations the determinant of (IV-45) 

can be co~verted to th~· upper triangular furm. When this is done the 

numerator of the n,n. term, when set equal to zero,. is .the eigenvalue 

polynomial. If the first row is multiplied by -p1/A and added to 

the second row, the. new second row is 

(IV-47) 
-pl(A) 

Pl + A = 0.0, 

The next three terms on the diagQnal are 

(IV-48) 

(IV-49) ' 

and 

(IV-50) 

If the specific term is to be the n,n term for the symmetric wav~ 

function determinant, the next higher pj is added. Thus, 

7~ 



(IV-51) I 

(IV-52) , 

(IV-53) 

and 

(IV-54) 

The eigenvalue polynomials, thus, are 

(IV-55) 

(IV-56) 3 2 2 2 2 
A +p3A - (pl+p2)A - plp3 = O ' 

r 

(IV-57) 
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and 

(IV-58} 

For ethylene itself the polynomial is 

(IV-59} '"2 2 
A -p1 = 0 • 

By Descartes·' 1'\lle of signs· (IV-59} has orie positive arid·~ negative 

root; (IV-55} has~ positive and ~negative root; (IV-56} has one 

positive and two negative roots; (IV-57} has two positive and two neg~tive 

roots; and (IV-5S} has two positiv~ and three negative roots. For 

convenience later we.shall:number the rQots starting with the most 

negative. Thus, in general, 

The iatter roots are, of course, positive. 

Any polynomial can be written as a product of factors. Thus, 

(IV-61} 
n 
IT 

j=l 
(A.-A..> .= .o· • J . 

For the first five degrees of polynomials these products are 
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(IV-62) 

(IV-63) 

(IV-64) 

and· 

(IV-65) 

-~lA2A3+A4[AlA2+A3~l+X2)]}X + Al~2X3X4] (A-AS) 

5 . 4 ' . . . 
= X -··(Xl+X2+A3+X4+A5)X + {XlX2+X3 (Al+A2)' + X4 (Xl+)..2+X3) 

= 0 • 

If (IV-59) and (IV-62) ate compared, the results are 

(IV-66) 
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and 

(IV-67) 

If (IV-55) and (IV-62) are compared, the results are 

(IV-68) 

and· 

(IV-69) 

If (iV-57) and (IV-63) are compared, the results are 

(IV-70) 

(IV-71) 
' ... . 

and 

·' 
(IV-72) 

! • :· 

If (iV.-57) and (IV7 6.4). are_ compar_ed~· the. result~ are 

(IV-73) 

(IV-14) 
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(IV-75) 

and 

(IV-76) 

(IV-77) 

(rv-78) 

(IV-79) 

. (IV-80), 

= "\1\ZA.3A.4 + \S[A.1A.2\3 T A.4Q-1A.2 t ~3,A.l+~2)~] ' 
• ' •J • f • 

and 

For (Iy-68) ii~d (IV-.:69) the ~9~~~i.o~_s a~e inv~ri~n~ ~~ t:!?! \._ 

and A.2 ~r~ rep1a~~d ~Y. their ad~~t~y~ ~?Y~r~~~~ ~P~ (~V~70), (IV-71) 

&4 

I 
I 
( 

( 
f 



and (IV-72) the equations are invariant if p
3

, A
1

, A
2 

and A
3 

are 

replaced by tludr addit:ive inverses. Similarly, for (IV-73), (IV-74), 

(IV-75) and (IV-76) the equations are invariant if p4 , A1 , A2 , A3 

and A4 are replaced by their additive inverses. Finally, (IV-77) 

through (IV-81) are invariant if p5 and the Aj's are replaced by 

their additive inyerses. Thus, the positive roots of the symmetric 

wave functions determinant are the negative of the negative roots of 

the anti-symmetric wave functions determinant. This is a generally 

valid theorem. We shall, however, not give the proof here. In what 

follows below we shall use the convention 

(IV-82) '\. = -A 
J j 

In this way we shall need to considex; only the ·symmetric wave functions 
! 

deter111inants. 

[It should be noted that much of the mathematics developed in this 

and subsequent SECTIONS was necessary in this study. As a result of 

administrat;ve difficulties the contract for this study was not awarded 

until t;:h~ st~dy was almost complete •. As a result no funds were available 

for computer calculations. Most of the work in this study was done 

on a Tl-59 pr9grammable calcula~or. It was, therefore, necessary for 

us to dev~lop many theor~s frqm t~e tp~ory of equations, a branch of 

mathematics which computers have made obsolete!] 
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G. CLAUSTROPHOBIC ENERGY THEOREM FOR CONJUGATED SYSTEMS. 

1. INTRODUCTION 

In a bonding a-orbital the electrons are 'concentrated' 

along the axis between the two atoms as we have indicated for the 

and H2 cases. Classically, the potential energy of such a system 

would decrease without limit as the .distances between the particles 

decrease. Quantum mechanically.such a collapse of the ~niverse .to a 

point cannot occur. As the volume in which a particle :i.s·effectively 

co.ntained decrases the claustrophobic energy increases. The balancing 

of th~se opposing effects results in the a-:-bonds having definite 

equilibrium bond length values (which are, of course, functions of 

temperature). As we have indicated above the a-bond is, thus, .an 

oscillatpr. For small deviations from the equilibrium bond leng~hs the 

oscillator can be treated as though it were a harmonic oscillator. 

Actually the a-bond oscillators are anharm~nic as is well known from 

infrared spectral analyses. 

When: .. rr-orbitaJ,.s ar.e also present, the a-equilibrium is perturbed 

in at J,.~ast two ways. 

to form the a-orbitals. 

3 Saturated carbon atoms use hybridized . sp· -orbitals 

The carbon ato~s involved with rr-.o.rbitals, 

however, use 
2 

sp ~orbitals (double bonds) o~ sp-orbitals (triple 

bonds) to form the a-orbitals. Thus, we should expect different values 

for the force constants for the harmonic oscillators in·the three cases. 

Furthermore, the rr.,-electrons introduce an additional negative potential, 

energy term. Since these electrons are not 'concentrated' along the 
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axis between the bonded atoms, the TT-potential energy will be smaller 

in_ magilitude than the correspondiug o-tdect:rort potential energy. This 

factor is reflected in the fact that the bond energy for a carbon~carbon 

single bond is 83.i kcal·mole-l (347.7 kJoules·mole-1), whereas those· 

. -1 
for the double and triple bonds are 147 arid 194 kcal·mole (615.0 

. -1 
and 811.7 kJoules•mole ) , respectively [67]. · A single TT-bond con-

tributes 63.9 kcal•bond-1 ·mole~1 (267.4 kJoules•bond•mole~1 ) whereas 

a pair of 
-1 -i 

TT-bonds (triple bond) contributes 55.4 kcal•bond •mole · 

The presence of this additional potential energy term also results 

in the equilibrium bond lengths being smailer. Thus, the carbon-carbon 

-10 -10 bond length is 1. 536 x 10 meters in e.thane [ 68] , 1. 3971 x 10 meters 

in benzene [66] 1.334 x 10-lO meters in ethylene [69] and 1.205 x 10-lO 

meters in acetylene [70j. 

In t,he present treatment we shali represent the a-bonds by ha·rmonic 

osciilators. The· energy of the TT--electrons will be obtained by semi-··· 

empirical LCAO-MO (Linear Combination of· Atomic Orbitals - Molecular 

Orbital) theory including adjacent overlap. The various bond lengths 

are then obtained by iliin:tiniz~ng the eriergy of the molecule with respect 

to the bond lengths. 

2. THE cr-BOND ENERGY 

If the deviations from the equilibrium bond iength of a 
,, 

cr-bond are sufficiently smail, the claustrophobic energy-bond length 

function may be approximated by that of a harmonic oscillator 
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(IV-83) 

where k is the 'force constant' and r is the equilibrium bond 
e e 

length. For the carbon-carbon sp3-sp3 cr-bond 

as 4.9 2 -t -1 x 10 Newtons·meter ·bond [71]. 

k e may be taken 

A more accurate value of Ek can be obtained by using the 

anharmonic oscillator equation of Morse [72]. 

(IV-84) 

D 
e 

is the zero point energy plus 1/2 hv , where v is the harmonic 
e e 

oscillator frequency. 

related by 

(IV-85) 

The k of (IV-83) and the b of (IV-84) are 
e 

k = 2b2 D 
e e 

In the present treatment, as we have indicated before, we shall use 

(IV-83). The total cr-bond energy will be taken as 

(IV-86) 

where D is the zero point energy. 
0 

3 . THE rr-BOND ENERGY 

The derivation of the eigen-determinant by the semi-

~ empirical LCAO - MO is given in the APPENDIX. If we replace Ek in 

(A-48) by ek, we have 
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(IV-87) 

Equation .(A-49) gives the value of y used in previous studies. In 

this study we shall find it convenient to use -4y/k e 
as the empirically 

determined parameter instead. 

If there are 2n n-electrons and p a-bonds in the n-lattice 

~he set of atoms involved with n-orbitals in the specific molecular 

configuration), the 'total' energy is 

(IV-88) 

= 2n9{ - 2y 
n . 'Ak 
L 1·- A$ 

k=l 1< 

k p 
+ ~ L (r.-r )2 - pDo 

2 j=l J e 

where r. is the length of the j-th bond. Since neither 2n9{ nor 
J 

pD are functions of the r.'s, (IV-88) may be rewritten as 
0 J 

{IV-89) 

n A.k k ~ 2 
= -2y L + ~ ). (r. -r ) 

k= 1 1 - A.k $ 2 j = 1 J e 

n A.k k (5.8900 x l0-
11

)
2 ~ 

L + ___;;;_e -----:----- ). 

k=l 1 - A.k $ 2 j = 1 
= -2y 

2 
(P.-P ) 

J e 

[by (IV-44)] 
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or 

(IV-90) 

where 

(IV-91) f = ______ -_4_y.___~~~ 
k (5.8900 X 10-11) 2 • e . 

In the present treatment both f and ?e are parameters which are 

ev~luated from experimental data, a topic to which we now turn. 
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V. SMALL MOLECULE ANALYSES 

A. BUTADIENE 

Since we have.two parameters to evaluate, we must take the. 

case of a molecule for which the symmetry factored eigen-determinant 

is at least a 2 x 2. The eigen-determinant for butadiene is a 2 x 2 • 

. It is, therefore, a logical case to. consider. By (IV-68) and (IV-69) 

)..2 + p2'Al -
2 

pl 1 

or 

(V-1) 'Al 

2 2 
-'A.-pl·,, . . 1• 

= 0 ' 

- P2 + JP~ 
= 2 

+ 2 
4pl 

The two values of (V-1) are actually 'A1 an9 'A2. We now invoke 

(IV-82). Thus, 

(V-2) 

and 

(V-3) 5;:2 = 

91 



Since represents the 'double' bonds in butadiene, and since 

there are two 'double' bonds and one 'single' bond, (IV-90) is for 

the butadiene case 

(V-4) 
[ 

-(p2 +Jp~ +4pi)/2 
t.ET = f: ---------==----=----=-----

1- 0.2455{-(p2 +Jp~ + 4pi)/2} 

(~2 ~ ~?~ + 4P~)/2 . .. J 
0. 2455{ (p2 - Jp~ + 4pi) /2} 

+ 
1 -

+ 2 (pi-pe) 
2 

+ (pl-pe) 
2 

where (IV-42) has been taken as the vaiue of $. We shall now rearrange 

(V-4) to a somewhat more convenient form, take the partial derivatives 

' of t.ET with respect to and p
2

, and set the derivatives equal to 

zero-. Since the mathematics is straight forwa:r:d, we shall present it 

without comment. 

' t.E = T 

-p2 - /p; + 4Pi 
o. 2455 P2 + o. 2455 J P~ 

P2 -./P; + 4pi J 
+ 2 - o. 2455 ,;2 + o. 2455 /p~ + 4p~ 

• 

(continued) 
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[

. . I 2 2 I 2 2 . . 
= f -2 Vp2 + 4pl (2 + 0.2455 Vp2 + ~Pl) + 2. X 0.2455 

. J 2 2· 2 . 2 
(2 + 0.2455) p2 + 4pl) - (0.2455 p2) 

I 2 2 . · 2 
= f[ . . . -4 V p2 + 4pl - 8 X.?· 2455 Pl ] 

4 + 4 X 0.2455/ p; + 4pi + 4 X (0.2455)
2 

pi 
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' [ I p~ + 4pi + 2 X 0 ~ 2455 pi 2] .. 
6E = -f ------~---~====~------~----

T . 1 + 0. 2455 J p; + 4pi + (0.2455) 
2 

P
1 

[ 

/p~ + 4pi + 0.4910 pi ] 

= -f 1 + 0.2455~p~ + 4p~ + 6.027 X 10-2 P~ 

' a6E · 
T ---- = 4(p -p ) ap
1 

1 e 

1 /1,2 2 . _ f[ z (4) (2p1) P 2 + 4p1 + 2 X 0.4910 p1 

1 2 2 -2 2 1 + 0.2455 p
2 

+ 4p
1 

+ 6.0~70 X 10 P1 

-{! p~ + 4p~ + 0.4910 pi} 

I I I -21 . I 1 + 0. 2455 v p~ + 4pi + 6. 0270 X 10~2 pi I . ' 

• 
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o6E' 
T 

-~--- = 2(pz-Pe) -uP--2 

{ pl2l-.2J-ll + 0.2455 ,jp~ + 4pi + 6.027Q X 10-
2 

For 1,3-butadiene the experimental values of the 'single' and 'double' 

. . . -10 -10 
bond lengths are 1.467 x 10 · meters and 1.343 x .10 meters, respectively 

[73]. By (IV-43) these bond lengths correspond to 

(V-5) Pl = 3.~719 - 1.6978 X 1010 
X 1.34~ X 10-lO 

= 1.0918. 

and 

(V-6) P
2 

= 3.3719- 1.6978 X 1010 
X 1.467 X lO~lO 

= 0.8812 • 

Thus, 
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(V-7) 

and 

(V-8) 

a6E' 
T 

ap1 

a6E' 
T 

,ap2 

p1=1. 0918 

p2=o~8812 

p1=1. 0918 

p2=0.8812 

= 4(1.0918 - Pe) - 1.1400 f 

= 4.3672 - 4p - 1.1400 f 
e 

= 0.00 

= 2(0.8812 - p ) - 0.1276 f e 

= 1.7624- 2p - 0.1276 f 
e 

= 0.00 • 

From these equations we obtain 

or 

(V-9) 

0 = 4.3672 - 4P - 1.1400 f 
e 

0 = 3.5248- 4P - 0.2552 f e 

0.8848 f = 0.8424 

f = 0.9521 • 
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By (V-7) 

or 

(V-10) 

By (IV-43) 

(V-11) 

4P = 4.3672 - 1.1400 (0.9521) 
e 

p = 0.8205 • 
e 

r = 1. 9860 X 10-lO - 5.8900 X 10-ll (0. 8205) 
e 

= 1.5027 x 10-lO meters • 

As we have noted above the experimental value for the carbon-carbon bond 

-10 length in ethane is 1.536 x 10 meters. If we identify r with . e 

the ethane value, it is in error by only 2.2%. Actually the ide~tifica-

3 3 tion is not correct since the cr-bond in ethane is sp - sp where as 

r is for a cr-bond with sp2 - sp2 hybridization. e 

B. ETHYLENE 

With the values of (V-9) and (V-10) equation (IV-90) now becomes 

(V-12) ' ~ A.k +I? 6E = 0. 9521 L ).. T 
k=l 1 - 0.2455 ~ j=l 

By (IV-66) and (IV-67) 

(V-13) p = -"A 1 . 1 
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Thus, 

' 6ET(ethylene) = 
0.9521 ~1 2 

+ (A.l + 0.8205) 1 - 0.2455 A.1 

Although this equation is so simple that there is no difficulty in 

using the minimization technique of differential calculus, we developed 

a machine procedure for the TI-59. Since our goal is to study polymers, 

the calculus technique is not really a viable choice as a general pro-
.t 

cedure. In the machine procedure we calculate 6ET for various 

values of A.
1 

and choose the value which gives the lowest value of . 

' ' . 6ET. The minimum value of 6ET, -0.746720, is obtained with A.1 = -1.114. 

Thus, 

(V-15) pl = 1.114 

and by (IV-43) 

(V-16} r
1 

= 1.9860 X 10-lO- 5.8900 + 10-ll X 1.114 

-10 = 1.3299 x 10 meters • 

As we have noted above the experimental value for ethylene is 

1.334 x 10-lO meters. Thus, the error of the calculated value is 

0.31%. 
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C. HEXATRIENE 

In l,J,5,-h~atr1ene'the outer 'double' bonds may be trans-

or cis-relative to the central 'double' bond. The bond lengths for 

both cases have been determined experimentally. For the trans-form 

the outer 'double' bond length, the 'single' bond length and the inner· 

. . 40 40 40 'double' bond length are.l.337 x .10 , 1.457 x 10 and 1.367 x·10 

meters, ·respecitvely [74]. For the cis-form the corresponding values · 

-10 -10 -10 are 1. 336 x ·10 , 1. 462 .x 10 and 1.362 x 10 · meters, respectively 

[75]. Since we have neglected non-adjacent interactions in the present· 

investigation, we cannot distinguish between the two forms. We shall, 

therefore, use the averages of the two sets of values -- 1.3365 x l0-10 , 

1.4595 x 10-lO and 1.3645 x 10~10 meters, respectively. 

From (IV-70) through (IV-72) we have 

(V-17) 
. ~. . ·, 

=A, 

(V-18) 

= B , 

(V-19), 

= c , 
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(V-20) 

(V-21) 

(V-22) 

and 

(V-23) 

2 
p1 = C/A 

= D ' 

p = D1/2 
1 

2 p = B.-D , 
2 

p2 = (B-D)l/2 . 

Thus, (V-12) now becomes 

' (V-24) 6ET(hexatriene) 

L
- Al A2 . \3 J 

= 0•9521 1 - 0.2455 A
1
· + 1 - 0.2455 A2 + l _ -0.2455 A3 

+ 2(pl - 0.8205) 2 + 2(p2 - 0.8205)
2 + (p3- 0.8205)

2 

A A X l 
= 0.9521[. 1 . + . 2

. + 3 
1- 0.2455 Al 1- 0.2455 ~2 l _ 0 . 2455 \

3
-

+ 2(D1/ 2 - 0.8205) 2 + 2({B-D}1/ 2 - o:8205)
2 

+ (A- 0.8205) 2 . 

The minimum-value of 6E~, -2.355237086, fs obtained with 
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(v-25) 

Thus, 

(V-26) 

arid by (IV-43) 

· (V-27) 

··(V-28) r2 

and 

(V...:,29) r3 

>::3 = -1.270 • 

P = 1. 0859 
1 

p2 = 0.8933 

p3 = 1. 0660 , 

- 1. 9860 X 10-!0 - 5. 8900 X 10-ll X. 

-10 = 1.3464 x 10 · meters , 

= 1. 9860 X io-10 - ·5.8900 ·x·.·lo-11 
X 

1.4598 
-10 

= X lQ ' meters 

1. 9860 ?< 
-10 . 5.8900 -~-lo-11 = 10 . ·- X 

1.3581 
. -10 

= X 10 meter~ 

()~'8933 

l~Oq60 

With respect to the averaged eKperimental values· tpe errors in the 
.· n; : . 

calcul~t~d. v~llies ate 0. 74%, 0. 02% and 0! 47%, respectively. 
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D. OCTATETRAENE 

From (IV-73) through (IV-76) we have 

(V-30) 

= A ' 

= B ' 

.•" 

. = c ' 

(V-33) 2 2 
~1~2}._3}..4 

' -
p1pj· = 

.. ,.· 

= D 

; 

(V-34) 2 2 
p1+p2 = C/A 

.. 

= E ' . ' 
i 

(V-35) 2 B-E p3 = 

= F ' 

(V-36) 1/2 
P3 = F ' 

:: .·. 
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(V-37) 2 D/F pl ... 
· .. 

= G ' 

(V-38) p1 ... i/2 G 

(V-39) 2 E-G p2 = 

... H 

and 

(V-40) 
··1/2 

p2 = H . 

ThUs, (V-12) becomes 

<v-41> 6E~(octatetraene) 

... o. 9521 (A.1/ c1. ~ o. l455 A.~) 

+ )..2/ (i - o. 2455 A.2) 

+ )..3/ (1 - o. 2455 A.3J 

+ )..4/(1- 0~2455 A.4)J 

. ' 

+ 2(G
112

- 0.8205)
2 

+ 2 (t112 .,. o. 8205) 
2 

+ (A - 0.8205)
2 

• 

103 

. .. 

,. .. 

: ,. 
~· .. 

• ~ • ~ <•. 



' The· minilnum· value :of"-. fl·E.r··,. -3.16850039,-. is. obtained with 

(V-42) 

Thus, 

(V-43) 

and by (IV-43) 

(V-44) . 

.. ~ . .. . ·. 

}\i =.· -1.849 

A:3 = -0.449 
. . ~~·.;··~' .~ .. ' . 

· :·.::;.. :. ~4 , :;: .. ,..L.524 

. .~ .. .. ~ ., ~ . . ~ 

pl = 1.0823 

p2 = 0.8971 

p3 = 1.0563 

p4 = 0.9090 

-10 . 
ri = 1.3485 x 10 meters 

r = 1.4576 x 10-lO meters 
2 

-10 r 3 = 1.3638 x 10 meters 

. -10 
r 4 = 1.4506x 10 meters • 

At .this point in our study we. had three choices -- continue developing 

the algebra for each molecule individually, develop a set of general 

recursion formulae or by means of a set of computer programs: 
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1. 

2. 

3. 

4. 

Choose a set of 

Using these. pj 's calculate the.:eigenvalues ·of· (IV-45). 

2 . l 
Using the pj, the ~'sand (V-12) calculate ~ET. 

Using a minimization program vary the values of the 

pj's and with steps 2 and 3 find the minimum value of 

' ~ET. 

Since at this juncture we did not yet have any computer funds, we 

proceeded to develop general recursion formUlae.: We shall,· therefore, 

now turn to a discussion of the theory of equations theorems which we · ·' 

developed. 

·.· 

.. 
<· 

· ...... 

. .' 

. ' 
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VI. G~ERAL RECURSION FO~ 

A! T~ ENERGY EQUATION 

Let m b~ ~he num~er of electrons in rr-la~tice, and let n 

be the number of bonds in the rr-lattice. The reduced ·f¢>rm of the 

total energy is gi,ven by 

(VI-1) 

..... ;: .. ·· .. . ~ . ,. . . ' :.. : . 

'This equation is 'more· general' than (V-12) si,nce it is · -Qot · ~ssuined. that 

all electrons ·are paired. Using the spectral data·· for benzene· we .have· 

' found th~t· the relation between· 6ET and l1ET is 

.. ·, 

(VI-2) 19 ' -1 · 6ET = 7~ 969 x 10- · 6ET Joules•molecule 

For polyenes ·which· are neutral· m is also equal to' the number 

of carbon atoms in ~he rr-lattice. There are, therefor~, m-1 bonds, 

·· of which there are (m-:2) /2 ·paired bonds· and· one unpairec;l" bond when · 

symmetry factoring is applicable. In the ground state of the molecule 

there are two electrons per rr-orbi tal.·· Thus, 

· (IV-3) 6E' 
T 

We now take 

m/2 
= 0.9521 I Ai/(1·~ 0~2455 Ai) 

i.;.l 

+ 2 
(m-2)/2 

I 
j=l 

. 2 2 
(pj - 0.8205) + (pm/2 - 0.825) • 
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(VI-4) 

and 
!' 

(V~-5) 

I ·. 

n = m/2 , 

r· 

n 
= o.~ 9s21. I A./ (1 .- o. 24_ss A:i> 

i=l 

•.: 

n-1 2 2 
+ 2 I' (PJ. - 0.8205). + (p -0.8205) 

j=l n 

. :1, 

When symmetry factor~ng is used, two sec~lar determinants are generated, 

the 'A.+p '.determinant and the .. 'A.-·p ! determinant •.. Each of. the deter-. · · n· · · · · · · · ·· n · · · · · . · · · 

minant.s. yi~l~~; tL va~ues qf . p •. , As we have indicated: in SECTION IV .,F 
• ~ ·r • . • : • • • ~. •• • •• 

the values of A. from the secon4 .determinant,-are the n~gative of. tho.se· '~-· 

from th~ first determin~nt. We may, there~ore, restrict our con~idera­

~ions to the ~ A.+pn' dete~inant: :f,f the siglis are chang~ for. the positiv_e 

values'of ~ for the first swnmation in (VI-S). 

(VI-6) 

Thus, if: ·p .. is .. thc;! number of A.'s wi-th P<;>sitive,.·va:lues~ 

·"·· 
n n-p 

flET.= 0.95Zl,. I.·A./(l .. ~·0~24,55~.~:i.)-
i=l .. 

o .. 95~1 .. , . ~> · .. A.i/ (l.+o·. 2455 A.i) 
i=n+l-p 

... 
n~l 

+ 2. I 
j=l 

... 
2 2 

(pj -. 0. 8205)- . + (pn ,.. Odi205) . 

.In what follows we shall fi~d it.convenient· tq.take 
.": 

.. ~ . 

(VI-?) ,,. ·=-A. 
~""'i i ·. 

TQus, (VI-6) becomes 
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(VI-8) 
. ' 

6ET = 0.9521 
n n-p 
L ~/ <1 - o. 2455 ~i> - ·o. 9521 r .· ~/ <1 + o .. 2455 ~i> 

i=n+l-p i=l 

n-1 
+ 2 r <P. - o.8·205> 2 + <P - o.8205)z 

. J . n j=l 

The goal of EBL theory is to find the values of the p's which 

' minimize 6ET• In order to do this it is necessary to expre~s the ~'s 

as functions of the p'~ or, as we shali do here,. express the p's as 

functions of the j. 
~ s. 

B• THE EIGENVALUE POLYNOMIAL lN TERMS OF THE ~' $ 

The eigenvalue polynomial may be written as 

(VT-9) 

~r, if we take 

(vt~lo) ao· = +1· ., 

(VI-11) 
·n 

r 
i=O 

il-i 
ai A. . = 0 • 

If A.1 , ••. , A.i, .•• , ~n are the roots of the polynomial~ 

(VI-12) 

or by (VI-7) 

n 
I1 

i=l 
(A.-A..) - 0 ' . 1 
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(VI-13) 
n 
rr 

i=l 
(A.+~.) = 0 

~. 

The results of the first few multiplications in (VI-13) are 

and 

"; 

The values of the a(i,n) 's "of (IV-11) ar~ gener~ted by ~he 

following':=tlgoritrnn 

(IV-14) a(O,n) = 1 

a(i,n) = 0 ··, i > n 

a(i,n) = ~ a(i-1, n-1) + a(i,. n-1) • n . 

The use of this. aigorithm is exemplified by 
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and 

.a(l,l) =,.IJ.l".:a~O,O) + a(l,O).; ·. 

= IJ.l 

.. ~· . , .. , : 

a(~,2) = ~~ ~(O,i)-~ a(l,l) 

a(l,3) = IJ.3 a(0,2) + a(l,2) 

a(2,3) - ~3 a(l,2) + a(2,2) 

a(3,3) = I-L
3 

a(2,2) + a(3,2) 

'; 
' 

. ; ..... 

.. .. : .. : . . ... 

[a(O,O) = 1, a(l,O) =· 0] , 

.-,.; .';. 

.... 
: .. ·~· 

C. THE EIGENVALUE POLYNOMIAL IN TE~S OF THE p' s 

In terms of the P. 's the secular determina"Qt is g·iven by (IV..,.45) 
J 

with \+p . as the n,n term. If this determinant is transformed to 
n 

an upper triangular form, the value of the determinant will be simply 

the product of the q~agonal terms. Let Nj and Dj, respectively, be 

.. · 
,·c . .:. 
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the numer~tor and the denominator of the transformed j-th'di,~gonal 

term, then 

. (Vi~lS) 

• ! • 

p 
·j+l, 

[transformed j-th row]· 

[orig~nal (j+l)-st ro~] • 

The j-th row is multiplied by Kj' and the produc~ is· added to the· 

(j+l)-st row. Kj is chosen so that the term to the left of the diagonal 

term becomes zero on transforma~i~n. Thus, 

~ = 0 Pj + Kj <n.> 
j 

or 

(VI-16) Kj = 
-pjDj 

Nj 
. 

The transformed diagonal term becomes 

(VI-17). 

Thus,·. 

Nj+l -
D - A+ Kjpj 
j+l·. 

2 . 
. . p~D" 

= A- -L...L. . N 
: _:j. . 

2 
= _AN...,.j.__-_P_j.._D..._j 

~j 
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(VI-18) 

and 

(VI-19) '.! ,.. ;..,· 

which yield 

(VI...,20) 

or 

' .... ~ .. •. 

For the final diagonal term we have 

(VI-22) 

and 

(VI-23) 

Furthermore, 

(VI-24) 

and 

(VI-25) 

,<\''..,;; 

N 
n 

-D=A+p+K p. 
n n n-1 . n~l 

p2 D 
n...,l n-1 = A.+ p·..... N 

· n n-1 
• . ., ..,· r ~~- ' .· :. ;·;' . ' .. 2 . 

(A+pn)Nn-1 - Pn...,l ~n-2 
= N n-1 

N =A 
1 
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D. THE EIGENVECTORS 

The molecular orbitals, l'irk>' a~e taken as linear combi.n~tions 

of the atomic orbitals, lui>. Thus, 

(A.-25) 

where the bar over the coefficients, zik' ·is u~ed to indicate that the · 

molecular orbitals are not normalized. The secular determinant, (IV-45), 

comes from (A-52) rewritten as 
.. ~. : 

~}... :;' ·. ; '· :' . ; 

(VI-26) ··• 

where, for example, P12 = pl in1 ('iV-~5)., an~-. 5i:j ··is the Kronecker 

delta. Equation (VI-26) represents n simulataneous liriear equ~~ions. 

For the polyenes the first equatibn is 

(VI-27) 

the n-th is 

(VI-28) 

and the remaining n-2 equations can be represented by 

(VI-29) p(j) z(j,k) + l<k> z(j+l,k> + p(j+l> z(j+2,k> = o , 

j = 1, ••• , n-2 
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where the format has ·been changed to permit somewhat easier reading .• ·· , , 

From (VI-27) we obtain 

' 

(VI-;30) i(2,k) = -l(k> ~H>k) 

.. 

and from (VI-29) we obtain 

(VI-3i). -{j 2 'k) ~ -p(j) i{j,k) - l(k) i(j+l,k) 
z + ,·, p{j+l) 

'··· .. 

For j = 1, (VI-31) becomes 

(VI-32) 

j = 1, .•• , n-2. 
\ 

- . . 2-
= -p(l) z(l,k) +.[l(k) z(l,k)/p(l)] [by (VI-30)] • 
. p(2) 

Thus; ~e see that all of the i(j,k)'~. are proportional to i(l,k) 

and that (VI-l8) i~ not used •.. Since _(VI-28) i~· not used, we can use 

(VI-31) to obtain all of the z{j,k)'s provided that we change the 

signs of the l(k) 's for k l, n+l-p. FUrthermore, with no loss of ·· '··:. ,. 

generality we can assign z(l,k) the value 

(VI-33) i<l,k> = 1.0 • 

Using (VI-7) we obtain 
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(VI-34). 

(VI-35) 

and 

(VI-36) 

(VI-37) 

.• z(2;k) = !J.(k) 

'\ 

z(j+2,k) = -p(j) 

z(2,k) = -~J.O<> 
~1 

~ .. ~ 

z (j 2 k) + ~(k) 
p(j+l) 

z(j+2,k) = -P<j> z(j 2k) ~ IJ.(k) 
p(j+l) 

.. 

r·=~ ... . t 

z(j+l 2 k) 

... .. 

The normalized values of the z(j,k)'s are given by 

(VI-38) z(j,k) = N(k) z(j,k) , 

where 

where , .. ...... . () .. 
• • '' • • l ~ • ..~ • ""· : • .. 

(VI-40) $(j,j+l) = $ p(j,j+l) 

= $p(j) 

= o. 2455 p(j) 
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I 

For the polyenes with symmetry factoring (VI-39) must be modified ·to ~ 
,I 

(VI-41) N(k) l 
n n-1 

= 2 I z<j~k> 2 
+ o.982. I 

j=l j=l 
z(j;k) z(j+l,k) p(j) 

- 2 l-1/2 
+ 0.2455 z(n,k) p(n) , 

where the factors of two have been introduced because (IV-45) represents 

· only half of the molecule. The last term is the result of the inter-

action between the two halves of the molecule. The plus sign is used 

when k = 1, ... , n-p, and the minus sign is used when k = n+l-p, ••. , n. 

It should be recalled that n is only half the number of carbon atoms 

[cf. (VI~4)], Because of symmetry 

(VI-42) z(j,k) = + z(m+l-j, k) 

where the plus sign is used for the symmetric cases [k = 1, ... , n'-p],· · 

and the minus si,gn is used for the antisymmetri~ ¢~ses [k = n+l-p, ..• , n]. 

The sign factor of (V~~42) plays a role o~iy in the iast term qf (VI-41). 

E. EXAMPLES OF p-POLYNOMIALS 

1. n = 2 

By (VI-2;3) 

(VI-43) N(n 2) ("A+p2)Nl -
2 = = Pi No 

("A+p2)"A -
2 

[by (VI-24) and (VI-iS)] pl 

....;. "-2 + P "A -
2 

2 pl 
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Thus, 

(VI-44) a = P ' 1 n 

and 

(VI-45) 
2 . 

a = -p 2 n-1 

2. n = 3 

By (V~-23) and (VI-21) 

(VI-46) N(n = 3) (A.+p3)N2 -
2 

= p2Nl 

(A.+p3) 
2 2 

= (A.Nl - plNO) ~ p2Nl 

= (A.+p3) 
3 2 2 

(A. -p ) - P A. 
1 2 

=A.3+pA.2 2 2 2 
3 (pl+p2)A. - p3p1 

Thus, 

· (VI-47) a = P 1 n ' 

(VI-48) 

and 

(VI-49) 

The p'~ in terms of the a'~ ~r~ 
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(VI-50) 

(VI-51) 

and 

(VI-52) 

or 

(VI.;..53) 

P = a , n 1 

= -a /a 3 1 

2 2 . 
P + P . = -a 
n~l n-2 2 

. ~ .. 

3. n = 4 

,2 . 2 
N = 1\. -p ' . 2 . 1 

. ~ . . . 
. ' .. ,: . "' 

(VI-54) 

Thus, 

. . . . . 

By (VI-23) and (VI-21) with .. the recognition that 

2 
N(n - 4) = (\+p4)N3 - p3N2 

= (\+p4) (\N2-p}l> ~- p~(\2-·P~) 

= ('+. ) ('{' 2 2} . 2,,) .. . 2 (' 2. 2) 
1\. P4 1\. 1\. -pl -. Pll\. - P3 .1\. -pl 

3 2 2 2 2 2 
= <X+p4> ex ~ {pl+Pz}x> - P3<x -p1> 

'~ ) .. 

4 . 3 < ·2 2 . 2 2 2 · 2 · 2 2 •. . 
= x. + P4x .- <Pl+pz+P3>x - P4 <p1+P2>x + P3P1.,. • 

liS 



(Vi-55) a· ... P 1 n ' 
' • < 

(VI-56) 

(VI-57) . 

ai1<i 

(VI-58) 

The p's in terms of the a's are obtained by 

(VI-59) P ·=a 
n 1 ' 

(VI-60) 
2 . 2 2 

· (p. 1 + P 2 .. +· P ·3· ) = -a2 ., · n- ·. ·n- .. n- · · 
[by -(VI-56)] , 

(VI..;.61) [by (VI-55) and (VI-57)] , 

(VI-63) . [by (VI-58) and (VI-62)] , 

and : I • 

(VI-64) • 
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4. '. SUMMARY OF . a (i,~)' s AS FUNCTIONS OF p (n-j)' s 

The above examples for n = 2,3,4 demonstrate the algebraic 

manipulations which are required to ob~ain ai's a~ functions of the 

pj's and vice versa. The only purpose which can be served by looking 

at further examples is the determination of patterns in the relations. 

Instead of deriving more eXamples here we shall list the results for 

n = 10. As an aid to the attaining of results later we shall write 

ai (n = ) · ·as a (i,n) •· ·rhus~ a~ (n = 10) ·will be ·writ.ten ·as· a(5,10). 

(VI-65) a(l,lO) = p(n) 

n-1 
(VI-66) a(2,10) ·:'- L p(n-j) 2 

(VI-67) 

j=l 

n-1 
a(3,10) = -a(l,lO) L p(n-j) 2 , 

j=2 

(VI-68) 
n-3 

a(4,10) =·· r. p(n-j) 2 

j=l 

n-1 
r p(n-k) 2 ·, 

(VI-69) 

(VI-70) 

(VI-71) 

k=j+2 

n-3 
a(5,10) = a(l,lO) L ~(n-j) 2 

. j=2 

n-5 
p(n-j)2 

n-3 
a(6910) =- r r 

j=1 k=j+2 

n-5 
p(n-j)2 a(7,10) = -a(1,10) r 

j=2 

n-1 
r 

k=j+2 

2 p(n-k) 

p(n-k) 2 n-1 
r 

R.=k+2 

n-3 
r p(n-k) 

k~j+2 

2 p(n-R.) t 

2 n-1 
r p(n-R.) 

R.=k+2 

2 
t 

(VI-72) 
n-7 · 

a(8,10) = L p(n-j) 2 n-5 
L p(n-k)2 

k=j+2 

n-3 
r 2 n-1 2 

p(n-R.) L R.(n-m) 
n=1 R.=k+2 m=R-+2 

120 



(VI-73) 
n-7 n-5 

a(9,10) = a(l,lO) I, -p(n...,.j)~. J> n-3 2 n-1 
~=> <n-k> ~ · r. . <n-.t> I 2 p(n-m)· 

j=2 k=j+2 R.·~+2 m=R.+2 

and 

{VI-74) 
n-9 · n-7 

a(lO,lO) = - L p(n-j) 2 L 
n-5 . 2 

p(n-k): I 2 p(n-R.) 
j=l k=j+2 

. . . 
R.=k+2 

. . . . . . . . 

n-3 
L. 

n-1 . 2 . 2 
p(n-m): L .. · p(n-J>._) .. 

~=R.+2 p=m+2 

It will be. convenient for. use to in~roduce ~.symbol. from Fortran 

at this time. If i is an integer and is ~, MOD(i,2) = 0. If i 

is an integer and is odd, MOD(i,2) = 1. For MOD(;,2) = l,.a(i,n) has 

a factor of a(l,n), and for the MOD(i,2) = 1 sequence the sign 

alternates starting with minus for i = 3. If we take 

(VI-75) i = 2a.+ 1 

we can write the MOD(i, 2) = 1 sequence starting ·with i = .. 3 in the 

general form 

(VI-76) a (i,n) = (-l)a a(l,n) 

n-1 
I 

j =j 1+2 . p p-

Similarly, for MOD(i,2) = 0, 

(VI-77) i =-28 , 
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:. 

and 

(VI-78). · a(i,n) = (-1) ~' : . . :· . 

n-1 
r 

j =j +2 q. q-1 

2 
p (n-j ) 

q 
MOD(i,2) = 0 

F. G~RATOR FUNCTIONS FOR p(n-j)'s AS FUNCTIONS OF a(i,n)'s 

1. . -INTRODUCTION 

We shall now introduce two sets of abbreviations which 

will exped~te the ~iting of the mathematics and make the reading of 

it less of a chore. The expressions 

a(a,n)/p(n-6) 2 p(n-y)~ p(n-o) 2 

and 
. . . 

a(a,n)/p(n) p(n·-6) 2 p(n-y) 2 p(n-o) 2 

will be W+itten as (a/6,y, o) and (a/0, 6, y, o), respectively. 

Furthermore, the instruction · 

[ (x) (y), + z] 

shall be talc-en to mean 'subtract ~quation (y) from equation (x) and 

divide the difference· by the term . ' z . 
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(Vl-79) 
9 2 L p(n-j} = -(2) [ (VI-66) 7- ~1] , 

j=1 

(VI-80) 
9 2 l p(n-j} . = -(3/0) [(VI-6,7) + -a(1,10.)] , 

j=2 

(VI-:-81)· p(n-1)~ =· -(2) + (3/0) [(VI-79) - (VI-80)] , 

(VI-82) 
7 2 9 2 l p(n-j) L p(n-k) = (5/0) 

j~2 k=j+2 . 
/., 

(VI-83) 
9 2 l p(n-j}. = (4/1) - (5/0,1) 

j=3 

[(VI-69) 7- a(1,10)] , 

. ·. ~· .. ' . . ' ' ; 

: · [ (vr~68). - (VI-82) , 
2 7- (n-1) ] , 

(VI-84) . p(n-2) 2 = -(3/0)·- (4/1) + (5/0,1) [(VI-80) - .(VI.-83j] , 

(VI-85) 
5 2 7 2 L p(n-j} L p(n-k) 

j=1 k=j+2 . 

9 2 
L P(n-S!.) = -(6) 

Sl.=k+2 . 
[(VI-70) 7- -1] , 

(VI-86) 
5 2 7 2 l P(n-j) l p(n-k) 

j=2 k=j+2 

9 2 .. 
l P (n-S!.) = - (7/0) [ (VI-71) 7- -a (l·, 10) 1 , 

i=k+2 . . . 

7 2 9 2 
(VI-87) L p(n-j) L p(n-k) = -(6/1) + (7/0,1) 

j=3 k=:=j+2 . . 
[~VI-85)- (VI-86), 

...... 

(VI-88) 
9 2 l p(n-j) = 

j=4 

·.,. 7-P (n-1) 21 , 

(5/0, 2) · + (6/1, 2) - (7, to, 1, 2) . [ (vr.:-82) -: (V·I-87) ,. 

7-p (n-2) 21 , 

(VI-8~) p(n-3) 2 = (4/1) - (5/10,1) - (5/0,2) - (6/1,2) + (7/0,1,2) 

. , . ·· '. , · · [ (VI-83) - (VI-88)]- · , 
7 9 . . 

L .: P (n-S!.) 2 ·. l :· · p(n-:-~)'2 = (9/0) :. 
Sl.=k+2 m=SI.+2 

(VI-90) 
3 2 5 2 
L p(n-j) L · p(n~k) 

j=2 ~=j+2 

[ (VI::-7~) 7- a(1,10)1 , 
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(VI-91) 
5 2 7 2 9 2 L ; p(n-j) . L p(n-k) . L. P(n-i) = (8/1)-(9/0,1) 

j~3 k~j+2 i=k+2 

[(Vi-72) - (VI-90), P(n-1) 2] , 

. 7 2 9 2 . 
(VI-92) L p(n-j) L p(n-k) = -(7/0,2) - (8/1,2) + (9/0,1,2) 

(VI-9:3) 

j=4 k=j+2 

2 [(VI-86)- (VI~91), p(n~2) ] , 

9 2 L p(n-j) = -(6/1,3) + (7/0,1,3) + (7/0,2,3) + (8/1,2,3) - (9/0,1,2,3) 
j=5 .. . 

. . 2 
[ (VI-87) - (VI-92), ';' p (n-3) ] , 

(VI-94) ~(n-4) 2 = (5/0,2) + (6/1,2) + (6/1,3) - (7/0,1,2) - (7/0,1,3) 

- (7/0,2,3) - (8/1,2,3) + (9/0,1,2;3) 

[ (VI-88) - (VI-93)] , 

(V;I:-95) 
3 2 
L .p(n-j )· 

5 ... 2 7 
L P(n':"'k) l 2 9 2 p(n-i) · L P(n-m) = -(10/1) 

j=3 k=j+2 i=k+2 m=i+2 

[(VI-74) 7 p(n-1) 2] , 

(VI-96) 
5 2 7 2 
L P (n-j) . L P (n-k) 

9 

I 
2 . 

p(n-i)· = (9/0,2) + (10/1,2) · 
j~4 k=j+2 i=k+2 

(Vl-:"97) 
7 2 r p (n-.j) 

? ·. 2 
!. p,(n-k) ;:: (8/1,3) - (9/0,1,3) - (9/0,2,3) 

j:=5 k=j+.2 

. 2 
- (10/1,2,3) [ (VI-9l)- (VI-96), 7 P(n-3) ] , 
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9 2 . 
(VI-98) L p(n-j) = -(710~2,4) - (811,2,4) - (811,3,4) 

j=6 . 

+(9/ o ,, 1 , 2 , 4 ) + < 9 I o , 1 , 3 , 4 ) + < 9 I o , 2 ~ 3 , 4 ) 

:1- (1011,2,3,4) 
. 2 

[(VI-92)·-(VI-97),-:-p(n-4)], 

(VI~99) p(n-5)2 = ..,.· ~611,3) + (710,1,3) + (710,2,3) + (710,2,4) 

(VI-100) 

(VI-101) 

+ (8/1,4,3) + (811,2,4) + (81~,3,4) 

- (9/0,1,2,3) - (910,1,2,4) - (910,1,3,4) - (910,2,3,4) 

- (1011,2,3,4) 

5 2 7 2 I p(n-j) I p(n-k> 
j=S k=j+2 

[(VI-93)- (VI-98)] 

9 
L p(n-i) 2 = -.(1011,3) 

i=k+2 

. [ (Vl;-95) -:- p (n-3) 21 , 

7 2 
L p{n-:-j) 

j=6 

9 
' · 

2 I I I l.. .· p(n-,k), = ·(9 0,2,4) + (10 1,2,4) + (1.0 1,3,4) 
k=j+2 

. 2 
[ (VI-96)- (VI-100), 7 p(n-4) ] 

9 
(VI-102) L p(n-j) 2 = (811,3,5) - (910,1,3,5) - (919,2,3,5) - (9/0,2,4,5) 

j=7 

- (1011,2,3,5) - (10112,4,5) ~ (1011!3,4~~) 

2 [ (VI-97) - (VI-101), .;. p (n-5) ] , 
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2 (VI-103) p(n-6) = - (7/0,2,4) - (8/1,2,4) - (8/1,3,4) - (8/1,3,5) 

. :·. i . 

(VI-104) 

. . . 
+ (9/0,1,2,4) + (9/0~1,3,4) + (9/0,2,3,4) + (9/0,1,3,5) 

+ (9-/0,2,3,5). +' (9/.0,2,4,5) + .(10/1~2,3,4) + (10/1,2,"3,5) 

+ (10/1,2,4,5) + (10/1,3,4,5) [ (VI-99)- (VI-102)] , 

7 2 9 
L p(n-j) L p(~-k) 2 = -(10/1.,3,5) : [(VI-100) -:-. ~ 

2 p(n-5) ] 
j=7 . k=j+2 

9 
(VI-105) L p(n-j) 2 = (9/0,2,4,6) + '(10/1,2.,4,6) + (10/1,3,4,6) 

8 

(VI-106) 

(VI-107) 

and 

(VI-108) 

+ (10/1,3,5,6) [ (VI-101) - (VI-104),.;. p (~-6) 2 ] , 

2 p(n-7) = (8/1,3,5) - (9/0,1,3,5) - (9/0~2,3,5) - (9/0,2,4,5) 

- (9/0,2,4,6) - (10/1,2,3,5) - (10/1,2,4,5) 

- (10/1,3,4,5) - (10/1,2,4,6) - (10/1,3,4,6) 
... 5. 

- (10/1,3,5,6) ((VI-102) ~ (VI-105)] 

2 p(n-9) =- (10/1,3,5,7) 

·::. ·, ... 

2 p(n-8) .. = (9/0,2,,4,6) .+·.(19/1,2~4,6) +. (10/1,3,4,6),. 

.... ' ' . . . : ~. ! ·" 

+ (10/1,3,5,6) + (10/1,3,5,7) 
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· :2.. SI(;NS 

Fo!' the pr~acnt we shall consider only the presence or 

absence of the various a(i,n)'s and, when p~e~ent, their signs relative. 

to· a· specific· p (n-j) 2 [or p (~) itself] for n =··1o.. Thus,. 

(VI-109) n +al 

n-1 .;.a 
2 .+~3 

n-2 -a 3 -a 4 +as 

n-3 +a4 -a s ~a6 +a7 

n-4 +as +a6 -a 7 -a 8 +a9 

n-S -a 6 +a7 +as -a 9 -alO 

' 

n-6 -a7 -a . 8 +a9 +alO 

n.:..7 +a 8 -a 9 -alO 

n-8 +a9 +alO 

n-9 -alO 

Three trends can be seen e~sily from (VI-109)• For each p(n-~) the 

lowest value of i is· j+l. The hight!st value of i is 2j+~ or ~' 

whichever is smaller. The vertical sign patte~ starting from the top 

is +·-- + +-- + + etc., where after the first singleton + all 

signs are in pairs. 
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We shall consider first the cases for which MOD(i,2) = 1. The 

first portion of the '(j,i) sign' array is 

(VI-110) (0,1)+ 

(1,3)+ 
·, 

(2,3)- (2,5)+ 

·' 
(3,5)- (3, 7)+ 

(4,5)+ (4,7).:.. .. (4,9)+ 

(5, 7)+ (5, 9)- (5,11)+ 

(6,7)- (6' 9)+ (6,11)- (6,13)+ 

For a constant i a oj = 1 causes a change of sign. For a const~t j 

a oi ;., 2 causes a change of sign. Thus, the sign factor in terms of 

the a's is 

(VI-111) 

The lowest value of j is 0, and the lowest value of i is 1. 

Furthermore, the sign of · (0,1) is·+. Thus, the MOD(i-,2) = 1 sign 

factor is 

(VI-112) (-l)j (-1) (i-1)/2 = (-1) (2j+i,-l)/2 ' MOD(i,2) = 1 

For MdD.(i,2) = 0 the first p.orti.on of the '(j ,l) sign' array is 
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• 

,. 

(VI-li3) (1,2)-
·,1, '· 

(2,4)-

(3 ,4)+ (3,6)-
" 

(4, 6)+ (4,8)-

(5,6)- (5,8)+ (5,10)-

(6,8)- (6,10)+ 
' . 

(7,8)+ (7' 10)-
: 

(8,10)+ 

(9,,10)-, 

For a constant i and o. = ·1 causes a change _of sign• For a constant 
J 

j a .. oi = 2 . causes a c_hange 'of _sign. 

is -. Thus, the sign factor is 

Furthermore,. ~he sign_ of (1,2) 
-:···. 

(VI-il4) (-1) (-l)j (-l)i/2 = (-1)(2j+i+2)/2 MOD(i,2) = 0 

3. GENERAL FORM OF THE GENERATOR FUNCTION . . . . 

If MOD-(i,2) = 1, we may. take 

(VI-115) . . i = 2k+l ' 

whefe the. -~'s are a sequence of cardinal numbers. The fir~t and 

last members will be determined later. If MOD(i',2) = 0, we may take 
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(VI...;,ll6): .. i = 2R. ' 

. . . 

where again the i's are a sequence of cardinal numbers. The general 

2 form for p(n-j) may now be written as 

(VI-117) p(n-j) 2 = L (-l)j (-l)k a-l K(k) a(2k+l) 
k 1 

+ L (-1) (~l)j (-1)
1 L(R.) a(2R.) 

R. 

= (-l)j [L (-l)k K(k) a(2k+l)/a(l) 
k 

- L (-l)i L(R.) a(2R.)] , 
R. 

where K(k) and L(R.) are products of the type p(n-a)-2 p(n-8) 2 ••• 
·I 

Following (VI-109) it was noted that the boundary conditions on i 

are 

(VI-118) j+l i i i 2j+l 

or 

(VI-119) j+l iii n ' ... 

depending upon whether n < 2j+l or 2j+l < n. 
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We may now distinguish two cases, MOD(j,2) = 1 and MOD(j,2) ... =_:o ...... 

~·or MOO(j,2) = 0, j+l is odd, and the lowest possible value of i is 

odd. Thus, (VI-115). is u·sed,' and· ., 

(VI-120) 2k(min) + 1 = j+l 

or 

(VI-121) k(niin).= j/2 , . ·· • MOD(j ,2) := ·0 

and 

(VI-12i) 2R.(min) = j+i 

or 

(VI-123). ' . R, (niin) = :'(j+2) /2 MOD (j .; 2) = · 0 ;. -=· 

/.'' ; ... 
,· .. .': ··' 

For MOD(j ,2) = 1, MOD(j+1,2) = 0. Thus, (Vi-116) is used, and · ..... 

(VI-124) 251. (min) = j+l 

or I . 

(VI...;l25) R.(min) = (j+l)/2., .- MOD (j ' 2) = 1 , 

and 

(VI_;l26) 2k(min) + 1 = j+2 

or 
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(VI-127) k(min) = (j+l)/2 , MOD(j,2) = 1 

These minimum value results are summarized by 

(VI-128) MOD(j, 2) = 0 

k(min) j/2 

i(min) (j+2)/2 

We now define two new functions 

(VI-129) 2r = j+i- ~OD(j,2) 

and 

(VI-130) 2s = j + MOD(j,2) 

Thus, for all j · 

(VI-131) k(min) = s 

and 

(VI-132) i(min) = r 

~9D(j,2) = 1 

(j+l) /2 

(j+l) /2 

From (VI-109) it is found that (VI-1+8) applies if 
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(VI-133) j ~ !NT(~) - i 

where INT(z) is 'round down' integer related to z. For example, 

!NT(+ 2.1) = +2, !NT(+ 2.0) = +2 and !NT(- 3.5) = -4. The function 

p was introduced in (VI-6). It can be defined by 

(VI-134) 
·n p = !NT(-) 
2 

Equation (VI-119) applies if 

(VI-135 j 2 p 

For (VI~ll8) the upper valu~ of ~ is always odd. Thu~, 

(VI-136) 2k(max) + 1 = 2j+l 

or 

{VI-137) )ct(max) = j 2j+l ~ n 

and 

(VI-138~ iR. (max) = 2j 

or 

(VI-139) i(max) - j 2j+l ~ n 
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For (VI-119), if MOD(n,2) = 0, . . ' .... ~ ~· . : 

(VI-140) 2i(max) = n 

(VI-141) .i(max) = n/2 

. "" p ' MOD(n,2) =·O , 

and 

. · .. •, 

. (VI-142) 2k(maX) + 1 = n-1 

or 

(VI-143) k(max) = (n-2)/2 

= p-1 

= p + MOD(n,2) - 1 [since MOD(n,2) = 0] . 

For MOD(n,2) = 1, 

.. ' . ·· .. ::. ' . · .. 

(Vi-144) 2k(max) + 1 = n 
I 

or 
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(VI-145) k(m&X) .;, (n~l)/2 . ·. -~ 

= p 

• p + MOD(n,2) - 1 [since MOD(n;2) = 1] , 

and 

(IV-146) 2R. (max) = n-1 

or 

(VI-147) 1(m&X) • (n-1)/2 
. . . ~. . ' . 

= p ' MOD(n,2) = 1 . 

If we define 

(VI-148) q = p + MOD(n,2) - 1 ,. 

the bounds of · k and 1 may be written as 

(VI-149) k = s, ... ' j; 2j+1 in 

= s, ... ' q; 2j+i ~ n ' 

and 

(IV-150) 1 = r, ... , j; 2j+l i n 

= r, ... ' p; 2j+l ~ n 
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4. GENERATOR FUNCTION FOR K(k) 

The symbol (4,3) 1,2 is to be taken to mean that for 

j = 4 and k = 3 (i = 7), K(k) has the term p(n-1)-2 p(n-2)-2 in 

it. With this symbolism the dataof SECTION VI.F.i for MOD(i,2) = 1 

and n = 10 are represented by 

(VI-151) (2,2)1 (3 ,2)1 

2 

(3 ,3)1,2 (4,3)1,2 (5,3)1,3 

1,3 2,3 

2,4 

(4,4)l,Z,3 (5,4)1,2,3 (6,4)1,2,4 

1,2,4 1,3,4 

1,3 ,4 2,3,4 

2,3,4 1,3,5 

2,3,5 

2,4,5 

The ·pattern of (VI-151) may be represented by 

(VI-152) K(j,k) = K(}-2;· k-l)/(p(n+2-j)] 2 

. 2 
+ K(j-1, k-1)/[p(n+l-j)] , 

with the boundarY requirements 
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2,3,5 

2,4,5 

2,4,6 
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(VI-153) K(j ,k) = 0 , k > j or j > 2k 

and 

(VI-154) K(l,l) = K(2,1) = 1 • 

The use of these rules will be demonstrated by a few examples, 

(VI-155) 
2 .. ... 2 

K(2,2) = K(O,l)[p(n)] + K(l,l)/[p(n-1)] 

since K(O,l) = 0 by (VI-153) [1 > 0]., 

(VI-156) 

(VI-157) 

K(3,2) = K(l,l)/[p(n-1)]2 + K(2,1)/[p(n-2)] 2 

:..2 -2 = [p(n-1)] + [p(n-2)] • 

K(4,2) = K(2,1)/[p(n-2)] 2 + K(3,1)/[p(n-3)] 2 

2 = [p(n-2)] 

since K(3,1) = 0 by (VI-153) [3 > 2•1]. 

If MOD (j, 2) = 0, (VI-153 )· translates to 

(VI-158) 
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.. 
If MOD(j·,·2) =·1, (VI-153) translates to · 

(VI-159) (j + 1 > I 2 i k i j • '··.' 

These results are the same as (VI~l49) so no new requirements are 

i~troduced here. 

~. GENERATOR FUNCTION FOR L (R.) 

For MOD(i,2) = 0 and n = 10 the data of SECTION .VI.F.l 

are represented by 

(VI-160) (2,.2)1 (3 ,2)1 

(3,3)1,2 (4,3)1,2 . (5,3)1,3 

. 1,3 

(4,4)1,2,3 (5,4)1,2,3 .<6,4)1,2,4 (7 ,4)1,3,5 

1,2,4 1,3,4 

1,3;4 1,3,5 

(5,5)1,2,3,4 (6,5)1,2,3,4 (7,5)1,2,3,5 (8 '5) 1' 2' 4' 6 (9' 5) 1,3,57 

1,2,3,5 1,2,4;5 1,3,4,6 

1,2,4,5 1,3,4,5 1,3,5,(1 

1,3,4,5 -1,3,5,7 

. 1,3,4,6 

The pattern of (VI-160) may be represented·by 
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(VI-161) 
. 2 . . 2 

L{j,R.} = L{j-2, R.-1)/[p(~t~~j)],: .+ ~(j~l-,.R.-1)/:[P~Il+b·j)J ; . 

with the boundary requirements 

(VI-162) .. L(j ,~) = 0 , . · . R. ? j or . 1 > 21~ 1 . . ·. 

and 

(VI-163) L(l,l) =·1 •. 

.... .-

A few examples of these rules are 

(VI-164) L(2,2) = L(O,l)/[p(n)] 2 + L(1,1)/[p(n-1)]
2 

. ., 
-·2 = [p(n-1)] · 

since L(O,l) = 0 by (VI-162) [1 > 0] 

\ .. 

(VI-165) L(3,2) = L(l,l)/[p(n-1)] 2 + L(2,1)/[p(n-2)] 2 

= [p(n-1)] 2 

since L(2,1) = 0 by (VI-162) [2 > 2"1-~]. 

(VI-166) L(3,3) = L(1,2)/[p(n-1)] 2 + L(2,2)/[p{n-2)] 2 
. . . . . 

' '2 
= L(2,2)/[P(1l-2)] 
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since L(l,2) = 0 by (VI-162) [2 > 1]. 

(VI-167) . . . 2 ·. 2 
L(4,3) = L(2,2)/[p(Ii-2)] + L(3,2)/[p(n-3)] 

= [p(n-1)]-2 [p(n-2)]-2 + [p(n-1)]-2 [p(n-3)]-2 

If MOD(j ~2) = 1, (VI-i62) translates to 

(VI-168) (j+l)/2 < R, < j - -

If MOD(j ,2) = o, (VI~l62) tr~slate$ to 

(VI-169) (j+2)/2 < R, < j . - -

These re$ults are the same as those of· (VI--150) so no new requirements 

are int~pduced here. 

We ·now have all of the necessary "f~nct:ions to apply EBL Tlteory 

to the polyenes. 
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VII. EBL THEORY RESULTS FRO POLYENES 

By (IV-45) there RTP. ?,n~l bonds in a ~yrumet:ric polyene. we:·have 

used the functions of SECTION VI irt combination with a minimization 
t 

program to calculate the minimum value of 6ET [cf. (VI-8)], the 

values of A 
j 

and r. 
J 

for n = 2, ••• , 25, n =50 and n = 100. 

Because of the lack of sufficient funds for computer time, we were 

riot able to continue the study to larger values of n. In TABLE VII-1 

are listed the algebraically smallest value of A 
j 

(lowest filled 

energy level), the algebraically largest negative value of A 
j 

(highest 

filled energy leve» and the equilibrium bond length of the central bond. 

Several interesting trends are apparent. The value of A 
j 

the lowest filled energy level is asymptotic to -1.965, or some 

for 

val~e close-to it. The value of A 
j 

for the highest filled energy level 

also appears to approach an asymptote, but it is not clear how much 

that value Wiil differ £r·om. -0.·069. If the central bond is a 'single' 

bond, the asymptotic value is 1.426 x 10-lO meters or some value close 

to it. If the central bond is a 'double' bond, the asymptotic value 

is 1.3.8.6 x 10-lO et r 1 1· e t "t m ers o some va ue c os o 1 • In SECTION IV.G.l 

we noted that the carbon-carbon bond lengths for ethene, benzene and 

-10 -10 . -10 ethylene a:re 1.536 x. 10 meters, 1.397 x 10 meters and 1.334 x 10' 

meters, respectively. The average. of the ethane and ethylene values 

·-10 
is 1.435 x 10· meters. Thus, we see that the central 'single' bo-q.d 

leng~h tends to a value somewhat smaller than the average of the single 

and double bond lengths, and th~t the central 1double' bond length tends·· 

to a value slightly shorter than the benzene value. Thu~, while an 
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equilization of the 'single' and 'double' bond lengths does not occur, 

neither is it true that there is no mixing~ In the 'no mixing' model 

all 'single' bonds are the same length as that of butadiene (1~467 x 10-lO 

meters) and all 'double' bonds are the same iength.as those of· butadiene 

-10 (1. 343 x 10 . meters) • For ' n = 100 there -is a- sort of 'rio mixing' 

mo4el after one is about 1/5-th of the way into th~ ~olecule (cf. 

TABLE VII-2). The bond lengths are, however, different from those of 

butadiene. 

The 'no mixing' model of polyene used by Grant and Batra [58] 

predicts a 'band gap' of 1~2 eV. Since 1 eV is 1.602 x lo-19 Joules, 

-19 -1 their 'band gap' energy is 1.92 x 10 Joules•electron • By (IV-87) 

with $ = 0.2455 the energy gap between the highest filled orbital 

and the lowest empty orbital for n = 100 is 

(VII~l) 
. 0.069 -0.069 

~E(band gap) = -y[l - 0.06~(0.2455) - 1 + 0.069(0.2455)] 

=·- 1.38 X 10-l ·y. 

For the Grant and Batra value of ~E(band gap) 

(VII-2) 
- 1. 92 X 10-19 

y(Grant and Batra) = -~"'-=--...;;;;..;;~-
1.~8 X lQ..;l 

= -1.39 x l0-18 Joules•electron-l 

By (VI-1) and (VI-2) 
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j '< 

1 

2 

3 

4 

5· 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

TABLE VII-2 

EQUILIBRIUM BOND LENGTHS FOR n = 100 

-10 
, ·.,(in units of ·10 meters) .... 

rj' j r. j . r. j 
J J 

1.350 26 1.427 51 1.388 76 

1.454 27 1.388 52 1.426 77 

1.369 28 1.427 .53 1 •. 388 78 

1.442 29 1.388 54 1.426 79 

1.376 30 . 1. 426 55 1.388 80 

·1.437 31 1.388 56 1.426 81 

1.3.80 32 1.426 57 1.389 82 

1.434 33 1.388 58 1.426 83 

1.382 34 1.426 59 1.389 84 

1.432 35 1.388 60 1.426 85 

1.384 36 1.426 61 1.389 86 
' 

1.430 37 1.388 62 1.426 87 

1.385 38 1.426 63 1.389 88 

1.429 39 1.388 64 1.426 89 

1.385 40 1.426 65 1.389 90 

1.429 41 1.388 66 L426 91 

1.386 42 1.426 67 1.389 92 

1.428 43 1.388 68 1.426 93 

1.387 4.4 1.426 69 1.389 94 

1.428 45 1.388 70 L4Z6 95 

1.387 46 1.426 71 1.389 96 

1.427 47 1.388 72 1.426 97 

1.387 48 1.426 73 1.389 98 

1.427 49 1.388 74 1.426 99 

1.387 50 1.426 75 1.389 100 
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r. 
J 

1.426 

1.389 

1.426 

1.389 

1.426 

1.389 

1.426 

1.389 

1.426 

1.389 

1.426 

1.389 

1.426 

1.389 

1.426 

1.389 •.:. 

1.426 

1.389 

1.426 

1.389 

]...426 

1.389 

1.426 

1.389 

1.426 



(VIi-3) Y (This Study) = - 0.47605 X 7.969 X 10-l9 

-19 -1 = - 3. 794. x 10 .Joules•.electron , 

which is 27% of the Grant and Batra value. The value of·. y . given in 

the APPENDIX IS 

(A-49) y(Traditional) = -2.779 x Io-19 Joules•electron-l 

Thus, we must conclude that the '~o mixi~g' model of Grant and Batra is 

in error. 

With the value of y of (VII-3) 

(VII-4) ~E(band gap}= -1.38 X 10-l (-3.794 X 10-l9) 

= 5. 236 x lo-20 Joules· elec.tron -l , 

.. 
which corresponds t.o a frequency of 

(VI-5) " = 

= 

5.236 X 10-20 

h 

·5.236 X 10-20 

6.626 X 10-34 

=·7.·902 X 1013 Hertz 

which is in the near infrared. 
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At this point we must end this REPORT. When funds are available, 

~BL Theory will be applied to the study of the optical and thermodynamic 

properties of the poly (p-phenylene)'s. 
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A. 

APPENDIX 

MOLECULAR QUANTUM MECHANICS 

GENERAL PRINCIPLES . . . . .. · .. ·.· ·.:-,. 

Sir Isaac Newton, we are told, wrote to Robert Hooke, 'If I 

have seen further, it is by standing upon-the shoulders of Giants~' "QJ 
The modesty of the author of the Philosophiae Naturalis Principia 

Mathematica resulted in· this self denigration of his momentous. achieve-

ment. Only twice since Newton have the contributions of a single man 

been so g~eat that.he has been h~rtored by the association of his ~me 

with an entire branch of physics. . These two. cases ar.e J. C. Maxwell and 

the conjunction of electromagnetic theory, and optics and A. Einstein 

and the theory of relativity. [The fact that both Newtonian mechanics 

and Maxwellian electromagnetics are derivable today.from relativity theory 

in no way degrades the significance of the work of Newton and.Maxwell.] 

The fourth great syst~m besides Newtonian m~chanics, M.Sxtiellian 

electro~gnetics and Einstein_ian" mechanics is quantum mechanics. Unlike 

the other three systems, however, we cannot associate a single name with 

the system. No one great name stands out. This is ·the. result, at least 

in part, of the fact that quant~m mechanics is an ~nfin~shed, system. 

Potentials, masses and changes are introduced ~n an ad _hoc way. [In 
• I' '' . -.-,-. 

non-relativistic quantum mechanics spin also is. intro~~ced _in ~n ad hoc 

. -13 
way.] For energies of the order of magnitude of 10 . J~u.les per particle 

present day quantum mechanics is less than satisfac-tory·.· . For energies 

of the order of lo-19 Joules. per particle, however, pr~~ent day quantum 

mechanics in spite of all of its inadequacies works qu,ite welL This, it 

should be noted, is the region of the energies of the chemistry of atoms 

and molecules. 
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In quantum mechanics the state of a system is represented by a vector 

(function). The measuring of the value of a physical parameter of the 

system is represented by a·matrix (operator)• If the result of multiplying 

the vector by ·the matrix (or the operating ·on the function with the 

operator) is the vector (or function) itself multiplied by a number, the 

number is called an eigenvalue, and the vector (function) is called an 

eigenvector (eigenfunction). The eigenvalue is the value of phys~cal 

parameter which is obtained each time the measurement is made on the system 

when it is in the specified state (within experimental error). 

If the result of the multiplication of the vector by the matrix is 

not the original vector multiplied by a number (scalar), then a different 

value will be obtained for the physical parameter each time the measurement 

is made. These concepts are represented mathematically by the following. 

Let IYj> be the vector representing the system in the j-th state, and let 

.. (M)· be the matrix representing the measurement of a specific physical 

·parameter. If IYj> is an eigenvector of (M), then 

( A -1) 

where m. is the eigenvalue. 
J 

We now multiply ( A -1) on the left by the dual vector * <y .I. 
J 

Thus, 

* = m • <Y . I · I Y . > 
J J J 

which is.abbreviated 

A -2. 
J 



( A -2) * "'I <Y • I M 'i' • > = 
J J 

. The eigenvalue appears· outside of· the ve.ctor multiplication because it .. 

is a scalar. The asterisk indicates complex conjugation~ This is 

necessary since the components of the vectors'can be complex numbers. 

(The func~ions can be· complex functions.) Equation ( A -2) can also 

be written 

( A -3) m. = 
J 

In the operator-function notation.( A.-3) becomes 

( A -4) 

*"' = f 'i'j M 'i'j dQ 
m. * 

J f 'i'j yj dQ 

If II.> is not an eigenvector of (M) ,. then ( .A -1) no longer applies, 
J 

but ( A -3) and ( A -4) still do. In these cases the m. 's are 'expectat:f,on 
•J 

values' (mean values) rather than eigenvalues. If the operator is 'integrate 

over the region .r', then 

fr 'i'~ 'i'. dQ 
( A -5) m. = ] J 

J 00 

* f 'i'. 'i'. dQ 
J J 

is the probability that the system when in the j-th state will be found 

in the region r. 

The operators are generated by making the following replacements in 

the classical expression for the physical parameter: 



( A -6) 

where 

E + ih ....2..._ 
. at 

i = (-1)1/2 and h 

(j-th component of the linear momentum) 

(j-th component of the position vector) 

·(energy of the system) , 

is Planck's constant divided by 2tT (1.0546 -~· l0-34 

Joule sec). for a one particle system in the presence of a potential energy, 

V, the classical expression is 

2 
L + V = E 2m 

In the quantum mechanical formulation this becomes 

( A -8) 

. ' 

2 
Ch "i + V]Y = ih aY 

2m . · at 

, :. 

If the system consists of N particles, ( A ~s) becomes·. 

(. A -9) 
1\2 N 1 2 . r=-- L -- v + v1r = 
2 j=l l'!lj j 

· aY 
111 at ·' 

........ 

where Vj refers to the coordinates of the j-thparticle. The potential 

~nergy, V, is a complicate~ combination of the coordinates of all.of the 

particles. Because of this ( A -9) ·cannot be solved directly for ~most 

A -4 



systems. Various approximation techniques, however, have been developed. 

To avoid th¢ necessity of writing aii of th~ ( ~ -9) each time it is 

usually abreviated 

( A -10) 

·,where 

( A .-:-11) 

= itt aY at 

2 N 
'H=-JL. r ..l..'ii+v 

2 j=l mj j 

is the 'Hamiltonian op~rator'. 

If the energy of the system is statio~ary with respect to time, the 

spacial and temporal functions of the state. functions, can .. be,separated~, 

( A -12) 

where E is the energy of the system. The substitution of ( A-12) into 

( A-10) yields 

IDlr e -i (E/h) t = :i. ~CAE> e -i (E/h) t 

or .e · 

. ·. /~ ... 

( A ·-13) 
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It should be not~d that the Hamiltonian operator does not contain time 

explicitly when the energy of the system is stationary. This is why the 

exponential can· be. factored out.· . In operator .. equations only; terms .. to.:· 

the left of .the operators can be factored out. 

Generally an equation like ( A-13) has a large number of solut'ions 

(eigenvalues and eigenv:ectors) in which case it is written 

( A -14) 

[cf. ( A-1)]. The 'j' here refers to the j-th eigenvector and not, 

as it did in (A~9) , to the j-th particle. 

In any vector space a vector can be represented by a linear combina-

tiort of a set of vectors called 'basis vectors'. Thus~ in Euclidean 

+ . 
3-space any vector, r, can be written as 

( A-15 ) ; = r ~ + r ~ + r .~ · 
X X y y Z Z 

where the @'s are.'unit vectors' as well·as basis vectors. This principle 

also applies to Hilbert spaces which are infinite dimensional as they 

frequently are in quantum mechanics •. Although basis vecto~s need not be 

orthogonal, it is convenient if they are. 

An operator is said to be 'Hermetian! if 

( A -16) 

A -6 



"'* "' where 'ij is the complex ctmjug(i te of . tf. All the operators of quantum 

mec.hanil's arQ HcrmctiaQ. Having all of the operators Hetmetian ensures 

that all ei~erivalues are, real which they inust be since they are th~ 

res.ults qf measurem¢n~s. The real prop·e~ty of eigenvalues of Hermetian 

operator~ is shown py the following: 

*I"'* I * *I <\jr. H \jrj> = (E • -E.) (\jr . \jr. > 
·J J J J J 

*I"'* <o/. H = 
J 

* * Ej <"' . I"' . ), J J 

Since H is ~ermetian, the left side of the equation is zero. Sirice 

. * . *I . <\jr: \jr.> 
J. J 

is not zero·, ~j-.Ej must be z.ero. this, however, can only be 

the case if E 
·J 

If the eigenvalues for twe eigenyectors are not equal, then 

lflo/. > = 'Ej lo/. > 
J J 

* "'* *I . <o/kiH lo/.> = Ek<\jr·k. t.> J ' . J 

By ( A-16 ) the, left haqd side of the equation is ~ero·. Since ej_ ;; Ek, 

A -7 



(A-17) 

Thus, eigenvec~o.rs .with .different eigenvalues are automatically .. orthogonal. 

It is somewhat difficult to work with a complete set of basiS vectot;'s 

when there are an infinite number of vectors in the set. The ·problem Qf 

working with infinite.basis sets.can usually be circumvented ~y the 
I. 

judicious choice of an approximate finite basis set. Assume that there 

is a Hamiltonian oper~tor,; H', .which :is similar. to, but· no.t .identical. witl\, 

the H o~ ( ~ -14) ·.and that "(' .. 

(A -18) H'Z = EZ 

is. not easily solved directly. We take. Z as a linear combination of the 

\jr' s . Thus, 

00 

( A -19) ·z = I aj "' .. j=l J 

00 00 

H' I a. "'j = E I a. "'· j=l J j=l J J 
[by ( A -18)] 

and 
: . .. 

' 

00 ~ .·. * "' .. 00 00 

I I * I I * * a. a.<\jr .IH' l\jr .> = E ai a . <\jr i I \jr. > 
i=l J=:.~ 

~ J ~ . J ' i=l j=l J . ,_J 
( A -20) 

- 00 
":;. . . I * = E a. aj I j=:l •J 

A -8 



where the last result is obtained on the assumption that the ~·s are 

both nr,thogonal and normalized (o~tho-normal) • 

. : .. ,.: .. The· a's . are chosen so ·as to . minimize E.· The teal ground S·tate of 

·the sy·stem will have .the lowest possible value of E. Thus, 

* It.should be noted ·that is linearly independent of a::i.. Thus, 
. * 

aa/aai = 0. Since the minimum value of E is desired, * aE/aai i's set 

equal to zero, and 

( A -21) 

where 

( A -22) i = j 

and is known as the 'Kronecker delta'. The Kronecker delta is the matrix 

element of the 'identity' matrix. For (A-21) to have a non~trivial 

solution the determinant of the matrix must be equal to zero. 

*I"'' I . Since the ~'s are k~own, the integrals <~i ~ .tj> can be evaluated 

at least by numerical integrati.on. Generally only the negative valued 

integrals are retained. In .this· way the infinite a's problem is reduced 

to a finite a's problem. The variation teqhnique just described can also 

be used for equati<ms such as (. A -10). 
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B. MOLECuLAR APPROXIMATIONS 

+ The simplest molecule, t.~e hydrogen molecule ion, H2, is a three
1 

body problem. The variables of (A -9) are not sepa~abl~ by any known, 
. . ~ . . • .• 't, 

technigues for more than two bodies. Thus, all_of molecular quantum 

mechanics involves the use of approximation techniques. The first approxima­

standardly envoked is the 'Born-Oppenheimer approximation' £71/. Since the 

nuclei are so much heavier than the electrons, the electrons will complete 

many oscillations in t~e time required for a nucleus to complete one 

oscillation. Thus, the nuclei are assumed to be stationary, and the 

properties of the electrons are studied relative to the 'stationary' 

nuclei. This analysis can be repeated for various nuclear positions. 

Standardly, however, only the equilibrium positions of the nuclei are 

considered. 

The next approximation envoked is the separation of the 'inner' electron 

(which are not involved in bonding) for the 'outer' electrons (which are 

involved in bonding). The inner electrons are taken together with the 

nuclei as 'nuclear cores'. The outer electrons are separated by symmetry. 

Those elec~rons which are concentrated between the atoms which are bonded 

together and have cylindrical symmetry around the line connecting the 

nuclear centers are designated as 'a-electrons' [sigma electrons] .. The 

bonds between t~e.hydrogens and the carbon of methane are a-bonds. 

Inethylene (~2c = CH
2

) the bonds between the hydrogens and the carbons 

are a-bonds. One of the borids between the carbon atoms is a a-bond. The 

six atoms of ethylene in their equilibrium positions are co-planar. The 

.second carbon-carbon bond is antisymmetric with respect to the plane. of 
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the ptoms~ The eigenvectors for these electrons are positive above the 

plane and negative below the plane. They are identically zero in the 

plane of the atoms. This type of bond is designated·as a 'n-bond' (pi 

bond, pronounced ipie' in English and 'pea' in Greek], and the electrons 

are designated as 'n-electrons'. The a-bond of ethylene (two electrons) 

5. ' . -1· has a binding energy of 3.47 x 10 Joules per mole (83 kcal mole ). The 

5 . -1 
tr- ·bond (two electrons) has a binding energy of 2.64 x 10 Joules mole 

. -1 4 . 
(63 kcal mole ). The difference in binding energies is 8.3 x 10 Joules 

mole-l (20 kcal mole-1). This energy difference is sufficiently large to 

permit the treatment of the n-electrons separately from the a-ele.ctrons. 

In this study only the n-electrons are analyzed. 

C. LCAQ-MO METHOD. 

In the LCAO-MO (linear combination of atomic orbitals - molecular 

orbital) method the eigenvector of (. A -18) is a molecular· orbital and 

.the basis vectors of (. A- ·19) are atomic orbitals. For a complete basis 

vector set all of the atomic orbitals of all of the atoms sho~ld be used. 
' .. 

This is, however~ an infinite set. To avoid the problem of doing an 

infinite number of calculations we use an incomplete basi's 'vector set. 

For the n-molecular orbitals only the 2p - or 
y 

2p - atomic orbitals are 
z 

used. Furthermore, it should be noted, the basis vectors are not orthogonal. 

Equation ( A-21) does not, therefore, apply. Except for a null vector 

any vector can be normalized to one. We shall, therefore,· assume here 

that the atomic orbitals have been so normalized. 



Let ltk>' k = 1, ••• ; n, be the eigenvectors (the molecular orbitals) 

of the Hamiltonian operator 
'V 

H. Thus, 

( A -23) 

or 

( A -24) 

It should be noted that we have multiplied ( A -23) on the left by <tkl 

* and .not <tkl. This is because we plan to use only real functions .for the 

molecular orbitals. 

Let lui>, i ~ 1, •.. ~ n, be ~he set ot atomic orbital~. Since the 

basis vectors constitute an approximately complete set, other atomic 

orbitals making only minor contributions, we may write 

( A -25) 

The bar is piaced over the coefficient· zik to remind us that the ,,,,, >IS 
"'k 

are not normalized. Wheri we carry out the normalizations, we will remove 

the bars. 

The substitut.ion of (. A"-25) in·to ( A -24) yields 

• • • p' 

n n n n 
( A. -26) . I I ijk. i~k<u.lilui> = Ek .r r zjk iik(ujlui> ~. 

ji=l i=l ... J J=l icl 

A -12 I 



Equation· ( · A'-26) has two integrals which. are elements of matrices.. The 

firRt, the 'ov€rlap' iuL~gral is 

( A -27) 

since the vectors are normalized, 

( A -28) $ji = +1.00 for j = i 

.. 
•. 

· Furthermore,· let $ be a 'standard' 'integral so that· the off7diagon:a1. 

elements may be wr-itten as 

'- . 

( A -29) i . · ·· · ' .j '/:· l. ..•.. 

' . . ' .;, 

By virtue of ( A -28), arid for iater convenience, the diagonal elements 

of ( pj i) are taken to be zero.·· · fbus,. ... ? 

(A ~30) ~ . ·' . 

.• ' • • . ; 1 i ·~ .... ·~ : . . . '~~· .. ' 

[Note: The numbers of A -28) and A -30) are written as +1. 00 and 

0.00, respectively, rather than +1 and 0 .. This is-because· the theory is 

developed here for computer use, and computers distinguish between real 

numbers (+bOQ <md · 0. 00) ~nd integers (+1 and 0).] . If (o. ·.) is the · 
.... l:J.. 

identity matrix, the matrix of the overlap integrals may be written as 

.A -13 



. I 

( A -31) 

By virtue of ( A -27) ($ji), and bene~ (pji), is a symme~ric matrix? i.e., 

(. A -32) 

The other integral of ( A -~6) is the 'exch~nge' integral, 

( A-33) 

Since (ii) is Hermetian, (p.
1

) also is a symmetric matrix. The assump-
. J 

tion is standard].y.made that 

( A-34) tl = 
~ji j "' i 

where p is a 'standard' integral. 

Traciitiqnally p
11 

is represented qii. and is· called the 'Coulo~pic' 

integral., the '!itand~rd' value of which j,s. ri· [The s].ash ip ri is tq. 

distingu~sh b~tween ~. !=he stand"!rd value of the Coulombic integral,·:. 

and q, the nu,mqer of mer:~ in the molecule.] A ne~ 'standat:d' integr:~·~ 

is now def~ned in terms of the thre~ which ha:ve beeQ. de~in~q ~1ready,: 

( A -35) 

The &eneral form for the d;agonal terms of (~~i) wiLl, be ~a~en ~~ 

A ...:,14 

I 



( A- 36) 

where &
1 

is an e~piric~lly de~ermined parame~er ~f· the order of magnitude 

pf one. The matri~ 9f the exchange integrals npw may be written as 

(A ,..37) 

· [by ( A -35)] 

where 
'<':;; ~ ·: . 

( A -38) ,· 

+ = (J + $6.; i ... 

J\t ~~is j~nc~Hr.e the, C()~ffic::f..e~t!? 2iik of· ~ A -25? a~~ p.et kn9wn. · 

Th~y ~r~ 4~ter~fq~g by r~quifi~~ thqt ~q~ ~k·~ in ( ~ -?6) are e~t~ema 

with respect to t:h~ - ' Th!s l;'equ::l,r~$ th~ ~a~in~ of P,artial derivatives ......... ' .. ·: . r ~ ;,: . . ' zik !:i• . . ., . 

~ith reS,~~9f ~q z.k and, sett::f..ng ~El</~~~~ eq4al ~0 zero. Thi!? yields 
'l.: ·• 

A ..,1?, 



( i.. -40} j .. 1, ... ' n· : 

[by ( A -23} and ( A.:-27}] 

or 

( A -41} 

·'· 

When ( A -31) and ( A -37} are used, ( A- 41} becomes 

' l.: . ' 

l A .-42) 

( A'-43) 

where (O} is the null matrix, or -- by virtu~ Qf (. A· -39) ~-

( A -45) 

A -1~ · 



and, if a - $~ ~: ~· 

( A -46) 

where 

{ A -47) 

The solution of {" A .. -46) ~ill yield the eiSerivalues ~· and the eigenvectors 

lz1k>; k • 1, ••• , n . 

. From { A -4 7) we have 

or 

{ A -48) 

: l 

~- ~~ 
Ek .. 1 '_ S'\ .· 

~ - {y+ ~$) :~ 

= 1'- $\ 

~ {1 - .$'\) .. - ,Y'\ .. 
'• ·= 

. 1 - $'\ 

. Y'\ . 
= q - . 

1 - .. $'\ . 

It should be not~d· that. 

A-17. 

·. '"' 

1,•., 

· :[by { A -35) ] 



( A -49) -19 -1 y = -2.779 x 10 J~ules·molecule 

5 -1 = -1.674· x 10 Joules mole 

-1 
= -40.00 kcal mole 

If ( A -46) is to be solved by a computer techni~ue, it is useful 

to rearrange it to 

( A.-50) 

or 

( A.-51) 

If 5i = 0.00 for all i, cri = +1.00 for all i by ( A-38). In 

this case ( A -51) simplifies to 

( A -52) 

If (pji) is tridiagonal, ( A -52) can be solved by the 'EISPACK' 

(Eigensystem Subroutine Package) driver subroutine RST which,yields the 

e'igenvalues in ascending order as well as the eigenvectors. If 

is not tridiagonal, the driver subroutine RS can be used. . . In this routine 

A-18 



a real symmetric matrix is reduced to a symmetric tridiagonal matrix for 

which the eigenvalues a~d eigenvectors are then .. obtained. 

If oi ; 0.00 for all i, then the driver subroutine RSG must be 

used. The RSG subroutine determines the eigenvalues and eigenvectors for 

the real symmetric gen~ralized eigenproblem A*X = (LAMBDA)*B*X. This is 

not as horrendous as it might appear to be at first since only the upper 

triangles of the A and B matrices are used. 

The computer programs for the solution of ( A -46) or ( A -51) 

generally do not yield values of the lzik)'s such that 

( A.-53) k = 1, ... ,. n. 

Thus, ( A -25) should be rewritten as 

(' A -54) 

or 

( A -55) 

where 

( A -56) 

The substitution of ( A -54) into ( A -53) yields 
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( A -57) 

[by ( A -27)] 

or 

If ($ji) is tridiagonal, 

(' A -59, tridiagonal) 

and, if ($ji) ~s pentadingonal, 

( A -59, pentadiagonal) - -
zik zi+l.,k $1, i+l 

.... . . ' 

If the electrons are .·assumed to be.:u~correlat~d excep·t fot:· the .. P,auli 

exclu~ion principle C78l electron ~rat,)sitions c8.n be· treat;eci.· a~ ,_,one 

el~ctron transitions. between individ~al. molecular: .'or:bitals. , Thus, .the . 

trans~tion frequency .. for. the transit~OD ~r:om the. ·.r-th stat;~- to ·~;he. 

t'""th state, by virtue. of (. A -48), is given ·bY. 
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't 

~here 

( A -61) 

v = h-l(E - E ) 
tr · · t . r . 

-1( · y\t · · · -y\r ) 
. = h . q - 1. - ~\t - q - 1 - $:\r .. 

.. 

h = 6.626 x 10-3~ Joule sec. , 

·, 

a11d y is given by ( A -49). 

D. GE~RAL THEOREMS ON COORDI~ATE SYSTEMS 

r. 

' . ... 

In tJteanalysis which we shall begin in the next SECTION coordinate 

sys~ems other than the·Cartesian ·cgordinate system will ~e used.· It will, 

theref~re ~· be. ~sef~l to. derive here the· general theorems on ~oordina te 

syst~s. an~·. apply' them to' the spherical •polar· coordinate system abd the 

el~ip~ical coord·inate sy~Jtem. We start with the concept of a vector in 

a 3-space as an ordered tri~le .. (xl, x2, .x3) .. sucii tli'at' . 

and 

:A -21 
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( A ..;63) 

where a . is a scaiar (a number) and {y
1

, y
2

, y
3

) · is· another vector •. _. 

Furthermore, if we now use the Dirac notation for vectors, : 

{ A -64) 

Y x = y x = y
3

, . a. nd · 1' 2 2' 3 

{ A •65) 

2 = X 

where x is the magnitl.lde of the· ve~tor (x
1

, x
2

, x
3
). 

The 'cosine' ft,mctlon may'be defined by 

( A -66) <xly~ = xy cos(x,y) 

·· .. · 

for simplicity in writing we shall use the following convention 

( A -67) . 

These three vectors. are orthoghal, i.e., 
I 

• 



( A ~68) 

where 5i~ = 0.00 if . i ~ j, ancJ o;i.j = +1.00 if i = j [the Kronecker 

delta, which is also .;....;. as noted previou.sly -~ the elements of the unit 

niatrix]. 

Anoth~r set of vectors can be defined in -t~rms of the orthogonal set 

( A -69) jy.> = a 

where the Einstein summ~tion convention is used in the last line. If the 

determinant o'f the matrix (a ) 
ai 

is not zero, there e}C:tsts another matrix 

such that 

( A -70) 

Let the symbol lx.> represent· a unit vector i~ ·the 1 di~ection 1 of 
. l. .. · 

and ~ v.ector· in the 1 direction 1 of· lx.> . l. of ma.gnitude dx .. 
. l. 

ly..; > = a I~ ) 
a ai i 

then 

A -23 



( A~ 72) <xjly >=a 'i<x .. lxi> a a J 

= a aj 

or 

( A -73) 

By the calculus we have 

( A-74) 

Since, by ( A -70), 

( A -75) 

and 

( A- 76) .· 

. .. .-

ldxj> = bj~ldy~? 
. . . .... 

. ...: axj. 
bj ll .. - a 

t" y~ 

'' 

[by ( A -68) and the unit 

magnitude of the_ vectors] 

[by ( A -66). and the unit 

magnitude of the vectors] • 

. ·- ,· 

. =··· ~ . '. • . 

:: .. 

[by ( A -74)] 
-~. . . ~- • ··:! . . "" 

··The· d:i.ffere~tial displacement Ids> · has the magnitude .. 

. ~ . . - ;, 
·; 
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( A-77) 

·' .; .. · ;. 

[by ( A -74)) 

where 

: ' 

( A -78) 
axi axi 

=--
aya ay~ 

The distance between two points on a coordinate line in the lya> 

system. along the vector lya> is g~ven by 

( A -79) 

. . . . . { 

The co~ine of ~he vectors 

1/2 I. 

ds = Y' dy a aa · a . 

and 

... ... 
( A -80) cos(ya, Ya> = <y~lya> 

',' 

A-25 
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By C A -64) · <y~ I ~j > is a scalar. 'f.hus, by the ·commutativity of 'th~ 

multiplication of real numbers 

( A -81) 

and 

( A -82) . 

f • 

Thus, by · ( . A -80), we may write 

( A -83) 

BY the combination of ( A -73) and ( A -76), we may write 

( A -84) 

By the ·calculus 

( A -85) 

and by ( A. - i9) 

( ·A -86) 

Thus, 

_ axj axj 
cos(ds , ds8) - a a 

a . sa sa 

axj = axj·ayy 
as ay as a y a 

ayx ·-1/?. = y - 0 as aa ya 
a 

A.-26 



( A -~7) [by (A -84)] 

: ax: axj -1/2 -1/2 
= __...J. y . 0 y 0 [by ( J\ -86)_j ayy ay0 yy ya ao a~ 

= Y Y-
112 a Y-

112 a [by c A:-:-7~) 1. yo yy ya· ao o~ 

If ldsa> and. Ids~> are orthogonal, the cosine is.equal tq zero, 

and 

( A-88) = 0 

Thus, for orthogonal coordinate systems only the Y terms in ( A~77) 
a a 

appear. In such a coordinate system .the volume element is given by ... 

(A -89) d't' = I1 ds a . a . 

= I1 yi/2 dy 
aa . a 

a· 
[by ( A -79)] 

In the spherical polar coordinate· system the radius vector It:> . mak~s 

an angle a with the x
3 

axis. Thus, 

(A -90) o < a < n • 
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The projection of the .1 r> vector on the. xi, x2-plane has the magn;f..tude 

r sin e. The lr sin e> vector makes an angle tl> ·with the xi-axiS. 

Thus, 

( A -91) 0 i tl> i 2rt 

and furthermore 

( A -92) xl = r sin e cos tl> . 

x2 = r sin e sin ~ . 

x3 = r cos e . 

By geometric arguments it can be shown that ldr>, Ide> and ldtt>>· 

are a mUtualiy perpendicular triad. We shall, however, use { .A·-88) to 

prove it. By {iii-92) and the calculus we have 

(A -93) 
a.xl 

sin e cos tl> 
a.xl 

cos e '4> 
3x1 sin e sin t1> --· = -- = r cos ·-- = -r a.r ae ott> 

ax ax2 ax2 
~= sin e sin t1> --= r cos e sin t1> ··-- • -r sin e cos tl> ar ae at~> . 

ax3 cos e 
a.x

3 sin e 
ax) 

0 -- = -·- = -r -- .. " . 
a.r a.e at~> ' 

( A -94) Yre = r sin e cos e cos2 
t1> ~ r sin e cos e sin

2 
t1>- r sin e cos e 

= r sin e cos e - r sin a cos e 

= 0 ' 

.. 
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( ·'A . ..-95)· .. · -.:: .. : 

and 

( A -96) 

. 2 2 
y. = -r'sin 9 sin'c~>·cos .4.. +' r sin 9·sin cJ> co's'(p• +·o rcf> . "' 

= 0 

Y · · = -r
2 

sin 9 cos 9 sin cJ> cos cJ> + r 2 sin . 9 cos .9 sin ¢ cos cJ> + 0 9cf> 
·• -:~. ~, ,: .. 

= 0 

The expression for d"t is obtained from ( A -89); Thus, 

( A -97) Y 'i 2 9 2 . 2 9 . 2 2 9 - s n cos cJ> + s1n . s1n cJ> + cos rr 

:. I 

·'. ·=·1; , '· .. , .. 

( ·A -98) 2 · 2 9 2 2 cos2 9 sin· 2 
.J.. + r 2 sin2 9 ~99 = r cos cos cJ> + r "' 

2 . 2 9 + r2 2 = r cos sin 9 

' . ~ • . f . 
2. =. r. ; 

.:.:. 

A -99) , y·- ·2 2 9 -~in·2 cJ> .~+ 2 2 9 2 + 0 .< = r sin, r sin CdS cJ> cl>cl> 

2 
sin 2 

9 = r , 
,· ,• .. 

and 

.. ·• 

) 
'•'.! ., 



( A -100) 
1/2 i 1/2 2 2 1/2 d'r .. (1)"'' (dr)(r·) ,, · (d9)(r· sin' 9) · (del>) 

.2 
~ r ~~n ~ dr d9 del> 

' "'· 

Th~ ~~olll~H"Y p~ tn~ e~lipti~l!~ cq'?.~4.~n~~e. ~yst£(J!l i~ 9:~vel9ped ill 

term~ ~f ~he pq~~ts ~~~! Q? 0) a~4 .(ta, 0~ Q)~ T~~ d~sea~ce$ frq~ 

these p,o~J:l~S ~9 an ar1>itr~:r:¥ poin,~ (~1 , xz, x3) a:r~ r 1 a~~ ·r?, 

respectively. Tqe distance between the arbitrary point an~ t~e ~1-axis 

is h. Since lh> is pe~pendicular to lx1>, it is parallel to the x2, 

x3-p+ane .. T~us, the ma~ni~ude o~ ~ts pr~~~~~ipn Oil ~he ~~'*)~plane is 

also h. The angle between the projected h vector and li2> is 9. 

Thus, we immediately ~~ve 

( A-101) 

and 

( A -102) 

Th~ in~ers~stfqn of ~he h · ~~ctor w~th t~~ *1-~xi~ i~ ~F t,~~ pQint 

(x1 , Q~ Q)~ The dist~nce from th:f..s poiqt to (-~, 0, O) is .. latxl. The 

trian&l~ fqrme,~ ~~ th~ points (~a~ 0, 0), ~~l~ x2, , 3) a:n4 (x1 , 0, 0) 

is a :dght trfai\~f~ w~~q ~~e right ~p~:J:e ~t (~1 , 0 r 0), 

Pytha&0r~n r~l~ti~n 

( A -10~) 
2 r· '1 ,,. 

Thus, by; the 
' (; ' . . ~ ) . 



Similarly, for the triangle formed by the points (+a, 0, 0), (x1 , x2, x3) 

and (x1 , 0, 0), 

r a -lo4> 

2 2 2 
~ h + a - 2ax1 + x1 

If we subtract ( A -104) from ( A -103), we obtain 

or 

( A -;1.,05) 
'. 

where 

< A. -~10~) 

and 

( A-lQp 

. 2 2 
r ·-r' l. •2 

X.], '? .. , 4a" 

= a~'ll 

-~ 
rl+r2 

= 2a 

= 
rl.-r2 , 

2~ 

I_f we ~~d ( A -:-104) and (. A -103), we obtain 

2 . 2 '2 2 
~ 7h + ~a + x1 

or 



( A -10S) 

2· 2 
2 r1+r2 2 ·2 
h=--··-a-x· 

-

2 1 

. 2 2- . . i : 2 . . .. 4 ·. . 4 . ~- 2 2 ; 4 
Sa r 1 +Sa r 2 - 16a_ ~ r 1 + 2r1r 2 - r 2 

16a2 

[by ( A -105)], 

. '· . ; 

.. <rf'·~·2tir2 +·.r~- 4~~> (4a
2 ~-r~ +·2i1r 2 - !=~) 

16a2 

[by ( A -106) 
and (A -107)] • 

Thus, by ( A_:-lOS) ;. -.( A -101) and ( A -i02), 

( A -i09) 

and 
·,' 

( A -110) . 2 -1/2 . 2 1/2 
x3 = a(~ -1) (1-TJ ) sin a . 

In order to_· use ( A·-8_8) for the mutual _orthogonal:i.ty _t~st, we must 
. : . . . 

first derive the partial derivatives matrix. Thus, 

A-32 
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( A -111) . 

ax1 _ 
a~ .. all 

. . . . ~ : 

ax2 - s<1=r/>-
1

'
2 

cos 9 _ax2 ·= -cin<s2~1) 112 'cos 9 . aaxe2 a .-a(~2-1)1/2(1-T)2)1/2 sin 9 
a~ . (~2_1)1/2 · . art · .< 1=,?>~/2.. · 

ax3 = a~(l,-!)2)1/2 .sin 9 ax3 - -aTJ(s2-1)1/2 si~ e ax3 = a(~2-1)1/2 (1-i12)1/2 cos 9 
a~ (~2:_1)_1/2 ·,. _art - .. · < 1~2> 1/2 · · · a9 

from which we derive 

( A ·112). Y . 2 t:' 2~ . 2 9 ' 22:' i 2 9 
~ ~ a ll<o -. a <oll cos - _a <oll s ~ <oll . . . ' . 

.. 2 . 2 
= a ll~ - a ll~ 

= 0 ' 

( A -113) 
2 2 . : . . . . . . '2 ' ;2 . . _: . . 

Y~9 = -a ~(1-T) ) cos 9 sin 9 + a ~(1-T) ) sin 9 cos 9 

= 0 ' 

and 

( A ;_114) 
2 2 . 2 2 . 

Yll9 = a ll(~ -1) cos 9 sin 9 - a ll(~ -1) sin 9 cos 9 

= 0 • 

ci-t:' 

A .-33 
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( A- 115) 

(A -116) 

( A -117) · 

and 

( A -118) 

'·, .. ·~ 

Thus, 

. ' ( A -119) 

[ 
2 2 ' 2] • a (~ -1)(1-T} ) 

' .. ,. . 

. ' .• 

' ,· 6[ 2~2 2 + ~2 . ~2 212 
=aT}~ -T} ~ -~T} 

6 2 2 2 
= a [~ - T) 1 

' ·' 3 2 . 2 · , d't · = a [ E; - Tl 1 dE; dT) de 

· ... 
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E. EVALUATION OF ATOMIC INTEGRALS 

Since every atom beyond hydrogen constitutes a multi-body problem, 

( A -9) cannot be solved for atoms as well as for molecules (except for the 

hydrogen atom, of course). It is, therefore, necessary to intr9duce approxi-

mations for the atomic orbitals. For this p~rpose ~e have used what are 

known as 'Slater orbitals' (63, 64; 6~. The rules for setting up Slater 

orbita~s are fairly co~plica.ted since they are used for any:~· orbital for. 

any atom. Since we shall be interested in just 2p-orbitals, we·shall 

consider only the rules for th~s.e.orbitals. 

The Slater orbitals are hydrogen-like.orbitals which have been modifi~d 

to take into account the partial shielding of the nucleus by the other 

electrons in the atom. In units of a full electron charge of 1.00, for 

2p-electrons the shielding factor is 0.85 for 'each ls electron and 0.35 

for each of the other 2-she11 electrons. With the 'effective nuclear 

charge', w, the 2p-orbitals are give~ by 

( A -120) 
-wr/2 e 

where N2p is the normalization factor, xj is the j-th Cartesian coordinate, 

r is spherical polar radial coordinate and is in units of the Bohr 
. -11 . 

radius (5. 29 x 10 . meters). 

For carbon the nuclear charge in electron units is 6. There are two 

ls-electrons and three other 2-shell electrons. Thus, 

( A -121) w(carbon) = 6 - 2 x 0.85 - 3 x 0.35 

= 3.25 . 



Similarly, ·.: .. ' 

. ( A -122) W(nitJ;ogen) ·"" ·7 - 2 X 0.'85 - 4 X 0.35 

a 3.90 , 

~nd 

( A. -1~3) w(oxygen) "" 8 - 2 .x 0.85 .'":' 5 x 0.3,5' 
·' . ' ") . . . . 

... 4.55 • 

·· ... , The form o.f ( A -120)' indicates· that the same normalization factor 

is used for all three 2p~functio.ns. We shall now demonstrate that this 

is ind~ed the' case. For · j = 1 · 

( A .,-124) [by ( A -129) 1 

2 1 2 2 9 2 -wr d = N1 · r sin cos . • e· · ~ [by ( A -92)] 

2 2 2 2 -wr 2 = N Iff r sin 9 cos • e r sin 9 dr.d9 d• 1 
.. [by ( A- 100) 1 

= N~ Iff r 4 sin3 9'co~2 • e-wr·dr d9 d• 

2 
2
" 2 · " · 3 oo 4 -wr = N1· I ·cos · 9 d9 I sin: ~ d9 I r e dr 

. 0 0 0 . 

~ N~~ + s1n4ztJ:n· [-cos a+ cos~ aJ: 

[-e:;r {(wr) 4 + 4(wr) 3 + 12(wr) 2 + 24~ +. 24}1: 

2 . 1 1 5 
= N_1 [.~] • [1-- + 1- -] [w- (24)] 

3 3 

,. N~[~"1 [24w-5] 

= N2[32n w-5] 1 . 
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when the integral is set equal to one, 

{ A -125) ., 5 1/2 
N

1 
=: [w./32tr1 .. , ~ .• , 

For j • 2, 

[by ( A -120) 1 { A -126) 
* . 2 ·· : 2· -wr· · 

/.u ud't = N 2 f x
2 

w · d't 
, . . ·. ~ ~- r; .. .. 

2 2 2 2 -wr . · 
.. ~2 f r ~in • e. sin-;,~ ~ ~ ' .4't . .[by '{- A -92) 1 

. . ~· 

· 2 2 2 2 -wr2 = N2 Iff r sin- 9 sin ~- e . r, sin;.9 dr:d9 d~. · 

[by {A. -100) 1 

= N~ Iff r
4 

sin3 9 sin
2 ~- .e-~ dr,d9i:-.d~.· 

· .. ' 

. . 2Tr Tr 00 

2 2 . 
d~ I sin 3 

9 49 f 
4 -wr = Ni f sirt· ~ r· e dr 

. 0 0 0 
'.: ·, ·. 

= N!.t- sin 2~]2Tr [~1 -5 
. ~ .. ·4 3 . 

[24 W, ) 

. . · 0 ., 

A -:-37 
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For j = 3, · 

( A ~127) * 2 2 .-wr J u -ud't' = N
3 

f x e d't' 
3' 

N
2 2 2 -wr = 3 f r cos a e d't' 

2 2 . 2 . 2 
i:: N ff[ r '.,cos a e-wr r sin a dr dS diJ> 

3 

2rr t'r oO 

[by ( A -120)] . 

[by ( A-92)] 

·[by ( A -iOO)] 

2 - N 1 d~ f 3 
2 4 -wr 

sin a cos a,da f r e dr 
0 0 0 

Fo·r the· evaluation of overiap integrals· we must consider the case 

in which the values of · w are the .same for the two atomic orbi,tals and 

the case in which the values of w are different. Let w
1 

be :the value 

of w- for the orbital at (-a 0 0) and. w2 be the value_._ of w for . , , . . 

the orbital at (+a, 0, 0). For the salte of specificl.ty we shail assume 

( A-128) 

·where 

A ,-38 



.... 

'fhe factor of t~o in ( A ·-128) is for convenience as wil,l be seen shortly. 

We shali assume .tnat the atomic otb,itals ar~ 2p
2
-orbitals. By 

( A .-i2()), 

-w r /2 -w· t /2 
·'< A. -l·~··o·> <·· 1· > r· ~· ·

2 2 N 1 1 d. u·2 u1 . = 1'~2x2 e 
1

x
2 

e · 't' 

[by (A -:1.28)] 

2 2 2 2 -wl(rl+r2)/i -t26 
= N1N~ fa (~ -1)(1~ ) cos 9 e e . d't' 

·[by ( A -109)] 

2 2 2 2 = N1N2 Iff a (~ -1)(1-, ) cos 9 

-wl(rl+r2)/2 -r26 3 2 2 
• e · e a ( .; -T'l ) d~ dT'J de 

[by ·( A -119)] 
5 .. 2 . 2 2 2 2 

:= N1N2 a· 1 ff (.; -1)'(1~ )(l; -T'J ) .cos.·. a. 

_-w
1 

(r
1
+r2)/2 -r

2
6 

• e e . ~.; dTl :d ~ 

By ( A •106) and f A •107) · .. 

and 
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or 

( A -132) . ·' 

Furthermore, 

( A -133) 

Thus, ( A -130) becomes· 

( A -134) 

r 
·' . 2 . l;-TJ =- .. 

a 
.. ·. 

·,,, 

+1 . 
. r [!;·2 - (i;;2"tl)~2 + ·r,4] eaT)6 dTJ dl; 

-1 

5 oo _-(wl+6)al; ~ .. +1 
= N

1 
N

2 
a Tf f · . e (l; -1) f . 

+1 -1 

we shall consider three cases of ( A -134) both u
1 

and u
2 

are 

.... ,i 

carbon orbitals, ~l· is .a carbon orbital and. !-1 2 is, a nitrogen orbJ~a~, 

and ul is a carbon orbital and u2 is an oxrgen orbital. 

A :-40 
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F. THE CARBON-CARBON OVERLAP INTEGERS 

For the carbon-carbon ca~e 6 = 0 in ( A -134) 

( A -135) 

where the subscript '1' has been replaced by the subscript 'C' for carbon. 

At this· point it is necessary to invoke the standard indefin~te integral 

ax 
( A.;.136) 1 xn eax dx = en+l [(ax)n-_;·n(ax)n-l + ~(n-l)(ax)n-2 

a 

+ (-l)n n! 1 

A -41 



where.: n is a non-negative integer. The three integrals of, interest are 

.. ( A -137) 

. 00 

oo -w a~ -w a~~ 
r , .C d~ -1 C e, ., =- e . 

. ·.f:t · ·. ' wca +i 

- '· .. 

oo 2 -wca~ 
( A -138) f ·~ e 

and 

(A -139) 

,·. tl :. -· '. 
I •. , • '• 

-~ ~·· 
00 

r ~4 
+1 

:_: 

We now evaluate ( A -135) as 

A-42: 
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2 5 

( A ~140) <u21.;'
1 
> ~ 4

Ni; "[ 5 e ~wca {(~~a) -1 + '4 (;;~~i -2 ~ i2 (~caj-3' 

+ 2(wca)-3} + e-wca<wca>-1] 

= 4N~;5• [•-wca] [~<wca>-2 + ~8(wca>~3 + uo<~ca>-4 

Since 

{A -121) we = 3.25 ' 

and 

(A -125) 
···: 

·( A -141) 

.. : 

= 24.173 
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. .. . -10 
we shall be int~rested in carbon-carbon distances from 1.19 x 10 

-10 . 
meters to 1.47 x 10 meters. The parameter a is half this distance 

measured in Bohr radii (5.29 x 10-ll meters). Thus, the range of interest 

of a is 1.12 to 1.39. The values of $ for these values of a are 

listed in TABLE A -1. The carbon~carbon distance in benzene is 1.39 x lo-10 

meters. In Bohr radii this is 2. 628. Thus, a for benzene is 1. 314. The 

value of $.in TABLE A-1 for a= 1.315 is 0.248. This is the reason 

that the 'traditional' value for the carbon-carbon overlap integral is 

taken as i/4. 

,!; 
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TABLE A-1 
''• ,: . 

CARBON-CARBON 

OVERLAP INTEG~LS 
.. 

... . . 
a (in Bohr radii) $ a (in Bohr radii) $ 

..... 
'• 

,. . . 

. . -: ~ •:. 1.120 0.345 1. 265 ,, ().;2.71 ·, , . . " 

1.125 0~343 1. 270 0.268 .. '· . ' " .. ... ~ .. 
" 

1.130 0.339 1.275 0.266 

1.135 0.337 r. 280. . ~ . .: . 0. 26'4 : 

1.140 0.334 1.285 0.261 .. 

1.145 0.332 1.290 0.259 

1.150 0.328 1.295 ' o. 257 

1.155 0.-326 1. 300 0.254 

1.160 0.323 1.305 0.252 ; 
... 

1.165 0.321 1.310 0.250 

1.170 0.318 1.315 . d. 248 

1.175 0.315 1. 320 0.246 

1.180 ,0.313 1. 325 0.244 

1.185 0.310 1. 330 -0.241 

1.190 0.307 1. 335 0.239 

~.195 0.305 1.340 0.237 

1. 200 0.302 1.345 0.235 

1.205 0.300 i.350 0.233 

Li10 0.297 1. 355 0.231 

. 1. 215 0.295 1.360 0.228 

1.220 0.292 1. 365 0.227 

1. 225 0.290 1. 370 0.224 

1. 230 0.287 1. 375 0.222 

i. 235 0.285 1.380 0.220 

1.240 0.282 1. 385 0.219 

1.245 0.280 l.J90 0.216 

1. 250 0.277 1.395 o. 214 

1. 255 0.275 1.400 0.213 

1. 260 0.273 
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