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NONEIKONAL EFFECTS IN THE SPIN~DEPENDENT

PROTON-NUCLEUS INTERACTIONS

by
M. Bleszynski and P. Osland

ABSTRACT

Simple expressions are derived for the non-
eikonal corrections to the Glauber diffraction
approximation for the proton-nucleus scattering
amplitudes, with the spin-dependence of the pro-
ton-nucleon amplitudes taken into acocount. As
an example, we study the numerical importance of
these corrections for elastic p-°°Ni Scattering
at 800 MeV. The polarization and the spin rota-
tion, which are sensitive to the relative phase
cof the amplitudes, are at small angles changed
by typically 5-10%.

High-precision experiments on proton-nucleus scattering have recently been
performed1 at medium energies. It is hoped that because of the high precision of
the data, they may be used for studies of effects like the difference between the
proton and neutron density distributions in nuclei, nuclear correlations, and
also for extracting parameters of the proton~nucleon scattering amplitudes.
Therefore, very accurate methods of analysis are called for. It is the purpose
of the present paper to present such methods.

The diffraction approximation by Glauber? has proven to be very successful
in the interpretation of high-energy hadron-nuclear interactions3 and is also a
remarkably good first approximation at medium energies (on the order of 1 GeV).
However, finite-energy corrections are needed here, the deviation from eikonal
propagation being the most important effect that has to be corrected for.?

Various modifications to the diffraction approximation have recently been
p]:oposed.‘l—9 With more accurate approximations to the free-wave projectile



propagator than the eikonal one, these modified multiple-scattering theories are
believed to be more reliable methods of data analysis at medium energies. To
order 1/k in an expansion of the free-wave propagator in reciprocal powers of
the projectile momentum, these nethods4-8 give practically the same result for
the corrections that come from the region of nonoverlap of the ranges of inter-
action of the projectile with the target nucleons. But they differ by their
treatment of the regions of overlap. These treatments of the overalp regions
correspond in momentum space to different off-shell extrapolations of the projec-
tile-nucleon t-matrix, which in turn is intimately connected with the treatment
of the reflection terms (terms describing mutliple scattering of the projectile
fram the same target nucleon).

A systematic way of correcting the Glauber amplitudes at mediun energies is
the eikonal expansion procedure of Wallace.5 This is based on a similar off-
shell extrapolation of the proton-nucleon t-matrix as that used in the original
work by Glauber, namely upon the assumption that the t-matrix is generated by a
local potential. Unfortunately, the resulting expressions fc. the noneikonal
corrections become rather lengthy and difficult to evaluate in the case of a
realistic nuclear density and a spin-dependent proton-nucleon t-matrix.

On the other hand, it has been shown10 that the particular assumptions
adopted for the off-shell dependence of the projectile-nucleon amplitude have
little effect on the noneikonal corrections, provided that the off-shell ampli-
tude decreases sufficiently fast (e.g., exponentially) as a function of mamentum
transfer squared. In particular to order 1/k the noneikonal corrections ob—
tained in the model proposed by Bleszynski and Jaroszewicz’
almost indistinguishable from those of Wallace.® There are simple reasons for
this. The daminant contributions to the corrections came from the nonoverlap
region where the off-shell dependence of the projectile-nucleon t-matrix is ir-
relevant, ard to order 1/k the reflection terms vanish in this region. One may
thus use a much simpler procedure than that of Wallace5 to obtain the finite-
enerqy corrections to the diffraction approximation. The procedure we have
adopted is the same as that of Ref. 7 and is in spirit similar to the approach
by Gottfried.4 It is based on the following approximations. (1) The motion of
the nucleons in the target nucleus is, during the collision process, negligible
(the "frozen-nucleus" approximation); (2) the projectile-nucleon t-matrix is
local (this is different than assuming a local potential); (3) the reflection
term can be neglected; and (4) for the free-wave propagator we use a more accurate

are quantitatively
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approximation than the eikonal one. For k -+ «, the approximations 1-4 lead to
the high-energy results of Glauber.10

In the approach specified above and for a spin-zero nucleus, we have found
very simple expressions for the proton-nucleus elastic-scattering amplitudes.
These contain all corrections to order 1/k with respect to the leading Glauber
amplitudes and allow for spin-dependent proton-nucleon interactions. All pre-
vious calculations of such corrections are valid only for spin-independent inter-
action.

In order to determine the corrected proton-nucleus scattering amplitudes,
let us expand the free-wave propagator in powers of 1/k, where k is the average
of the initial and final momenta for the overall scattering. We retain only

the first two terms;

n,
G=0G + 8G . (1)

The eikonal propagator Ge ik and the first-order correctinn are given by

<f'i(;eik]i:> = % b(z' - 2) X 2 g2 @0 _ B
and
<1+"]6Gf;> = 4—';—2— §(z' - z) + (2' - 2)6(2' - 2) (é—Z— + Vé)ll (2)
k@) 2@ _ gy
in which Z is the overall momentum transfer, and where ? = gg,zl and similarly
r= 'B',z'l

The proton-nucleus t-matrix operator for scattering by a nucleus of mass
number A may then be expressed in terms of the proton—-nucleon t-fmatrix* operators

t. as
3

*The relation between the laboratory frame amplitwle f and the t-matrix elements
is
<P |t| pr=-4n £ B-p) .



A A " A n n
T = Zt_-‘+ Zt.Gtk+ )y t; G f G t; + term of order A
=L ) 2ARH
#£73 (3)

The pp(pn) t-matrix operator involves 5(6) indepenclent amplitudes. Fortunately,
for the elastic scattering of protons by spin-zerc nuclei with A x 10, only those
amplitudes are important that are independent of the spins of the target nuc-

leons.ll We thus decompose the proton-nucleon t-matrix operator as
-»> - J_(E;—i;')-f -> -»> > "y -> -> -
<p'ltylp> = - 4m e j |A; - p") +omfp-picip-p
(4)
where the index j labels the target nucleons, and n =k x (p - p')/|p - E;'I
(Spins are quantized along k .) In configuration space we have
- -> - -> > -
<r'|t. = &3 - r) t. - r. ’
r [tJIr> (r' - r 5 r;) (5)
in which
> > 1 s N o @] —ig(T-r.)
tj(r - rj) =-5n d’q gAj (q) + man(q) 'dff e i, (6)
and where n, = k x b, with b being the component of T that is orthogonal to k .
A profile operator y j can be defined in terms of the t-matrix operator by
7 - -> > ->
dz t.(r - r,) =- 21 . - s8.) .
l 2 6@ - 7)) ik vy B3 (7)
We have also found the following identi-ties useful in evaluating Eg. (3).
0(z1 - 22) ..... 6z, -2z) =1, (8a)
(all permutations of zi)
- -> > 3
lti(r -r), 4 (- xk)] =0 , (8b)

and



e - 2

fdzb e18/2°b £ ) (% + vé) £,B) eil/2°b _ /d’-b by 6@ - T ed) .
(8c)
(The last relat.ionlo holds for f; and £, such that f, (E) £, (1_5) vanish for b -~ <.

Now inserting Egs. (1), (2), and (5) into Eq. (3) and using the identities,
Egs. (8), we find for the t-matrix operator for an A-body target that

>
> . 'K-‘ A S
KelTlK;> = - 2ik [ @%b P T, Ll N (9)
where ri, .. *A (rl = {gi,zi}) are nucleon coordinates. We decampose the pro-
’\J
file operator T as
Yoy > > > -
FBif1, «ouy Ty) = TBS1, ..y 5) + 0T ®:rY, ..., ?A) , (10)
in which the familiar
> > > A > >
rk:;s , ‘”’SA)=1_ N1 1-vy.(b-s.) (11)
j=1 ] ]

depends only on transverse coordinates. The correcticn owing to noneikonal propa-

gation can be written

STBiTr, vy Tp) =m0 BFF) M [1- Y, ® - 5)] . (12)
o 50,0 J
With ¢ = {b,z}, *' = b,z'}, w o can be written as
> > —>) "‘7(1 lt(_’—_))t (—>_—>)
m“rm(b,rm,rn -5’0 VA ' T L)t (-

> > > . . -> > 2 ]
+[vb tm(r rm) Zdz 2' Vb tn(r rn) + (m <> n)
(13)
The Egs. (12) and (13) are the main results of this paper. It should be

stressed that they were derived with spin-dependent proton-nucleon amplitudes
and without any assumptions about the form of the target density. The results



are valid for different proton-proton and proton-neutron t-matrices and for dif-
ferent proton and neutron density distributions in the target nucleus.

The special case of an independent-particle model for the target nucleons is
of great practical interest. 1If we further assume that the single—nucleon den-
sities p (r ) and the proton-nucleon amplitudes A (q) and C (q) have spherical
symnetxy, mre explicit results will be relata.ve]y simple. For the purpose of
g-ving such results, let us define

50 = 7 [&@ne ) [ dae 5 K oa@
(1)
_ 1 3 (r r /
Hk(r) = Wﬂ?] darkak(rk)f d’q e Ck(Q) ’
g b = [az G (),
" (15
hk(b) = fdz Hk(r),
and
B z1-[a% a@) v6-3)
Sy kP Y Sk
(16)

1-g, () -idn 2h b .

With Z(N) protons (neutrons) all having the same density pp(pn) , the correction
8T averaged over the nuclear density becomes

<6T> = o [z(z 1, 6) sz-z(g) SN @) -
oo, BIETE) SLE 4w -1 o, &) LG SR
The decomposition
ey ) = o, ) +i o 8 ) (18)

gives for the spin-dependent and spin-independent parts



[etiN

g ®) = {dz 1+ ) o0 6,m] - |m Bw||g #w)
]H&)ﬁH(m+|h+b )%wddﬁ H&)+&*+4>

and

(19)

By () :Z dz l[a% [G!((r) HQJ(r)] +b d—% IGk(r) £ Hg(r)] + (k<> 1)

The proton-nucleus scattering amplitudes in the nucleus laboratory frame may
be defined by the decomposition

ikb

F(A) + 0-n G(A) = ;—k; fdzb e <T + &>, (20)

where ; = ﬂ X A . A decompnsition of <8I'> into spin-independent and spin-depen-~
dent parts thus furnishes the corrections to the eikonal amplitudes F (A) and
Geik(A) . This evaluation is straightforward but results in lengthy_expre551ons,
which we shall not reproduce nere.

In order to investigate the relative importance of the <8T'> term, we have
calculated this noneikonal correction for the scattering of 800-MeV protons by
various nuclei. 'The remainder of the paper is devoted to the presentation of

same results for “®Ni. We have used

a@ = S0 e 2632
and

C(y) = . A;i ' ac) exp (- % BcazJ '
with Opp = 47.3 nb, Oon = 38.0 nb, s = 0.056, %n = -0.20, Bpp = 0.18 fm?,
Bpn = 0.24 fm?, App = xpn = 0.8 fm’, %cpp = cpn = ~1.0, ecpp = BC‘pn = 0.6 fm?,

(cf. Ref. 11) and three parameter density distributions

p(r) = * P (1 + wr?/c? )/{ 1+ exp[\r—c)/a]



with w = -0.14, a = 0.42 "m, and c = 4.34 fm for protons and w = 0.14, a = 0.42
fm, and ¢ = 4.20 fm for neutrons.

The calculation of the diffraction approximation contributions Fe ik () and
Gyik (&) is similar to that of Ref. 11. We include the effects resulting fram the
coupling of the proton with the nuclear Coularb field like in Ref. 1l.

Iet us stress here that the aim of our calculation was to check the impor-
tance of the noneikonal corrections to the Glauber model, and we did not attempt
to find the best fit to the data. In fact in this calculation, we have used the
parameters cf A and C amplitudes which were found in Ref. 11 to give the reason-
able Glauber-model fit to the polarization at small momentum transfers.

Figure 1 shows the importance of the noneikonal corrections for the polariza-

tion
- Z2Re[F(A) G*(A)]
P(2) [F(0)]Z +[G(a) |2 (21)
and for the spin-rctation function]'2
_ 2Im[F(A) G*(4)]

At small argles the corrections are relatively small (<10% in the region up to
the first maximum of the polarization). However, at larger angles they become
more important and are particularly significant around the diffraction minima.
For lighter, as well as for heavier nuclei, similar results are obtained. The
relative importance of the corrections appears to have only a weak A-dependence.

A significant part of the corrections to P(A) and Q(A) is simply due to a
chenge in the relative phase of F(A) and G(A). To a rough approximation, this
relative phase is given by the relative phase of A(0) and C(0). Consequently,
the importance of the noneikonal corrections to either of P(A) or Q(A) depends -
upon the relative phase of A(0) and C(0), which at the mament is not very well
known.ll Clearly these corrections should be included in a careful analysis of
the data, whether the aim is to determine the proton-nucleon spin-orbit erplitude
or to study the neutron density distribution.11

In conclusion, let us point out a few advantages of the formalism presented
here. It does not require the potential formulation and is technically much
simpler than the methods of Ref. 5. It is also very flexible with respect to
other corrections, like those owing to correlatians, charge exchange, ard the
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Fig. 1.
The polarization P and the spin~rotation function Q at 800 MeV calculated accor-
ding to the Glauber formula (broken line) and with the noneikonal corrections
(solid line). Data are taken from Ref. 1. Parameters of the NN amplitude and
of the target density are given in the text.

intermediate propagation of heavier baryons. In contrast to the KMT approach,13

the difference between the proton-proton and proton-neutron interactions is
treated exactly, and therefore, it is valid also for light nuclei.
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