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NONEIKDNAL EFFECTS IN THE SPIN-DEPENDENT

PROTON-NUCLEUS INTERACTIONS

by

M. Bleszynski and P. Osland

ABSTRACT

Sinple expressions are derived for the non-
eikonal oorrections to the Glauber diffraction
approximation for the proton-nucleus scattering
aitplitudes, with the spin-dependence of the pro-
ton-nucleon amplitudes taken into account. As
an example, we study the numerical importance of
these corrections for elastic p-58Ni scattering
at 800 MeV. The polarization and the spin rota-
tion, which are sensitive to the relative phase
of the amplitudes, are at small angles changed
by typically 5-10%.

High-precision experiments on proton-nucleus scattering have recently been

performed at medium energies. It is hoped that because of the high precision of

the data, they may be used for studies of effects like the difference between the

proton and neutron density distributions in nuclei, nuclear correlations, and

also for extracting parameters of the proton-nucleon scattering amplitudes.

Therefore, very accurate methods of analysis are called for. It is the purpose

of the present paper to present such methods.
o

The diffraction approximation by Glauber has proven to be very successful

in the interpretation of high-energy hadron-nuclear interactions and is also a

remarkably good first approximation at medium energies (on the order of 1 GeV).

However, finite-energy corrections are needed here, the deviation from eikonal

propagation being the most important effect that has to be corrected for.

Various modifications to the diffraction approximation have recently been
4-9proposed. With more accurate approximations to the free-wave projectile



propagator than the eikonal one, these modified multiple-scattering theories are

believed to be more reliable methods of data analysis at medium energies. To

order 1 A in an expansion of the free-wave propagator in reciprocal powers of
4—8

the projectile momentum, these methods give practically the same result for

the corrections that come from the region of nonoverlap of the ranges of inter-

action of the projectile with the target nucleons. But they differ by their

treatment of the regions of overlap. These treatments of the overalp regions

correspond in momentum space to different off-shell extrapolations of the projec-

tile-nucleon t-matrix, which in turn is intimately connected with the treatment

of the reflection terms (terms describing mutliple scattering of the projectile

from the sane target nucleon).

A systematic way of correcting the Glauber amplitudes at medium energies is

the eikonal expansion procedure of Wallace. This is based on a similar off-

shell extrapolation of the proton-nucleon t-matrix as that used in the original

work by Glauber, namely upon the assumption that the t-matrix is generated by a

local potential. Unfortunately, the resulting expressions fc. the noneikonal

corrections become rather lengthy and difficult to evaluate in the case of a

realistic nuclear density and a spin-dependent proton-nucleon t-matrix.

On the other hand, it has been shown that the particular assumptions

adopted for the off-shell dependence of the projectile-nucleon amplitude have

little effect on the noneikonal corrections, provided that the off-shell ampli-

tude decreases sufficiently fast (e.g., exponentially) as a function of momentum

transfer squared. In particular to order 1 A the noneikonal corrections ob-

tained in the model proposed by Bleszynski and Jaroszewicz are quantitatively

almost indistinguishable from those of Wallace.5 There are simple reasons for

this. The dominant contributions to the corrections come from the nonoverlap

region where the off-shell dependence of the projectile-nucleon t-matrix is ir-

relevant, and to order 1 A the reflection terms vanish in this region. One iray

thus use a much simpler procedure than that of Wallace to obtain the finite-

energy corrections to the diffraction approximation. The procedure we have

adopted is the same as that of Ref. 7 and is in spirit similar to the approach

by Gottfried. It is based on the following approximations. (1) The motion of

the nucleons in the target nucleus is, during the collision process, negligible

(the "frozen-nucleus" approximation); (2) the projectile-nucleon t-matrix is

local (this is different than assuming a local potential); (3) the reflection

term can be neglected; and (4) for the free-wave propagator we use a more accurate



approximation than the eikonal one. For k -+ °°, the approximations 1-4 lead to

the high-energy results of Glauber.

In the approach specified above and for a spin-zero nucleus, we have found

very simple expressions for the proton-nucleus elastic-scattering amplitudes.

These contain all corrections to order 1 A with respect to the leading Glauber

amplitudes and allow for spin-dependent proton-nucleon interactions. All pre-

vious calculations of such corrections are valid only for spin-independent inter-

action.

In order to determine the corrected proton-nucleus scattering amplitudes,

let us expand the free-wave propagator in powers of 1/k, where k is the average

of the initial and final momenta for the overall scattering. Vfe retain only

the first two terms;

<SG . (1)

The eikonal propagator G ., and the first-order correction are given by

<r'JGeik|r> = j 0(z' - z) e* {z'~z)62 (£• - S)

and

<r'|6Gir> = -̂
4k2

<5(z' - z) + (z1 - z)6(z' - z) (~ + v£)j (2)

in which A is the overall momentum transfer, and where r = b,zl and similarly

The proton-nucleus t-matrix operator for scattering by a nucleus of mass

number A may then be expressed in terms of the proton-nucleon t-rnatrix* operators

t. as

*The relation between the laboratory frame amplitude f and the t-matrix elements
is

<p' |t| p> = - 4TT f (p - p1) .



A A ^ A ^ %
T = T* t • + H t .G t + £ fc-iGttGto+ term o f order A .

j=l -1 Mj 3 ^ W j 3 ^ a

(3)

The pp(pn) t-matrix operator involves 5(6) independent anplitudes. Fortunately,

for the elastic scattering of protons by spin-zero nuclei with A % 10, only those

anplitudes are inportant that are independent of the spins of the target nuc-

leons. We thus deconpose the proton-nucleon t-matrix operator as

(4)

where the index j labels the target nucleons, and n = k x (p - p')/|p - p 1|

(Spins are quantized along k .) In configuration space we have

<r* |tj!?> = 63 (?' - r'i tj (r - r\) , (5)

in which

(6)

and where n. = k x b, with b being the component of r that is orthogonal to k .

A profile operator y. can be defined in term; of the t-matrix operator by

J dz t.(r - r.) = - :> ik y. (b - s.) . (7)

We have also found the following identi-d.es useful in evaluating Eq. (3).

Z, (zi - z2) 9(z - z ) = 1 , (8a)
(all permutations of z.)

t±(r - r ^ , t^ (r - r k)| = 0 , (8b)

and

4



|d2b e^72**5 f, (b) (£ + V*) f2 (S) e
iA/2'b = -/d2b e^*\fi (b) • V 2 (5) •

(8c)

(The last relation holds for fj and f2 such that fi (£) f2 (S) vanish for b -• °°.

Now inserting Eqs. (1), (2), and (5) into Eq. (3) and using the identities,

Eqs. (8), we find for the t-matrix operator for an A-body target that

<kf|T|JC±> = - 2ik | d 2 b e l J > b r ( b ; n , , (9)

where r i , . . . , r (r. = {s.,z.}) ane nucleon coordinates. We der^mose the pro-
ry, t\ 1 1 1

file operator r as

r(b;"ri, ..., rA) = T(b;si, ..., sft) + ST (b;P, ..., ?A) , (10)

in which the familiar

T(b;s , . . . f s.) = 1 - II fl - Y,(b - s , ) | (11)

depends only on transverse coordinates. The correction owing to noneikonal propa-

gation can be written

A . . . A

With r = (b,z), rf = {b,z'}, o> can be written as

(r " rn )

(13)

The Eqs. (12) and (13) are the main results of this paper. It should be

stressed that they were derived with spin-dependent proton-nucleon amplitudes

and without any assumptions about the form of the target density. The results



are valid for different proton-proton and proton-neutron t-matrices and for dif-

ferent proton and neutron density distributions in the target nucleus.

The special case of an independent-particle model for the target nucleons is

of great practical interest. If we further assume that the single-nucleon den-

sities P-j(r-J and the ptoton-nucleon amplitudes A. (q) and C. (q) have spherical

symmetry more explicit results will be relatively sirrple. For the purpose of

gJving such results, let us define

(14)

qk(b) = / d z (^(r),

7= J
(15)

dz

and

= l-g k(b) - i

With Z (N) protons (neutrons) all having the same density p (p ), the correction

6r averaged over the nuclear density becomes

<sr> = ̂  Jz(z - i) OJ ( Sp (b) S n ( b )
 (17)

2ZN w (bJSp"1^) sJJ"1^) +N(N -

•Hie decomposition

gives for the spin-dependent and spin-independent parts



i) K(r)

- |bV r )
Vr ) i)ai

s Vr)

a? V r ) + (k

and

v r ) ] + b d l k <r> + (k +-> a) (19)

The proton-nucleus scattering amplitudes in the nucleus laboratory frame may

be defined by the deoan;x>sition

F(A) o-n G(A) = ̂  J d2b <r (20)

where n = k x A . A decomposition of <<5T> jjito spin-independent and spin-depen-

dent parts thus furnishes the corrections to the eikonal amplitudes F -k(A) and

G ., (A) . This evaluation is.; straightforward but results in lengthy expressions,
eiK

which we shall not reproduce here.

In order to investigate v.he relative importance of the <8T> term, we have

calculated this noneikonal correction for the scattering of 800-MeV protons by

various nuclei. The remainder of the paper is devoted to the presentation of

some results for 58Ni. We havo used

lLexp(-iBq
2)

and

-f a

with a = 47.3 nfa, a n = 38.0 nib, a ^ = 0.056, a = -0.20, g = 0.18 fm2,
2 P" 3B p n - 0.24 fm
2 , A p p = p n = 0.8 fm

3, « C p p = a ^ = - 1 . 0 ,

(cf. Ref. 11) and three parameter density distributions

= 0.6 f m 2 ,

p(r) = wr2/c2)/ exp[(r-c)/a]



with w = -0.14, a = 0.42 fm, and c = 4.34 fm for protons and w = 0.14, a = 0.42

fm, and c = 4.20 fm for neutrons.

The calculation of the diffraction approximation contributions F .. (A) and

G ^(A) is similar to that of Ref. 11. We include the effects resulting from the

coupling of the proton with the nuclear Coulomb field like in Ref. 11.

Let us stress here that the aim of our calculation was to check the impor-

tance of the noneikonal corrections to the Glauber model, and we did not attempt

to find the best fit to the data. In fact in this calculation, we have used the

parameters cf A and C amplitudes which were found in Ref. 11 to give the reason-

able Glauber-model fit to the polarization at small momentum transfers.

Figure 1 shows the importance of the noneikonal corrections for the polariza-

tion

= 2Re[F(A) G*(A)1
| F ( A ) | 2 + | G ( A ) | 2

12
and for the spin-rotation function

= 2Br,[F(A) G*(A)]
| | 4

At small angles the corrections are relatively small (<10% in the region up to

the first maximum of the polarization). However, at larger angles they become

more important and are particularly significant around the diffraction minima.

For lighter, as well as for heavier nuclei, similar results are obtained. The

relative importance of the corrections appears to have only a weak A-dependence.

A significant part of the corrections to P(A) and Q(A) is simply due to a

change in the relative phase of F(A) and G(A). To a rough approximation, this

relative phase is given by the relative phase of A(O) and C(O). Consequently,

the importance of the noneikonal corrections to either of P(A) or Q(A) depends

upon the relative phase of A(O) and C(O), which at the moment is not very well

known. Clearly these corrections should be included in a careful analysis of

the data, whether the aim is to determine the proton-nucleon spin-orbit amplitude

or to study the neutron density distribution.

In conclusion, let us point out a few advantages of the formalism presanted

here. It does not require the potential formulation and is technically much

simpler than the methods of Ref. 5. It is also very flexible with respect to

other corrections, like those owing to correlations, charge exchange, ar.d the
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Fig. 1.
The polarization P and the spin-rotation function Q at 800 MeV calculated accor-
ding to the Glauber formula (broken line) and with the noneikonal corrections
(solid line). Data are taken frcm Ref. 1. Parameters of the NN amplitude and
of the target density are given in the text.

intermediate propagation of heavier baryons. In contrast to the KMT approach,

the difference between the proton-proton and proton-neutron interactions is

treated exactly, and therefore, it is valid also for light nuclei.
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