
Id ASTER
EXTENDING RELIABILITY:

TRANSFORMATIONAL TAILORING OF ABSTRACT MATHEMATICAL SOFTWARE

by

James M. Boyle

tpoournd by tha United Sutcs C m u n m ~ t Neither the
UniW Stlies nor tbo Unlted Stnlu Ikpntmcnt of w, na any of mcir wployccr, nor uiy of Umh
MIlmUM, ~ b m n m c t M , 01 k h ~rnpbYW1, IlUkCl

any nmaty, crpnr or implied, or uumcr .ny W

pnrsn dbclclad, or mpnano that ih urn would not

Prepared for

ACM/S IGNUM Conference on

Programming Environment for Development of Numerical Software

Pasadena, CA

October 18-20, 1978

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

Extending ' ~ e l i a b i l i t ~ :
T r a n s f o r m a t i o n a l T a i l o r i n g of A b s t r a c t Mathemat ica l Software*

James 'M. Boyle
Appl ied Mathematics D i v i s i o n

Argonne N a t i o n a l Labora to ry
8

I EXTENDED ABSTRACT I

I !

[Over t h e p a s t decade, ma themat i ca l s o f t w a r e
l i b r a r i e s have matured from s m a l l , u s u a l l y l o c a l l y - ;
assembled, c o l l e c t i o n c of o u b r o u t i n c s t o l a r g e ,

~connnercia l ly-provided l i b r a r i ' e s which a r e approach-
' i n g t h e s t a t u s of s t a n d a r d s [Ai rd ; Du Croz; Fox]**.:
' D e s p i t e t h e h i g h q u a l i t y of s u c h l i b r a r i e s and t h e '

' obvious economic advan tages of u s i n g r o u t i n e s whose '
development c o s t h a s been s h a r e d w i t h many o t h e r
' u s e r s , a p p l i c a t i o n s programmers, when asked: "Why
:don ' t you u s e r o u t i n e X I Z from IEISL, o r from NAG,

'

o r from PORT?" f r e q u e n t l y r e p l y t h a t l i b r a r y rou-
t i n e s a r e t o o g e n e r a l , t h a t t hey need a r o u t i n e :

:which t a k e s advan tage of s p e c i a l f e a t u r e s o f t h e i r :

'problem, and t h a t s i n c e they cou ld n o t u s e a li- .
b r a r y r o u t i n e w i t h o u t modifying . i t , t h e y might a s
, w e l l w r i t e t h e i r own r o u t i n e from s c r a t c h . . :

: : I n many, i f n o t most, i n s t a n c e s , t h e l a t t e r
a s s e r t i o n cou ld b e e a s i l y r e f u t e d by a s imple ,com- :
p e t i t i o n on s e l e c t e d t e s t problems. However, t h e '

need f o r a r o u t i n e adap ted , o r t a i l o r e d , t o a
p a r t i c u l a r problem is more d i f f i c u l t t o d i s m i s s . '

. I t u s u a l l y a r i s e s from c o n s i d e r a t i o n s o f e f f i c i e n c y , .
:which may range from t h e pe rce ived i n e f f i c i e n c y of .
t h e p resence of unused o p t i o n s i n a r o u t i n e t o t h e
p r a c t i c a l i m p o s s i b i l i t y of u s i n g a r o u t i n e whose
d a t a r e p r e s e n t a t i o n is u t t e r l y i n c o m p a t i b l e w i t h .

t h a t needed i n t h e r e s t of t h e a p p l i c a t i o n s pro- ,

gram.
j How, t h e n , can ma themat i ca l s o f t w a r e develop- ' ,

e r s answer t h i s need f o r ma themat i ca l a l g o r i t h m s '

, t a i l o r e d t o i n d i v i d u a l a p p l i c a t i o n s ? One approach
: e s p e c i a l l y a p p l i c a b l e t o compl i ca t ed problems, such
] a s s o l u t i o n of PDE's, i s t o p r e p r o c e s s a s p e c i f i c a -
: t i o n of t h e problem i n t o code which u s e s a p a r t i c u -
.lar s o f t w a r e package, a s i s done i n ELLPACK [Rice] .
: (I n some s e n s e , t h i s approach t a i l o r s t h e problem
(t o t h e s o f t w a r e .) For l i b r a r y r o u t i n e s i n s i m p l e r
'problem a r e a s , however, i t seems n e c e s s a r y t o . !

; t a i l o r t h e r o u t i n e t o t h e problem, s i n c e such rou-
: t i n e s c o n s t i t u t e o n l y a s m a l l p a r t of t h e a p p l i c a - :
/ t i o n program, and s e v e r a l r o u t i n e s w i t h p o s s i b l y
l c o n f l i c t i n g r equ i remen t s may need t o b e inc luded . ;

11n o r d e r f o r t h i s t o b e p r a c t i c a l , tailored ver- .
lsions o f such routines nncst be constructed nechan-

'

. 'icaZZy from very general l ibrary rout ines , Such ,

.mechanical program g e n e r a t i o n is n e c e s s a r y b o t h t o I
' i n s u r e t h a t t h e r e l i a b i l i t y of t h e l i b r a r y r o u t i n e
is p rese rved i n i t s t a i l o r e d v e r s i o n s and t o i n s u r e

. .+hat t h e i r c o n s t r u c t i o n is n o t p r o h i b i t i v e l y expen-
' s i v e [6] .

i For some t ime, t h e TAMPR sys t em h a s been i n '

.use t o c o n s t r u c t m u l t i p l e v e r s i o n s , o r r e a l i z a t i o n s ,
:of p r o t o t y p e programs f o r i n c l u s i o n i n ma themat i ca l
; so f tware packages themselves [4 , 5] . For t h e .
;LINPACK package, a s i n g l e p r o t o t y p e r o u t i n e was
;used t o c o n s t r u c t t h e e i g h t v e r s i o n s r e p r e s e n t i n g
i the combinat ions o f cornpiex o r r e a l a r i i h m e t i c , '. :

, s i n g l e o r doub le p r e c i s i o n , and c a l l s t o Bas ic
.Linear Algebra s u b r o u t i n e s o r i n - l i n e code r e p l a c e - .
ments f o r them [5]. I

; Recent r e s e a r c h w i t h TMIPR h a s focussed on :
:de termining t h e p r o p e r t i e s a p r o t o t y p e p r o g r a n

shou ld have i n o r d e r t o maximize t h e number and
) d i v e r s i t y of r e a l i z a t i o n s which can b e c o n s t r u c t e d '

from i t .
i

ABSTRACT PROGRAMS
I

The most impor t an t p r o p e r t y of a p r o t o t y p e
program is i t s abstractness. I n t u i t i v e l y , an
a b s t r a c t program c a p t u r e s t h e e s s e n c e of a numer-

'

i c a l a l g o r i t h m w i t h o u t c l u t t e r i n g i t w i t h i r r e l e -
; van t d e t a i l . The p resence of i r r e l e v a n t d e t a i l i n
' a ' p r o t o t y p e program hampers t h e c o n s t r u c t i o n of

d i v e r s e r e a l i z a t i o n s p r e c i s e l y because a g r e a t
d e a l o f a n a l y s i s must b e done t o v e r i f y t h a t i t

,

i s indeed i r r e l e v a n t .
The r e s e a r c h d i s c u s s e d h e r e h a s n o t p rogres sed

f a r enough t o c h a r a c t e r i z e a b s t r a c t programs i n
g e n e r a l , b u t examples from t h e a r e a o f l i n e a r
a l g e b r a have been s t u d i e d ' s u f f i c i e n t l y t o i l l u s -
t r a t e t h e i d e a s invo lved . Consider t h e code f r ag -
ment (1) :

. f o r i = n , l , - 1
f o r j = i + l , n

y (i) = y (i) - 3 (i , j) * y (j)
end
~ (i) = y (i) I U (i , i)

end

and t h e code f ragment (2) :

f o r i = n , l , - 1
y (i) = y (i) l U (i , i)
f o r j = l.,i71

~ (j) = y (j) - U (j , i) * y (i)
end

end

Now, b o t h of t h e s e f ragments a c t u a l l y perform t h e '

same computat ion, t h e s o l u t i o n of an upper- t r iangu- .
l a r sys t em o f l i n e a r e q u a t i o n s Uy=x (t h e f i n a l s t e p
i n t h e s o l u t i o n of a g e n e r a l l i n e a r sys tem whose
m a t r i x h a s been f a c t o r e d i n t o t r i a n g u l a r m a t r i c e s ,

L and U) . Fragment (1) is t h e u s u a l method of .
s o l v i n g such a sys tem; i t r e f e r s t o t h e m a t r i x U
by rows. Fragment (2) r e f e r s t o t h e m a t r i x U by .:
columns, and i s t h e r e f o r e more e f f i c i e n t t h a n
f ragment (1) on machines wi th v i r t u a l memory o r ,

w i t h b u f f e r memory, when t h e language i n which t h e %

program i s w r i t t e n s t o r e s m a t r i c e s by columns (a s :

does F o r t r a n) , s e e Moler [a] and S n i t h [l o] .
Cons ide rab le e f f o r t is r e q u i r e d t o s e e t h a t i

t h e s e two f r agmen t s a c t u a l l y perform t h e same
computat ion; even more e f f o r t would b e r e q u i r e d
t o d e v i s e a way t o t r ans fo rm (1) i n t o (2) automa- ,

t i c a l l y i n o r d e r t o b e a b l e t o make t h e (p o s s i b l y)
more e f f i c i e n t v e r s i o n a v a i l a b l e t o a u s e r . Thus

*Work performed under t h e a u s p i c e s o f t h e U.S.
Department of Energy.

**Numbers i n b r a c k e t s d e s i g n a t e References a t
end o f paper ; names i n b r a c k e t s d e s i g n a t e a u t h o r s
of o t h e r a b s t r a c t s i n t h i s P roceed ings .

. i

1 0) is not a s u i t a b l e p r o t o t y p e f o r t a i l o r i n g ,
i s i n c e i t c o n t a i n s d i f f i c u l t - t o - d i s c a r d i n f o r m a t i o n .
; a b o u t t h e row-or iented v e r s i o n of t h e program,
which h a s . no th ing t o do w i t h t h e s p e c i f . i c a t i o n o f

i t h e a l g o r i t h m f o r t h e s o l u t i o n of . t h e l i n e a r sys- j
1 tem (s e e a l s o Smith [l o] . j i At what l e v e l of a b s t r a c t i o n , t hen . ' i s such
I i r r e l e v a n t i n f o r m a t i o n abou t how s t o r a g e is 1 r e f e r r e d t o a b s e n t from t h e s p e c i f i c a t i o n of t h e
j a l g o r i t h m ? It is a b s e n t when t h e a l g o r i t h m is j
I s p e c i f i e d i n terms of m a t r i x (r a t h e r than m a t r i x i
I e l emen t) o p e r a t i o n s . Thus t h e a b s t r a c t r ep resen - .
! t a t i o n of t h i s a l g o r i t h m is (3) :

- 1
x = u y j

!

i (Note t h a t t h i s r e p r e s e n t a t i o n of t h e a l g o r i t h m
; is a b s t r a c t n o t o n l y w i t h r e s p e c t t o row o r
: column o r i e n t a t i o n , b u t w i t h r e s p e c t t o a l l as- i
; pects of t h e r e p r e s e n t a t i o n o f t h e d a t a ; e.g, , j
' t h e e l emen t s of U could be g iven by a func t ion .) ;

TRANSFOWTIONAL SYNTHESIS OF COWCRETE PROGRAMS
' T h i s a b s t r a c t s t a t emen t o f t h e t r i a n g u l a r

s o l u t i o n a l g o r i t h m can b e conver t ed i n t o a con- :

C r e t e , e x e c u t a b l e program by f i r s t augmenting
it w i t h a s p e c i f i c a t i o n of t h e p r o p e r t i e s of t h e
c o n c r e t e r e p r e s e n t a t i o n s of U,x, and y. The

I augmented a b s t r a c t program can then b e t ransformed
accord ing t o v a r i o u s program-algebraic r u l e s which

; i n c o r p o r a t e t h e p r o p e r t i e s i n t o t h e a b s t r a c t pro-
'

gram and t h e n s i m p l i f y i t where p o s s i b l e (s e e
I Boyle [4] and Green [9]).
I T h i s Drocess can b e i l l u s t r a t e d by a s k e t c h '

of t h e s y n t h e s i s of f r a g n e n t (2) 'from t h e a b s t r a c t
p r c g r a n (3) . T h i s s k e t c h omi t s numerous sma l l

: s t e p s and t o avo id i n t r o d u c i n g u n f a m i l i a r n o t a t i o n
: i s p r e s e n t e d i n t e rms o f quasi-programs. I n t h e

a c t u a l TAI4PR imp'lementation, t h e t r a n s f o r m a t i o n s ,

a r e c a r r i e d o u t on a r e p r e s e n t a t i o n of t h e program
i n a n a p p l i c a t i v e (i . e . , expres s ion) language

' u n t i l t h e f i n a l s t a g e , a t which F o r t r a n code is
. genera t ed . As d i s c u s s e d by Backus i n h i s 1977

Tur ing L e c t u r e [I] such a ~ p l i c a t i v e languages have
a r i c h e r and s i m p l e r a s s o c i a f e d "algebra1' t han

i do conven t iona l l anguages i n p a r t because t h e
scope of v a l u e s i s i n d i c a t e d c l e a r l y by f u n c t i o n a l

' a p p l i c a t i o n . (Exper ience w i t h TAMl'R s t r o n g l y .
j s u p p o r t s t h i s s i r c p l i c i t y of a p p l i c a t i v e l anguages ,
i which is a l s o w e l l known t o LISP programmers.)
j The s y n t h e s i s of f r a g n e n t (2) depends on some ,

: i d e n t i t i e s from m a t r i x a l g e b r a , i nc lud ing :

' where ei is t h e i - t h u n i t v e c t o r ; '

n 1 T 1
i (5) D + u l e eT = n (~ + ~ e ~ e i - ~ e , e P ~ ~ e ~ e ~)

i=1 i, ' i = n i

j where D is an nxn d i a g o n a l m a t r i x and U ' i s upper :
. ' t r i a n g u l a r w i t h z e r o d i a g o n a l ; and

j The i d e a of a m a t r i x A be ing " s to red by columns''
'

j is t h u s expres sed a s i

' Ae is t h e ' i - t h column' o f A.
I

1 1

j The s y n t h e s i s b e g i n s w i t h (3) augmented t o
i i nd ica t ' e t h a t U is an u p p e r - t r i a n g u l a r nxn m a t r i x
i s to red by columns, t h a t y i s a n n -vec to r , and t h a t
jx is t o b e i d e n t i f i e d w i t h y:

I

1 y = u**-l*y i
I

'--> y = (diag(U) + uppersubtr i (U))**- l*y + I

inow U is emanded bv columns:

I - (u p p e r s u b t r i (u) ei) (e: invdiag(U) e i) ei) T *y
, '

I--> f o r i = n , l , - 1 .
T T

y = y + (invdiag(U)ei)(eiy)-ei(eiy)
T . T - (uppe r sub t r i (U)e i) (ei invdiag(U)ei) (eiy)

j end

(Note t h a t t h e above program i s t h e p o i n t of
d e p a r t u r e f o r a "vector" s o l u t i o n o f t h e t r i a n g u l a r
sys tem, a l though t h i s problem is n o t p a r t i c u l a r l y
w e l l s u i t e d t o v e c t o r computat ion.) Now expand
t h e remaining v e c t o r s t o components (t h e ass ignment
. is s t i l l a v e c t o r one) :

.--> f o r i = n , l , - 1

j end 1
j
'A f t e r a number of s t e p s which i n c l u d e de te rmin ing
. t h a t a v e c t o r temporary i s no t r e q u i r e d i n conver-
: t i n g t h e v e c t o r ass ignment t o a s c a l a r one , t h e
'component-level is reached :
i t
--> f o r i = n , l , - 1 I

!
f o r j = 1,i-1 i

. T T T
i (e .y) 3 = (e.y) J - (e . J uppe r sub t r i (U)e i)* :

! end

1 (e. T y) = (e T i n v d i a g (U) ei) * (eiy) T - ! i i

f o r j = i + l , n i - _:

end
end

I 1 lJppersubtri(U) implies e: uppersubtri(U)e .= 0 for
I J I
/ k 2 j, assignments of the form x = x need not be i 1 carried out, and common subexpressions can be
lcomputed once, so that the program becomes:

I
!
I

' - -> for i = n,l,-1 I

,__ ._ _ - ... -- .. ".- - 8

c the fact that (3) involves consistently dimension-
ed arrays and the fact that those transfornations

f which introduce subscripts alSo simultaneously
Introduce the index sets for them based on the 1 array dimensions . (See Backus [I], section 5,

f for some discussion of the significance of this.)
! This two-stage proof is much easier than showing ! directly that (2) does not execute out-of-bounds
' subscript references. The difference is even
'more dramatic for an abstract Gaussian elimination
1 algorithm and a realization of it employing impli-
/ cit pivoting; the subscripts in the latter program
1 are themselves subscripted variables, and it is very difficult to prove directly from the code : / that. they are always in bounds.

I T T i
t = (e. invdiag(U)ei) (eiy) WHY TRANSFORMATIONS? !

. I
I ! ! It is perhaps interesting to conclude by posing

for .j = 1,i-1 the questions: \Tt~y use a program transformation I / system to construct concrete realizations of
T T

(ejy) . (e.y) - (ef uppersubtri(u)ei)*t abstract programs? I*Y not simply devise an
J J 1 .' extended language for specifying abstract programs . . and a processor to translate it into an existing

.end , . j . - language (e. g. , EFL [Feldman] and Bayer and
I .: T
I (eiy) = t

j Witzgall's Complete Matrix. Calculi [3]) or directly

.. - I j into machine language? Or, why not implement by

a end 1 ;hand a relatively fiked ensemble of routines for
/ j different data representations and call them as . .

I l'he temporary can be eliminated by reordering and : appropriate a particular user's needs?
.the component references converted to conventional Clearly, these alternatives are not completely
'form to obtain fragment (2), abwe. Thus the. trans- .distinct, for the "processor" for an extended .

formational synthesis of a program takes place in a h%uage might consist-of a.collection of trans-
large sequence of small steps, each effected by a : formations, while some transformations insert code

transformation based-on a relathrely simple mathe- which could be thought of as very small subrou- * '

matical theorem or axiom. : .tines. However, what I call a program transfor-
. i ,mation system is distinguished from the other two

'CORRECTNESS OF CONCRETE PROGRAMS i approaches primarily because it provides a high-

: As discussed in [4], transformationally- ! level notation for specifying and applying source-
programs inherit the correct- to-source program transformations and because it

ness of the abstract prototype program provided the, Can manipulate any programming-language construct

transformations themselves are correct. A correct (not just subroutines and arguments). Trnnsfor- ; transformation may add information to the abstract mation 'ystems of this type

program, but this information must be consistent TAMPRy but those proposed by Bauer [*I, and

with the properties assumed for the abstract pro- by Lo.veman and (see [6]).
gram. (In this sense, the process is rather like In my experience, the idea of providing for

'constructing the integers as a I I ~ ~ ~ ~ ~ ~ ~ ~ I I instance abstract program specification through a fixed

lof a ring, by augmenting the ring axioms addi- extended language is too static an approach to

:tional axioms consistent with the original set.) 'be effective. .The work discussed here is far from

!Thus dnytl?ing provable about the abstract program .:i yet it has undergone

:remains true for any of the concrete realizations revisions. Had a particular notation been fixed,

;of it. . or had the transformations been implemented in a

I The proof that an arbitrary set of transforma- ' fixed processor, they would have been very diffi-
itions is correct may be difficult in general. HOW- cult to modify. Moreover, emphasis on Designing '

lever, as discussed in [7] , if each transformation a Language tends to cause one to get lost in a

,in the set is itself ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ g " (i.e., . tangle of language-related issues which are not

ireplaces a part of a program with program text ,very germane to abstract program specification;
,

.which does not contradict the meaning of the 1 indeed the expression and function notation

original text), the correctness of the transfor- .
'

available in slightly modified Fortran or in Algol

mational process is guaranteed (if it terminates). seems quite adequate for experimentation. Finally,

Usually it is quite easy to see that an individual .even extensible languages, which permit the def-

transformation is semantics-preserving, especially inition of new data types and Operators (e.g.9

when it is based on a mathematical property. Algol 68), do not usually provide a means for

: Finally, the fact that the abstract program easily specifying optimizations (especially global

.is closer to the mathematical formulation of a ones) for these extensions. As we have seen, such

.problem than is an ordinary program means that its optimizations are both fundamental and rather

,correctness is much easier to prove. In the specific (e.g.-, the row analog of (6), which shows

present (but not in general) the abstract that n instead of n(n+1)/2 divisions suffice) and

'program and its specification are almost identi- it is unreasonable to expect them to be built into

'cal; about the only thing which must be verified a general-purpose language processor. Specifying

:is that the product and assignment involve .
these optimizations by transformations not only

'consistently-dimensioned arrays.
1 allows them to be easily tested and modified, it

I Incidcnrally, the fact that the concrete also permits them to' be selectively applied to .
classes of programs which may reasonably be ex- realizations of (3) do not cause out-of-bounds

, pected to use them. :subscript references when executed follows from - - . - -
,i'
' '1
1

o;*L ?,!'JC, ;a;:;
_ . . _ _ _ _ " _ _ . . I _ _ . . - -. ..- - ..

. - t - - ,

Similarly, the implementation, by hand, of a
'

j set of subroutines tailored to various properties
; is also static and not very reliable; moreover, i
! the set needed is very large, being the product of .
, the number of variables, the number of representa-
: tions of each, etc. In a transformational formu- ,

1 lation, the number of transformations needed be- ' haves more like the sum (plus some initial over-
: head). Thus, use of transformations enables one

I to manage the complexity of the problem and there-
: by greatly enhances reliability. I

i

.9. C. C, Green, The Design of the PSI Program .
'Synthesis System, Proc. 2nd Int'l Conf. on
Software Engineering, San Francisco, 1976, 4-18.
.lo. B. T. Smith, Portability and Adaptability -- '

What are the ~ssues? in D. Jacobs, ~ d . , ~umekical
Software -- Needs and Availability, Academic Press,
1978, 21-38.

: 2

d CONCLUSION
j 1 ~.
. !

I have sketched how various concrete executa-
ble programs can be constructed automatically from .
.an abstract prototype program by applying trans- ,

formations based on theorems of matrix algebra
. and on "algebraic" properties of programming
languages. Although this research has just begun, :

it offers the hope of being able to provide a user
with highly efficient programs tailored to his
environment while maintaining the advantages of
high reliability and low cost associated with
routines from the best mathematical software li-
braries. Moreover, the transformations which .
produce such programs themselves represent a val-
uable resource: a formal codification of rules for .
writing linear algebra programs.

I
ACKNOWLEDGMENTS

Work on the derivation of row and column-
oriented programs from an abstract prototype tias
begun by Brian Smith in conjunction with Janet
Bentley while Brian was on sabbatical at the
NAG Central Office, Oxford. This work was
supported hy NAG; prelimj.nary results are reported
in [lo]. I am indebted to Brian for numerous
discussions which helped the work discussed here .
to evolve into its present form.

I
! ,
. :

. . - . REFERENCES 1 1
1. J. Backus, Can Programming Be Liberated from

a i the von Neumann Style? A Functional Style and Its
/ Algebra of Programs, Comm. ACM 21, 8, Aug. 1978, .

'

! 613-641.
1 1 2. F. L. Bauer, Programming as an Evolutionary

j Process, Proc. 2nd 1nt'l coif. on Software
Engineering, San Francisco, 1976, 223-234. : - j . . . ! 3. R. Bayer and C. Witzgall, .Some Complete : . I . .

I Calculi for Matrices, Comm. ACM 13, 4, April
1 . I j ! 1970. 223-237. : 1

1 4 . J . 11. Boyle, Mathematical Software Transporta-
i bility Systems -- Have the Variations a Theme? in , . .
j Portability of Numerical Software, Lecture Notes
! in Computer Science, No. 57, Springer-Verlag, 1977.
: 5. J. M. Boyle and K. W. Dritz, three papers on
I the TAMPR system in J. R. Bunch, Ed., Cooperative , . ,
i Development of tlathematical Software (available
I from the authors). % :

1 6. J. M. Boyle, K. W. .Dritz, 0. B. Arushanian, 1 ,

I and Y. V. Kuchevskiy, Program Generation and . .
. i Transformation -- Tools for Mathematical Software. .
; Developement, Information Processing 77, North 4 ,
j Holland 1977, 303-308. i :
f 7. J. M. Eovle and M. Matz. Automatinp. Multiple -
' Program Realizations, Proc. of the MRI Symposium, . / M I V : Computer Software Engineering, Polytechnic 1
I Press, 1977, 421-456. 1 1

! 8. C. B. ~lbler, llatrix Computations with F O C T W ' j 1 and Paging, Comm. A M 15, 4 , April 1972, 268-270.
j i

I

