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I EXTENDED ABSTRACT I 

I !  

[ Over t h e  p a s t  decade,  ma themat i ca l  s o f t w a r e  
l i b r a r i e s  have matured from s m a l l ,  u s u a l l y  l o c a l l y - ;  
assembled,  c o l l e c t i o n c  of  o u b r o u t i n c s  t o  l a r g e ,  

~connnercia l ly-provided l i b r a r i ' e s  which a r e  approach- 
' i n g  t h e  s t a t u s  of s t a n d a r d s  [Ai rd ;  Du Croz; Fox]**.: 
' D e s p i t e  t h e  h i g h  q u a l i t y  of  s u c h  l i b r a r i e s  and t h e  ' 

' obvious  economic advan tages  of u s i n g  r o u t i n e s  whose '  
development c o s t  h a s  been s h a r e d  w i t h  many o t h e r  
' u s e r s ,  a p p l i c a t i o n s  programmers, when asked:  "Why 
:don ' t  you u s e  r o u t i n e  X I Z  from IEISL, o r  from NAG, 

' 

o r  from PORT?" f r e q u e n t l y  r e p l y  t h a t  l i b r a r y  rou- 
t i n e s  a r e  t o o  g e n e r a l ,  t h a t  t hey  need a  r o u t i n e  : 

:which t a k e s  advan tage  of  s p e c i a l  f e a t u r e s  o f  t h e i r  : 

'problem, and t h a t  s i n c e  they  cou ld  n o t  u s e  a  li- . 
b r a r y  r o u t i n e  w i t h o u t  modifying . i t ,  t h e y  might  a s  
, w e l l  w r i t e  t h e i r  own r o u t i n e  from s c r a t c h .  . :  

: : I n  many, i f  n o t  most,  i n s t a n c e s ,  t h e  l a t t e r  
a s s e r t i o n  cou ld  b e  e a s i l y  r e f u t e d  by a  s imple ,com- : 
p e t i t i o n  on s e l e c t e d  t e s t  problems.  However, t h e  ' 

need f o r  a  r o u t i n e  adap ted ,  o r  t a i l o r e d ,  t o  a  
p a r t i c u l a r  problem is  more d i f f i c u l t  t o  d i s m i s s .  ' 

. I t  u s u a l l y  a r i s e s  from c o n s i d e r a t i o n s  o f  e f f i c i e n c y , .  
:which may range  from t h e  pe rce ived  i n e f f i c i e n c y  of  . 
t h e  p resence  of  unused o p t i o n s  i n  a  r o u t i n e  t o  t h e  
p r a c t i c a l  i m p o s s i b i l i t y  of  u s i n g  a  r o u t i n e  whose 
d a t a  r e p r e s e n t a t i o n  is u t t e r l y  i n c o m p a t i b l e  w i t h  . 

t h a t  needed i n  t h e  r e s t  of  t h e  a p p l i c a t i o n s  pro- , 

gram. 
j How, t h e n ,  can  ma themat i ca l  s o f t w a r e  develop-  ' , 

e r s  answer t h i s  need f o r  ma themat i ca l  a l g o r i t h m s  ' 

, t a i l o r e d  t o  i n d i v i d u a l  a p p l i c a t i o n s ?  One approach 
: e s p e c i a l l y  a p p l i c a b l e  t o  compl i ca t ed  problems,  such 
] a s  s o l u t i o n  of  PDE's, i s  t o  p r e p r o c e s s  a  s p e c i f i c a -  
: t i o n  of  t h e  problem i n t o  code which u s e s  a  p a r t i c u -  
.lar s o f t w a r e  package, a s  i s  done i n  ELLPACK [Rice] .  
: ( I n  some s e n s e ,  t h i s  approach t a i l o r s  t h e  problem 
( t o  t h e  s o f t w a r e . )  For l i b r a r y  r o u t i n e s  i n  s i m p l e r  
'problem a r e a s ,  however, i t  seems n e c e s s a r y  t o  . ! 

; t a i l o r  t h e  r o u t i n e  t o  t h e  problem, s i n c e  such  rou- 
: t i n e s  c o n s t i t u t e  o n l y  a  s m a l l  p a r t  of  t h e  a p p l i c a -  : 
/ t i o n  program, and s e v e r a l  r o u t i n e s  w i t h  p o s s i b l y  
l c o n f l i c t i n g  r equ i remen t s  may need t o  b e  inc luded .  ; 

11n o r d e r  f o r  t h i s  t o  b e  p r a c t i c a l ,  tailored ver- . 
lsions o f  such routines nncst be constructed nechan- 

' 

. 'icaZZy from very general l ibrary rout ines ,  Such , 

.mechanical program g e n e r a t i o n  is  n e c e s s a r y  b o t h  t o  I 
' i n s u r e  t h a t  t h e  r e l i a b i l i t y  of  t h e  l i b r a r y  r o u t i n e  
is  p rese rved  i n  i t s  t a i l o r e d  v e r s i o n s  and t o  i n s u r e  

. .+hat t h e i r  c o n s t r u c t i o n  is  n o t  p r o h i b i t i v e l y  expen- 
' s i v e  [6 ] .  

i For  some t ime,  t h e  TAMPR sys t em h a s  been  i n  ' 

.use  t o  c o n s t r u c t  m u l t i p l e  v e r s i o n s ,  o r  r e a l i z a t i o n s ,  
:of p r o t o t y p e  programs f o r  i n c l u s i o n  i n  ma themat i ca l  
; so f tware  packages themselves  [ 4 , 5 ] .  For t h e  . 
;LINPACK package, a  s i n g l e  p r o t o t y p e  r o u t i n e  was 
;used t o  c o n s t r u c t  t h e  e i g h t  v e r s i o n s  r e p r e s e n t i n g  
i the  combinat ions  o f  cornpiex o r  r e a l  a r i i h m e t i c ,  '. : 

, s i n g l e  o r  doub le  p r e c i s i o n ,  and c a l l s  t o  Bas ic  
.Linear  Algebra  s u b r o u t i n e s  o r  i n - l i n e  code  r e p l a c e - .  
ments  f o r  them [5]. I 

; Recent  r e s e a r c h  w i t h  TMIPR h a s  focussed  on  : 
:de termining t h e  p r o p e r t i e s  a  p r o t o t y p e  p r o g r a n  

shou ld  have i n  o r d e r  t o  maximize t h e  number and 
) d i v e r s i t y  of  r e a l i z a t i o n s  which can b e  c o n s t r u c t e d  ' 

from i t .  
i 

ABSTRACT PROGRAMS 
I 

The most impor t an t  p r o p e r t y  of  a  p r o t o t y p e  
program is i t s  abstractness. I n t u i t i v e l y ,  an  
a b s t r a c t  program c a p t u r e s  t h e  e s s e n c e  of a  numer- 

' 

i c a l  a l g o r i t h m  w i t h o u t  c l u t t e r i n g  i t  w i t h  i r r e l e -  
; van t  d e t a i l .  The p resence  of  i r r e l e v a n t  d e t a i l  i n  
' a ' p r o t o t y p e  program hampers t h e  c o n s t r u c t i o n  of 

d i v e r s e  r e a l i z a t i o n s  p r e c i s e l y  because  a  g r e a t  
d e a l  o f  a n a l y s i s  must b e  done t o  v e r i f y  t h a t  i t  

, 

i s  indeed i r r e l e v a n t .  
The r e s e a r c h  d i s c u s s e d  h e r e  h a s  n o t  p rogres sed  

f a r  enough t o  c h a r a c t e r i z e  a b s t r a c t  programs i n  
g e n e r a l ,  b u t  examples from t h e  a r e a  o f  l i n e a r  
a l g e b r a  have been s t u d i e d ' s u f f i c i e n t l y  t o  i l l u s -  
t r a t e  t h e  i d e a s  invo lved .  Consider t h e  code f r ag -  
ment (1 ) :  

. f o r  i = n , l , - 1  
f o r  j = i + l , n  

y ( i )  = y ( i ) - 3 ( i , j ) * y ( j )  
end 
~ ( i )  = y ( i ) I U ( i , i )  

end 

and t h e  code f ragment  ( 2 ) :  

f o r  i = n , l , - 1  
y ( i )  = y ( i ) l U ( i , i )  
f o r  j = l.,i71 

~ ( j )  = y ( j ) - U ( j , i ) * y ( i )  
end 

end 

Now, b o t h  of  t h e s e  f ragments  a c t u a l l y  perform t h e  ' 

same computat ion,  t h e  s o l u t i o n  of an  upper- t r iangu- .  
l a r  sys t em o f  l i n e a r  e q u a t i o n s  Uy=x ( t h e  f i n a l  s t e p  
i n  t h e  s o l u t i o n  of  a  g e n e r a l  l i n e a r  sys tem whose 
m a t r i x  h a s  been f a c t o r e d  i n t o  t r i a n g u l a r  m a t r i c e s  , 

L and U ) .  Fragment (1)  is t h e  u s u a l  method of . 
s o l v i n g  such a  sys tem;  i t  r e f e r s  t o  t h e  m a t r i x  U 
by rows. Fragment (2) r e f e r s  t o  t h e  m a t r i x  U by .: 
columns, and i s  t h e r e f o r e  more e f f i c i e n t  t h a n  
f ragment  (1 )  on  machines wi th  v i r t u a l  memory o r  , 

w i t h  b u f f e r  memory, when t h e  language i n  which t h e  % 

program i s  w r i t t e n  s t o r e s  m a t r i c e s  by columns ( a s  : 

does  F o r t r a n ) ,  s e e  Moler [a ]  and S n i t h  [ l o ] .  
Cons ide rab le  e f f o r t  is  r e q u i r e d  t o  s e e  t h a t  i 

t h e s e  two f r agmen t s  a c t u a l l y  perform t h e  same 
computat ion;  even more e f f o r t  would b e  r e q u i r e d  
t o  d e v i s e  a  way t o  t r ans fo rm (1 )  i n t o  (2) automa- , 

t i c a l l y  i n  o r d e r  t o  b e  a b l e  t o  make t h e  ( p o s s i b l y )  
more e f f i c i e n t  v e r s i o n  a v a i l a b l e  t o  a u s e r .  Thus 

*Work performed under  t h e  a u s p i c e s  o f  t h e  U.S. 
Department of  Energy. 

**Numbers i n  b r a c k e t s  d e s i g n a t e  References  a t  
end o f  paper ;  names i n  b r a c k e t s  d e s i g n a t e  a u t h o r s  
of o t h e r  a b s t r a c t s  i n  t h i s  P roceed ings .  
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1 0)  is  not a  s u i t a b l e  p r o t o t y p e  f o r  t a i l o r i n g ,  
i s i n c e  i t  c o n t a i n s  d i f f i c u l t - t o - d i s c a r d  i n f o r m a t i o n .  
; a b o u t  t h e  row-or iented v e r s i o n  of t h e  program, 
which h a s  . no th ing  t o  do w i t h  t h e  s p e c i f . i c a t i o n  o f  

i t h e  a l g o r i t h m  f o r  t h e  s o l u t i o n  of . t h e  l i n e a r  sys-  j 
1 tem ( s e e  a l s o  Smith [ l o ] .  j i At what l e v e l  of  a b s t r a c t i o n ,  t hen . '  i s  such 
I i r r e l e v a n t  i n f o r m a t i o n  abou t  how s t o r a g e  is  1 r e f e r r e d  t o  a b s e n t  from t h e  s p e c i f i c a t i o n  of t h e  
j a l g o r i t h m ?  It is a b s e n t  when t h e  a l g o r i t h m  is j 
I s p e c i f i e d  i n  terms of  m a t r i x  ( r a t h e r  than  m a t r i x  i 
I e l emen t )  o p e r a t i o n s .  Thus t h e  a b s t r a c t  r ep resen -  . 
! t a t i o n  of t h i s  a l g o r i t h m  is  (3) :  

- 1 
x = u  y j 

! 

i (Note t h a t  t h i s  r e p r e s e n t a t i o n  of t h e  a l g o r i t h m  
; is  a b s t r a c t  n o t  o n l y  w i t h  r e s p e c t  t o  row o r  
: column o r i e n t a t i o n ,  b u t  w i t h  r e s p e c t  t o  a l l  as- i 
; pects of t h e  r e p r e s e n t a t i o n  o f  t h e  d a t a ;  e.g, ,  j 
' t h e  e l emen t s  of  U could  be  g iven  by a  func t ion . )  ; 

TRANSFOWTIONAL SYNTHESIS OF COWCRETE PROGRAMS 
' T h i s  a b s t r a c t  s t a t emen t  o f  t h e  t r i a n g u l a r  

s o l u t i o n  a l g o r i t h m  can b e  conver t ed  i n t o  a  con- : 

C r e t e ,  e x e c u t a b l e  program by f i r s t  augmenting 
it w i t h  a  s p e c i f i c a t i o n  of t h e  p r o p e r t i e s  of  t h e  
c o n c r e t e  r e p r e s e n t a t i o n s  of U,x, and y.  The 

I augmented a b s t r a c t  program can then  b e  t ransformed 
accord ing  t o  v a r i o u s  program-algebraic  r u l e s  which 

; i n c o r p o r a t e  t h e  p r o p e r t i e s  i n t o  t h e  a b s t r a c t  pro- 
' 

gram and t h e n  s i m p l i f y  i t  where p o s s i b l e  ( s e e  
I Boyle [4 ]  and Green [9]). 
I T h i s  Drocess can b e  i l l u s t r a t e d  by a  s k e t c h  ' 

of  t h e  s y n t h e s i s  of  f r a g n e n t  (2 )  'from t h e  a b s t r a c t  
p r c g r a n  (3 ) .  T h i s  s k e t c h  omi t s  numerous sma l l  

: s t e p s  and t o  avo id  i n t r o d u c i n g  u n f a m i l i a r  n o t a t i o n  
: i s  p r e s e n t e d  i n  t e rms  o f  quasi-programs. I n  t h e  

a c t u a l  TAI4PR imp'lementation, t h e  t r a n s f o r m a t i o n s  , 

a r e  c a r r i e d  o u t  on  a  r e p r e s e n t a t i o n  of t h e  program 
i n  a n  a p p l i c a t i v e  ( i . e . ,  expres s ion )  language 

' u n t i l  t h e  f i n a l  s t a g e ,  a t  which F o r t r a n  code is  
. genera t ed .  As d i s c u s s e d  by Backus i n  h i s  1977 

Tur ing  L e c t u r e  [ I ]  such a ~ p l i c a t i v e  languages  have 
a  r i c h e r  and s i m p l e r  a s s o c i a f e d  "algebra1'  t han  

i do  conven t iona l  l anguages  i n  p a r t  because  t h e  
scope  of v a l u e s  i s  i n d i c a t e d  c l e a r l y  by f u n c t i o n a l  

' a p p l i c a t i o n .  (Exper ience  w i t h  TAMl'R s t r o n g l y  . 
j s u p p o r t s  t h i s  s i r c p l i c i t y  of a p p l i c a t i v e  l anguages ,  
i which is a l s o  w e l l  known t o  LISP programmers.) 
j The s y n t h e s i s  of  f r a g n e n t  (2)  depends on some , 

: i d e n t i t i e s  from m a t r i x  a l g e b r a ,  i nc lud ing :  

' where ei is  t h e  i - t h  u n i t  v e c t o r ;  ' 

n 1 T 1 
i (5) D + u l e  eT = n ( ~ + ~ e ~ e i - ~ e , e P ~ ~ e ~ e ~ )  

i=1 i, ' i = n  i 

j where D is  an nxn d i a g o n a l  m a t r i x  and U '  i s  upper  : 
. ' t r i a n g u l a r  w i t h  z e r o  d i a g o n a l ;  and 

j The i d e a  of  a  m a t r i x  A be ing  " s to red  by columns'' 
' 

j is  t h u s  expres sed  a s  i 

' Ae is  t h e ' i - t h  column' o f  A. 
I 

1 1  

j The s y n t h e s i s  b e g i n s  w i t h  (3) augmented t o  
i i nd ica t ' e  t h a t  U is an u p p e r - t r i a n g u l a r  nxn m a t r i x  
i s to red  by columns, t h a t  y  i s  a n  n -vec to r ,  and t h a t  
jx is  t o  b e  i d e n t i f i e d  w i t h  y: 

I 

1 y = u**-l*y i 
I 

'--> y = (diag(U) + uppersubtr i (U))**- l*y + I 

inow U is emanded  bv columns: 

I - ( u p p e r s u b t r i  (u)  ei)  (e: invdiag(U)  e i )  ei) T *y 
, '  

I--> f o r  i = n , l , - 1  . 
T T 

y = y + (invdiag(U)ei)(eiy)-ei(eiy) 
T .  T - (uppe r sub t r i (U)e i )  (ei  invdiag(U)ei )  (eiy) 

j end 

(Note t h a t  t h e  above program i s  t h e  p o i n t  of  
d e p a r t u r e  f o r  a  "vector"  s o l u t i o n  o f  t h e  t r i a n g u l a r  
sys tem,  a l though  t h i s  problem is n o t  p a r t i c u l a r l y  
w e l l  s u i t e d  t o  v e c t o r  computat ion. )  Now expand 
t h e  remaining v e c t o r s  t o  components ( t h e  ass ignment  
. is s t i l l  a  v e c t o r  one ) :  

.--> f o r  i = n , l , - 1  

j end 1 
j 
'A f t e r  a  number of s t e p s  which i n c l u d e  de te rmin ing  
. t h a t  a  v e c t o r  temporary i s  no t  r e q u i r e d  i n  conver- 
: t i n g  t h e  v e c t o r  ass ignment  t o  a  s c a l a r  one ,  t h e  
'component-level is reached :  
i t 
--> f o r  i = n , l , - 1  I 

! 
f o r  j = 1,i-1 i 

. T T T 
i (e .y)  3 = (e.y) J - (e .  J uppe r sub t r i (U)e i )*  : 

! end 

1 (e. T  y) = ( e  T i n v d i a g  (U) ei) * (eiy) T - ! i i 

f o r  j = i + l , n  i - _: 



end 
end 

I 1 lJppersubtri(U) implies e: uppersubtri(U)e .= 0 for 
I J I 
/ k  2 j, assignments of the form x = x need not be i 1 carried out, and common subexpressions can be 
lcomputed once, so that the program becomes: 

I 
! 
I 

' - -> for i = n,l,-1 I 

,__ ._ _ - ... -- .. ".- . . . . . - 8 

c the fact that (3) involves consistently dimension- 
ed arrays and the fact that those transfornations 

f which introduce subscripts alSo simultaneously 
Introduce the index sets for them based on the 1 array dimensions . (See Backus [I], section 5, 

f for some discussion of the significance of this.) 
! This two-stage proof is much easier than showing ! directly that (2) does not execute out-of-bounds 
' subscript references. The difference is even 
'more dramatic for an abstract Gaussian elimination 
1 algorithm and a realization of it employing impli- 
/ cit pivoting; the subscripts in the latter program 
1 are themselves subscripted variables, and it is very difficult to prove directly from the code : / that. they are always in bounds. 

I T T i 
t = (e. invdiag(U)ei) (eiy) WHY TRANSFORMATIONS? ! 

. I 
I ! ! It is perhaps interesting to conclude by posing 

for .j = 1,i-1 the questions: \Tt~y use a program transformation I / system to construct concrete realizations of 
T T 

(ejy) . (e.y) - (ef uppersubtri(u)ei)*t abstract programs? I*Y not simply devise an 
J J 1 .' extended language for specifying abstract programs . . and a processor to translate it into an existing 

.end , . j . - language (e. g. , EFL [Feldman] and Bayer and 
I .: T 
I (eiy) = t 

j Witzgall's Complete Matrix. Calculi [3]) or directly 

.. - I j into machine language? Or, why not implement by 

a end 1 ;hand a relatively fiked ensemble of routines for 
/ j different data representations and call them as . . 

I l'he temporary can be eliminated by reordering and : appropriate a particular user's needs? 
.the component references converted to conventional Clearly, these alternatives are not completely 
'form to obtain fragment (2), abwe. Thus the. trans- .distinct, for the "processor" for an extended . 

formational synthesis of a program takes place in a h%uage might consist-of a.collection of trans- 
large sequence of small steps, each effected by a : formations, while some transformations insert code 

transformation based-on a relathrely simple mathe- which could be thought of as very small subrou- * '  

matical theorem or axiom. : .tines. However, what I call a program transfor- 
. i ,mation system is distinguished from the other two 

'CORRECTNESS OF CONCRETE PROGRAMS i approaches primarily because it provides a high- 

: As discussed in [4], transformationally- ! level notation for specifying and applying source- 
programs inherit the correct- to-source program transformations and because it 

ness of the abstract prototype program provided the, Can manipulate any programming-language construct 

transformations themselves are correct. A correct (not just subroutines and arguments). Trnnsfor- ; transformation may add information to the abstract mation 'ystems of this type 

program, but this information must be consistent TAMPRy but those proposed by Bauer [*I, and 

with the properties assumed for the abstract pro- by Lo.veman and (see [6]). 
gram. (In this sense, the process is rather like In my experience, the idea of providing for 

'constructing the integers as a I I ~ ~ ~ ~ ~ ~ ~ ~ I I  instance abstract program specification through a fixed 

lof a ring, by augmenting the ring axioms addi- extended language is too static an approach to 

:tional axioms consistent with the original set.) 'be effective. .The work discussed here is far from 

!Thus dnytl?ing provable about the abstract program .:i yet it has undergone 

:remains true for any of the concrete realizations revisions. Had a particular notation been fixed, 

;of it. . or had the transformations been implemented in a 

I The proof that an arbitrary set of transforma- ' fixed processor, they would have been very diffi- 
itions is correct may be difficult in general. HOW- cult to modify. Moreover, emphasis on Designing ' 

lever, as discussed in [ 7 ] ,  if each transformation a Language tends to cause one to get lost in a 

,in the set is itself ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ g "  (i.e., . tangle of language-related issues which are not 

ireplaces a part of a program with program text ,very germane to abstract program specification; 
, 

.which does not contradict the meaning of the 1 indeed the expression and function notation 

original text), the correctness of the transfor- . 
' 

available in slightly modified Fortran or in Algol 

mational process is guaranteed (if it terminates). seems quite adequate for experimentation. Finally, 

Usually it is quite easy to see that an individual .even extensible languages, which permit the def- 

transformation is semantics-preserving, especially inition of new data types and Operators (e.g.9 

when it is based on a mathematical property. Algol 68), do not usually provide a means for 

: Finally, the fact that the abstract program easily specifying optimizations (especially global 

.is closer to the mathematical formulation of a ones) for these extensions. As we have seen, such 

.problem than is an ordinary program means that its optimizations are both fundamental and rather 

,correctness is much easier to prove. In the specific (e.g.-, the row analog of (6), which shows 

present (but not in general) the abstract that n instead of n(n+1)/2 divisions suffice) and 

'program and its specification are almost identi- it is unreasonable to expect them to be built into 

'cal; about the only thing which must be verified a general-purpose language processor. Specifying 

:is that the product and assignment involve . 
these optimizations by transformations not only 

'consistently-dimensioned arrays. 
1 allows them to be easily tested and modified, it 

I Incidcnrally, the fact that the concrete also permits them to' be selectively applied to . 
classes of programs which may reasonably be ex- realizations of (3) do not cause out-of-bounds 

, pected to use them. :subscript references when executed follows from - - . - -  
,i' 
' '1 
1 

o;*L ?,!'JC, ;a;:; 
_ . . _ _ _ _ " _ _ . . I _ _ .  . -  -. ..- - .. 
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Similarly, the implementation, by hand, of a 
' 

j set of subroutines tailored to various properties 
; is also static and not very reliable; moreover, i 
! the set needed is very large, being the product of . 
, the number of variables, the number of representa- 
: tions of each, etc. In a transformational formu- , 

1 lation, the number of transformations needed be- ' haves more like the sum (plus some initial over- 
: head). Thus, use of transformations enables one 

I to manage the complexity of the problem and there- 
: by greatly enhances reliability. I 

i 

.9. C. C, Green, The Design of the PSI Program . 
'Synthesis System, Proc. 2nd Int'l Conf. on 
Software Engineering, San Francisco, 1976, 4-18. 
.lo. B. T. Smith, Portability and Adaptability -- ' 

What are the ~ssues? in D. Jacobs, ~ d . ,  ~umekical 
Software -- Needs and Availability, Academic Press, 
1978, 21-38. 

: 2 

d CONCLUSION 
j 1 ~. 
. !  

I have sketched how various concrete executa- 
ble programs can be constructed automatically from . 
.an abstract prototype program by applying trans- , 

formations based on theorems of matrix algebra 
. and on "algebraic" properties of programming 
languages. Although this research has just begun, : 

it offers the hope of being able to provide a user 
with highly efficient programs tailored to his 
environment while maintaining the advantages of 
high reliability and low cost associated with 
routines from the best mathematical software li- 
braries. Moreover, the transformations which . 
produce such programs themselves represent a val- 
uable resource: a formal codification of rules for . 
writing linear algebra programs. 
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