e g 6L -~&
\ CoHNfF-T7

{ASTER

EXTENDING RELIABILITY:
TRANSFORMATIONAL TAILORING OF ABSTRACT MATHEMATICAL SOFTWARE

by

James M. Boyle

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their

b or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the , compl
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

Prepared for

ACM/SIGNUM Conference on

Programming Environment for Development of Numerical Software
Pasadena, CA

October 18-20, 1978

3’/?”
‘ DISTRIBUTICS GF THIS DOCUMENT IS UNLIMITED

Uof C-AUA-USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Prepared for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

INTRODUCTION

Over the past decade, mathematical software

assembled, collections of subroutines te large,

1

James M.
Applied Mathematics Division
Argonne National Laboratory
h

EXTENDED ABSTRACT

‘commercially-provided libraries which are approach—!
‘ing the status of standards [Aird; Du Croz; Fox]**..
‘Despite the high quality of .such libraries and the

‘obvious economic advantages of using routines whose’

development cost has been shared with many other

users, applications programmers, when asked: 'Why

‘don't you use routine XYZ from IMSL, or from NAG,

or from PORT?" frequently reply that library rou-
tines are too general, that they need a routine

‘which takes advantage of special features of their
‘problem, and that since they could not use a li-

brary routine without modifying -it, they might as
well write their own routine from scratch. .
In many, if not most, instances, the latter
‘assertion could be easily refuted by a simple com-
petition on selected test problems. However, "the
need for a routine adapted, or tailored, to a
particular problem is more difficult to dismiss.

'which may range from the perceived inefficiency of
‘the presence of unused options in a routine to the
practical impossibility of using a routine whose
data representation is utterly incompatible with
that needed in the rest of the applications pro-
gram. .
: How, then, can mathematical software develop-
ers answver this need for mathematical algorithms
tailored to individual applications? One approach
‘especially applicable to complicated problems, such

‘as solution of PDE's, is to preprocess a specifica-

:tion of the problem into code which uses a particu-
1ar software package, as is done in ELLPACK [Rice].
(In some sense, this approach tailors the problem
‘to the software.) For library routines in simpler
‘problem areas, however, it seems necessary to
:tailor the routine to the problem, since such rou-
‘tines constitute only a small part of the applica-
tion program, and several routines with possibly
iconflicting requirements may need to be included.
In order for this to be practical, tailored ver-
.8tons of such routines must be constructed mechan-
‘teally from very general library routines. Such
mechanical program generation is necessary both to
‘insure that the reliability of the library routine
is preserved in its tailored versions and to insure.

sive [6].
i For some time, the TAMPR system has been in

i

.It usually arises from considerations of efficiency,’

. 3wthat their construction is not prohibitively expen-~

use to construct multiple versions, or realizations,

‘of prototype programs for inclusion in mathematical
.software packages themselves [4,5]. For the
xLINPACK package, a single prototype routine was
used to construct the eight versions representing
ithe combinations of complex or real arithmetic,
single or double precision, and calls to Basic

Linear Algebra subroutines or in-line code replaceff

ments for them [5].
i Recent research with TAMPR has focussed on

ﬁetermining the properties a prototype program

i
!

libraries have matured from small, usually locally-;

Extending‘Reliability:
Transformational Tailoring of Abstract Mathematical Software¥

Boyle

|
|

should have in order to maximize the number and

1diversity of realizations which can be constructed '

“from it.

" ABSTRACT PROGRAMS

The most important property of a prototype
program is its abstractness. Intuitively, an
abstract program captures the essence of a numer-
ical algorithm without cluttering it with irrele-
vant detail. The presence of irrelevant detail in

" a'prototype program hampers the construction of

diverse realizations precisely because a great
deal of analysis must be done to verify that it
is indeed irrelevant. ’

The research discussed here has not progressed
far enough to characterize abstract programs in
general, but examples from the area of linear
algebra have been studied sufficiently to illus-
trate the ideas involved. Consider the code frag-
ment (1): .

for i = n,1,-1
for j = i+l,n
y(i) = y(1)-U(i,3)*y(3)
end
y(i) = y(i)/U(4,4)
end

and the code fragment (2):

for 1 = n,1,-1
Y(i) = y(i)/U(4,i)
for = 1,i-1
@(3) = y(1)-UG,i)*y (1)
end
end

Now, both of these fragments actually perform the

same computation, the solution of an upper-triangu-.

lar system of linear equations Uy=x (the final step
in the solution of a general linear system whose
matrix has been factored into triangular matrices
L and U). Fragment (1) is the usual method of
solving such a system; it refers to the matrix U
by rows. Fragment (2) refers to the matrix U by
columns, and is therefore more efficient than
fragment (1) on machines with virtual memory or
with buffer memory, when the language in which the
program is written stores matrices by columns (as
does Fortran), see Moler [8] and Smith [10].
Considerable effort is required to see that
these two fragments actually perform the same
computation; even more effort would be required
to devise a way to transform (1) into (2) automa-
tically in order to be able to make the (possibly)
more efficient version available to a user. Thus

*Work performed under the ausplces of the U.S.
Department of FEnergy.
**Numbers in brackets designate References at
end of paper; names in brackets designate authors
of other abstracts in this Proceedings.

]

JRU | S — |

(1) is not a suitable prototype for tailoring,

T
i

i since it contains difficult-to-discard information

! about the row-oriented version of the program,
which has nothing to do with the specification of
the algorithm for the solution of .the linear sys-
tem (see also Smith [10].

At what level of abstraction, then, is such
irrelevant information about how storage is
referred to absent from the specification of the
algorithm? It is absent when the algorithm is
specified in terms of matrix (rather than matrix
element) operations. Thus the abstract represen-

! tation of this algorithm is (3):

= U—ly
(Note that this representation of the algorithm
is abstract not only with respect to row or
column orientation, but with respect to all as-—
pects of the representation of the data; e.g.,
the elements of U could be given by a function.)

: TRANSFORMATIONAL SYNTHESIS OF CONCRETE PROGRAMS

This abstract statement of the triangular
solution algorithm can be converted into a con-

" erete, executable program by first augmenting

it with a specification of the properties of the
concrete representations of U,x, and y. The

. augmented abstract program can then be transformed

" program (3).

" is presented in terms of quasi-programs.

according to various program-algebraic rules which
incorporate the properties into the abstract pro-
gram and then simplify it where possible (see
Boyle [4] and Green [9]).

This process can be illustrated by a sketch
of the synthesis of fragment (2) from the abstract
This sketch omits numerous small
steps and to avoid introducing unfamiliar notation’
In the

- actual TAMPR implementation, the transformations
. are carried out on a representation of the program

in an applicative (i.e., expression) language

"until the final stage, at which Fortran code is
. generated.

As discussed by Backus in his 1977

. Turing Lecture [1] such applicative languages have

a richer and simpler associated "algebra" than
do conventional languages in part because the

_ scope of values is indicated clearly by functional

" application.

i where D is an nxn diagonal matrix and u'
“triangular with zero diagonal; and

(Experience with TAMPR strongly
supports this simplicity of applicative languages,
which is also well known to LISP programmers.)

The synthesis of fragment (2) depends on some)

identities from matrix algebra, including:

(4) i = eiez
i=1

where e is the i-th unit vector; '
n 1

(5) D+ L U'e,el =1 (I+De eT-Te_ el+l'e el)
i=1 ii i=n i7i ii idi

(6) H (I+De e —Ie e, +Ue e)

i=n

i

n - T _
= I (I+De%e?-Ic,c?—U'c,c D 1
iTi idi

e eT)
i=1 1‘1 ii

The idea of a matrix A being "stored by columns"

is thus expressed as

is upper

g (eT

'__w
(A=Al = AZ(e e)

) i=1 1
i Aey is the' i-th column of A.
]

n T
T ((ae))e.);
= 1

e m—— b

j The synthesis begins with (3) augmented to
iindicate that U is an upper-triangular nxn matrix
;stored by columns, that y is an n-vector, and that

1
ix is to be identified with y:
! :
s y = Ukk_l%y i
‘-=> y = (diag(U) + uppersubtri(U))**-1%y !
inow U is expanded by columns: i
n
|--> y = (diag(V) + % (uppersubtri(U)eiez))**-l*y
i i=1
i |
j—>y = (H(I+(d1ag(U)e)e -Ie eT |
| i=n |
i +(uppersubtri(U)e‘)eT))**—l*y :
. 1
—-—>y = H(I+(1nvdlag(U)e)e —Ie eT !
: _ i
' i=1
. ‘ T . . T
- (uppersubtri(U)e_) (e, invdiag(U)e)e_)*y
“ _ i’ i’7d ,
f——> for 1 = n,1,-1 : ;
. T T :
. = v + -
: y=y (invdlag(U)ei)(eiy) e;(e;y)
. T . . T
: (uppersubtrl(U)ei)(ei 1nyd1ag(U)ei)$eiy)
! end ‘ E

(Note that the above program is the point of
departure for a '"vector'" solution of the triangular
system, although this problem is not particularly
well suited to vector computation.) Now expand

the remaining vectors to components (the assignment
‘is still a vector omne):

-=> for i=n,l,-1

n
T
L e.(e;
eJ(eJy)

n
= I e.(e?y) + e‘(e?
=1 35 ivi

invdiag(U)ei)*
3-1 -

(ETY) -e (eTy) - g @ (eT uppersubtri(U)e)*
i 190 7 e i

; (ez invdiag(U)ei)(eiy))

end : i

‘After a number of steps which include determining
.that a vector temporary is not required in conver-
:ting the vector assignment to a scalar one, the
component ~level is reached:

—=> for i = n,1,-1

for j = 1,i-1

RPN S ¢
(ejy) (ejy) (ej

uppersubtri(U)ei)*

P T
i 1 1nvd13g(U)ei)(ei))

end :

(e§Y) = (eT

. T
i 1nvdiag(U)ei)*(eiy)-

T T T
e, u bt *®
| ¢ 4 uppersu ri(U)ei) (ei invdiag(U)ef(eiy)

for j = i+l,n

- ————— —— ey

! !

(g§y) = (e§y) - (e§ uppersubtri(U)e,)*
T T
(e1 invdiag(U)ei)(eiy)
end
end

Uppersubtri(U) implies e{ uppersubtrl(U)e 0 for

k > j, assignments of the form x = x need not be |
carried out, and common subexpressions can be
; computed once, so that the program becomes:

‘e=> for i = n,1,-1
T
(ei

: for-j = 1,i-1

. . T
t 1nvd1ag(U)ei)(eiy)

T T T
e, = (e, - (e, ersubtri(U)e,)*t
(JY) (Jy) (§ uppersubtr) l)
-end |
5 T
(ei}’) =

end

"The temporary can be eliminated by reordering and

-the component references converted to conventional
"form to obtain fragment (2), above.
-formational synthesis of a program takes place in a
large sequence of small steps, each effected by a :
transformation based.on a relatively simple mathe-

matical theorem or axiom.

‘CORRECTNESS OF CONCRETE PROGRAMS
As discussed in [4], transformationally-
constructed concrete programs inherit the correct-

Thus the. trans~

ness of the abstract prototype program provided the

‘transformations themselves aré correct. A correct

,transformation may add information to the abstract

program, but this information must be consistent
with the properties assumed for the abstract pro-
gram. (In this sense, the process is rather like
‘constructing the integers as a "concrete" instance
iof a ring, by augmenting the ring axioms with addi-
;tional axioms consistent with the original set.)

{Thus anything provable about the abstract program .

‘remains true for any of the concrete realizations
.of it. :
i The proof that an arbitrary set of transforma-
étions is correct may be difficult in general. How-
fever, as discussed in [7], if each transformation
.in the set is itself '"semantics-preserving" (i.e.,
ireplaces a part of a program with program text
‘which does not contradict the meaning of the
original text), the correctness of the transfor-
mational process is guaranteed (if it terminates).
Usually it is quite easy to see that an individual
transformation is semantics-preserving, especially
when it is based on a mathematical property.
Finally, the fact that the abstract program
‘is closer to the mathematical formulation of a
‘problem than is an ordinary program means that its
.correctness is much easier to prove. In the
present example (but not in general) the abstract
‘program and its specification are almost identi-
'cal about the only thing which must be verified

:is that the product and assignment 1nvolve . ;

‘consistently-dimensioned arrays.
! Incidentally, the fact that the concrete

;realizations of (3) do not cause out-of-bounds

.subscript references when executed follows from .. .

— —— e POV

the fact thac (3) involves consistently d1mension-
ed arrays and the fact that those transformations
which introduce subscripts also simultaneously
introduce the index sets for them based on the
array dimensions. (See Backus [1], section 5,

for some discussion of the significance of this.)
This two-stage proof is much easier than showing
directly that (2) does not execute out-of-bounds
subscript references. The difference is even

more dramatic for an abstract Gaussian elimination
algorithm and a realization of it employing impli-
cit pivoting; the subscripts in the latter program
are themselves subscripted variables, and it is
very difficult to prove directly from the code
that-they are always in bounds.

-

i
: WHY TRANSFORMATIONS? :
It is perhaps interesting to conclude by posing
the questions: Why use a program transformation
! system to construct concrete realizations of
'abstract programs? Why not simply devise an .
" extended language for specifying abstract programs
-and a processor to translate it into an existing
. language (e.g., EFL [Feldman] and Bayer and
‘Witzgall's Complete Matrix. Calculi [3]) or directly
!into machine language? Or, why not implement by
.hand a relatively fiked ensemble of routines for
ydifferent data representations and call them as
appropriate to a particular user's needs?)

Clearly, these alternatives are not completely
-distinct, for the "processor'" for an extended
language might consist of a.collection of trans-
formations, while some transformations insert code
which could be thought of as very small subrou- -
"tines. However, what I call a program transfor-
.mation system is distinguished from the other two
‘approaches primarily because it provides a high-
level notation for specifying and applying source-
to-source program transformations and because it
can manipulate any programming-language construct
(not just subroutines and arguments). Transfor-
mation systems of this type include not only
TAMPR, but also those proposed by Bauer [2], and
by Loveman and Standish (see [6]).

In my experience, the idea of providing for
abstract program specification through a fixed
extended language is too static an approach to
‘be effective. - The work discussed here is far from
complete, yet already it has undergone numerous
revisions. Had a particular notation been fixed,
or had the transformations been implemented in a
fixed processor, they would have been very diffi-
cult to modify. Moreover, emphasis on Designing
a Language tends to cause one to get lost in a
tangle of language-related issues which are not
.very germane to abstract program specification;
indeed the expression and function notation .
available in slightly modified Fortran or in Algol
seems quite adequate for experimentation., Finally,
.even extensible languages, which permit the def-
inition of new data types and operators (e.g.,
Algol 68), do not usually provide a means for
easily specifying optimizations (especially global
ones) for these extensions. As we have seen, such
optimizations are both fundamental and rather
specific (e.g., the row analog of (6), which shows
‘that n instead of n(n+l)/2 divisions suffice) and
it is uynreasonable to expect them to be built into
a general-purpose language processor. Specifying
these optimizations by transformations not only
allows them to be easily tested and modified, it
also permits them to be selectively applied to
classes of programs which may reasonably be ex-
pected to use them

I MRl PRt T

"9. C. C, Green, The Design of the PSI Program
~Synthesis System, Proc. 2nd Int'l Conf. on
Software Engineering, San Francisco, 1976, 4-18.
-10. B. T. Smith, Portability and Adaptability -~
What are the Issues? in D. Jacobs, Ed., Numerical
Software -~ Needs and Availability, Academic Press,
1978, 21-38.

Similarly, the implementation, by hand, of a
' set of subroutines tailored to various properties
« 1s also static and not very reliable; moreover,
the set needed is very large, being the product of .
the number of variables, the number of representa-
tions of each, etc. In a transformational formu-
lation, the number of transformations needed be-

i haves more like the sum (plus some initial over-
: head). Thus, use of transformations enables one

to manage the complexity of the problem and there-
by greatly enhances reliability. :

CONCLUSION :
I have sketched how various concrete executa-
ble programs can be constructed automatically from

‘an abstract prototype program by applying trans-

formations based on theorems of matrix algebra

and on "algebraic' properties of programming
languages. Although this research has just begun,
it offers the hope of being able to provide a user
with highly efficient programs tailored to his
environment while maintaining the advantages of
high reliability and low cost associated with
routines from the best mathematical software li-
braries. Moreover, the transformations which
produce such programs themselves represent a val-

" uable resource: a formal codification of rules for

writing linear algebra programs.

i
ACKNOWLEDGMENTS _ X
Work on the derivation of row and column’

oriented programs from an abstract prototype was

- begun by Brian Smith in conjunction with Janet
" Bentley while Brian was on sabbatical at the
© NAG Central Office, Oxford. This work was

supported by NAG; preliminary results are reported’

. in [10]. I am indebted to Brian for numerous
. discussions which helped the work discussed here

. to evolve into its present form.

| REFERENCES

1. J. Backus, Can Programming Be Liberated from
the von Neumann Style? A Functional Style and Its
Algebra of Programs, Comm. ACM 21, 8, Aug. 1978,
613-641.

2. F. L. Bauer, Programming as an Evolutionary
Process, Proc. 2nd Int'l Conf. on Software R
Engineering, San Francisco, 1976, 223-234. i
3. R. Bayer and C. Witzgall, Some Complete O
Calculi for Matrices, Comm. ACM 13, 4, April 3
1970, 223-237. :
4. J. M. Boyle, Mathematical Software Transporta-'
bility Systems -- Have the Variations a Theme? in
Portability of Numerical Software, Lecture Notes
in Computer Science, No. 57, Springer-Verlag, 1977.
5. J. M. Boyle and K. W. Dritz, three papers on
the TAMPR system in J. R. Bunch, Ed., Cooperative
Development of Mathematical Software (available
from the authors).

6. J. M. Boyle, K. W. Dritz, O. B. Arushanian,
and Y. V. Kuchevskiy, Program Generation and
Transformation -- Tools for Mathematical Software.
Developement, Information Processing 77, North '
Holland 1977, 303-308. !
7. J. M. Boyle and M. Matz, Automating Multiple .
Program Realizations, Proc. of the MRI Symposium,
XX1V: Computer Software Engineering, Polytechnic
Press, 1977, 421-456. |
8. C. B. Moler, Matrix Computations with FORTRAN
and Paging, Comm. ACM 15, 4, April 1972, 268-270.

i
?
|
?

i
|
|

i

