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ABSTRACT

KIRK, B. L., B. W. RUST, and W. VAN WINKLE. 1978. Time series
analysis by the maximum entropy method. ORNL-5332. Oak
Ridge National Laboratory, Oak Ridge, Tennesszee. 218 pp.
The pyincipal subject of this report is the use of the Maximum
trtropy method for spectral arilysis of time series. The classical
Fourier method is aiso discussed, mainly as a standard for ccmpgrison
with the Maximum Entropy method. Examples are given which clearly
demonstrate the superiority of the latter method over the former wéen
the time series is short. The report also includes a chapter outlining
tke theory of the method, a discussion of the effects of noise in the
-z72. 2 chapter con significance tests, & discussion of the problem of
znnosing the prediction filter length, and, most importantly, a
description of a package of FORTRAN sudroutines for making the virious
calculations. Crosc-referenced program lictings are given in the
appendices. The report aiso includes a chapter demonstrating the use

of the programs by means of an example. Real time series like the

lynx data and sunspot numbers are also analyzed.
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INTRODUCTION

In the past, the spectraf analysis of time series has for the most
part utilized two classical approaches - the power spectrum method of
R. B. Blackman and J. W. Tukey (1959) and the periodogram. The Blackman
and Tukey approach involves the estimation of the autocorrelation func-
tion. A shortcoming of the estimator used is its assumption of a zero
extension of the given data. On the other hand, the periodogram method
assumes a periodic extension of the data, the period being equal to the
length of the time series. John P. Burg (1968) has presented a new
technique of time series analysis which seeks to minimize assumptions
about the unavailable data. The method is called maximum entropy spec-
tral analysis (which will be referred to as MESA throughout this
report). MESA emerged in an effort to achieve better resolution from
short time series.

A great amount of research on MESA has been done by T. J. Ulrych.
His recent publications (1972b, 1973, 1974) indicate the wide extent to
which MESA can be utilized. Ulrych's contention is that the classical
Fourier transform methc.s are inferior to MESA because of their inabil-
ity to analyze low frequency variations.

MESA and Fourier analysis are compared in this report. Generally
speakfng, MESA is superior for short time series, but it has one major
disadvantage shared also by older methods. The problem invalves the
determination of the length of the vector of filt.r coefficients used
for estimating the autocorrelation function. In an attempt to solve

this problem, T. J. Ulrych (1975) suggested the use of the Akaike final



prediction error (FPE), (Akaike 1969), as applied to autoregressive
decomposition. A brief critical discussion of this idea is also pre-
sented here in Chapter IV.

As much as possible, the mathematical presentation of time series
analysis is simplified in this report. The derivation of the maximum
entropy spectrum, however, employs theorems in complex analysis.
Although the mzthematics becomes rigorous in some parts, it is hoped

that the many examples presented will impart a fair understanding of the

-

methods discussed to less mathematically inclined readers.

Computer programs (written in FORTRAN) which calculate both the
Fourier sample spectrum and maximum entropy spectrum plus some other
useful information are described and explained in Chapter V. An example
is presented in Chapter VI to illustrate the use of these programs.

Prog.-am listings are given in the appendices.



CHAPTER I
THE DISCRETE FOURIER TRANSFORM METHOD

Consider the functions yl(t), yz(t), yé(t) in Figures *.1-

1.3, respectively.
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Fig. 1.1 The function yj(t): amplitude = 2, period = 6 years.
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Fig. 1.2. The function y2(t): amplitude = 4, period =4 years.
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Fig. 1.3. Tne function y3(t): amplitude = 3, period = 12 year-.

the sum of yj(t), yz(t), y3(t) produces a new function y(t)
(Fig. 1.4)
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Fig. 1.4. The new function y{t) = y1(t) + yo(t) + y3(t),
sampled at intervals rt =1 year.



Since y(t) is th: sum of three functions whose periods are known, the
analysis of 1ts periodic componeats is clear. In practice, one is
usually faced with the inverse problem, i.e., the analysis of a time
series iike y(t) in order to determine what per.odic components are
present. This situation leads to the utilizaticn of the Fourier trans-
form method.

Aithough many natural processes are truiy harmonic, in that they
can be expressed exactly as a sum of sinusoidal terwms, it is more often
the case that a natural prccess will also contain aperiodic components.
Such processes can still be ¢nalyzed by harmonic methods. In fact, any
aperiodic function of finite length can be approximated to any desired
degree of accuracy by a su» °f sinusoids, provided one includes enough
sinusoidal terms in the approximating function. In most real problems
one is limited to a finite, discrete time series obtained by sampling
the process at say n equally spaced points in time. If the process is
denoted by x(t), and if the sampling is arranged so that the sampling
‘nterval is one unit of time, i.e., 't = 1, with the first sample point
being taken at t = 0, then the time series can be written x(0), x(1),
x(2), <.., x(n-1), or as is done more commonly, Xgs X1s Xo, +nes
X,_1+ Jt can be shown that the terms of this series can be repre-

sented exactly bv a finite Fourier expansion of the form

(1.1) x; = ay + 2 (akcosZ;’Jk+b

j K sin gﬁiﬁ) + (-l)j a
0<k<n/2

n/2 °

j = 0’1,2,..-,"'],



where the 372 term is included only if n is even. The Fourier

coefficients are given by

=
[
——

1
(].2) ao-ﬁ X: 4

[
It
(=]

3
]
—-—
7

- £ 27 jk
(]-3) ak n XJ- co T— ’
)
01 ) 0<k<y
.2 . 2njk
(1.4) b, =+ x; sin S8,
j=0 /
n-1
1 id . .
(1.5) a2 = n (-1) X o if n is even
Jj=0

Equation (1.1) expresses the time series xj in terms of the ccmnonent
frequencies fk=k/n and can also be written in terms of the equivalent
periods Tk=1/fb=n/k as

ny ] > 255 4 o oin 253 ;
(1.6) . = a, + (akcos 7t b,sin Tk )+ (-1) an/2

0k n/2 kK
The Fourier spectrum of the time series is the discrete function repre-
sented by the set of points (f, Fk)’ k=0,1,...,[n/2], where [n/2)

is taken to be n/2 if n is even and (n-1}/2 if n is odd, and F_ is the

k
Fourier amplitude defined by



For each of the frequencies fk one can also define an associated phase

by
(1.8) B, = tan”! (ak/bk)

The expansion (1.6) can be written in terws of the Fourier ampli-

tudes and phases as

(1.9) K= ag* 0{;\,/2 F, sin (3;—;’( +9,) + (-1a,
Again, this expansion is exact for all the sample points Xgs Xq»

sees %o po and if n is large enough one might reasonably hope that
Equation (1.9) would give a good approximation to the underlying process
x(t) at other values of t also. That is, for any value of t in the
interval 0 < t < (n-1), or even for t outside that interv~1, one might

hope that
: .2t
(1.10) x(t) = ag + #:E: Fk sin (—T~ + @k)

without too much erro.

The function (fk,Fk) is the discrete Fourier spectrum of the
data set Xgs X{» vees Xpo1 We note that ccntinuous functions
x(t) have analogous continuous Fourier spectra, but we do not treat such
cases here since we are concerned only with finite, discrete time
series. For the continuous case the reader is referred to Jenkins and

Watts (1968). In computing a discrete Fourier spectrum one hopes that



the result approximates the con*tinuous Fourier spectrum of the under-
lying process x(t). The approximation is not limited to the discrete
frequencies fk = k/n but can be calculated for intermediate values of

f by the formula

hioZ son?

(1.11) F(f)

where
n-1
* = g N ]
(1.12) a(f) = A xj cos 2wjf
J=0
n-1
. 2 . .
(1.13) b(f) = o x5 sin 2njf
j=0

We note in passing that some writers make a distinction between the con-
tinuous function F(f) and the discrete function (fk,Fk), calling the
latter a "line spectrum” and the former a "sample spectrum”. Whatever
it is called, the continuous function F(f) hopefully approximates the
Fourier spectrum of x(t). Tne approxima.ion fails to exactly represent
the desired spectrum because the time series Xg* X1* co0s X1
cannot exactly represent the process x(t). The error arises for two
reasons:
(1) The time series iz restricted to a finite interval of time, so
we do not know what the process x(t) is like outside that interval, and
(2) The time series represents the process only at a finite number
of points in the interval, adjacent points neing separated by the sample

spacing At.



The latter restriction limits the highest frequency that is
resolvable - one cannot expect to isolatc components with frequencies
whose correspondirs periods are smaller than the sampling interval. In
fact it is necessary to have at lea~t two samples per cycle of the

highest frequency (shortest period) trat can be resolved. The frequency
(1.14) f, = 1/{2 2 1t)

is called the Nyquist frequencv and i< the highest frequency that can
be resolved with a sample interval of 't. The siluation is actually
worse than it appears on the surface because, if x(t) dces have impor-
tant harmonic components at frequencies greater than the Nyquist fre-
quency, then these components will Jistort the Fourier spectrum values
at Tower frequencies. This is because the approximation cannot distin-
guish between the frequency f and the frequency {1/t -f). Thus, if
Lt =1, then the Nyquist frequency is 0.5 and if x(t) has a harmonic
comporent with frequency f = 0.75, the estimate of the transform will
be distorted at f = 0.25. This phenomenon is called aliasing ancd must
be kept in mind in designing a sampling procedure. One should always

try to choose "t small enough s¢ that f,, exceeds the frequencies of

N
all the imporiant harmonic components in the process.

The first restriction, i.e., the restriction Lo a finite time
interval, produces distortions in the calculaied spectrum at the low
frequencies (long periods). Obviously one cannot expect to resclve
frequencies corresponding to periods much longer than the total time

interval represented by the sample. Most use~s of the Fourier method do

not trust the estimate at rfrequencies lower than that corresponding to
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periods of at most one haif the total time interval, and very conserva-
tive users demand that the t-.al intervai exceed a given period by a
factor of 4 or more before they will trust the Fourier estimate at the
corresponding frequency. The Fourier technique can detect the presence
of long period components (compsnents with periods comparable to the
total length of record), but % cannot accurately pinpoint the frequency
nor can it distinguish betwe:n two or more long period components at
frequencies that are relatively close together.

It is convenient tc analyze t2: effect of ¢ truncated record in
terms of a Tunction called a d ia window. Consider a process x(t)

defined on the time interval (-~ , + =),

ORNL-DWG 77-4636R
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Fig. 1.5. The observed function xq(t), At = 1,
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In general, one can only observe within a finite interval of
length T, say [-T/2, T/2] as in Fiqure 1.5. The available data are
then confined to the interval [-T/2, T/2]. The rectangular data window
for the interval [-T/2, T/2] is defined by

1, if-T/2<t<T/2 ,
u.15) w(t) =
0 , otherwise.

The observed function corresponding to the available data is represented

by
(1.1€) x,(t) = x(t) w(t).

We temporarily ignore the effect of the discrete sampling and concen-
trate on the effect o: applying the rectangular data window, i.e., the
effect of truncating the record. Subjecting the observed function

xo(t) to Fourier analysis will result in a transform ?;; of X,
which is really a smoothed version of the Fourier transfgrmCEE of the

original signal x(t). That is, if we let

K
RS
G

o - Fourier transform of x,,

Fourier transform of x, and

Fourier transform of w,

then it can be shown that

(1.17) F f F () F (F- ) ar
Xo o X W
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The Fourier transform of the truncated, observed time series is
said to be the convolution of the-desired Fourier transform with the
Fourier transform of the data window. This latter function is called

the spectral window and can be shown to be

_ 5 Sin 2=sft
(1.18) f{}’w(f) =T X

Applying the data window (1.15), which is sometimes called the boxcar
window, necessarily distorts the Fourier transform. It can be shown
that Q}; (f) is necessarily smonther than Q};(f). A common practice,
thereforg, is to change the shape of the data window in order to reduce
the distortion in the transform. This is usually done by rounding off
the corners of the boxcar window, thus damping the contribution of the
data at the two ends f the record. The idea is to design a window
which decreases the smaothing and hence increases the resolution of the
transform. This procedure is not without its own shortcomings. Spec-
tral windows which give good resolution of the spectral peaks are often
unstable to changes in the input data. On the other hand, those spec-
tral windows that are stable with regard to changes in the data usually
give poor resolution.

A more complete discussion of data windows and their corresponding
spectral windows is given by Box and Jenkins (1970). We close our dis-
cussion of the subject by noting that using any data window involves
some assumption about the data outside the available record (e.g., the
boxcar window assumes a periodic extension of the data with period equal

to the length of the record). Furthermore, using any window, other than
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the boxcar window, distorts the data that are available. As we shall
see in the next chapter, the Burg maximum entropy method is motivated
by an attempt to overcome these two difficulties.

As an illustration of some of the ideas incorporated in this chap-
ter, we present a very simple example. The number of points sampled is
n = 42. The function sampled was the sum of a straight line trend and
a sinusoid. The linear trend was included in the example because real
time series data frequently contain trend components.

The data points in Figure 1.6 are generated from the equation

i
X; = f h(t)dt, i =1, 2, ..., 42,
i-1

h(t) =7 +t + 5 cos 225

where

The linear trend, xT(t) =7 + t, was first removed by performing
a straight line, least squares fit to the data and subtracting out the
result. The function subjected tc Fourier analysis was then x(t) -
xT(t). It is necessary to remove the trend line because Fourier ana-
lysis would interpret it as a component with infinite period. The spec-
trum of the detrended runction is shown in Figure 1.7.

The highest peak in Figure 1.7 occurs at f = 0.1675 with a corre-
sponding period of P = 5,97, which is a good astimate of P = 6, the true
period of the function. The other smaller peaks are called sidelobes
and do not represent significant spectral components. They are one of
the results of truncating the record. The width of the main peak also
depends on the record length and gives an idea of the uncertainty in the

estimate of the peak frequency.
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CHAPTER I:

MAXINYUM CNTROPY SPECTRAL ANALYSIS

A. A Brief Explanation of the Enlropy Function.

In English, when one expresses a simple, gramatically correct,
logical statement, his choice of words is governed by probability laws.
For example, if a statement starts with "The mountain®, one cannot just
append any English phrase to have the statement make sense. "The moun-
tain sees” or "The mountain my" do not make sense. However, "The moun-
tain is big” is a perfectly logical statement. Thus, a person's choice
of words is strongly dependent upon the logical structure of the lan-
guage, and hence there is a probability that certain words are more
likely than other words to follow a phrase 1ike "The mountain". The
freedom of choice in :zelecting a message is what is scientifically
termed as information or entropy.

The word "information” must not be confused with its ordinary
meaning. In the physical sciences, the entropy or information asso-
ciated with a situation is a measure of the degree of randomness in the
situation. Entropy is expressed in terms of probabilities - for exam-
ple, the probability of getting to a certain stage in the process of
forming a message and when in that stage the probability that certain
words will be chosen next (Shannon and Weaver 1949).

How then can one measure the entropy or information of a prccess?
In particular, the processes treated here are Markoff processes; that

is, stochastic processes in which the prodabi]ities depend on previous
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events. Sharnon and Weaver (1949) have shown that such a measure for
information can best be estimated using logarithms of the prebabilities.
Suppose PysPys---5P, are the known probabiiities of occur-

rence of a set of discrete events. Then

n
(2.1) I = 1(pysPys---sPp) = K igl p; tog, Py

where K is a positive constant, and a is the chosen base for the loga-
rithm, is called the entropy of the set of probabilities P1s Poseces
Pn: Similarly, the entropy of a continuous distribution with density
distribution function p(x) is defined by

{

(2.2) 1 ="I(p(x)) = g p(x) log p(x) dx

-0

Assume for example that there are two possibilities with probabil-

ities p and g = 1-p. Ther the entropy is
(2.3) I=1p)=-plog, p- (1-p) log, (1-p)

where for convenience the natural logarithm is used, and the constant K
is taken to be 1. A plot of I in Equation (2.3) appears in Figure 2.1,
I is maximized when q = 1-p, that is g=p=%. In a physital situa-

tion this is the case of greatest uncertiinty. In tossi:g a coin, for
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Fig. 2.1. The entropy I as a function of the

prcbability p when there are two

possitle outcomes to an event.
example, out of 1000 tosses, it is likely that heads will appear about
500 times and tails about 500 times, but the uncertainty for any given
toss is maximized. For a biased coin the uncertainty for any given toss
is less because if one simply predicted the most likely result on each
toss, ther one would be right more than 500 times out of 1000. The more
uncertain the event is, the greater the freedom of choice in predicting
the outcome. The function I in Equation (2.3) is O when p=0, g=1 or
q=0, p=l. That is I assumes a minimum of O when the event is certain
to happen. In this case, one has little freedom of choice in making a

prediction. In all other cases, I assumes a positive value.
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The iagarithm is used in the definition of entropy since it is
mathemat ically more convenient to handle. With a logarithmic
agefinition, information is additive, as would be expected. Assume for
example that there arz two independent events with probabilities Py
and Py- Then the probability that both events happen is Py Pp-

The measured information or entropy of the two events is

(2.4) [ =-Klog,(pyp,) = I, + 1,
where
(2.5) I] = -K log p] , 12 = -K log Py

The most ccuiimon logarithmic bases employed in the definition of
entropy are 2, 10 and e. The natural logarithm is the most convenient
for use in mathematical analysis and is the one we adopted here.

From the preceuing discussions, we note that [ is indeed a rzason-
able measure of entropy. To maximize I is to maximize the uncertainty
in the event. The constraints involveu depend on the probabilities
Pps Pps =ves Py with 0 <P <1, " =12,...,n and igl P; = 1.

In time series analysis, the relevant probabilities are not kncwn.
Instead, one is faced wilh the analysis of the power spectrum. In this

case, the entropy is proportional to

(2.6) I = Jm In P(f) df ,

-0
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where P(f) is the power spectrum (see Burg 1975, Shannon and Weaver
1949).
In looking at the power spectrum of a time series, one asks how

much of the original information has been lost or gained. The degree of

uncertainty is measured in the entropy function I of Equation (2.6).

R. Maximum Entropy Spectral Analysis (MESA)

The basic assumption in MESA is that the stationary time series
under analysis :5 the most random or least predictable. The classical
approach involves the estimation of the power spectrum “rom known value;~
of the autocorrelation function Oy s tk] < M, where M is less than or
equal to the number of observations in the given time series. The
standard assumption is that o = 0 for (k| > M, but usually a weight-
ing function is also introduced and multiplied by “k and the result
is Fourier transformed. Given a set of autocorrelation function values
e witn the impcsed condition that the power spectrum be non-negative
definite, there usually exist infinitely many power spectra which will
be consistent with the given data. Maximum entropy spectral analysis
is based on the idea of choosing the spectrum which corresponds to the
most random time series whose autocorrelation function agrees with given

values,

C. Statement of the Problem

Find a real positive function P(f' which maximizes the entropy

function

o
(2.7) = [ M 10 P(F) df

"fM
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under the constraints

(2.8) P(f) exp(i2nfkat) df ,

where -M - k <M, it is the sampling interval, and  the

autocorrelation with time lag kit, i = /-1 and fy = i%f-is the

Nyquist frequency.

D. Solution to the Problem

Wiener has shown that the power spectrum P(f) is the discrete
Fourier cosine transform of the autocorrelation k- So P(f) has a

Fourier series representation

+o

(2.9) P(f) = 7}] Ionce

-i2nfrat

Substituting (2.9) intu (2.7), we get

f 4+ .
(2.10) I = f Monge T e, e EnTREY) g
lt, M kems

Since the pk's are known for -M < k < M, expression (2.10) will be

maximized with respect to the ., 's, with ;x| > M. Setting the

k
appropriate derivatives to zero gives



(2.11)
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o-i2nfeat
= L df

-i2nkat}
e

f -12nflat
= _]_ M € df
ZfM P(F)
~-f
M
=0, |&]>M .

But [P(f)]’1 has a Fourier expansion so that

(2.12)

o .
- ~-j2nfmat
[P(A)T = 3 3, e

M=~

Thus (2.11) becomes

(2.13)

pp 2fy e LL,m df
M
1w
=~ (M 7 3 (cos 2nfstm - i sin 2nfatm) x
2fM mE—w M
“u (cos 2nfatl - i sin 2nfate) df
=0 if [¢] > M

f 4o
..éI_ = L J M ( Z by e-"ZTffmAt) e‘iZ'ﬂ'fQ.At
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Because of the orthogonal properties of sines and cosines, (2.13)
implies that » = 0 for {m| > M.

From (2.12) and the preceding, we get

1

(2.14) P(f) = —
5‘ \ r-iZTTfmAt
m=-M "
Thus (2.8) becomes
f i2=fkat
(2.15) T R df
'-f }* A e-ianm[\t
M L m
Let 2 = e 1272 ynder this transformation,
dz = -i2wte” 2T gf df = -dz/i2.4tz and (2.15) changes to
-k-1
1 £ z
(2.16) o T et § O z
L "
m=-M

where the contour integral around the unit circle |z]

1 is computed

in the counterclockwise direction.

M
Now 7 2™ must be real and positive for |z| =1 since we
m=-M
require P(f) to be real and positive. So
M M
m *
(2.17) I oy 2"= (] 2 2)
m==-M =-M
M ‘ M
- Z )\m‘* Z*m = Z ) * (]/Z) ,
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where * denotes complex conjugation and z z* = 1.

The expanded form of the left hand side of (2.17) is

gty 2t ety 2 e a2 e 2™, whereas the right hand
* *  _1 * M * * M

side is xg + 1,z T4 bRy 7 4 g Tty 7 By

equating the coefficients in (2.17), we have the relationship

PR Y s J=1,2... ...0,M,
(2.18) >J *j J
and
M
M
(2.19) Joa 2" =240 2 ceaene +1,12
=M m 0 ] |
- * o
+ x]* z L oy 2 M
. m
By the fundamental theorem of Algebra = *m z" has 2M roots and fur-
m:.—
thermore is factorable in the form
? m _ M
(2.20) L ‘2 (b0 thz+ tbyz ) x
1 -M
(bg # by &+ cevnnnns tbyz')
= (b, + by z+ + by 27) x
0 ] lllll M
* -1 * M
(b0 + b] F AR P + bM )



24

ractaring bo frem (2.20) leads to

(7.21) ., »Z =D

where bo >0, a, = 1, a; = b_i / bo’ ai* = bi*/bo’ i=1, 2, ..

1.

and 2 fM At

Let Py, = 2 fM/bg. Then P, > 0 and Equation (2.14)

becomes

(2.22) P(f)

The autocorrelation values in (2.16) simplify into

P -k-1
_ M z d
(2.23) Pk ~ 271 é ;

M M
2 *
(b 72fyt) (mZO *m zm) (mzo *n '") ,
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-M <k <M. Replacing k by k-j with j > 0 in (2.23) gives

_ PM & z'k+j'] dz

o, : = -
k-3 2=1 M M .
! oag " I a*z m
m=0 m=0

Multiplying (2.24) by ak* and forming summations result in

(2.24)

. M
M P A7) 2 2"
(2.25) IERERE § R %
k=0 -J " m ~ * _-M
< Y e,z ) ( ) 8, Z )
m=0 \m=0
P , j-1
_ M z
- 2ni ? t m dz ’ 12 0
. 4. Z
m=0

What needs to be done at this point is to simplify the contour integral
on the right hand side of (2.25). To do so requires Cauchy's famous

theorems in complex variables theory (see Nehari 1968).

Theorem A: Let f(z) be analytic in a region R and on its boundary C.

Then:

(2.26) § f(z) dz = 0
C
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Theorem B: Cauchy's Integral Formula. If f(z) is analytic inside and

on the boundary C of a simply-connected region R and a any

point inside C, then

(2.27) f(a) = 5ix § fz(—fa)- dz .
c

For j = 0, Equation (2.25) becomes

M * PM 1 dz
(2.28) L% T 7 § -z
! a 2z
m=0
M
Let f(z) = 1/ zo amz"‘. Then f(z) is analytic inside and on the
m-‘:

unit circle |z| = 1. Thus by Cauchy's integral formula,

P

M 1 dz _ -
(2.29) 2 § i F Ry O -y

nZO a2
since f(0) = a, = 1.
For j > 1,
P., j-1 P
M 2z M
(2.30) 573 § M dz = 77 § 9(z) dz,
) m



M
where g(z) = 2} ‘/ amz , a function which is analytic inside

and on the unit cn‘cle lz] = 1. By Theorem A, fg(z) dz = 0. So

(2.31) o O dz=0, j>1.

M
(2.32) T

Or similarly, since i = Pk (2.32) becomes
lil ’PM ifj=0,
(2.33) py_: @, =
k=0 K3k do dFgs.

The matrix equation corresponding to (2.33) is

- 1T " b ]

o "3 to '] P

Q_" po ....... CM_] a] 0
(2.34) : : -

oM Pemey - ¢ v - o | M) {0
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The elements a;, i=0,1,2,...,Mwith a, = 1 are normally called

filter or reflection coefficients and Equation (2.34) is the equation

for designing an M + 1 term prediction error filter with mean square

error P". The meaning of these terms will become clearer in the next

section. The matrix in (2.34) is a Toeplitz matrix.
Briefly reviewing the results of this section, we see that the
power spectrum which maximizes (2.7) subject to (2.8) is the one given

in (2.22). We can rewrite (2.22) in the following way:

(2.35) P(f) T

'"' i2=fmit, 2
1 - Lod - o m:x. )
P+ T ae’ §

m
m=1

since z = e V2 ang 3 = 1. The terms PM and a_,

m=1, ..., M are given by the solution to the mztrix equation (2.34).
Once these are known, the power spectrum P(f) <an be computed for values

1
L

of the frequency f in the range - E%E'f_f 2%t

E. Predictive Filtering and the Mean Square Error PM'

As in Chapter I, let the given real time series be Xgs Xps eves
Xo_1° Assume further that the mean of the process has been approxi-
mated and subtracted from the xi's. The mathematical derivations in
the preceding sections do not directly involve the xi's. Instead, the

autocorrelation function values if known provide the basic information
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in calculating the power spectrum P(f). Howcver, by working with the
xi's directly, one can arrive at the same matrix equation (2.34). The
idea is to apply the filter crefficients a5, i=1, ..., M, with M < n
to the time series through a linear prediction relationship.

Let the time series Xg» Xi» ***s Xpo1 be written in the form

Xgs Xp> Xps vevs Xp o Xe M4 10 000 Xpor Xprocco Xpol®

Consider the expression

(2.36) Yoagxg o= xp — (X g — oo X y) s

where ay = 1. Furthermore 1let

n M
(2.37) x, = ) (=a)) x, _ .
t s=1 s’ “t-s
Then
~ M
(2.38) & = Xp — X = sZO ax,

is actually the error in predicting Xy from the previous values

Xe 1> o0 XpoM by means of the prediction coefficients 11> 3

"**s 3. The error s therefore, has to be kept close to a minimum

for a good prediction.
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The mean square error is defined to be

(2.39)

~ M ‘
E{etz} = E’\(xt - xt)z} = E{(SZO a xt-s)z}

where E stands for the expectation operator. Now

ey}

H 2
E{[xt - Xl (-a;) x;_ ] }
S=

(2.40)

M
2l o

Sty (=) Ebxp !

Ly ) E sy

¥ 2
+ £ [SZI (—ag) x, ] I )

f

Since the xi's are assumed to be given, we would like to minimize the

mean square error with respect to aj, j=1 ..., M

\ o
ey

da.

box, e 2] () B, (
2Bl %, x, L+ 2 4 ) L —X
j / t t-]\ SZI S

!
'Xt's t“i)"

(2.41)

n
e ]

By definition, the zut-correlation is

(2.42) A
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for real x values. So (2.41) becomes

M
) -
(2.43) 20, + 2 5 (a.) 0560
or
M
(2.44) pj + SZI as p]-_s = 0’ J = 1’ ’ M

We thereby have the system of equatiors

01 + a1 o0 ¥ ... ... + ay 1M =0

02 + al Ol + ...... + aM 02“" 0

(2.45) ) . . )
omtaroygyto- - tayoeg ° 0.

The above system of equations shows that each pj, j=1,

ceey M is a

linear combination of the others. To complete the set, one adds the

equation

0 |
(2.46) pp tagoypt e - - Ty T E'.'et xt\

which follows from (2.38) since
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m
D
™
>
"
m
o~
(27

(2.47) M

"
1 0~
-1
7
m
>
~
>

We can actualiy show that PM whose value appears in Equation

(2.33) can be expressed as

2
(2.48) pM = E{et Xt: = E{et :

That is, PM is just the least mean square error in the linear

prediction. From {2.33) and (2.47), it follows that

I~

(2.49) Py =

= ’
a . o E.'et xt: .
S

0 S

M t
follows that (2.46) can be rewritten with the quantity PM on the

To show that P, = F{ez} we first note that from (2.49) it

right hand side and when this equation is appended to the system (2.45)
tiie result is identical to the system (2.34). This follows from the
fact that g = Pe- Equation (2.34) is pre-multiplied by the row

vector [1 3y a5 ... 3] to get
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F_n -‘ r— —“
[1 a2y - - .- aM] g Py - - - M 1
°1 % - OM-1) |01
(2.50)
! = PM s
o 0 ¢} d
, M VM. 0 ] M
from which it follows that
P Y
P, = o a, o, _a
. M v=0 =0 vV 'v-3 °§
(2.51)
M M , \ M ?
= VZO QZO ay Eyxe g Xty 3 = E’ SZO a xt_S)
Applying (2.39) gives
Y I A
) 2V i
2.52 P =E a_ x =LE.e .
IR (R,
For a fixad M and set of M filter coefficients, every x, in the

t
set {xo, X{s oees xn-l} can be predicted linearly as long as one

stays within the set of x - values. We can think of this as the

process in Diagram 2.1 with a, = 1. The above process is called

filtering. In particular, it is called forward filtering, X¢ being

predictea from its M previous values. Backward filtering, on the other

hand, is described in Diagram 2.2.



INPUT
X{-My-- -, Xt

ORNL—-DWG 77-20060

-

l FILTER COEFFICIENTS
“,Oh.”.,am)

OUTPUT
- M

€1= 2 G¢Xy-g
s=0

Diagram 2.1. Forward filtering.

INPUT
Xt-My-. -y Xy

FILTER COEFFICIENTS

ORNL-DOWG 77 -20059

OQuUTPUT
M

(1, 04y-..., Q)

hy =s§005 Xt—-M+s

Diagram 2.2. Backward filtering.

In Diagram 2.2, X, _y is predicted from its M future values x, v,

ey Xy

(2.53)

Let

(2.5%)

=
1"
~ 2

a x
0 s “t-M+s

]

S

Xt-M " ) (’as)xt-M+s

The error in the prediction is ht and

3 X1 T Xem
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Then

\ - el
AL e

=
1]

(2.55)

I

E}[Xt-M - Sg] (-a,) xt-ms]zt

By taking the partial derivative of E{hi} with respect to

a., j=1, ..., M and equating the results to 0, we get

3
21
269, % M
. t ; _ a _ _
iaj ) -EEE[E{Xt-MXt-M} 2521 (-ag) E{"t-ms"t-n}
\T ¥ 2]
+E 2 ("a ) Xy ]
(2.56) 0L=1 5T teMes \J
- 2! 12 T (o) ) H
=Xy P2 L 1R B ey

By applying e definition of the autocorrelation function to

(2.56), the following formula is obtained:

(2.57) 2 + a P: . =0,3i=1,...,M,
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Equation (2.57) is exactly Equation (2.44). This .mplies that forward

and backward filtering lead to the same matrix equation and that

= ‘2l=- zl
E.'et ; t%h \

(2.58) t

Pm

for all possible t.
The following simple example will nelp illustrate the ideas de-

scribed in this section. Suppose the time series is the set of values

A= {XO’ X1s Xos x3} . Let M=2. The set A has two M +1

ordered subsets: A1 = {xo, X1 xz} and A2 = {xl, Xos x3}.

Denote the filter coefficients by 3 = 1, ap, 3, Then both Xg

and X1 can be predicted from their future values by backward

filtering and

Xq = (—a]) Xy (~a2) Xy
(2.59)

X~! = (‘a]) x2 + (‘az) x3 ’

where ;0, 21 are the predicted values of Xg* ¥1 respectively.

The backward filtering errors are:

Xg Xo T Xt eXytay.
(2.60)



On the other hand, Xy and x5 are predicted by forward filtering and

xp = ) xp * (25) xg
(2.61)

where ;2, ;3 are the predicted values of Xy and X3 respectively.

The forward filtering errors are:

Xo * ayxy + A%y
(2.62)

]

X3 *‘X3 = X3 + a]xz + azx] .

Briefly summarizing the discussion in the preceding pages, in pre-
dicting a point in a time series, either from its future or past values,
one should minimize the mean square error PM with respect to the fil-
ter coefficients aj. In the rext section, we discuss an algorithm
(developed by J. P. Burg, 1975) which determines “he values of the

aj's and PM in Equation (2.34).

F. The Burg Algorithm for Estimating Py and the Filter Coefficients

J. P. Burg's algorithm for finding the filter coefficients and PM
in Equation (2.34) depend on both forward and backward filtering, i.e.,

the points in *he time series are predicted from their previous and
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future values. The solution to Equation (2.34) is basesr on a modified
version of the Levinson algorithm for solving a Toeplitz matrix equa-
tion. Since the algorithm is an iterative procedure, the filter coeffi-
cients (1, a1s 255 --es aM) will be written as (1, Ay Qo oo aMM)'

Starting with: a one-point filter (a00 = 1), we have

(2.63) [og] 11 = [Pg]  or 0 =¥

So the value of P0 is determined by the autocorrelation "0 The two-

point filter has the matrix equation

(2.64) =

Assuming that a and P1 have been determined (the actual computa-
tions are described in the next section) the three-point filter is

cbtained from the preceding equation by reans of the following exten-

sion:
_ - C - - T\ _ - r -
°p M1 P ! 0 P1 &
(2.65) Y g 9 < gl r el ey & = {0 + e 0
N 0 N 0 1 A P.‘
BEREEN I i | |4 |




[T%)
(N}

where it is required that

(2.66) ty *Cypy = 0
0 ] iy
We note that the vactors ¢ a11 and <y 0 are just multiples of
L1 ] P1
_P11
the reverses of 11 and | O respectively. Tre reason for also
C LAI ]

applying the filter in reverse is that each point in the time series
Kgs X172 +-+0 Xn1 is pradicted forward and backward. The three-point

filter then is (1, a5 a22) where

(2.67)

rr 1 r q) r N
[ %0 0 o 03T ] 0 02
o 0 ) o a a 0
1 0 1 2 12 22
(2.68) + C ? - + C-
N r ( 0 a 2 a 0 2
2 1 0 1 22 12
i3 0y 2 20 0 1 a,
L J]|L J L - L J




40

i 1 - y i T ¢
where in this case the four-point filter is (1, 2135 33, 333)
with

ay3 = 31y T €y 35
(2.69)

33 Z 8y F Gy ayy s 3337 Cy -

Again it is required that 52 tc, P2 = 0.

Continuing in this manner, we get the general form:

- - - r -
o A y ! Py
. 1 9 M1 ] 2 M 0
(2.70) 2 o] ... OE-Z aZ,M : 0
‘Mo O “0 LaM,M 0

valid for any M < n.

Furthermore, for i =1, ..., M-1,

SRR VU0 B IE B VIR VIR I
(2.71) qym ™ oy 0 P T Pua e Bt
Byt * ooy Py O



<»
—

Now since 3y ; = - Cy ; Py_1» then

2.72 - _c 2
(2.72) = Pyt~ St Puar
) 2
=Puq (1 -cyy)
) 2
= PM-] (1 —am) .

The least mean square error PM can only be estimatea in this
algorithm. Let us go back to the time series {xo, X)s ees xn-l}
and assume that there are L possible subsets of the form {xtj-M’
xtJ.-M NETIEES xt.}’ j=1, ..., L. By applying the filter (1,
al’ Moo aM,H) in a forward manner to each of the Xy s

J
i=1 ..., L, we get

x, *a X +.. +a X
. T,M 7t.- M Tt-M
tJ s tJ i M tJ

xti (g gt oot A ) xt].- 1

+ (a +Cyq @ ) x, _
(2.73) 2, ,M-1 M-1 M-2 ,M-1 tj 2



Equation (2.73) gives the error in predicting Xy from its previous
M values. Since there are L equations of the form (2.73), the mean

square error PM can be estimated by the squared averages

Pim = .i ¥; [*t. TR TR I R IR M
i=1 i J
(2.74) MR CYR WY IR I YY) "t -1
* ey "tj-m)]2 ,
where the }j's are weights such that ji] v. =1 and Yj > 0.

The terms in (2.74) can be re-grouped using the quantities

T M et P X X
] ) )
{ > -
(2.75) SRR R *t - Yoot ay g ug -1
i, ..., L.

which are seen to be a forward prediction error and a backward predic-

tion error respectively. The new expression is then

L
- . 2
(2.76) Paw = 2 gl * oy 257



If on the other hand, the filter (1 ayy - aHM) were applied

backward, then
*ti-n tam xtj~M+I PR xtj-M+2 ety g Xy

xtj—M *(ay oyt oy ey mot) xti-M+1
(2.77)

* (8 oy oy A2 my) xtj—M+2

oot Ay ey 2 ) xtj—l

M-1 7t

As was noted earlier, the backward and forward filters should produce

the same mean square error PM‘ So PM can also be estimated by

Pom =

e~

4 Yj[%tj-M * ey oy * Cu aM-l,M-1)th_M+1

t (3 oy * oy aM-Z,M-l)Xti-M+2
(2.78)

AR R xtj]
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Thus one class of estimates for PM is

>

(2.79) P + P

1
w = 2Py * Pyl

where it is required that the Yj be specified.

G. Andersen's Version of the Burg Algorithm for Estimating Coefficients

In applying the above algorithm, one would start with an estimate
of PO. Then at each stage M, the quantify 3PM/aam is set equal

to zero. For M =0, P0 is estimated by

r2.20)

where o is an estimate of the autocorrelation °0°

For M = 1, the set {xo, Xgs ees xn-l} would have n-1

subsets: {xo, xl} s {xl, XZ}’ cees {xn-Z X 1 } and the
average power is:

’ ] ] -
(2.81) Pr=smy L



- -
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1 .
where the weights are Yj = py.dc= 0, ..., n-2 (see N. Andersen,

.974). Equating the partial of P1 with respect to a;; to zero, we

get
= 2(x. + a,, x. X.
3 an 2(n-1) =9 J 11 7§47 T3+
(2.82)
+ 2(x atan xj) x]] 0
So
n-2 n-2 2 2
(2.83) ay =2 J.ZO %3 i jZO (57 * x5n) -
Since a1 is known at this zoint, one solves for él by using
(2.72),
(2.84) Po=P (1 -ald)=rl-ad)
’ 1 0 n 0 n’ -

For M=2, the set {xo, xl, ceos xn-l} has n-2 subsets with
M+ 1 =3 consecutive elements in each subset: {XO’ xl, X3 },

{xl, Xys X }, cees {xn_3, X 29 xn-l} . The resulting
average power is:



ince =
since aj,

"
PO —
3
> |
~No)
r~1

-
—
>
(o]
+
——

[=})
—t
—t

+

)
~N
[N ]

(=)
—t
—t

g
>
n—
+
—t

o1 + 3y, A4 from (2.67). Thus
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The vaiue for 299 is the following firm:

n-3
2 2
92 7 72 320 (@11 %5 X501 * 31 Xja1 T 30 Xgn1 X2
"3 2 2 2
(2.87) X xj+2) 120 (xj + Za]] Xj Xi49 + 2a]] X540

2
+ 2a]] X541 X542 + xj+2) .

~

Since 399 is known, P2 is given by the expression:

~

_ 4 .2
(2.88) P, = P](l 322) .

th

Continuing in this manner, at the M~ stage, there will be n-M

subsets of {xo, X{s +oes xn-l} and they are of the form:

{xo, Xqs +- } fxl, Xos wees xM+1} y coes {xn-M-l’

X s oo xn-l}‘ The average output power is then
P, = 5 —= x. + a X.. )
M 2nM jzﬁ ( j kzl k,M 7i+k
" ’ Z
* (X * kZ] B X ]
(2.89)

1 (n-z”'M[ "f ; )2

2 nM = g KM Xj+k
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where 3, M = 1. From (2.71), we recall that R NV +

Ay M- M-l'i =1, 2, ..., M-1. If we impose the added concdition
that ao,M M
and (2.89) simplifies to:

=1 and a; y = 0 for i > M, then {2.71) hoids for all M

. i (n_]‘) -N‘ ';, 2
(2.90) PM=2znm ito l[k;o(ak,M-l " o ek 1) X

;A
——

=

: 2|
* [kZG(“k,M-l * oy e, o) Xjemok] |

! (n-1)-M [M M
(

=R A M1 Kok T 2w kZO -k M-1% 4k

2
30 )

N —

k=0

M 1] ”
FOL 3w Sk T O Eg ok M1 Xjemck) ]

Let
M M
(2.91) "o kZG kM1 Nk kZO Mok M1 XMk
M M
M ~ J.ZO -k M- gek T L Skomel Bk
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Then

(n-1)M

- 11 : 2 ’

j=0

By setting aPM/aaM.1 = 0, we get the value for i’

(n—1)-M (n~12)—M
(2.93) ay = 2 .ZO Pim Yim ity (v

j= it ql”)

The recursion formulas for the Pim and qjm are derived from

(2.71) and (2.91) They are:

(2.94) Pim = Pi 1 * 3 w95 M

aGM = 9541 ,M1 T 31 M1 P M

The starting values for the equations in (2.94) for M=1 are:

(2.95) pj] = xj R qj1 = xJ.+1 ,j=0,1, ... ,n-2.

The equations in (2.94) and (2.95) are implemented in the computer

program which is discussed later in this report.
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CHAPTER III
APPLICATIONS OF MESA AND FOURIER ANALYSIS

A. Comparative Study of MESA and Fouricr Analysis.

EXAMPLE 3.1.

To study the effectiveness of the two methods, consider a mathema-

tical test case consisting of sine functions. The equation is:

x, = 3 sin (.05(27t)) + 10 sin (0.1(27t)) + 5 sin (0.2(23t)) +
8 sin (0.21(2t)),
t=0,1...,99.

No trend in the time series is removed in the analysis. The discretized
function Xy and ‘ts spectra are shown in Figures 3.1A, 3.1B, and 3.1C.
By examining the equation for X¢» ONe can tell that the true periods
are at the frequencies: f = 0.05, f = 0.1, f = 0.2, f = 0.21, corre-
sponding to periods: P =20, P =10, P =5 and P = 4.76 respectively.
Table 3.1 gives a listing of the periods as predicted by both forms of
analysis.

As one can infer from Figures 3.1B, 3.1C and Table 3.1, MESA gives
somewhat better predictions of the frequencies of the periodic compo-
nents. The number of filter coefficients M used in MESA for this par-

ticular problem is 51.
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TABLE 3.1.

FREQUENCY COMPONENTS OF THE SiNE PROBLEM
OF EXAMPLE 3.1 (100 data points)

Frequencies at which Frequencies predicted Frequencies predicted
true periods occur by MESA - 51 filter by Fourier analysis
coefficients used

(1) 0.05 0.0500 0.0475
(2) 0.10 0.1000 0.1000
(3) 0.20 0.2007 0.1975
() 0.21 0.2125 0.2125
EXAMPLE 3.2

What happens in the spectrum of the time series Xy in Example 3.1
if the number of sampled points is reduced? Suppose only 20 points are
used, say at t = 0, 1, ..

., 19. The shorter time series x, is shown

t
in Figure 3.2A and its spectra in Figures 3.2 B and 3.2 C. Table 3.2

lists the frequencies for both spectra.

TAELE 3.2.

FREQUENCY COMPONENTS OF THE SINE PROBLEM OF
EXAMPLE 3.1 (20 data points)

Frequencies at which Frequencies predicted Frequencies predicted
true periods occur by MESA - 13 filter by Fourier analysis
coefficients used

(1) 0.05 0.047% 0.0300
(2) 0.10 0.0975 0.0925
(3) 0.20 0.1925

(4) 0.21 0.2075 0.2075
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Since the number of data points is relatively small, one certainly
can expect shifts in the spectral peaks. Such shifts are present in
both Figures 3.2B and 3.2C, but the frequencies predicted by MESA are
consistently as accurate or more accurate than those predicted by
Fourier analysis. The true peak at f = 0.2 is missing in the Fourier
spectrum, but is approximated by f = 0.1925 in the MESA spectrum. The
fact that MESA is able to distinguish between two very close frequencies
indicates one strong advantage this method has cver Fourier analysis.
One should also take note that the longest period P = 20 is approximated
by P = 21.053 by MESA, but s given as P = 33.33 by the Fourier spec-
trum.

So far the applications we have been considering involve mathemati-
cal test cases, where the periods of the functions are known in advance.

In the fellowing three examples, we present real time series.

EXAMPLE 3.3
Figure 3.3A gives a plot of the MacKenzie River reg:on lynx fur

returns of the Hudson Bay Company from 1821-1934 (Elton and Nicholson
1942), a period covering 114 years. It is evident that a definite pat-
tern exists. In fact, as one closely examines the points, a period of
roughly 10 years emerges. Indeed, both Fourier and MESA spectra bring
out this dominant period as can be seen in Figures 3.38B and 3.3C. Both
lynx spectra agree quite closely in their estimates of the period of the
major peak and of the two more important minor pecks, corresponding to

periods of roughly 38 and 11 years. The cycle of atout 38 years seems
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to be a harmonic of 9.66 years, the major period, for 9.66 x 4 = 38.64

years.
TABLE 3.3
FREQUENCY COMPONENTS OF LYNX DATA
Major frequencies Corresponding Major frequencies Corresponding
predicted by MESA periods predicted by periods
- 69 filter Fourier analysis

coefficients used

(1) 0.0258 38.55 0.0258 38.65
(2) 0.0959 10.42 0.0918 10.89
(3) 0.1035 9.66 0.1035 9.66
(4) 0.1310 7.63 0.1327 7.54
(5) 0.2036 4.79 0.2078 4.31
EXAMPLE 3.4

Another well-studied time series is the Zurich sunspot record from
1700 to 1976 (see Figure 3.4A) as given by M. Waldemeier. The sunspot
time series shows a strorg periodicity of 11 years. There also seems tn
be a period of about 10" years if one divides the interval 1700-1976
into roughiy 1700-1800, 1800-1900, 1900-1976. Table 3.4 gives a listing
of the more dominant peaks in the spectra (Figures 3.4B and 3.4C).

The 99.83 year - period appears to be a harmonic of 9.983, since
9.983 x 10 = 99.83. Several papers have been written [see for example
(Currie 1972), Cole 1973)] in an attempt to explain the different per-
iods (other than those appearing in Table 3.4) in the sunspot spectrum.

Some authors have claimed that certain periods are the results of beat
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TABLE 3.4
FREQUENCY COMPCNENTS OF SUNSPOT CATA

Major frequencies Corresponding Major frequenciez Corresponding
predicted by MESA periods predicted by periods

- 160 filter Fourier analysis

coefficients used

(1) 0.01001 99.83 0.01001 29.83

(2) 0.9175 57.05 0.0175 57.05

(3) 0.0834 11.98 0.0826 12.10

(4) 0.0903 10.99 0.09%01 11.09

(5) 0.0943 19.60 0.0952 10.51

(6) 0.1001 9.98 0.1001 9.98

frequencies (Wolff 1975).

about 11 years is a real one.

It is commonly accepted that the cycle of

In the sunspot and lynx records, the number of available data

points is more than 10 times the length of the most dominant periods

(the MESA estimates of which are 9.66 years in the Tynx and 10.99 in

the sunspots).

Both MESA and Fourier analyses are in agreement with

regard to the frequency estimates in the lynx spectrum and the sunspot

spectrum.

The performance of Fourier analysis is comparable to that of

MESA in cases where there are long records available for the time series

under study.
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EXAMPLE 3.5

We now consider a shorter time series consisting of 42 data points
- the annua! commercial landings of tke striped bass from the Middle
Atlantic region in the years 1930 - 1971 (Van Winkle et al., in press)
(see Figure 3.5A). A summary of the frequency components is listed in

Table 3.5.

TABLE 3.5
FREQUENCY COMPONENTS OF MIDDLE ATLANTIC STRIPED BASS COMMERCIAL LANDINGS

Major frequencies Corresponding Major frequencies Corresponding
predicted by MESA periods predicted by periods

- 26 filter Fourier analysis

coefficients used

(1) 6.0250 39.93
(2} 0.0550 18.15 0.0509 19.64
{2) 0.0793 12.¢1
(4) 0.1302 7.68 0.1310 7.63
(5) 0.2671 3.74 0.2621 3.82

The spectra in Fiqures 3.5B and 2.5C differ ir the frequency inter-
val (0.00 - 0.10). 1n the Fourier spectrum, only one peak at f = 0.0509
appears within the interval. A lot of unresolved power is also
present. In the same interval the MESA spectrum has three peaks at f =
0.0250, f = 0.L550, end f = 0.0793. The frequency f = 0.2621 with cor-
responding period P = 3.815 in Figure 2.5B [denoted peak (5)] appears to

be a harmonic of f = 0.1210, since ? x 0.1310 = 0.2620.
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B. The Effect of Noise

To compare the performance of the two methods when there is noise
in the time series, we consider the sine function of Example 3.1, but
utilize only the first 20 points (fromt = 0 to t = 19). There are two
majcr reasons for doing so. First of all, the longest period of the
sine function is at frequency f = 0.05, ccrresponding to a period of P
= 20. In Fourier analysis, the longest period predicted is the length
of the time series. Secondly, we would like to see how well MESA and
Fourier analysis perform whenever the length of available data is rela-
tively short. We take note that when the number of points is 100, the
predictions given by both methods are in fairly good agreement (see
Table 3.1). When the number of points decreases to 20, the difference
between the ME3A spectrum and the Fourier spectrum can easily be

detected (see Table 3.2). The equation under study here is:

X = 3 sin (0.05(2-t)) + 10 sin (0.1(2=t)) +
5 sin (0.2(2:t)) + 3 sin (0.21(2:t)) +
P (s w0, 6.5 ),

t=0, 1, ..., 19, where

R[t; N(O, 6.5 )]

a random number drawn for each time t from a

normal distribution N(0,6.5 /);

N(DO, 6.5 ) = the normal distribution with mean 0 and standard
deviation 6.5 «;
6.5 =% (3+10 +5 + 8), the average of the amplitudes;

the noise level on a scale of 9.0 to 1.0.
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TABLE 3.6

FOURTER ANALYSIS: FREQUENCY COMPONENTS OF EXAMPLE 3.1
(20 data points at different noise levels)

Noise Level Frequencies (f) of the three highest peaks
(.) 0.05 0.10 0.2100
0.00 0.0300 0.0925 0.2075
0.05 0.0300 0.0925 0.2075
0.10 0.0300 0.0925 0.2075
0.20 0.0275 0.0925 0.2075
0.30 0.0275 0.0900 0.2075

Table 3.6 gives the estimated Fourier frequencies for various
noise levels. The peak at f = 0.05 is approximated by f = 0.03 when
« = 0.0, 0.05 and 0.10. As . increases to 0.20 and 0.30, the peak
shifts even farther away from the true one. In the sine function under
study, the largest amplitude is 10 and it belongs to the sinusoid with
period at f = 0.10. This sinusoid is least affected by the increase in
noise. The frequency estimate of f = 0.10 is f = 0.0925 for the first
four levels of + and only drops to f = 0.09 when : increases to 0.30.
The third peak of the sine function is at f = 0.2000 and does not appear
in Table 3.6 at any noise level. This is because the true peak at f =
0.2100 is very close to the true peak f = (.2000. As a result, there is
a lot of unresolved power at f = 0.2075, at all levels of + in Table 3.6
(see Figure 3.2B for + = 0.00).
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In Table 3.7, the results from MESA are given at different values
of the number of filter coefficients M. For M =3 and = 0.0, 0.05,
0.10, 0.20, 0.30, one obtains a very poor spectral representation indi-
cating only one of the four frequencies. As M takes the values 4, 5, 6,
7, at least *wo of the periods are resolved at = = 0.0, 0.05 and 0.10.
As the level of noise goes up, the frequencies undergo greater shifts
for these values of M. Moreover, when . = 0.30, spurious peaks appear
at f = 0.4100 (for M = 6) and f = 0.3525 (for M = 7). UsingM =8, 9,
10, 11 results in a spectrum with three of the four frequencies of Xy
at Tow Tevels of noise. As M takes the values 12 - 19 and when the
rcise level stays relatively low, all four frequencies are estimated but
only with the addition of spurious peaks as well,

We notice that using too small a value of M results in low resolu-
tion, and using too high a value of M results not only in high resolu-
tion but also in the appearance of several spurious peaks. Furtharmore,
for both high levels of noise and large values of M, the number of spu-
rious peaks tends to be high.

Relatively good spectra are obtained for values of M in the range
8 - 14. Although spurious oeaks do appear, MESA still gives better
estimates than Fourier analysis. Also the problem of sidebands in
Fourier analysis is absent from the MESA spectrum {see Fignres 3.1B,
3.1C, 3.2B and 3.2C).

Figures 3.6A, 3.6B and 3.6C illustrate the MESA spectrum of Xy
at « = 0.0, « = 0.10, and « = 0.30 respectively. The value of M for

these plots is 10. Because of the linear plot scaling, the peaks at
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TABLE 3.7

FREQUENCY COMPONENTS OF EXAMPLE 3.1

(20 data points at different noise “evels)

Number of Noise Level (:)
filter
coefficients 0% 5% 10% 20% 30%
(M)
3 0.1925 0.1900 0.1900 0.1900 0.1775
4 0.0850 0.0850 0.0850 0.1950
0.2050 0.2050 0.2075
5 0.0925 0.0900 0.0825 0.0875 0.1000
0.2075 0.2075 0.2050 0.2075 0.2075
6 0.0550
0.0975 0.0900 0.0875 0.0825 0.0850
0.2075 0.2075 0.2050 0.2050 0.2050
0.4100*
7 0.0950 0.0925 0.0900 0.0850 0.0825
0.2075 0.2075 0.2050 0.2050 0.2025
0.3525%*
8 0.0475 0.0550
0.0950 0.0950 0.0900 0.0900 0.0850
0.2075 0.2075 0.2050 0.2050 0.2025

*Denotes frequencies at which spurious peaks occur.
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TABLE 3.7: Cont'd.
Number of Noise Level (a)
filter
coefficients 0% 5% 10% 20% 30%
(M)
9 0.0525 0.0525
0.0950 0.0950 0.0950 0.0900 0.0900
0.2075 0.2075 0.2050 0.2050 0.2025
0.3275*
0.4475*
10 0.0475 0.0500 0.0500
0.0950 0.0950 0.0950 0.0925 0.0900
0.2075 0.2075 0.2050 0.2050 0.2025
0.3125*
0.4025*
11 0.0500 0.0475 0.0500 0.0525
0.0950 0.0950 0.0950 0.0950 0.0925
0.2075 0.2075 0.2050 0.2050 0.2025
0.3100* 0.3075*
0.4050* 0.4025*
12 0.0425 0.0475 0.0575
0.0700*
0.0950 0.0950 0.0975 0.0975 0.0925

*Denotes frequencies qt which spurious peak: occur.
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TABLE 3.7: Cont'd.

Number of Noise Level (a)
filter
coefficients 0% 5% 10% 20% 30%
(M)
0.1875%
0. 2075 0.2075 0.2050 0.2050 0.2025
0.2200*
_ 0.3125* 0.3125%* 0.3075*
0.4100* 0.4075* 0.4025*
13 0.0475 0.0475 0.0475
0.0975 0.0950 0.0950 0.0975 0.0900
0.1925
0.2075 0.2075 0.2050 0.2050 0.2025
0.2200*
0.3150* 0.3100* 0.3050*
0.4125* 0.4000* 0.3950*
14 0.0450 0.0500 0.0500
0.0950 0.0350 0.0950 0.0950 0.0925
0.1925
0.2075 0.2075 0.2050 0.2050 0.2025
0.3175* 0.3100* 0.3050*
0.4125* 0.4000* 0.3950*

*Denotes frequencies at which spurious peaks occur.
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TABLE 3.7: Cont'd.

Number of Noise Level (a)
filter
coefficients 0% 5% 10% 20% 30%
(M)
15 0.0475 0.0450 0.1525
0.0800*
0.0975 0.0975 0.0950 0.0950 0.0975
0.1875
0.2075 0.2075 0.2050 0.2050 0.2025
0.2225*
0.3175*% 0.3125% 0.3075*
0.4125* 0.4000* 0.3950*
16 0.0350*
0.0500 0.0425 0.0525
0.0900*
0.0975 0.0975 0.0950 0.0950 0.0875
0.1225*
0.1875 0.1875
0.2075 0.2075 0.2050 G.2050 0.2025
0.2675*
0.315)* 0.3125* 0.3125*
0.4125* 0.4000* 0.3975*
0.4750% 0.4750*

*Denotes frequencies at which spurious peaks occur.
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TABLE 3.7: Cont'd.

Number of Noise Level (a)
filter
coefficients 0% 5% 10% 20% 30%
(M)
17 0.0500 0.0425 0.057% 0.0550 0.0475
0.0850*
0.0975 0.0975 0.0950 0.0950 0.0900
0.1850 0.1600
0.2075 0.2075 0.2050 0.2050 0.2025
0.2725*
0.3150* 0.3150* 0.3150*
0.4125* 0.4000* 0.3975*
0.4750* 0.4750*
18 0.0325* 0.0375*
0.0500 0.0425 0.0650 0.0550 0.0425
0.0875* 0.0825* 0.0900*
0.0975 0.0975 0.0975 0.097¢ 0.0950
0.1300*
0.1800 0.1600
0.2075 0.2075 0.2050 0.2050 0.2025
0.2225*
0.2675* 0.2725*
0.3250* 0.3100* 0.3150* 0.3150*

*Denotes frequencies at which spurious peaks occur.



TABLE 3.7: Cont'd.
Number of Noise Level (u)
filter
coefficients 0% 5% 10% 20% 30%
(M)
0.3350* 0.4000* 6.3975*
0.4150% 0.4125* 0.4750* 0.4750*
19 0.0325* 0.0375* 0.0300* 0.0300*
0.0500 0.0425
0.0875* 0.0825* 0.0650* 0.0625* G.0800*
0.0975 0.0975 0.0975 0.0950 0..%
0.1350* 0.1425*
0.1800 0.1800 0.1600
0.2025* 0.2025*
0.2075 0.2075 0.2050 0.2050
0.2250*
0.2700* 0.2725*
0.3250* 0.3100* 0.3150*
0.4125* 0.4125* 0.4725* 0.4725*

*Denotes frequencies

at which spurious peaks occur.



MESA VALUE

MESR VALUE

ORNL~DWG 77-18449

ORNL-OWG 77-18448

1=0.09%0

L $=0,0800

10, o
10, o
10, o«

2
000 120,0950 ) 3000¢
6000 F [
3 25001
wooom '
2000
w000 F :M f
a 1
3 > 1500
3000F 1=0.207% @n, [
E wd L
] ¥ 1000}
2000 ¢ 4
_80 lalo.g.\u 08 n.
|
0.0 0.1 0.2 0.3 0.4 0.5 0.
FREQUENCY
ORNL-DWG 77-18447
_ [ t=0,202% () (20 points).
14000 } A. M
{ B. M
12000} C. M
10000 +
8000}
6000 |-
4000t
4 1=0.0900
2000
" s PN L et aa i i a
0.0 0.1 0.4 0.5

0.2 0.3
FREQUENCY

t=0,20%0

r)

0.5

9
w)
9
o

'~

—

Fig. 3.6. Maximum entropy spectrum of four sinusoids

0.0.
0.10.
0.30.



o~
™Y

0.3075 and 0.4025 in Figure 3.6C cannot be seen, but do show up when a

logarithmic scale is used. h
The preceding studies gives some indications of the advantages of

MESA over Fourier analysis. Below are the major points to be consid-

ered in choosing between the two methods.

Fourier Analysis MESA
1. Assumes a zero extention of the 1. Makes no assumptions
data and uses data windows. outside the given data and

no data windows are used.

2. The longest period predicted 2. Can predict periods longer
is the length of available data. than the length of avail-
able data.
3. Sideband effects are produced 3. No sidetands are produced.

“resulting from power leakage.
4. Frequency components very close 4. Can resolve frequency
to each other cannot be resolved. components very close to

each other.

Another basic difference between the MESA spectrum and the Fourier
spectrum is that in the former, the power in the spectral peak is pron-
portional to the area under the curve, whereas in the latter, the power

is proportional to the height of the peak.



CHAPTER IV

GUIDELINES IN SPECTRAL STUDIES

A. The Akaike Final Prediction Error (FPE).

The determination of the number of filter coefficients (M) which
produces the best7Spectrum is one of the major unsolved problems in
MESA. As a general rule, using a very cmall value for M results in 2
spectrum with low resolution; on the other hand, a very large value of
M, which is close to the total number of data points n results in spuri-
ous peaks in the spectrum. A common practice is to use values of M
close to half the total number of data points.

T. J. Ulrych (1975) suggested the use of the Akaike final predic-
tion error criterion. This criterion is expressed in terms of the mean
square error PM of the prediction filter used to estimate the MESA
spectrum. The idea is to get the least value for PM at which point
the error in the prediction is minimum.

Again our time series will be Xgs Xps cees X qe The final

prediction error is defined by:

(4.1) FPE(M) = 9. P, ,

where ﬁM is the expression in Equation (2.92) and

((n + M

S . if the time series is not detrended.

n+M+]

(4.2) Q= < TR E Y , 1if the mean is removed.

——‘J%#LJéfT , if the series is linearly detrended.

33
v+
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To implement the FPE criterion, one computes Lquation {(4.1) for all

M < n-1. The value of M which gives the smallest FPE(M) determines the
number of filter coefficients to use. Table 4.1 Tlists the FPE values of
the sine furniction in Examp]é 3.1. The FPE vaiues are given for I’ = 1,
...y 97. They indicate a final prediction 2rror function which attains

a minimum at M = 77.

TABLE 4.1
FPE VALUES FOR EXAMPLE 3.1 (10C data points)

Numcer of filter FPE
coefficients »

Number of filter FPr
coefficients M

1 6.676670-01 21 4.69691D-12
Z 2.935050-01 22 £.43425D-13
3 1.65996D-01 23 7.30391D-13
4 8.869490-01 24 2.63503D-14
5 2.94£35D-01 25 9.825%3D-15
6 1.922590-01 26 6.9212¢9-15
7 9.21715D-02 27 4.30912D-15
8 1.60844D--03 28 3.76044D-15
9 7.56116D-04 29 1.37€26D-15
10 2.98365N-04 30 9.00214D-16
11 2.362500-04 H 9.20203D-16
12 4,74525D-06 32 4.59301D-16
1? 1.09780D-06 33 2.44462D-16
14 5.559490-07 34 2.46991D-16
15 3.85160u-07 35 2.12235D-16
16 6.04607D-08 36 1.97891D-1€
17 2.051210-08 37 1.08859D-16
18 3.479700-09 38 1.09643D-16
19 3.107930-09 39 8.10464D-17
20 1.06768D-11 40 7.30130D-17
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TABLE 4.1: Cont'd.
Number of filter FPE Number of filter FPE
coefficients M coefficients M

41 7.69202D-17 71 6.31891D-18
42 6.86446D-17 7 6.05030D-18
43 6.86533D-17 73 5.54125D-18
44 6.74952D-17 74 5.77307D-18
45 6.879120-17 75 5.96710D-18
46 3.21366D-17 76 5.85930D-18
47 2.154210-17 77 4,79736D-18
48 2.16067D-17 78 5.04358D-18
45 2.01605D-17 79 5.31335D-18
50 2.06381D-17 80 5.38276D-18
51 2.073320-17 81 £.68238D-18
52 1.95511D0-17 82 5.97227D-18
53 1.64197D-17 83 5.76230D-18
54 1.05644D-.7 84 6.00796D-18
55 1.01181D-17 85 6.44054D-18
56 1.02351D-17 86 6.10300D-18
57 9.43625D-18 87 5.21797D-18
58 9.29254D-18 88 5.61166D-18
59 9.39571D-18 89 6.01996D-18
60 9.39461D-18 90 6.24087D-18
61 8.66899D-18 91 6.85661D-18
62 7.06601D-18 92 7.35459D-18
63 7.218890-18 93 7.65730D-18
64 7.07270D-18 94 7.14762D-18
65 7.22471D-18 95 8.58823D-18
66 7.42477D-18 96 1.06101D-17
67 7.28808D-18 97 1.398270-17
68 6.61568D-18

69 6.18107D-18

70 6.396630-18

The spectrum for M = 77 (Figure 4.1) shows the peaks at f = 0.05,

0.10, 0.20, and 0.2125,
M = 51 (see Figure 3.1C).

77, we studied several spectra for M in the interval (50, 80).

These are the same frequencies predicted with

Although a minimum FPE is obtained for M =

The FPE
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assumes @ relatively flat valley in this interval. Hence, very good
estimates of the true pesiks are produced. In this case the FPE does

not seem to be a very discriminating criterion.
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Fig. 4.1. Maximum Entropy Spectrum of Example 3.1 with M=77.

As another example of the unreliability of the minimum FPE crite-
rion, we have plotted the FPE for the Middle Atlantic striped bass
landings (Example 3.5) in Figure 4.2A. The FPE minimum is at M = 1,

We have already noted that using very small values of M results in a
poorly resolved spectrum. However, as one examines the plot for
increasing values of M, a major numerical difference is noted hetween

M =25and ¥ = 26. The FPE function increases at almost every step
before M = 25 and then takes a sudden drop at M = 26. [t is interesting

to see what happens to the spectrum as M gqoe. from 25 to 26.
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Fiqure 4.2B shows the spectrum for M = 25 and Figure 4.20 for M = 26.

A major change occurs in the frequency interval (0.0, 0.1) as M changes
from 25 to 26. Instead of just one major peak within this interval when
M = 25, three appear when M = 26. [t appears that the three peaks are
brought into ‘focus'.

For many of the other time series that we have analyzed, the same
kind of behavior occurs - that is, when the FPE takes a sudcen drop in
viiue, the spectrum produces sharper peaks. Whether, of course, the
nther two peaks that come into 'focus' are significant is another cues-
tion.

It is also good practice, when deciding what vzlue of M to choose,
to refer to the Fourier spectrum of the time series as a gquide in deter-

mining what value of M would give a good MESA spectrum.

3. Fisher's Test Statistic - The Periodogram Test

The periodogram is one of the earliest forms of spectral estimates.
It can actually be derived from the sample spectrum in Equations (1.11),
(1.12), (1.13). Using the same notation as in Chapter I, the periodo-

gram values FF(f) are given by the formula:

(4.3) FF(f) = 5 [a(f)2 + b(f)z] :
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where f = k/n, k =1, ..., mifn=2m. If n=2m+ 1, Equation (4.3)
applies for f = k/n, k =0, 1, ... m. Since we are using dis-

crete values for f, (4.3) can be simplified into:

(4.4) FF, =

,r
NS
7] )
-~
~N
-
o
L
Ny
1]

One of the questions often considered is whether the maximum value
of FFk is significantly above the noise level. With Fisher's test, we

proceed the following way to answer the question, Let

FFL = the largest periodogram ordinate, and

m
E FRy

the sum of the periocdogram ordinates.
k=1

The test statistic used is

m
(4.5) FFL/ (m) > 5,

k=1

Fisher (1929) showed that for g > 0, the probability that the lar-
m
gest of m normalized terms (FFi/ p3 FFk, i=1, ..., m) should
k=1

exceed g is

(4.6) 3 {m-l . g} cm (1og)™ ! - M) g1 ™,

(_])m-l §7£%E;377' (]_Sg)m-l

.
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where s is the largest integer less than 1/g. Table 4.2 gives the 1
and 5 percentage points for the distribution of ¢ as given by W. Fuller

(1976).

TABLE 4.2

PERCENTAGE POINTS FOR THE RATIO OF LARGEST
PERIODOGRAM ORDINATE TO THE AVERAGE

Number of ordinates Probability of larger value
0.05 0.01
2 1.950 1.990
3 2.613 2.827
4 3.072 3.457
5 3.419 3.943
6 3.697 4,331
7 3.928 4.651
8 4,125 4,921
9 4,297 5.154
10 4,450 5.358
15 5.019 6.103
20 5.408 6.594
25 5.701 6.955
30 5.935 7.237
40 6.295 7.663
50 6.567 7.977
60 6.785 8.225
70 6.967 3.428
80 7.122 8.601
90 7.258 8.750
100 7.378 8.882
150 7.832 9.372
200 8.147 9.707
250 8.389 9.960
300 8.584 10.164
350 8.748 10.334
400 8.889 10.480
500 9.123 10.721
600 9,313 10,916
700 9.473 11.079
800 9.612 11.220
900 - 2.733 11.344

1000 9.842 11.454
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To illustrate Fisher's test, the lynx data will be used. The sam-
ple spectrum (Figure 3.3B) exhibits the tallest peak corresponding te a
peridd of 9.66 years. Recall that the straight line trend was
subtracted from the data before calculating the spectrum. The null

hypothesis is

The alternative hypothesis is

HA: xt = u+ 3t +Asin [(ZT{t / 9.66) + {} + et ,

where et is the stochastic error term.

The frequencies used for the sample spectrum are f = i/114, i =

1,2,. . ., 57. Then

(1.42571 x 108/(1/57)(2.79734 x 108

57
FFL/ (1/57) Z FFk
k=1

29.C511

From Table 4.2, the 1% point for this value of £ is about 8.20. So

29.055 > 8.20 and Ho is rejected. Jne concludes that the 9.66 period

is svatistically significant.
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C. The Tumulative Periodogram Test

In analyzing a real time series like the lynx data, our normal
course is tc remove the linear trend in the data before analysis. That

is, we really are fitting the model

The series that then undergoes analysis is & , the estimated error.

£
Thus a question that one might ask is whether the ét's under study
comprise just white noise.

It can be shown (Box and Jenkins 1970) that the power spectrum
P(f) for white noise has a constant value 20 (o is the

variance for ~) over the frequency interval [0.0, 0.5]. Thus the

integrated spectrum for white noise is

f 2
(4.7) PP(f) = f P(v) dv = 2 ag f s

0

with f defined in the interval [0.0, 0.5].

Dividing both sides of (4.7) by og gives the equation

(4.3) PP(f) / (52 - 2.
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Thus the plot of PP(f)/oi against f is a straight 1ine joining (0,0)
to (0.5, 1). For test data, the integrated spectrum can be approximated

by the cumulative periodogram CPk:

k m
(4.9) CPk=ZFFi/Z FFJ.,k=l,...,m,

which is compared with the white noise straight line.

To determine the significance of the deviations of the cumulative
periodogram of the test data from the theoretical straight line joining
(0,0) to (0.5,1), limit lines can be drawn on each side of the theoreti-
cal line, using the Kolmogorov - Smirnov test (Box and Jenkins 1970).

If indeed the series e, were to comprise white noise, then the cumula-
tive periodogram would cross these 1imit lines with a stated probabil-
ity. It should be pointed out however, that the probabilities are only
approximated. The limit lines in the freguency interval [C.O, 0.5] are

given by tne equations:

(4.10) y=2f+K /A
where
(4.11) T - (n-2) /2, if n is even

(n-1) /2 , if n is odd,

f is the frequency in the interval [0.0, 0.5], n is the tdta] number of

data points, o the stated probability.
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The cumulative periodgram of a truly randym series would then lie
outside the limit lines of Equation (4.10) for an approximate
fraction o of the time. Table 4.3 lists Ka versus a. This table is

adapted from Box and Jenkins (1970).

TABLE 4.3
VALUES OF - AND Ka NEEDED FOR CUMULATIVE PERIODOGRAM TEST

Probability a Ka -
0.01 1.63
0.05 1.36
0.10 1.22
0.2% 1.02

Figure 4.3 is the cumulative periodogram of the lynx data after the
linear trend is removed. In this case n = 114. One can see that the
periodogram has certainly ~rosseZ the limit lines, y = 2 f + KO 05

/Vq, where q = \J(114-2)/2 = 7.48. Our conclusion therefore is that

e is not white noise and the errors are rot independent. The model

X, =i + 2t + e is thus inadequate.

t t

D. The Integrated Maximum Entropy Spectrum

In the sample spectrum in Fourier analysis, the power density in a
peak (i.e., the strength of contribution of the frequency f) is directly
related to the peak amplitude. In the maximum entropy spectrum, the
power density is directly related to the area under the spectral peak
[see Lacoss (1971)]. So in order to judge the contribution of a spec-

tral peak in MESA, the area under the peak has to be computed. This
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Fig. 4.3. Cumulative periodogram of the Lynx Data.

Solid Curve - Cumulative periodogram. :
- Dashed lines - Limit lines y =2 f = Ko. 05 / 9.

suggests the use of an integrated spectrum obtained from the convolution
of the MESA spectrum with a rectangular window of height unity and width
equal to the effective width of the peaks in the MLZA sccctrum. The
heights of the peaks in the integrated spectrum will then be propor-
tional to the corresponding power densities.

The maximum entropy spectrum as given by Equation (2.35) is

PMAI
(4.12) P(f) =

1 2
~i2nfmat
1+ :E: am e
m=1
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The integrated spectrum IP(v) will then be of the form

f.
(4.13) IP (v;) =f T+ p(f) df,
f

i

where fi+1 - f,i is the bandwidth of integration and

v; = (f + fi)/2°

i+l
To illustrate the above ideas, consider the spectrum P(f) in

Figure 4.4A. By choosing an appropriate width of integration, one can

find the areas under the two spectral peaks. Figure 4.4B shows the

estimated integral of P(f) where

£,
IP(v,) =f T+ 1 prgy gf.
£,

(4.14) !

f.
, 1
p (vj)=f P10 pg) ar.

i
For an M - length prediction error filter, only M/2 + 1 discrete
frequency spectral components can be obtained (Jensen and Ulrych 1973).
Fence to obtain an estimate of the bandwidth of integration we take the
Nyquist frequency fM and divide it by M/2 + 1. Once the integrated
spectrum is computed, the height of a peak would then be proportfional tc

the power density.
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Fig. 4.4. (A) A sample maximum entropy
spectrum. (B) The integrated
maximum entropy spectrum.

The integrated MESA spectrum for argiven time series is very sfﬁi<
lar in appearance to the Fourier spectrum for the same series, but it -
is not possible to easily judge whether or not a 5eak in thé'integraté&
MESA spectrum is significantly above the nofise lével because t@g{gﬂ&oes
not yet exist a MESA analogue of Fisher's test for the period&éfgqﬁi‘ )
The reason is that at the preseﬁt time no onc knows the statifiiq@]w 
distribution of integrated specf;él estimates for random t1m§ se}fés;lf
It is, however, possible to 6bta1n a sfgnificance test Uy a rather cumf,r'
bersome Monte-Carlo technique which has been described by Jensen and

Ulrych (1973). Essentially what one does fs to generate a large number
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of random time series having the same number of sample points and the
same sample spacing as the series being studied. One then calculates
the integrated MESA spectrum of each of these random series using the
same number of filter coefficients and the same integration window width
used to construcc the integrated spectrum of the original sample. One
can then use this collection of integrated spectra to empirically con-
struct a table giving, as a function of pfeak height, the probability of
obtaining that peak height by chance simply by counting the number of
spectra having peaks that high or higher and dividing by the total num-
ber of spectra used in the p.ncess. The quality of the approximate
prooabilities obtained in this manner will, of course, improve as more

random time series are used in the procedure.
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CHAPTER V

THE COMPUTER PROGRAM AND ITS USE

A. Explanation of the Subroutines

Essentially, the program consists of the following routinres:
(1) Main program - which initializes the data values and other
parameters needed in spectral analysis.
(2) Subroutine TRANS1 - which provides different calls to SPECTR.
(3) Subroutine SPECTR - which does spectral analysis using both
Fourier and MESA methods. In turn, SPECTR calls:
(a) Subroutine DETRND - a routine to be provided by the user
if detrendinc is done. _
(b) Subroutine SFT - computes the Fourier sine and cosine
terms needed to produce the sample spectrum.
(c) DCADRE - a built-in IMSL subroutine used in computing the
integrated spectrum if it is desired.
(d) Double Precision Function SPCVAL - computes the functiocn
used in integrating the spectrum.
(e) Subroutines DOPLT, DOPLT1, DOPLT2, DOPLT3, DOPLT4, DCPLTS,
DOPLT6, DOPLT7, DOPLT8, DOPLT9, SINGLE, GPHBGN, GPHBGl, GPHEND, ANGTIC

- perform the necessary plotting using the DISSPLA routines.

1. The Main Program

The parameters which are given initial values are read in this sec-
tién of the program and are transferred to TRANS1 and SPECTR by the

common statement:
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COMMON/SPECBL /DELT2., YEAR(600), Y{600), XD(600), VMAX, Z(600), V(600),
S(600), FPE(600), XDIFF(600), DATE(600), X(600),
ACS(600), BSN(600), AMP(600), ASF(600), PERIOD(600),
NPTS, NFILT, NV, MCOUNT(600), IPRINT, IPLOT, ITREND,
IFPEPL, IINTSP, IAUTCV, IYWACV
Table 5.1 lists in alphabetical order the variables which are read,
their dimensions, types and what they represent. Currently, the dimen-

sions allow a maximum of 600 data points to be analyzed by <PECTR.

TABLE 5.1
LIST OF VARIABLES READ IN THE MAIN PROGRAM

Variable Dimension Type Explanation

DATE 600 REAL*8 time array (times at which sample
values occur).

DELTA REAL*8 sampling interval.

IAUTCY I*4 indicator for option to plot MESA
estimate of autocovariance function.

IFPEPL I*4 indicator for optfon to prin'/plot
final prediction error.

TINTSP 1*4 indicator for option to compute
integrated MESA spectrum,

IPLOT I*4 indfcator for option to plot

spectra.
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TABLE 5.1. Cont'd.

Variable Dimension Type Explanation

IPRINT [*4 indicator for option to print
output.

ITREND [*4 indicator for option to detrend
data.

TYWACV I*4 indicator for option to compute and
plot Yule-Walker estimate of the
avtocovariance function.

MCOUNT 630 I*4 contains the array of numbers which
correspond to the number of filter
coefficients desired in each MESA
spectrum.

NAM 14 Real*4 title for the data set.

NFILT I*4 total number of maximum entropy
spectra to te calculated with
different values of the number of
filter coefficients.

NPTS I*4 number of data points in time
series.

NV I*4 number of frequencies desired in

output; should not exceed a maximum

value cf 599.
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TABLE 5.1: Cont'd.

Variable Dimension Type Explanation

VMAX Real*8 maximum freguency for the output
spectrum; has a maximum value of

0.5, the Nyquist frequency.

XLBL Z Real*4 label for time axis (x-axis) used
in plotting.

Y 600 Real*8 time series %0 be analyzed.

YLBL z Real*4 label for time series data (y-axis)

used in plotting.

The indica“ors IAUTCV, IFPEPL, IINTSP, IPLOT, IPRINT, ITREND,
[YWACV should be initialized to values of 0 or 1. Ir each case, 1 is a
positive response and 0 is a negative response.

The variables NAM, XLBL, YLBL, which are read in the main program,
appear in the common block BLKLBL. These are mainly used for identifi-
cation ot data and plots. BLKLBL is shared by the Main program, TRANSI,
SPECTR and DOPLT. The form of the statement is

COMMON/BLKLBL/NAM(14), XLBL(2), YLBL(2)

The input cards, all of which are read in the main program, must
have the following formats., The formats appear in the order the cards

are read.
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(1) Input card on first READ statement.
XLBL YLBL DELTA NPTS NFILT NV VMAX
$ $
— ———— —— —_—— -—— —
2A 2X 2A4 2X El10.: I5 IS5 IS E10.0
XLBL and YLBL must terminate with a dollar sign.
(2) Input cerd on second READ statement.
NAM
“ s

"

14A4

NAM must also end in a dollar sign.
(3) Input cards for third READ statement.
MCOUNT(1) MCOUNT(2) . & &« v v v v e e e e v o v s MCOUNT(NFILT)

— N ——

I5 I5 I5
(8) Input cards tor fourth READ statement. This set contains the time
series to be ana'yzed.
DATE(1) Y(1)
DATE(2) Y(2)

DATE(NPTS)  Y(NPTS)

S ———— I —

F4.0 F10.0
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(5) Input card for the fifth READ statement.
TPRINT IPLOT ITREND IFPEPL IINTSP TIAUTCY IYWACV

——— ——— — e

T mm— ee— eSS

I5 IS IS I5 15 15 IS

A flowchart of the main program is given in Figure 5.1.

ORNL--DWG 77-18821
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1 =1, NPTS
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l Read IPRINT, IPLOT, ITREND, ‘|
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Fig. 5.1. Flowchart of the Main Program. Numbers
(e.g., 1 and 500) refer to statement
numbers in the program.



35

2. SUBROUTINE TRANSI

The variables in this subroutiﬁe are those that appear in the com-
men area SPELBL. This subroutine allows the user to perferm transforma-
tions on the raw data (e.g., take logarithms) before doing spectral ana-
lysis. Up to five different spectra with five different transformations
are allowed.

The basic statements in TRANSI are the following:

(1) SUBROUTINE TRANS1
Opticnal user supplied statements fer desired transformation on data.

CALL SPECTR

RETURN
(2) ENTRY TRANS2

Optional user supplied statements for second desired transformation.

CALL SPECTR

RETURN



{3) ENTRY TRANS3
Optional user supplied statements.
CALL SPECTR

RETURN
(4) ENTPY TRANS4
Optior user supplied statements.

CALL SPECTR

RETURN
(5} ENTRY TRANSS
Optional user supplied statements.

CALL SPECTR

RETURN

1f the user wants to analyze only the input data, he need not sup-
ply additional statements and any of the 4 additional entries can be
effectively deactivated by omitting CALL SPECTR.
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An example of data transformation using the second Entry call
(i.e., CNTRY TRANS2) is the following:

ENTRY TRANS2

DO 201 =1, NPTS

Y(I) = DLOG(Y(I))
20 CONTINUE

CALL SPECTR

RETURN
In the preceding statements, the natural iogarithm of the input data
Y(I), I=1, ..., NPTS is taken and the result is stored in Y(I) again.
Thus when SPECTR is called, the logarithmically transfernied data are
analyzed. The program listing for SUBROUTINE TRANS1 given in Appendix
TI1 gives the configuration of statements needed to first analyze the

original data and then its logaritnm.

3. SUBROUTINE SPECTR

The main function of SPECTR is to perform the f(llowing:
(1) Detrend the input data by calling DETRND if desired;
(2) Compute:
(a) the Yule-Walker estimates of the autocovariance function if
desired.
(b) the Foirier spectrum.
(c) the periodogra. ordinates and treir sum.
(d) the cumulative periodogram.

(e) the maximum entropy spectrum.



98

{f) the autocorrelation function resuiting from fhe maximum entropy
computations.

(g) the integrated maximum entropy spectrum if desired.

(h} the final prediction error if desired.

(3) Print and plot computed values.

A flowchart of subroutine SPECTR appears in Figure 5.2. Table 5.2
lists the the parameters in subroutine SPECTR which appear in common
blocks on DIMENSION statements. This list includes the variables which
must appear in the calling program and the arrays whose dimensiur the
user might want to alter if he desires to make changes in the
programs. Variables that are oniy used internally in SPECTR or in

subroutines called by SPECTR are not included in the 1list.

4. SUBROUTINE DETRND

DETRND is called by SPECTR with the statement:
CALL DEYRND (NPTS, DATE, YEAR, Y, XDIFF, X, SFPE)

where

NPTS number of data points, i.e., length of time series.

DATE - time arruy that must not be destroyed.

YEAR - user-evaluated time values; these are to be initialized
in DETRND.

Y - input time series values; these values must not be

destroyed.
XDIFF

array containing the detrended data; computed in DETRND.
X - array containing the trend of the data; computed in DETRND.
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Fig. 5.2. Flowchart of Subroutine SPECTR. Numbers (e.g., 100 &nd 300)
correspond to statement numbers in the program,



TARLE 5.2
LIST OF PARAMETEKS IN SUBROUTINE SPECTR

Variable Dimension Type Explanation
A 600 Reai*E Vector of working storage.
ACFN 600 Re2l*8 Vector of working storage.
ACS 600 R=al*8 Vector oF working storage.
AMP 600 Rea1*87 Vector of working storage.
ASF 000 Real*8 AVpétor containiny Fouri~r power

specirai valves.

B 600 Real*8 Vector of working storage.

BSN 600 Real*8 Vector 5f working storage.

CUMPER 300 Real*8 Array of cumulaiive periodogram
values.

DATE 600 Real*8 Time values for input series.

DELTA Real*8 Sampling interval (‘'delta T').

FPE 600 Real*8 Array containing final prediction
error.

FPER 300 Real*€ Array of periodogram frequencies.

[AUTCV 1*4 Autocovariunce plotting flag (Burg

estimate).
IFPEPL I*4 Final prediction error flag.
TINTSP i*4 Integrated spectrum flag.
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TABLE 5.2: Cont'd

Variable Dimension Type Explanation

IPLOT I*4 Plotting flag.

IPRINT 1*4 Printing flag.

ITREND I*3 Detrending flag.

IYWACV I*4 Yule-Walker autocovariance flag.

MCOUN~ 600 1*4 Vector of prediction error filter
lengths to use.

NAM 14 I*4 Title for the data se:.

NFILT I1*4 Number of prediction error filter
lengths to try.

NPTS I*4 Number of data points in time
series.

NV I*4 Number of frequencies at which
spectrum is calculated.

PERDG 300 Real *8§ Array of periodoaram values.

PERIOD 600 Real*8 Vector of working storage. Upon
return tc the main program, this
vector ccntains the periods
corresponding to the frequencies in
v,

PPEK 300 Real*8 Array of periodogram periods

corresponding to FPER.
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TABLE 5.2: Cont'd

Variable Dimension Type Explanation

S 600 Real*8 Maximum entropy spectral values are

stored in this array.

STATE 2 Real*4 Label for dependent variable (y -
axis)
v . 600 Real*8 Output vector of frequencies at

which spectrum is calculated.

VMAX Real*8 Maximum frequency at which spectrum
is to be calculated.

X 600 Real*g Upon returning from DETRND (if
detrending is done ), it should
contain the trend of the input
data. It is later used as a vector
of working storage.

XD 600 Real*8 If detrending is done, it should
contain the detrended data; if not,
it is the original data. Spectral
analysis is applied on XD.

XDIFF 600 Real*8 Upon returning from DETRND, it is
the detrended data. It is later

used as a working vector.
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TABLE 5.¢: Cont'd

Variable Dimension Type Explanation
Y 600 Real*8 Input time series values.
YEAR 600 Real*8 Vector of working storage (can be

used as time variable in DETRND).

YTIME 2 Real*4 Label for the time axis.
Z 600 Real*8 Prediction error filter
coefficients.

SFPE - number cof components in the trend of the time series to be
removed. For example, if the mean i. removed, $FPE = 1; if
the intercept and slope are to be removed, SFPE = 2, and so
on. SFPE is given the value 0 in SPECTR if detrending is
net done.

Should th: user choose to analyze the original data without

detrending, tne dummy subroutine in Table 5.3 may be used.

If the mean of the input data is to be removed, i.e., the model

X

=nu+ e, is to be fitted, then the subroutine in Table 5.4 will

t t
be appropriate to use.

Table 5.5 contains a detrending subroutine in which the linear
trend of a time series is eliminated. A least-squares routihe BL.SQ is
called to perform the fitting of the straight line to the data. A
write-up of BLSQ appears in Appendix II. SUBROUTINE BLSQ is available
from disk at ORNL (see, for example, control card for "BROOKS.LOAD.

MODULES" in Tables 6.3 and 6.4).



Table 5.3. Dummy subroutine DETRND

s m I

1 T .
IStatement number . Continuation Fortran statement
{ colummns 1-5 ’ column 6 columns 7-72

$
g
|

|

e l L R A

SUBROUTINE DETRND(NPTS,DATE,YEAR,Y ,XDIFF,X,SFPE)

mn e g =

IMPLICIT REAL*8(A-H,0-Z) :
DIMENSION DATE(1)., YEAR(1), Y(1), XDIFF(1), X(1)
RETURN

END

= —————————

- ———— - ———in = W e = B e e e mimew w = w oW w t =y e

v01



Table §.4. A detreandirg subroutine for removal of the mea' of a time series

Statement
number Continuation
<olumns 1-5 column 6
e e g e+ e o
100
300 '

Fortran itatement
columns 7-72

SUBRROUTINE DETRND(NPTS,DATE,YLAR,Y,XDIFF,¥ ,SFPE)
IMPLICIT REAL*2(A-H,0-2)

DIMENSION DATE()). YEAR(1). Y(1), XDIFF (1}, x{1)
SFPE = 1.0

AVRAGE

0.0

n

DO 100 1 i+ NPTS

" RVRAGE - AVRAGL + Y(1)

 CONTINUE

AVRAGE = AVRAGL / NPTS
DG 300 1 = 1, NPTS
Xi1) - AVRAGL

XDICE(L) = Y{1) - x(1)
CONTINUL

© ROTURM

LRD

Lxplanation

Since only the mean is removed, SFPL - I.'

Compute the mean of the Y array.

Store the trend of the data in Y array.

Store the detriended data in XDIFF arreay,

SOt



Table 5.5,

A detrending subroutine for Lhe remova! of the Yincar trend in a time series

— —_
Statement
number Continuation
columns 1-§ coiumn 6

Fortran statement
columns 7-72

SUBROUTINE DETRND{NPTS,DATE,YEAR,Y,XDIFF,X,SFPE)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION DATE{1),YEAR(1),Y(1),XDIFF(1),%(1),

A{601,3),1IRUN(601),COLF(2),COLF2(2),T(2,2),T1(2,2),
.VAR(2,2)

NROW = 601

NLSCOL = 2

NT = 2

SFPE = NLSCOL

DO 50 I = 1,NPTS

YEAR(I)
A(LL1)
A{1,2)

I -0.5
1.0
YEAR(!)

i
!
1
i
'

|

Explanation

NROW is the row dimension of the least
squares natrix A,

NLSCOL is the number of coefficients of
the linear fit.

NT is the row dimension of the matrices

T and 71, which are computed in the least
squares routine BLSQ.

SFPE = NLSCOL since there are *wu

linear coefficients - the int rcept

and slope - to be removed.

Initialize the time variable

Set up the least squares matrix,

901



Tauvle 5.5.

{continued)

Explanation

Call the least squares routine BLSQ
to perform the linear fit.
Compute the coefficients af the lineer

fit using values returned from BLSQ.

COEF(1) contains the intercept of tbe
time serie¢,

COEF(2) contains the slope of the trend

{Statement
number Continuation Fortran statement
columns 1-5 colum 6 columns 7-72
50 CONTINUE
CALL BLSQ(A.Y,COEF ,RESID, IRUN,T,T1,HPTS NLSCOL,
1 NROW,NSLCOL)
DO 80 I = 1,NLSCOL
SUM = 0.0
DO 70 J = 1,NLSCOL
SUM = SUM + Ti(1.,J) * COEF(J)
f 70 CONTINUE
| ; COEF2(1) = SUM |
80 CONTINUE ;
ﬁ i DO 30 1 = 1,NLSCOL ‘
| ! | COEF(1) = COEF2(I) |
5 : line.
| 90 i CONTINGE
! DO 100 1 = 1,NPTS

X(1) = A{I,NLSCOL + 1)

The trend of the data conmes bu.k in

A(1,HLSCOL + 1) and is stored in X array

L01



Table 5.5.

(continued)

'iistatement
. number
columns 1-5

. .
Continvation
column 6

e

i

1 100

'

i e g = PU . . -

Fortran statenent

XDIFF(1) = ¥{1) - x(1)
CONTINUE

RETURN

END

D L. ke I - e a

txplanation

The detrended data is stored in XDIFF

array.

801
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SUBROUTINE BLSQ returns (in the array T1) the infor;a/tion needed to
compute the variance - convariance matrix of the coefficients (i.e. the
slope and intercept) and these values could be stored in the array VAR
which is not used in the preceding program (Table 5.5). A SUBROU™TNE
DETRND which does add this final step is given in the program
listings in Appendix IV.

It should be obvious from studying Table 5.5 and Appendix II how to
remove more complicated detrending functions using BLSQ or even a non-
linear least squares program if needed.

5. SUBROUTINE SFT

The computation of the factors

l{} n-1
2 xj cos 2#jf , Z xj sin 2nif ,
J=0 J=0

from Equations (1.12) and (1.13) respectively, which are used in the
evaluation of the sample Fourier spectrum, is done in SFT. Subroutine

SFT is called by SPECTR with:
CALL SFT{XD, ACS, BSN, V, KF1, NYR, °])
The corresponding arguments in SFT are given by:
SUBROUTINE SFT(X, A, B, V, K, N, PI)
These arguments are described in Table 5.6.
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6. DOUBLE PRECISION FUNCTION SPCVAL

The double precision function SPCVAL computes for any frequency
the maximum entropy spectral valve P(f) as given by Equation (2.35).
SPCYAL is used in the integrated maximum entropy spectrum calculations.
It is the function which is integrated by the IMSL subroutine DCADRE,
which is described in Appendix I. The IMSL subroﬁtine DCADRE is
available from disk at ORNL (see, for example, control card for
=JDAIMSLI® in Tables 6.3 and 6.8). Table 5.7 lists the important

parameters in SPCVAL.

TABLE 5.6
A LIST OF THE PARAMETERS IN SUBROUTINE SFT

Variable Dimension Type Explanation

A 1 Real*8 The array containing the factors
n-1

T x. cos 2 7jf upon return. It

j=0

has a maximum dimension of 600.

B 1 Real*8 The array containing the factors
?gi xj sin 2 = jf upon return. It
a;s a maximum dimension of 600.

K ) 1*4 Number of frequencies at which
spectrum is calculated.

N I*4 Number of points in the series
under anaiysis.

PI Real*8 The real number .
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TABLE 5.6: Cont'd

Variable Dimension Type

Explanation

v 1 Real*8 Output vector of frequencies at
which spectrum is calculated.
X 1 Real*8 Time series under analysis.
TABLE 5.7

A LIST OF PARAMETERS

IN THE FUNCTION SUBROUTINE SPCVAL

Variable Dimension Type

Explanation

AP 600 Real*8
DTIME Real*8
FREQ Real*8
M B i*4

P1 Real*8
SPCVAL Real*8
z £20N Real*8

The array containing P".

The time interval at.

The frequency f.

The number of filter coefficients M.
The real number =.

The «pectral value P(f).

The avray of filter coefficents
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7. SUBROUTINE DOPLY

Subroutine DOPLT is a plotting routine which calls other subrou-
tines primarily from the plotting package DISSPLA (DISSPLA is a univer-
- sal package that performs the necessary plotting). DISSPLA is availCble
from disk at ORNL (see, for example, control card for "DISSPLA.LOAD" in
Tables 6.3 and 6.4). There are nine ENTRY statements, the function of
each are listed as follows:

(1) EIITRY DOPLT] - plots the original data against the time
values, if_the data are detrended the trend is also plotted on the same

“set of axes.. ‘ - )

(2) ENTRY II)PLTZ - if detrending is per fomed the detrended data
are plotted against the time values; the line y = 0 is also inciuded "n
the plot and serves as a reference line for the residuals. Furthermore,
a plot of the residuals against the fitted values or trend is done.

(3) ENTRY DOPLT3 - plots the Yule-Halkér autocorrelation function
against the lag values if IYNACV = 1.

(4) ENTRY DOPLT4 - nlots the Fourier sample spectrum against fre-
quency; it also plots the cumulative Fourier power spectrum against fre-
quency. The 95% Ko'mogorov-Smirnov bounds are also plotted on the
latter graph.

(5) ENTRY DOPLT5 - plots the Burg autocorrelation function against
the number of filter coefficients if IAUTCV = 1,

(6) ENTRY DOPLT6 - plots the maximum entropy spectrum against fre-
quency.

(7) ENTRY DOPLT7 - plots the fntegrated maximum entropy spectrum
against frequency if TINTSP = 1.



113 .-

(c; ENTRY DOPLTB - plots the final prediction error against the
number of filter coefficients if IFPEPL = 1.

(9) ENTRY DOPLTY - plots the periodogram and cumilative
periodogram as a function of frequency. The 95% Kol-ogoroy-Snirﬁpv R
bounds are included in the latter plot. ‘

The other sd)routmes called by wPLT after each “ENTRY state-ent
are mainly for setting up the axes for plotting. _ﬂley are k

(1) SUBROUTINE SIHGLE transfor-s (buble premsinn v"'
single precision. This>ls necessary since DISSPLA;croutir}_aa hand 1}
Real*3 ﬁlfomation. , .7 ’ -

(2) SUBROUTINE ANGTIC - cOntro"ls the mmbe;. of tiick wmarks and
angular position of the numbers on the axes. «

(2) SUBROUTINE GPHBGN sets up the 1mt1al X and y axes for plot-
ting according to the range of the data pairs. ]

(4) SUBROUTINE GPHBEL - sets up the initial x and y axes for plot-
ting the FPE. This uses logarii;l'nnic scaling of the axés, as ‘contrasted
with GPHBGN which makes use of linear scaling.

(5) SUBROUTINE GPHEND - plots the specific curve and draws a\frame
about the picture.

A1l the necessary parameters for plotting are transferred to Sub-

routine DOPLT by the two common blocks SPECBL and BLKLBL.
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CRAPTER VI
ILLUSTRATION OF THE USE OF THE PROGRAM

A. An Ecological Example

The time series we will consider is the striped bass catch per unit
effort data for the comme-~cial fishery in the Hudson River from 1955 -
1975, 2 series of length 21 years. The set of input cards appears in
Table 6.1. The first card contains the labels for the x and y axes, the
time interval, the number of points in the time series, the number of
times MESA is to be performed, the number of frequencies ahd the maxi-
_ ﬁﬁm frequency. The second card has the label for the time series data.
The ‘nird card is the number of filter coefficients used. The time
series vullows on cards 4 - 4. The last card has all the options to
print, to plot, to detrend, to compute the FPE, to comﬁute the inte-
grated spectrum to compute the autocorrelation function from MESA, and
to compute thke Yule - Walker estimates of the autocorrelation. A1l
these option indicators are given the value 1.

The data were detrended tsing a SUBROUTINE DETRND which removed a
1%near trend by calling BLSQ, the lcast squares procedure (DETRND is in
Appendix IV and BLSQ in Appendix II). Spectral amalysis was done on
botn the raw data and the natural logarithm of the raw data. However,
only output for the raw data will be presented. The printed output
appears in Fiqgure 6.1 and the plots in Figure 6.2A thru Figure 6.2L.
The printout on the residual sum of squares, coefficients of the linear
fit, and variance-covariance matrix come from DETRND. DISSPLA plot

messages are also inserted,



BLANK PAGE




Table 6.1. Input cards for the Hudson River catch per unit effort data
Card B -
1 YEAR  $ _CATCH _ _ % _ _ _ _ _ .0 21 ____T_ 199 0.5
2 HUDSON RIVER CATCH PER UNIT EFFORT$
3 18 o
4 1955 _ 1897. 3
5 1956 _ 2550.
6 1957 _ 2456.
7 1958 _ 2479.
8 1959 _ 3985.
9 1960 _ 4089. ? TIME SERIES DATA
10 1961 _ 2372.
n 1962 _ 1670.
12 1963 _ 2039.
13 1964 _ 1378.
14 1965 _ 1952.
15 1966 _ 2842.
16 1967 _ 3535.
17 1968 _ 3397. J

911



Table 6.1. (continued)

Card

18 1969 _ 4852, .

19 1970 _ 2608.

20 1971 _ 1743,

2 Wiz _1213. > TIME SERISS DATA

22 1973 _ 4273.

23 1974 _ 1429,

24 1975 _ 1480. J

25 S R R N I I IR
NOTE: '_' indicates a space.

LTT
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ABALYSIS CP TPE OPIGINAL ISPOT DATA WITHOOT ANY PPIOR TRASSPORNATIONS

f0DSOE SIVEF CATCE PEBP BuIY EPPCUTY

YEAP ¥ (4 2 §
1.9550p0 03 1.8970000 0Y
1.95600 02 2.5%000CD 03
1.9%70p 0) 2.8560000 03
1.9540p 0) 2.879000D0 0)
1.959%00 9) 3.98%5000D 0}
1.9600p0 0? n_099000t 03
1.9610p0 0) 2.3720000 0)
1.96200 03 1.870000p 0?
1.2%10¢ O? 2.0399900 03
1.9630p 0) 1.3780000 01
1.96500 0) 1.95200¢p 0)
1.96€00 03 2.7420000 03
t.9670p 0) 3.5950000 03
1.9680p 01 31.3970060p 0%
1.96%00 01 .8520000 03
1.97G00 0) 2-608000n 01
1.9710r 0) 1. 7630000 03
1.47200 0) 1.213090t 0)
1.97300 0) 8.2730000 03
1.~7s0p 0) 1.429790p0 03
1.97500 ©1% 1.880000C 013

RESIDOAL SUR OF SQUARES = 2.25222%0 7

CORPPICL(EVTS CP THE LIVEAR PIT

IFrENCEPT = 2.718%26D 03 stope = -1.268132D 1

VARIANCEZ~-COVARIABCE AATRIX

RCY CCLOURR \J coLony 2
1 2.2€17159770716380D0 05 -1,61632775885€4600D 08
2 ~3.6168277S80580600D DB 1. 539855004 28815200 03

THE SPECTRAL ANALYSIS SILL BP APPLIED TO TRE DETRENDED POTA

TRAR § c/e ¢ OETRERWOPD C/E 8
1.9550p 03 1.8970000 03 -f. 1588680 02
1.9%600 ©) 2.5500000 03 -1.898030D 02
1.95700 0) 2-8560000 0) -2.3112120 92
1.95800 0) 2.8790000 03 =1.958)98p 02
1.9%90p 03 3.985009D 03 1.3232820 03
1,96000 0) 8.089000D 0) 1.87992ep 09
1.96100 03 2.3720000 03 ~2.68319390 02
1.96200 0) 1.6700000 0) =9.51712 02
1.9630p 03 2.0390000 0) -5.720303n n2
1.9640p 03 1.1780000 03 -1.220388D 03
1.96500 0) 1.9520000 03 -6.3166670 02
1.9660D0 03 2.6820000 03 2.690'%52p 92
1.96700 03 3.5956000 03 1.038 71 01
1.96800 0) 3.1970000 0) R.821398D 07
1.96900 03 8.8520000 03 2.3170410 02
1.97000 03 2.6080000 03 R, 5787020 01
1.97100 0 1.7830000 03 =7. 6657580 02
1.97200 0) 1.2130000 03 ~1.20)898p 0?3
1.97300 0) 8.2730000 03 1, 7r878%D 01
1.97400 03 1.8290000 0) =1.N1824310D 01 “
1.97500 03 1.4800000 03 =9.738985D n2

Fig. 6.1, ‘“tandard computer autput.
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9.9 1.€0000D 00
1.000¢ 00 2.072630-01
2.000p 00 -1.052280-01
l.001¢e a0 -1.83717up-0%
e_000L 00 -1.688110-07
€.aC0D 09 -8.560050-41
6.000C 00 -1.508720-01%
7.000c 00 &. 22€80p-02
5.0C0D 00 9.058780-02
9.000t €0 2. 198820-01
1.0002 0V 2.867880-01
1.1000 01 ~7.057590-02
1.200e 01 ~1.867890-01
1.3000 OV 5.222%70-02
1.8C0D a7 ~1.5%2620-02
1.5002 0% ~1.20186D-0%
t.6000 01 -3.052390-02
t.7670 01 S. 37818002
1.800¢t 01 ~8. TIR930-02
$.9068 01 0. 825860-02
2.0000 09 1. 568210-02
PERICDOGEATY

L4 e, PERICD PERIODOGRAR

ORDY YATE

1 0.08762 27.00000 6.702750 0%

2 0.09%52e 11.50000 7.527170 04

3 0.18206 7.00000 1.609220 a6

L] 0. 19082 S. 25000 7.C30060 0%

. 0.23e10 8.20000 2.60811D 06

.3 e 9571 3.50000 3.525969 06

7 0.1732) 1.00000 . 256890 0%

L4 0.3809% 2.62%00 3. 284380 0%

9 0.828%7 2.1333) 6.907120 0%

10 0.87619 2. 10000 2.712870 06

SON OF PEBIOLCGNAR ORDINATES -  2.252220 07

RATIROR CPDINATE ¥  7,.92713D 06
PISRER STATISTIC = 3.)02090 00
SORBER OF OPCIFATES » 10

OCZORING AT PRRQOERCY « 9.52181D-02

CIRULATIVE
VERTIODOGRAY

a9,0297%
0. 364800
0.%2776
0.55897
0.676%%
0.63315
0.9%20%
0. 6606
0.89731
1.00000

Fig. 6.1.
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B. Setting up the Program for Execution

The time it takes to rur the program depends on many factors, pri-
marily the length of thke time series, the number of {requencies used,
the number of timec MESA is performed and the use of other options.
Table 6.2 lists a few examples indicating the time and core used.
Although the list is short, it i> hoped that it will serve as a guide
in the classification of a progran run. A1) the data were linearly
detrended.

For users at ORNL, Table 6.3 is a typical setup of the job control
cards for a Class C job with disks used for plotting. Similarly,

Table 6.4 is a setup for a class E job with the use of tapes in plot-
ting. The job initials BLKL (wherever they appear) should be changed
to that of the user’s.

The inclusion of the following cards is explained:

1. "//_DD_DSN = SYS2.DISSPLA,DISP = SHR ...... cessene "gives

access to the plotting routines.

2. “//_DD_DSNAME

BROOKS.LOAD.MODULES ..........." gives access
to the BLSQ.

3. "//_DD_DSNAME = JDAIMSL1.REF 10276 ..........." gives access

to DCADRE.


http://progra.ii

Table 6.2. List of programs runs; time and core used.
Number of IPRINT  IPLOT  ITREND IFPEPL  IYWACV  1INTSP  IAUTCV Number of ;;;;;{;~~
points in frequencies  values
time series . .
21 yes yes yes no yes no no 600 8-17
21 yes yes yes yes no no no 600 15
N yes yes yes no yes yes no 501 15,16
42 yes yes yes no no no no 600 a0
70 yes yes yes no no no no 20 30
N4 yes yes yes no no no no 600 69
260 yes yes yes no no no no 600 }gg
2N yes yes yes no nc no no 600 160
2717 yes yes yes yes no no no olu 275

Logarithmic

trans form
analyzed

yes

yes

no

yes

no

no

no

yes

yes

Computer time

and core used

1.04 minutes

286 K

23,90
286 K

41,48
280 X

28.37
320 K

11.35
280 K

21.26
286 K

35.46
290 X

49,78
Br{V 4

seconds

seconds

seconds

seconds

seconds

seconds

seconds

1.06 minutes

320 X

gEL
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Table 6.3. Jub setup far disk plottine

//BLKL JOB (16064),"'ENV_2001_X-10_KIRK'
//*CLASS_CPU91=5M,REGION=540
//_EXEC_FORTHCLG,PARM.FORT="XREF',
//_PARM.GO='TIME=5.0,EU=-1,DUMP=-1,50=51",REGION.G0=530K
//FORT.SYSIN DD *

source deck

[+
//LKED. SYSLIB_DD

//_0D

//_0D

//_DD_DSN = SYS2.DISSPLA,DISP=SHR

//_DD DSNAME=BROOKS .LOAD.MODULES ,UNIT=2314,
//_VOLUME=SER=127722,,DISP=SHR
//_DD_DSNAME=JDAIMSL1.REF10276,UNIT=2314,VOL=SER=CADPK1 ,DISP=SHR
//LKED.PLOTSUBS DD _DSN=JGSPLOTH,DISP=SHR

//LKED.SYSIN DD *

_INCLUDE_PLOTSUBS

/*
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Table 6.3. (continued)

//G0.F349F001_DD UNIT=IN20U2,DISP=(NEW,KEEP),
/! SPACE=(3208,30,RLSE) ,DSN=PLOT00.BLKL,
//_DCB=(RECFM=V'; ,LRECL=3204,BLKSIZE=3208)
//G0.FTO5F001_DD_*

data cards

/*
!/
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Table 6.4. Job setup for tape plotting

//*NOSEQCARD

//BLKL_JOB_(]6064),'ENV_ZOO]_X-]O_KIRK'
//*CLASS_CP:J91=5M,REGION=540,L INES=4C,CARDS=10,SPECIAL=TAPE
//*PLOT _ _NiMBER=30

//_EXEC FORTHCLG,PARM._FORT='XREF',
//_PARM.GO="'TIME=5.0,CU=-1,DUMP=1,50=51" ,REGION.GO=540K
//FORY.SYSIN DD *

source deck

/*
//LKED.SYSLIB DD

// 0D

// DD

// DD DSN=SY52.DISSPLA,DISP=SHR

// DD DSNAME=BROOKS .LOAD .MODULES ,UNIT=2314,

// VOLUME=SER=2Z117Z,DISP=SHR

// DD DSNAME=JDAILSL1.REF10276,UNIT=2314,VOL=SER=CADPK] ,DISP=SHR
//GO.PLOTTAPE DO INIT=TAPE7,LABEL=( ,NL),DISP=0LD, VOLUME=SER=15
//G0.FTO5F001_DD ~



Table 6.4.

(continued)

)
-4

data cards

J*
/!
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APPENDIX I

DESCRIPTION OF FUNCTION DCADRE*

FUNCTION  DCADRE (F,A,B,AERR,RERR,ERROR, IER)

DCADRE-------- Sf0---=nn 111 T S
FUNCTION - INTEGRATE F(X) FROM A TO B, USING CAUTIOUS
ADAPTIVE ROMBERG EXTRAPOLATION.
USAGE - FUNCTION DCADRE (F,A,B,AERR,RERR, ERROK , IER)
PARAMETERS  DCADRE - ESTIMATE OF THE INTEGRAL OF F(X) FROM A TO B.
F - A SINGLE-ARGUMENT REAL FUNCTION SUBPROGRAM

SUPPLIED BY THE USER. F MUST BE DECLARED
EXTERNAL IN THE CALLING PROGRAM,
A,B - THE TWO ENDPOINTS OF THE INTERVAL OF
INTEGRATION. (INPUT)
AERR DESIRED ABSOLUTE ERROR IN THE ANSWER, {INPUT)
RERR - DESIRED RELATIVE ERROR IN THE ANSWER. (INPUT)
ERROR ESTIMATED BCUND ON THE ABSOLUTE ERROR OF THE
OUTPUT NUMBER, DCADRE.
IER - ERROR PARAMETER
WARNTNG ERROR(WITH FIX) = 64 + N
N = 1 IMPLIES THAT ONE OR MORE SINGULARITIES
WERE SUCCESSFULLY HANDLED.
N = 2 IMPLIES THAT, IN SOME SUBINTERVAL(S),
THE ESTIMATE OF THE INTEGRAL WAS ACCEPTED
MERELY BECAUSE THE ESTIMATED ERROR WAS
SMALL, EVEN THOUGH NO REGULAR BEHAVIOR
WAS RECOGNIZED.
TERMINAL ERROR = 128 + N
N = 3 -- FAILURE DUE TO INSUFFICIENT
INTERNAL WORKING STORAGE.
N = 4 -- FAILURE. THIS MAY BE DUE TO TOO
MUCH NOISE IN THE FUNCTION (RELATIVE
TO THE GIVEN ERROR REQUIREMENTS) OR
DUE TO AN ILL-BEHAVEC INTEGRAND.
N = 5 INDICATES THAT RERR IS GREATER THAN
0.1, OR RERR IS LESS THAN 0.0, OR RERR
IS TOO SMALL FOR THE PRECISION OF THE

'

MACHINE.
PRECISION - SINGLE/DOUBLE
REQD. IMS. ROUTINES - UERTST
LANGUAGE - FORTRAN

*Reprinted from IMSL LIBRARY 1. Reference Manual. Edition 4 (Fortran
1v) $/370 - 360, 197¢.
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FUNCTION DCADRE(F,A,B,AERR,RERR,ERROR,IER)

Purpose

DCADRE attempts to solve the following problem: Given the name F of a
real function subprogram, two real numbers A and B, and two non-negative
numbers AERR and RERR, find a number DCADRE such that

B
J F(x)dx-DCADRE max | AERR,RERR *
A

B
J F(x)dxl
A

Algorithm

This routine uses a scheme whereby DCADRE is computed as the sum of
estimates for the integral of F(x) over suitably chosen subintervals of
the given interval of integration. Starting with the interval of
integration itself as the first such subinterval, cautious Romberg
extrapolation is used to find an acceptable estimate on a given
subinterval. If this attempt fails, the subinterval is divided into two
subintervals of equal length, each of which is considered separately.

See reference: de Boor, Carl, "CADRE: An algorithm for numerical
quadrature”, Mathematical Software (John R, Rice, Ed.), New York,
Academic Press, 1971, Chapter 7.

Programming Notes

1. DCADRE can, in many cases, handle jump discontinuities and certain
algebraic discontinuities. See reference for full details.

2. The relative error parameter RERR must be in the interval [0,0.1].
For example, RERR=0.1 indicates that the estimate of the integral
is to be correct to one digit, whereas RERR=10 calis for four
digits of accuracy. If DCADRE determines that the relative
accuracy requirement cannot be satisfied, IER is set to 133 (RERR
should be large enough that, when added to 100.0, the result is a
number greater than 100.0).

3. The absolute error parameter, AERR, should be nonnecative. 1In
order to give a reasonable value for AERR, the user must know the
approximate magnitude of the integral being computed. In many
cases it is satisfactory to use AERR=0. In this case, only the
relative error requirement is satisfied in the computation.

4. We quote from the reference, "A very cautinus man would accept
DCADRE only if IER is O or 65. The mer:zly reasonable man would
keep the faith even if IER is 66. The adventurous man is quite
often right in accepting DCADRE even ‘f IER is 131 or 132", Even
when I:R#0, DCADRE returns the best estimate that has been computed.
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APPENDIX I!
DESCRIPTION OF SUBROUTINE BLSQ*

Identification

Linear least squares solution.

Purpose
ALSQ and BLSQ are double precision FORTRAN IV subroutines to solve
the linear least squares problem by applying the Househoder
reduction to the least squares matrix [1]. Both programs use the
same technique in solving the least squares problem; however, BLSQ
returns additional information useful in statistical
applications. Both programs have subordinate entries, ALSQ1,
BLSQl, which enable the user to perform additional fits at very

Tittle cost once the least squares matrix has been reduced.

Method

The Tinear least squares problem to be solved may be formulated as
follows: given n x m (m < n) matrix A of rank m and an n-vector y

find an m-vector b such that
2 _
[|Ab = y|| = min, (1)

The programs, in effect, use the Householder reduction of the matrix A

to triangular form to find an n x n orthogonal matrix H such that

*Reprinted from Westley and Watts, The Computing Technology Centér

Number ical Analysis Library, CTC - 39, (Oct. 6, 1970) pp. 383-386.
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I
w1 @)
0

where T is an m x m upper triangular matrix and "0" is an (n - m)xm null
matrix. If we let U be the n x m matrix consisting of the first m
columns of HY (in order) and V be the n x (n - m) matrix consisting of
the remaining col'mns and consider the new least squares problem of

minimizing ||Uc - y||2, then

uTy (3)

O
n

and
b = T-1lc. (4)

ALSQ perforﬁé the Householder reduction (2) and uses equations (3) and
(4) to calculate b. BLSQ calculates and returns the vector ¢ and the

matrices T and T'1

which are useful in statistical applications. The
vector b may subsequently be calculated by the user from equation (4).
Both programs return the approximating vector Ab = Uc and the residual
sum of squares IIAb - y||2.

Under the usual statistical assumptions of regression analyses, it

can be shown that the number of runs in VTy minuc one has the binomial
distribution with parameters n - m - 1 and .5, If the problem being

solved involves fitting continuous functions of a real variable, a sta-

tistical tesl based on the above may be expect2d to be powerful when the
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fit inadequately represents the data. Because of this, BLSQ returns the

T

number of runs in V'y.

Usage

The calling cequence for ALSQ is:

where

CALL ALSQ(A, Y, B, R2, N, M, NA),

A

R2

NA

is a doubly subscripted double precision array containing
the least squares matrix. The elements of A are altered
by the program.

is a singly subscripted, double precision array
containing the vector to be fit. The elements of Y are
unchanged by the program.

is a singly subscripted, double precision array which
upon return contains the coefficients of the fit,
contains, upon return, the doublc precision residual sum
of squares of the fit.

is the integer number of rows in the least squares
matrix.

js the integer number of columns in the least squares
matrix.

is the integer first dimension of the array A.

The program requires that the array A be dimensioned so that it

will hold one extra row and one extra column in additfon to the least

squares matrix, i.e., the dimension of A must be at least N + 1 by
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M+ 1. Upon return from the program, the locations A(I, M + 1) contain
the components of the approximating vector Ab (see Method).

A second entry, ALSQl, allows the user to obtain additional fits
without repeating the reduction of the least squares matrix. ALSQ must
be called before calling ALSQl, and the contents of the array A must not
be changed between these calls.

The calling sequence is:

CALL ALSQL(Y, B8, R2, K)
where Y, B, and R2 are the same as above and
K  is the number of columns of the least squares matrix to
fit to the Qector Y; e.g., if K = 4, the first four
columns of A will be fit to Y returning four
coefficients in the array B. K must be less than or
equal to M in the call ALSQ.
This entry also returns the approximating vector in the locations
A(I, M+ 1),
The calling sequence for BLS( .s:
CALL BLSQ(A, Y, C, R2, IRUN, T, T1, N, M, NA, NT),
where A, Y, R2, N, M, and NA are the same as in the calling sequence
for ALSQ and
C i a singly subscripted, double precision array which
upon return contains the coefficients of the transformed
problem given by (3).

IRUN is an integer array whose jth

element contains upon
return the number of runs in VTy after 1 columns of

the least squares matrix have been fitted.

l
|
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T is a doubly subscripted, double precision array which
upon return contains the upper triangular transformation
matrix of equations (2).

Tl is a doubly subscripted, rdouble precision array which
upon return contains the inverse of the transformation
matrix.

NT is the first dimension of the arrays T and T1.

BLSQ also has a second entry, BLSQl, to calculate new fits. The same
restrictions apply to the use of BLSQl as apply to ALSQl. The calling
sequence is:

CALL BLSQ1(Y, C, R2, IRUN, K),

where Y, C, R2, IRUN are the same as in the calling sequence of BLSQ
and K is the number of columns of the least squares matrix to fit to the
data. Both BLSQ and BLSQl1 return the components of the approximating

vector in the locations A(I, M + 1).

Coding Information

Although these programs are coded in double precision arithmetic,
they may be easily converted to <ingle precision. Additional
accuracy may be obtained in the single precision program by accumu-
lating inner products in double precision. The places where this
should be done are signaled by the appearance of the variables SS

and PP,

Reference
(1) Golub, G. (1965): "Numerical methods for sviving linear

least squares problems,"” Numer. Math. 7, 206-216.



152

(2) wampler, R. H., "An Evaluation of Linear Least Squares
Conputer Programs,®™ J. of Research of NBS, Vol. 73B, No. 2,
p. 59.

Author
G. W. Stewart, III, formerly with the Computing Techrology Center,
Union Carbide Corporation, Nuclear Division, Oak Ridge, Tennessee.
[Editor's Note: For an evaluation of ALSQ in single and double
precision see (2). Unfortunately, the single precision version
reported in (2) did not accumulate immer products in double

precision.]
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IP(IPLOT.EQ.0) DON'T PLOT

IPHINT = TAINTING PLAG
TP(IPRINT.NE.O) PRINT DATA ANL SPECTRA
IFP(IPAINT. BQ.0) LON'T PRINT

ITREND = DETIRENOING PLAG
IP(ITKENG WE.0) OSE DETRENDED TINEZ SERIES

anafaLAROLANNrONNRONANDANLONONRANNOMANNANNNNADOALANAAMAN
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IT0ACY =

8CO0NT =
[ 11 ] a

NFPILY =

¥PTS =
L4 s
PIREG =
PERIOD =

L3 -

STAIZ =

VAAX =

0 -

URNL-DWG 7B-585]

TO CORPUTE THE SPECTRA
IF(ITREND, BQ.0) USE RAN DATA

YULE-WALKER AUTOCOVARIANCE FLAG o
IP{ITVACVY.NR,0) CALCOLATE, PRIWT, ARD PLOT THE
YOLZ-WALKER BSTINATE OF THE
AUTOCOVARIANCE PONCTION
IP{ITNACT.EQ.0) DON®T CALCOLATE YOLE-WALKERR
ESTINATE

VICTOR OPF FRED. XRBOP FILTIR LRNGIHS TO USE

TITLE PCR THE DATA SEY (TITLE POR THE PLOTS)
MAR. OP 80 CHABACTERS (10h8) PNOIWG WITH 3

MO, OF PHEDICYION ERROR FPILTER LENGTHS TO TRY
(LE2WGTH OP PRED. ERROR PILTER = NOMBER OF LAGS)

W0, OF PERIODOGHAN ORDINATES. {(WPES » GREATIEST INTEGER
«iBe WTA/2).

¥O. OF DATA POLNTS I¥ TIANE SERIRS.
¥C. OF FREQOEBNCIRS AT WHICH SPECTROA IS TO BR CALC.
PFRICDOGRAR VALURS.

VECIOR OP NORKING STORAGE (SANE LINGTH AS V)
OPON RETORR THIS VECTOR CORTAINS THE PERIODS
CORRZSPONDING IO THE FPPEQUENCIES IN V.

PERIODOGRAR PERIODS IM CORRESPOMOENCE WITH FPORER,

THE HAXIZUM RNTROPY SPRCTRUR. ONE ELENENT
POR BACH BLENENT IN VECTOR V.
TRIS ARRAY 1S WRITTEW OVER POR BACH MBw
VALDE OF MCOUP: GpecN RETURN TO CALLING
PROGRAN, IT VILL CORTALY THE LAST SPECTROM
COAPOTED, 1.L., THR SPECTRON CORRESPONDING
THE LASY LAG VALUR IR 8COUNT ARRAY.

LABRL FOR DEP. VARD. (TINE SERIES) AXIS
fARK. OF 8 CHARACTERS (AB) BWDING WITH

OUPUT VYICTOR OF PREQUENCIES AT WHICH SPECTRON
IS CALC. (WERZIN GENEIRATED). SHOOLD B2
DIMENSIONED TO RAVE AT LEAST (RPeY) BRLERENTI.

RAX. PREQ. AT WHICH SPRCTROM 15 TO PP CALC.

UPOR RETUZNING PROR DETRND IS THE TRAWD OF THE INPOT DATA.
17 XS LATER ON OSED AS A FORKING VRCTOR.

IP DETRENDIWG IS DONE, IT IS TRE CRTRENDED DATA.
I DETRENDIN IS WOT DONE, IT IS THE ORIGIRAL DATA.
AESA AND TODRIER ANALYSIS ARE PERFORARD ON XD.

YDIFY ='JPOR RETURNIWNG PAON DETRED IS THE DETRENDED DATA.

r—
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15w
b3 )

s

Isu
1sn
Isu
Ism
s

1su
1su
s
Is»
13»

Isu
Isu
Ise

Ism
Isnm
Isa
pe1 |
ISy
I3

Isn
Isn

133 )
IS
1Sy
15n
s
Isw
15
ISy
158

2027
0028
0029
0030

0031
0033
001s
0036
0037

00138
0039
Q0a0
006 Y
o082

00&3
00as
00aS

Q0sé
0047
00s8
0089
0050
0081

0082
0083

0054
0056
0057
0058
0059
0060
0061
0062
0063

non

naNnNnan

nHNHOHN

nNnoannnONn

70

CALL CETENL(NPYS, DATE, YBAR, Y, XDIPP, X,SPPR)
00 170 I=1,¥PTS

I0(1) = xCIFP(1
conriave

)

PLOT DATA AND ITS TREND CONPONENT.

IF [IPLO1.1Q.0) GO TO 200

CAlL CCPIT!

200 1F (ITRRIND.WE.O) GO TO 300

202 PORRAY (VHO///VHO, *THE SPECTRAL ANALYSIS WILL BE ¢,
1 CAPPLIEC TO RAN DATA WRITROUT REMOVING THE Tlllﬁ'I/I/)

220
2a¢

30¢

302 PORMAT (VHO///VHO,°THE SPECTRAL ANALYSIS WILL BR °,

303 PORAAY (VHO//1HO(2X o2AQ, 12X, 2 A8, 10X, ' DETRENDIO *,200/ )

PRINT 202

SPPE » 0.0
DO 280 1=1,M5TS
XD(I) = YD)
CONTINUE

GO TC 310

vONIIN0E
PRI ST 302

1 TAPPLIEL 10 THY DETARMDED DATA'////)
PRINT 303, YTIAE, STATE,STATE

DO 30! 1=1,MPTS
PRINT 308, DATR

(.

Y{I), IDIPP{I)

304 FORMAT { VK ,15011.4,8K,1P018.0,8%, {PDIL.6)

308

continoe

POT IR PLOT FOR DETRENDED VATA.

3t

CCHPOTIR YULE-UALKER

CALL DCPIT2
contlinue

JONCTION 1F DESIRED.
ACY PONCTICN YALUES STORRD IM XDIPT.

810

ESTIAATES OF AUTOCOVARIANCE

LAG VALUES STORLO IN X,

TP (ITUACY.EQ.0) GO TO SO0

AV = WPTS
CREAN=0.CD0

00 810 I=1, NPT
CREAN=CHRAN®
() =(1- 1)
IDIFP {1) =0.000
CONTINOE
CREANSCREAN/ AN

s
xp(I}

ORNL-DWG 78-5853
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Is»
153
Ise
13
Ise
158
1se
1S
15y
Ise
sy
1SE
s

ISN
1sw

Isa
15w
Ise
1su

1S

p )
Ise

Isn
isn
1s¥
s
Ise
Isw
Isu
15
1sn
Ise
Isu
Isw
Isn
isa
1Sy
pey |
Ism
1se
Isu
13w
iss
isu
P ]
1sw
1se

0064
0065
0066

Q068
0069
0070
00721
0072
0073
007e
0075
0076

0077
0078

0979
0080
0081
0082

0083

00as
00as

0036
0087
0038
0089
00%0
0091
00932
0093
0094
Q095
0098
0097
0038
0099
0100
[RLR}
0102
0102
0104
0105
0106
¢ we
0109
[3314)
[3R R

naocnn N

(oY Kol

430
880

[T}

.50

(31
60

Soo

502

$03

$0%

DO &80 I=1, NPTS
ILAG=1~1

WAl = WPIS - ILAG

DO 830 J=1,N01
JLAG=JIAILAG

XDIIP (1) =XTIPP 1) ¢ (¢ ID () =CARMN) * ¢ ID (JLAG) ~CHEAM))
CONTiNG®

XOLER (1) =XDIPK (I) /AN
conrTINg®

XDPY = XDIFP(Y)

D0 &84S I ~ 1, WPTS

IDXEP (I} = XLIRP(X)/XDPY
CoNTINDE

PRINT 450
PORNAT (VM1,*YULE-VALKER ESTINATE OP AUTOCORRBLLATION ¢,
1 YPUNCTION®//1RO,8T, *LAGY, 11X, tAUTOCORY. ¢)

DO 460 I=1,NPTS

PRINT &SS, Xx(I).xplPP (1)

FORMAT (W ,1PR10.3,5%, PE12.5)

contTinoe

CALL foPLTd
CORSUTE PERIQDOGRAR AMD POUAIZR SPECTROW,

NYR = MP1S
KP1 = NV ¢ 1

PIRST THE ERRICDOGRAN AWD CUMOULATIVE PEHIODOURNAN.

PTEAP = NPTS / 2

NPER = PIERP

DO 502 Js1,NEER

A =9

TPER(J) = A / WPTS

PPEE(J) » 1,000 7 PPER(J)

CONTINGE

CALL SPY (XL,ACS,BSN, FPER, WPRR, WPTS, P1)
SUAPER = 0.0D0

TUCHTA = 2,0D0 7 NPTS

DO S03 I = 1,MEER

PERLG(I) = TWONYA ¢ (ACS(I)®%2 ¢ BSW (I)*e2)
SUMPER = SDAPER ¢ PERDG(I)

coNtlinue

DSUR = 0.0D0

PERMAX = PERDG (1)

IAAX = 1

DO 5CS I=1,NPER

DSUA = DSUA ¢ PEROG (1)

CORFER(I) = DSOA / SUNPER

1P (PERDG(I) .Ll”. PERAAX} GO TO 505
PERRAY = PERDG{I)

INAX « I

CORYINDE

PISHER = PERNAX / ((1.0DO/MPER) ® SUAPER)

ORNL-DWG 78-5854
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15e
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isa
1sn
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Isu
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153
1su
1sm
Isa
158
Ise
b |
p &y |
1se
Ism
sk
<l
158
158
158
Isn
isne
ISy
IsH
Isu
p:y |
i5h
s
s
1sw
154
s
154
isn
pe |
158
138
15%
15N
ISR
Isn

018S
0186
0187
(21 %:]
0189
0150
0151
0152

015)
015%
9155
0156
0158
0159
0160
016 Y
062
0163
0164
0165
066
0167
0168
0169
0170
0V?y
0172
0123
[ REN]
0175
0176
0?8
0179
0180
o
0183
o184
0186
0187
0188
0189
0190
0191
0192
0193
0vga
0135
0196
0192
0198
019%

an

R N Ne kel

600

620

W s AYR - 1

sgn = 0.

DO 620 I=1,MTR

SON = SO& ¢ XD(I)®%2
CONTIAUE

soa = son/ure

ABR{1} = Sva
XDIPP(Y) = ANP(I)

SAXINDA BRTSOPY CCHPUTATIONS BRGIN HERE.

68l
660

68¢C

690

700
720

730

24C

260

IFLAG = C

Do 1000 IF = 1, NFILT
IFLAG = IPLAG * 1

IF (IFLAG.GT.1) GO TO 795
noay

ACS(1) = XD(VW}

BSH{BV} = XD(WIR)

DO 640 I=2,N1

ACS (1) = XC(D)

asw(I-1) = xo ()

CONIINODE

puCh » 0.

DDEW = 0.

Nl = NYR-M

DO 68C I=1,kNa

DUCH = DMOP + ACS{1) *BSW (1)
DLER = DDEN ¢ ACS (1) @2 + BSN(I) %2
CONTINOE

T(8) = 2 * pAOA/DDEN

AUP(MeY) = AHP(N)*(1.-2 (A} **2)
QRUN = Aep,?

QDEN = WYR-R

IF |.TREMD.EQ.0° GO TO 690
QNOA = QNUReSPFE

QDEN = CLBM ~ PPE

CORTINUE

1P (QCEWN.EC.V.LI0) QDENaY, 0D-5
PR (M) = AMP (HMeV) * (WUA/QDEN
IP (M.NE.1) GO TO 760

IDIER(2) = XDIFR(V) * 2 (V)

B = He

ny = om-

BO 730 i=V,m

YEAR (I} = T(I)

CONTINDZ

NR = NYR-%

DO 740 I=1,NN

ACS{I) = ACS{1) - YEAR({A-Y) *BSN (1)
BSN(I) = B8SN(Ie1) - YSAN(S=1) *ACS(I¢Y)
CONTINUE

GV TQ 669

N1 = A-1

DO 780 1=1,%1

ORNL-pWG 78-5856
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0227
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0232
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0235

0226
0237
0238
039
0200
(213}
0282
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02e8
0245
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0248

0249
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annnn

ORNL-DWG 78-5857

3(I) = YEAR(I) =~ 2Z2(N)SYEAR (A1)
760 cosrivOR

som s O,

DO 790 I=1,n

SO = SOM ¢ XOXPP({A+1-I)%2(I)
720 Costriwoe '
XDIPF(Re1) = SUA
GO T0 7198
CONTINUER
A = RCOUPT {IP-1)
792 CO¥TINDR

Ir (LIC.BCODII'(!P)) GO TO 820
800 GO 10
820 bo 060 l'\ (12)

csun = 0.

Do 840 J=,n

ENT = = 2, ¢ PIL ®» J * ¥Y(I) * DELTA

Cv = CCHPLX(0.DO,EWT)

CSOB = CSUZ ~ Z{J)*CDEIP(CY)
840 CONTINIUE

CSuUn = 1, ¢CS0N

X = (COABS(CSON))ee2

S{I) = (ABAE(he1) * DELTA) / KX
860 CONTIRUER

RC = BCOODNT(1IF)

w

19

PRINT CUT AUTOCORRELATION AND FNTROPY VALUES.

NYIREY * 1.0D0 / (2.0D0 * DELTN)
WESEV = NYFREQ/((DFLOAT (COUNT (17)) /2.0N0) +1.0D0)
IF (IFRIST.EL.0) GO TO 980
17 (IAQTCY.Ey. £} GO 10 89y
PRINT 869,ACODRT (I7)
869 PORBAT (VHY,*NCOUNT = *,IS///)
FRINT 870
870 PORMAT (THO/1hO, *AUTOCORRELATION PURCTION VALURS'//,
1 THO, *LAG? , 20X, AUTOCOAR. * /)
ACT = BCCURT (IP) o1
TP = IDIPP (V)
DO 875 Is1,ACT
ACPN(I) = XDIPP(™Y / XD
875 CONTIRNDE
DO 890 T1s1,ACT
(1) = I-1.
PRINT 880, X{1), ACPN{I)
8680 POREAY (1A ,1p2819.6)
890 CcostiNuk
891 continoe
PRINT 895, 8TIRIQ,RESHE, PPE (UC)
89S PORAAT (WR1, 'MAXINUA BNTROPY AMD POURIER SPRCTRA',///,
1 180, 'WYQUIST PREQUENCY = ¢,1PDVO.3//,
2 1M0, *RESOLUTION BAWNDNIDTH = °, lPD\0.3///.{
3 VNG, *PINAL PREDICTION ERPOR = %, 1¥D10.3///)
PRINT 900, X CUNT (IP)
900 PORBAT (140, ‘RCODNT=*, 13,6,  PREQUENMCY®, 6, PERIOD® , 10X,
VNAXINON ENTROEY®, 7%, 'PODRIER AWBLITUOER)

)



1su
ISR
154
15w
Isw
s
s
Is»

158

sk
IS8
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1sa
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ISN
s

ISK

1S

0251%
0252
0258
Q255
02%6
0257
0258
0259

0260
0262
0264
0265
0266
0267

0268

0270
0271
0272

0273
0274
027S
0276
0277
0278
0280
0281
0282
0283

0244

0285
v2de
n2ae
0,19

0290
G291
0292

293

annan

nanna

o6

c

910

DO 960 I=1 kM

IF (V{I).EQ.0) 30 TO 920
PEAIOD(1) = L/V(D)

GU 10 930

920 PERIOD(1) = O.

930
e
960

980

¢
91

<o

991

992

9

29

936

PRINT 980,11,V {1),PERIOD(1),5(X),ASP 1)
FORMAT {18 ,°I=',18,3uL,P9.7,6X,P%0.3,6X,1P219,.6,6X,1PE19.6)
CONTINUE

PLCT AAXIAUM ENTROPY AlD’AUTOCOIlELlTZOI PONCTION.

12 (IFLO1.EQ.0) GO TO 91
IP (IAUTCV.E..Q) GO 10 90
CALL DOPLTS (MCT, NC,ACPN)
CONTINOE

CALL TCPRLTE (KEY, NC)
CONTINDE

MPUTE INTEGRATED SPECTRUR JP DESIRED
IP(IINTSELEC.G) GO TU 10J0

VINDOV = RESBN/2.0D0

PRAINT 991, WINDCY,ACCUNT(IP)

PORAAT (1IN, *INTEGRATED NARIMUM ENTROPY SPECTROAY,///,
1 THO, 'MILIH OF INTIEGAATION WINDOW = *,VPDI10.Y,//77,
2 tHO, "WCCUNT= ,13,6X,  PREQUBNCYY,6X, ' ~ERTOD! ,10Z, .
3 YMAX. BNT. SPEC.',7X, 'INTEGRATED SFECTRUAY, X,

QO "ERROR EC. (INVEG. 3P.)',/)

WINDC2=WINCCH/2.000

SPCVIN = SPCVYLT (AMP,2,DELTA, K7V, N}

£O 995 I=1,KP1

YLC= ¥ () ~uINpO2

VOPs=¥ (I) ¢WINDO2

TP (VL0 GE.0,0C0) . ANU, (YUP.LE.BYFREQ)) GO TO 992

Agl) = 0,000

Bl{I) = 0.0DO

GO T0 99S

CONTINOR

ALD *DLADRE [STC VAL, VLO,YUP,0.0D0,0.00100,
1 TRROR,LER)

B(I) = PRROR

1P (IBRLLE.66) 30 TO 498

PRAINT 993, 1, 1ER, V(.}, A(l), B (1)

PORBAT (1HO/1HO,*Y =% T4, 58, *1BR = °,13,5K,'PREJ, ',
1 IPOVR.6, 5K, VINTEGRAL =' 1PDVU. 6,5, RRACR TARARETER =1,
2 1PCIA.6Y) .

CONTINOE

DO 997 1s1,KkF)

PRINT 99¢, 1,V (1), ,PRLUIOD(I),S(1) . A¢D)  BLY)

POKNAT(VE ,01:9,14,10,P9.7,6X,P10.3,60,1PE19.6,061,

1 1PY 196,03, 1PE19,6)
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CALL DOPLT?{KF1,AC,A)

000 CONTINOE

1 (1PPEFL.EQ.0) RETURN
vRIVT 0OV

DO 102C 1=V, AC
IV = Lo
PRINT 1015,1,1%,0PPrE {1}

PLOT IHE PINAL PREDICTICN

CALL LwPlTe
BETIURN
| 3.0

1010 PORNAT (TR, °PIVAL PREDICTICN EZRNROR',//1H9,21X,
VOtIY 3N, %N0ABE" OP PLILTIER® (X" INML PKEVICTION' /1H ,
1 BR,'CCEFPICIENTS 11X, *ERROR /)

101S PORBAT (¥4 13,115, 92%,12D92.9)
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158
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1se
Isa
1sn

su
s
1
ism
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s
Ise
Ise
I
Isn

I
1%a
pe]]
I3
1snm

s
Isn
8%

s
ped)
ise
Isu

rse
pe] )

2%.8 (JUN 78 ) 057360 FORTRAN H

CCAPILER OPILONS - MANE® WAIN,OPT=02,LINECNT=60,S12E=D000K,

0008
0009
0010
0011

0012

001S

00ad
00

C
[

199

SOURCE, EBCDIC, NOLIST, NODECK ,LOND,AAP ,NORDIT, XD, XREP

SUBROUTINE DCPLIT

18PLICIT RIAL®O (A-H,0-3)

RRAL®2 XORIG,XSTEP, YOR1G, TCYCLE, XAX, YAX

REAL®® WAN,YTINE,STATE

REAL®S XS (600),TS (600)

CONNOY /3PICBL/ DTIAR,YRAR(600) ,CATCH(600) ,XL{60V0),

1 VHAX,3(600),V (600),5(600) ,FPE(600) ,ZDIPP (600),
2 DATL (600) ,X (500) ,ACS (600) , BSH (600) , ANP (600) ,ASP {600) , FERIOD (600) ,
3 NYALNPILY,KP,HCOUNT(600) ,1PRINT,IPLOT,ITRENE, IPPRPL, ITNTSP,
& IAUTCY,TRUACY

CORRON /ELERLELY NAM(N) ,YTTIARLQ) ,STATE(2)

CONRON ,“PRDGRH/ PPER({300) , PPER(300) , PERDG (300) ,CONFER (300)
CORNOW /QQRXTR/ XOT1G,XSTEP, YORIG, YCYCLE,XAX ,YAX, IDON(Y)
DININSION ACEN(6CO), A(600)

CALL CALCHF
ILONG = 7,

TLONG = S,

AETORE

BUTRY DOPLYY
CALL GPHIGN(XS,YS, DATR, CATCH,NYA,X0R1G, XNAT, TORIG, THAR)
CALL TITLE (NAN, 100,YTIaE, 100, STATE, 100, XLONG,TLONG)
CALL ANG1IC

Z0RI6 = IS (1)

INAX = XS (NYA)

CALL GRAF(ZORIG, 'SCALE' ,X8AK,YORIG, *SCALE® , VAAX)

CALI WARNEF(S)

CALL CORVE (XS,¥S5,0iA.1)

CALL RESET ('WARKER®)

1P (ITREIND.2Q.0) GO TO 199

CALL SIAGLE(XS,YS,DATE,X,NYA)

CALL CASE

CALL CURVE (XS, YS,AYA,0)

CALL BESET (*DASH')

CONTINOR

CALL TRANE

call .40

RETORN

ENIRY DOPLYZ

CALL GPHBGU(XS,YS,DATE,XDIPP, YA, XORXG, XNAX, YORIG,TRAX)
CALL TTTLE('ORTREVCID DATASY, 100,ITINE, 100,S1ATE, Y00,
1 JLONG,TLOMG) :

CALL ANGTIC

T0RIG = X3 (V)

XUAX = XS{BYA)

CALL GBAF(XORIG, "SCALER®,XNAX.TORIG, 'SCALE',YHAX)
CALL CURVE {X5,33,0YA,0)

00 300 1s1,0YA

1Sy = 0.

ORNL-DWG 78-5865
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188
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‘

300 rORTINDS ' ‘?
CALL COURFR(X35,T3,NYA,0) |
CALL FRANY
CALL BRDFL (0}

PLOT T2SIDTALS AGAINST PITTED WVALURS,

\
\

CALL GRUDQU (XS 1S, X, XDIFF, BYA, ZORIG, XUAY,YOR IG, YNAY)

CALL !!ll'('ll!lh'kls vs. FITTED 'ILUISS' 10¢C, 'PITTID VALU!S",
L} 100, *RESIDUALSSY,100,7.,8.)

CALL ANGTIC

CALL ARAT(IONIG, !SCALE!,KUAX, TORIG, *SCALEY, TMAT)
CALL BARNES(3) .

CALL CUNVE(X3,Y3,RTA,~1) :

CALL RESIT(“NARKEMY) ‘
CAlL PRACR

CALL EZRGPL(3)

naroRE

noonn

neo

TETRY DOPLYY

CALL GPHDGN(XSeTS,2,IDIPP,NTA,XORIG,XRAX,YORIG, TNAT)
CALL TITIR(“TOLE-FALKER AU OCO‘RII.AI‘IOIS' 100.'I.AGS' 100,
1 "ACV. TN §',100,2L00G,YLOVG)
(:A"l.:.?lllﬂ(IOI!G.!ORIG.!IA!.!M!.IS.l!.I!A)

L

TUTRY DOBLIGIKPY)
CALL ‘GPROGH (XS, Y8,V AST,KP Y, XONIG, XRAZ,TORYG,IMAY)
GARL TITLE {"FOURIER'ANPLITODE SPRCTAOMS', |oo.'moumu-,voo. '
A ARPLETUPES Y, 10, TLOWG +1LO0G)
CALL GRIFWD(ZIORIG, YORIG, XK X, TRAX, XS, TS, KT 1) '
C L GALL SPIBGR{TS , 19, ¢, B30, KPY, xouo.xnu.vouo.vun
kN mu. ‘LACLE('CO%. TOURLIER POItl SPRCTRUNS L, 100, ' PREQUERCYSY, 100,
B | -imnuu mpu' 100, ILONG, YLOVG)
7 CALk: GRAP (X0RIG, 4scuu-.uu.:om.-scau-.mu
¥ . GALYL cnvuu.u.n\ 9)
(IR 2ty m-lo-um QQQ = (YA -~ 3y / . .
130 ({3 :’t 2)). MB.UTA) QQQ s (VYA - 1) / z
: P4 nsonmm

cgl i SQ'SOZUW Co

[
,“R) - (!.0 - BATIO)
CALL CURYERS,1S,2,0)
CALL ToAMR
AL ANORL (0) !
BETUEN : . ) C 0 ,

g8l
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Isu
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Isu
Isa

Isa
SN
Isn
Ise

Ise
Iss
Isn
ISn
Ise
Ise
Ise
158

Isu
Isn
isu
Ism
Isu
150

ISK
s
Isr

Ish
Ise
ise

b ]
Isu
Isu

0091
0092
0093

Q09
0093
0096
0097

0098
0099
0v00

0101
0102
0103
21048

010$
0o1Qe
0107

0108
0109
0110
o

0112
0113
014
011s
0116
o?
oe
o9

0120
0121
0122
0123
0128
0125

0126
0127
0128

0129
0130
[2ER]

0132
0133
0138

ENTAY DOPLTS (ACT,AC,ACPN)

CALL GPMEGN(XS,YS,X, ACFN,HCT,XORIG,XWAX,YORIG, THAX)

CALL TITLE(1H ,1, PREQUERCTS®, 100, *5URG AUTOCORRBLATIONS',
1 100,ILONG, TLONG)

CALL AESSAG('FO. OF PILTER CORPS. 1S8%,100,.S, ILONGS,25)
CALL INTRO (NC,3.5,TLONGs.25)

CALL GPHLND(XORIG,YORIG,EINAX, THAX,XS,¥S, ACT)

RETUAN

BNTRY DOPLYG6 (KPP ,KC)

CALL GPM!GW(XS,TS,V,5,KPY, XOBLG, XAAX, YONIG, Y NAX)

CALL TITLS(1H ,V,* FREQUERNCYS®, 100, * ARSA YALURS? 100,

1 XLORG,Y10MG)

CALL MESSAG(°BO. OP FILTER COEPS. IS$¢,100,.5,TLONG¢.28)
CALL IPTIO(NC,3.5,YLONG,295)

CALL GPHEMD(XORIG,YORIG,XNAX, YBOAX,XS,TS, alY)

nETORN

ENTRY DOPLT? (KP1,NC,A)
CALL GPRBGE{IS,TS,¥, A KP1,KONIG,X8AX,TORIG,YHAR)

CALL “ITLE(1H ,1,°FREQUENCYS®, 100, SINTEGRATED SPECTRONS, 100,
1 XLOT4,TLONG)

CALL WESSAG('WD. OF PILTER LOEPS. IS$$°,100,.S5,YLONG+.2%)

CAL' .XTNO (8C,3.5,TLONGS,25)

CALL GPREIND (XIORIG,TORIG,INAX, YNAX,XS,¥S,KP1)

sRTORN

ENTAY DOPLTE

NYA2 = WYA - )

CALL GPRABG 1(1S,T1S,NTA2,TPE)

IAT = XACRG

XSTEP = FLOAT(NYA) / XAX

RSTEP = XS1EP

ISTEP » FLCAT(NSTEP) + 1,

CALL TITLE (MAN, V00, *k0. OF PILTIER COEPS.$',1M0,
1 YTINAL PREDICTION ERRORS',100,XLO0KG,YLONG)
CAsl RTICKS(S)

CALL YLOG{RORIC,XSTER, TORIG, YCYCLE)

CALL CORYR (XS, :5,WTA2,0)

CALL PERANR

CALL RWDPRL (0)

AZTOAR

ENTRY DORLYY (KP1,MPER)

CALL GPHBGN(IS,YS,PPIN, PRRDA, WPER, ZOR1G, INAX ,TORIG, THAX)
CALL TITLE(*PERIODOGRARS®, 100, *FPREQUENCYS', 100,

1 *PONEASY, 100,XLONG, YLONG)

CALL GPRUNEC (XORIG,YORIG,XNAR,YNAX, X3, Y3, NPER)

CALL GPREGN{IS,YS,PPRA,COAPRR, NPER, XORIG,XNAS. aIf,YRAX)
CALL YITLE (‘CORULATIVE PERIODOGRANS?,100,° PRIGU:NCYS?, 100,
Y Y"NCRAALIZED PCURRS', 100,XLON¥EG, YLONQ)

CALL GNAP (XORIG, " SCALE® ,I8AX, YORIG, {SCALR? , THAX)

CALL CUNVE (XS,YS,RPEN, 0}

1P ((2°4UYTAZ2) ) BQ. NTA) QQQ = (RYA = 2) 7 2
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APPENDIX 1V
LISTING OF SUBRQUTINE DETRND



LBYEL 2.8 ( J5% W ] 03/%0 PORTEAR A
CONPILER OPTIONS - WAREs AAIN,OPTe02,LINBCAT=60,812R0000K,

SOURCR, B3CDIC, UOLISY, NODRCK,LOAD, 8A P, WOROIT,I0, INRY
188 0002 SUBROUYINE DEYRUD (NYR ,OATE,YRAR,CATCH, XDSPP, K, SPPE)

A = RATRIX OF DINRWSIOR WNYAel AY WLSCOLeY, OSED IR BLSQ.
CATCE =~ IPPUT TIAR SERIBS VALODES,

CcoRy = VECYOR CONTAIRING THR CORPPICIZRTS OF TRE LIFRAR PIT.
CORP2 = BORKI WA VECTOR QF SANE LREGYN AS COBP.

DATE = TIAE VALURS POR INPOY SERIRKS,

WL3COL = NO. OP COBPPICIRUTS DP THE LINEBAR PIT.

1ne ® R0W DIWRNSION OF BATRIX A,

[ A ¢) = §0. OF DATA POINTS IW TIAR SERIRS,

T = LIUBAR TREMD OF TINE SERIRS (AREBRIW CALCULATED AND
SMTONED) .

XDIPP = OENTRENDED TIAR SEUIRS (MENBIN CALTOLATIO AUD RRTORPED).
TEAR = TIAR VARIADLE (ABREIN CALCOLATED),

NANAANATNANNNDNANANNNHAANNNNGNAN

IS8 000) IRPLICIT RRALCA(A-B,0-%)
138 0008 DINRUSION DATER{V) ,YBAR(Y) ,CATCA(Y) ,XDIPP(T) X (1)
38 0003 DIRRUSION A (601, 3),IRON(GOY) ,CORP (10} ,T(2,3),TV(2,2),VAR(2, D)
138 0006 DIRNESION CORP2(10)
[
c
[ IWITIALITR VALOBRS.
<
c
138 0007 EROW = 60V
ISk 0008 #LICOL = 2
e 0009 "t =2
ISR 0010 SPPR = pL3COL
ISH 00%Y DO 50 IaV, NTR
I8 0012 TRRR(I) = I - .S
138 00V3 AI V) = V.0
IS8 0018 A(I,2) = YRAW(I)
139 0013 50 conTINm
C
C
c CALL LEAST SQUARES ROUTIDE.
[
[
I 0016 CALL OLSQ (A,CATCH,CORP,RESID,IRON,T,TV, NYR,NLSCOL, RROW, RLICOL)
I3 0017 00 80 X=1,WLICOL

Ise 0010 3N = 0.
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