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ABSTRACT 

KIRK, B. L., B. W. RUST, and W. VAN WINKLE. 1978. Time series 
analysis by the maximum entropy method. ORNL-5332. Oak 
Ridge National Laboratory, Oak Ridge, Tennessee. _2j_8 pp. 

The principal subject of this report is the use of the Maximum 

Ertropy method for spectral arslysis of time series. The classical 

Fourier method is also discussed, mainly as a standard for comparison 

with the Maximum Entropy method. Examples are given which clearly 

demonstrate the superiority of the latter method over the former when 

the time series is short. The report also includes a chapter outlining 

the theory of the method, a discussion of the effects of noise in the 

-ata. ?. chanter on significance tests, a discussion of the problem of 

•c.oC'Sir; the prediction filter length, and, most importantly, a 

description of a package of FORTRAN subroutines for making the v^ious 

calculations. Oosr-referenced program listings are given in the 

appendices. The report also includes a chapter demonstrating the use 

of the program by means of an example. Real time series like the 

lynx data and sunspot numbers are also analyzed. 

1 I i 
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INTRODUCTION 

In the past, the spectral analysis of time series has for the most 
part utilized two classical approaches - the power spectrum method of 
R. B. Blackman and J. W. Tukey (1959) and the periodogram. The Blackman 
and Tukey approach involves the estimation of the autocorrelation func­
tion. A shortcoming of the estimator used is its assumption of a zero 
extension of the given data. On the other hand, the periodogram method 
assumes a periodic extension of the data, the period being equal to the 
length of the time series. John P. Burg (1968) has presented a new 
technique of time series analysis which seeks to minimize assumptions 
about the unavailable data. The method is called maximum entropy spec­
tral analysis (which will be referred to as MESA throughout this 
report). MESA emerged in an effort to achieve better resolution from 
short time series. 

A great amount of research on MESA has been done by T. J. Ulrych. 
His recent publications (1972b, 1973, 1974) indicate the wide extent to 
which MESA can be utilized. Ulrych's contention is that the classical 
Fourier transform methc.s are inferior to MESA because of their inabil­
ity to analyze low frequency variations. 

MESA and Fourier analysis are compared in this report. Generally 
speaking, MESA is superior for short time series, but it has one major 
disadvantage shared also by older methods. The problem involves the 
determination of the length of the vector of filter coefficients used 
for estimating the autocorrelation function. In an attempt to solve 
this problem, T. J. Ulrych (1975) suggested the use of the Akaike final 
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prediction error (FPE), (Akaike 1969), as applied to autoregressive 
decomposition. A brief critical discussion of this idea is also pre­
sented here in Chapter IV. 

As much as possible, the mathematical presentation of time series 
analysis is simplified in this report. The derivation of the maximum 
entropy spectrum, however, employs theorems in complex analysis. 
Although the mathematics becomes rigorous in some parts, it is hoped 
that the many examples presented will impart a fair understanding of the 

r 

methods discussed to less mathematically inclined readers. 
Computer programs (written in FORTRAN) which calculate both the 

Fourier sample spectrum and maximum entropy spectrum plus some other 
useful information are described end explained in Chapter V. An example 
is presented in Chapter VI to illustrate the use of these programs. 
Program listings are given in the appendices. 



CHAPTER I 

THE DISCRETE FOURIER TRANSFORM METHOD 

Consider the functions y j ( t ) , y 2 ( t ) , y 3 ( t ) in Figures * . 1 -

1.3, respectively. 

ORNL-DWG 77-463*2 

Fig. 1.1 The function yi(t): amplitude = 2, period = 6 years. 

ORNL-DWG 77-16313 
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Fig. 1.2. The function y2(t): amplitude - 4, period = 4 years. 
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Fig. 1.3. ^ e function y 3 ( t ) : amplitude - 3, perioa = 12 year. . 

The sum of y i ( t ) , y2 ( t ) , y3( t ) produces a new function y ( t ) 

(Fig. 1.4). 

ORNL-DWG 77-163l i> 

Fig. 1.4. 

t 

The new function y(t) = yi(t) + y2(t) + y3(t), 
sampled at intervals ft = 1 year. 
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Since y(t) is th^ sum of three functions whose periods are known, the 
analysis of its periodic components is clear. In practice, one is 
usually faced with the inverse problem, i.e., the analysis of a time 
series r-ke y(t) in order to determine what periodic components are 
present. This situation leads to the utilization of the Fourier trans­
form method. 

Although many natural processes are truly harmonic, in that they 
can be expressed exactly as a sum of sinusoidal terms, it is more often 
the case that a natural process will also contain aperiodic components. 
Such recesses can still be analyzed by harmonic methods. In fact, any 
aperiodic function of finite length can be approximated to any desired 
degree of accuracy by a su.r of sinusoids, provided one includes enough 
sinusoidal terms in the approximating function. In flost real problems 
one is limited to a finite, discrete time series obtained by sampling 
the process at say n equally spaced points in time. If the process is 
denoted by x(t), and if the sampling is arranged so that the sampling 
fnterval is one unit of time, i.e., At = 1, with the first sample point 
being taken at t = 0, then the time series can be written x(0), x(l), 
x(2), ..., x(n-i), or as is done more commonly, x Q, x,, x 2, ..., 
x„ ,. It can be shown that the terms of this series can be repre-
sented exactly bv a finite Fourier expansion of the form 

(1.1) x - a Q + X (a c o s ^ + b . sin%^) + H ) j a , 
J 0<k<n/2 « n K n r\u 

j = 0,l,2,...,n-l, 
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where the a / 2 term is included only if n is even. The Fourier 
coefficients are given by 

I I - i 

"•z> « O - F 2 
n-l 

j=0 

n-l 
(1.3) a k = 

n 
'it - j - ^ • ] 
j=o [ 
n-l } 0 < k < J 
3=0 

n-l 
(1.5) a n / 2 = - 2^ ( -1 ) J Xj , i f n i s even 

j=0 

Equation (1.1) expresses the time series x. in terms of the component 
frequencies ft^k/n and can also be written in terms of the equivalent 
periods T. =l/f,,=n/k as 

K t\ 

(1.6) x. = a f + 2 - (a cos 2-^- + b.sin - 2-^ ) + ( - l ) j a n / ? . 
J u O k n/2 K 'k K 'k n/^ 

The Fourier spectrum of the time series is the discrete function repre­
sented by the set of points (f. , F, ), k=0,l,...,[n/2], where [n/2] 
is taken to be n/2 if n is even and (n-l)/2 if n is odd, and F. is the 
Fourier amplitude defined by 

' J. K^\ ? \ - K + b P 
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For each of the frequencies f. one can also define an associated phase 

by 

(1.8) 0 k = tan"1 (a k/b k) . 

The expansion (1.6) can be written in terms of the Fourier ampli­
tudes and phases as 

(1.9) x = a + Z , F k sin (^- + 0 ) + H ) j a n / ? . 
J u 0<k<n/2 K 'k K n u 

Again, this expansion is exact for all the sample points x Q, x,, 
..., x ,, and if n is large enough one might reasonably hope that 
Equation (1.9) would give a good approximation to the underlying process 
x(t) at other values of t also. That is, for any value of t in the 
interval 0 < t < (n-1), or even for t outside that interval, one might 
hope that 

:(t) '• a Q + Za F k sin ( ^ + (1.10) x(t) -• a n + Za K sin [-f + 0 k) 
0-k n/2 k 

without too much erro». 
The function (f.,F.) is the discrete Fourier spectrum of the 

data set XQ, X,, .... x ,. We note that continuous f-mctions 
x(t) have analogous continuous Fourier spectra, but we do not treat such 
cases here since we are concerned only with finite, discrete time 
series. For the continuous case the reader is referred to Jenkins and 
Watts (1968). In computing a discrete Fourier spectrum one hopes that 



8 

the result approximates the continuous Fourier spectrum of the under­
lying process x(t). The approximation is not limited to the discrete 
frequencies f. = k/n but can be calculated for intermediate values of 
f by the formula 

(1-11) F(f) = \/£(f) 2 + b(f) 2 , 
where 

n ^ 
(1.12) a(f) = | X Xj C 0 S 2 7 r j f ' 

n-1 
(l.U) b(f) = | ] £ x. sin 27rjf . 

j=0 

We note in passing that some writers make a distinction between the con­
tinuous function F(f) and the discrete function (fb^iJ* calling the 
latter a "line spectrum" and the former a "sample spectrum". Whatever 
it is called, the continuous function F(f) hopefully approximates the 
Fourier spectrum of x(t). Tne approximacion fails to exactly represent 
the desired spectrum because the tin.e series x Q, x. x , 
cannot exactly represent the process x(t). The error arises for two 
reasons: 

(1) The time series ir- restricted to a finite interval of time, so 
we do not know what the process x(t) is like outside that interval, and 

(2) The time series represents the process only at a finite number 
of points in the interval, adjacent points oeing separated by the sample 
spacing At. 
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The latter restriction limits the highest frequency that is 
resolvable - one cannot expect to isolate components with frequencies 
whose corresponding periods are smaller than the sampling interval. In 
fact it is necessary to have at le*-t two samples per cycle of the 
highest frequency (shortest period) that can be resolved. The frequency 

(1.14) f N = l/(2:t) 

is called the Nyquist frequency and is the highest frequency that can 
be resolved with a sample interval of At. The situation is actually 
worse thart it appears on the surface because, if x(t) does have impor­
tant hamonic components at frequencies greater than the Nyquist fre­
quency, then these components wil? distort the Fourier spectrum values 
at lower frequencies. This is because the approximation cannot distin­
guish between the frequency f and the frequency (l/'.t -f). Thus, if 
A t = 1, then the Nyquist frequency is 0.5 and if x(t) has a harmonic 
component with frequency f = 0.75, the estimate of the transform will 
be distorted at f = 0.25. This phenomenon is called aliasing and must 
be kept in mind in designing a sampling procedure. One should always 
try to choose At small enough so that f,. exceeds the frequencies of 
all the important harmonic components in the process. 

The first restriction, i.e., the restriction to a finite time 
interval, produces distortions *»n the calculated spectrum at the low 
frequencies (long periods). Obviously one cannot expect to resolve 
frequencies corresponding to periods much longer than the total time 
interval represented by the sample. Most use's of the Fourier method do 
not trust the estimate at frequencies lower than that corresponding to 
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periods of at most one Half the total time interval, and very conserva­
tive users demand that the t<„al interval exceed a given period by a 
factor of 4 or more before they will trust the Fourier estimate at the 
corresponding frequency. The Foi/rier technique can detect thf presence 
of long period components (components with periods comparable to the 
total length of record), but •'; cannot accurately pinpoint the frequency 
nor can it distinguish between two or more long period components at 
frequencies that are relatively close together. 

It is convenient to analyze \hc effect of e truncated record in 
terms of a function called a d la window. Consider a process x(t) 
defined on the time interval (-00 , + x ) . 

ORNL-DWG 77-46346R 

*, x. 

x. 
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Fig. 1.5. The observed function x 0(t), At = 1. 
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In general, one can only observe within a finite interval of 
length T, say [-T/2, T/2] as in Figure 1.5. The available data are 
then confined to the interval [-T/2, T/2]. The rectangular data window 
for the interval [-T/2, T/2] is defined by 

(M5) w(t) = 
1 , if -T/2 £ t i T/2 , 
0 , otherwise. 

The observed function corresponding to the available data is represented 

by 

(1.16) x Q(t) = x(t) w(t). 

We temporarily ignore the effect of the discrete sampling and concen­
trate on the effect o; applying the rectangular data window, i.e., the 
effect of truncating the record. Subjecting the observed function 
x (t) to Fourier analysis will result in a transform *tJ of x 

o 
which is really a smoothed version of the Fourier transformer of the 
original signal x(t). That is, if we let 

ok = Fourier transform of x 0, 
<j>x = Fourier transform of x, and 
tjfy = Fourier transform of w, 

then it can be shown that 

(1.17) 9T (0 
x f t 

9" (f) <=f (f - f) df 
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The Fourier transform of the truncated, observed time series is 
said to be the convolution of the^desired Fourier transform with the 
Fourier transform of the data window. This latter function is called 
the spectral window and can be shown to be 

Applying the data window (1.15), which is sometimes called the boxcar 
window, necessarily distorts the Fourier transform. It can be shown 
that ^ (f) is necessarily smoother than ^ (f). A common practice, 

xo x 

therefore, is to change the shape of the data window in order to reduce 
the distortion in the transform. This is usually done by rounding off 
the corners of the boxcar window, thus damping the contribution of the 
data at the two ends of the record. The idea is to design a window 
which decreases the smoothing and hence increases the resolution of the 
transform. This procedure is not without its own shortcomings. Spec­
tral windows which give good resolution of the spectral peaks are often 
unstable to changes in the input data. On the other hand, those spec­
tral windows that are stable with regard to changes in the data usually 
give poor resolution. 

A more complete discussion of data windows and their corresponding 
spectral windows is given by Box and Jenkins (1970). We close our dis­
cussion of the subject by noting that using any data window involves 
some assumption about the data outside the available record (e.g., the 
boxcar window assumes a periodic extension of the data with period equal 
to the length of the record). Furthermore, using any window, other than 
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the boxcar window, distorts the data that are available. As we shall 
see in the next chapter, the Burg maximum entropy method is motivated 
by an attempt to overcome these two difficulties. 

As an illustration of some of the ideas incorporated in this chap­
ter, we present a very simple example. The number of points sampled is 
n = 42. The function sampled was the sum of a straight line trend and 
a sinusoid. The linear trend was included in the example because real 
time series data frequently contain trend components. 

The data points in Figure 1.6 are generated from the equation 

fi 
x. = I h(t)dt, i = 1, 2, .... 42, 

1 J i-1 
where 

h(t) = 7 + t + 5 cos ^ p 

The linear trend, x T(t) = 7 + t, was first removed by performing 
a straight line, least squares fit to the data and subtracting out the 
result. The function subjected tt Fourier analysis was then x(t) -
Xj(t). It is necessary to remove the trend line because Fourier ana­
lysis would interpret it as a component with infinite period. The spec­
trum of the detrended function is shown in Figure 1.7. 

The highest peak in Figure 1.7 occurs at f = 0.1675 with a corre­
sponding period of P = 5.97, which is a good estimate of P = 6, the true 
period of the function. The other smaller peaks are called sidelobes 
and do not represent significant spectral components. They are one of 
the results of truncating the record. The width of the main peak also 
depends on the record length and gives an idea of the uncertainty in the 
estimate of the peak frequency. 
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ORNL-OWu 77-46460 
MOTH TEST CRSE 

Fig. 1.6. Data x ( t ) are histogram yearly integrals of 
h(t) = 5 cos ~ £ + 7 + t . 

ORNt- DWG 7 7-1846* 

FOURIER SPECTRUM 
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Fig. 1.7. Fourier Spectrum of detrended x(t). 
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CHAPTER II 

MAXIKUM ENTROPY SPECTRAL ANALYSIS 

A. A Brief Explanation of the Entropy Function. 
In English, when one expresses a simple, grammatically correct, 

logical statement, his choice of words is governed by probability laws. 
For example, if a statement starts with "The mountain", one cannot just 
append any English phrase to have the statement make sense. "The moun­
tain sees" or "The mountain my" do not make sense. However, "The moun­
tain is big" is a perfectly logical statement. Thus, a person's choice 
of words is strongly dependent upon the logical structure of the lan­
guage, and hence there is a probability that certain words are more 
likely than other words to follow a phrase like "The mountain". The 
freedom of choice in selecting a message is what is scientifically 
termed as information or entropy. 

The word "information" must not be confused with its ordinary 
meaning. In the physical sciences, the entropy or information asso­
ciated with a situation is a measure of the degree of randomness in the 
situation. Entropy is expressed in terms of probabilities - for exam­
ple, the probability of getting to a certain stage in the process of 
forming a message and when in that stage the probability that certain 
words will be chosen next (Shannon and Weaver 1949). 

How then can one measure the entropy or information of a process? 
In particular, the processes treated here are Markoff processes; that 
is, stochastic processes in which the probabilities depend on previous 
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events. Shannon and Weaver (1949) have show; that such a measure for 
information can best be estimated using logarithms of the probabilities. 

Suppose PpPp P n are the known probabilities of occur­
rence of a set of discrete events. Then 

n 
(2.1) I = I(p rp 2,...,p n) = -K J ?. log a p i , 

where K is a positive constant, and a is the chosen base for the loga­
rithm, is called the entropy of the set of probabilities p*, p^,.", 
p . Similarly, the entropy of a continuous distribution with density 
distribution function p(x) is defined by 

(2.2) 1 - I(p(x)) = -j p(x) log p(x) dx . 
—00 

Assume for example that there are two possibilities with probabil­
ities p and q = 1-p. Then the entropy is 

(2.3) I = !(p) = -p log e p - (1-p) log e (1-p) , 

where for convenience the natural logarithm is used, and the constant K 
is taken to be 1. A plot of I in Equation (2.3) appears in Figure 2.1. 

I is maximized when q = 1-p, that is q=p=J5. In a physical situa­
tion this is the case of greatest uncertainty. In tossi ig a coin, for 
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I 
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0 0.2 0.4 0.6 0.8 1.0 
P 

Fig. 2.1. The entropy I as a function of the 
probability p when there are two 
possible outconies to an event. 

example, out of 1000 tosses, it is likely that heads will appear about 
500 times and tails about 500 times, but the uncertainty for any given 
toss is maximized. For a biased coin the uncertainty for any given toss 
is less because if one simply predicted the most likely result on each 
toss, then one would be right more than 500 times out of 1000. The more 
uncertain the event is, the greater the freedom of choice in predicting 
the outcome. The function I in Equation (2.3) is 0 when p=0, q=l ;>r 
q=0, p sl. That is I assumes a minimum of 0 when the event is certain 
to happen. In this case, one has little freedom of choice in making a 
prediction. In all other cases, I assumes a positive value. 
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The logarithm is used in the definition of entropy since it is 
mathematically more convenient to handle. With a logarithmic 
definition, information is additive, as would be expected. Assume for 
example that there ars two independent events with probabilities p, 
and p 2. Then the probability that both events happen is p, p 2-
The measured information or entropy of the two events is 

(2.4) I = -K log a(p 1P 2) = ^ + I z , 

where 

(2.5) l} = - K log p 1 , I 2 = -K log p 2 . 

The most ccr.Kion logarithmic bases employed in the definition of 
entropy are 2, 10 and e. The natural logarithm is the most convenient 
for use in mathematical analysis and is the one we adopted here. 

From the preceuing discussions, we note that I is indeed a rsason-
able measure of entropy. To maximize I is to maximize the uncertainty 
in the event. The constraints involved depend on the probabilities 

n 
pi, Po» .... P n with 0 <_ p. <_ 1, = l,2,...,n and I p. = 1. 

1 <• n i i=i T 

In time series analysis, the relevant probabilities are not kncwn. 
Instead, one is faced wiln the analysis of the power spectrum. In this 
case, the entropy is proportional to 

(2.6) I = f In P(f) df , 
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where P(f) is the power spectrum (see Burg 1975, Shannon and Weaver 
1949). 

In looking at the power spectrum of a time series, one asks how 
much of the original information has been lost or gained. The degree of 
uncertainty is measured in the entropy function I of Equation (2.6). 

P. Maximum Entropy Spectral Analysis (MESA) 
The basic assumption in MESA is that the stationary time series 

under analysis '.z the most random or least predictable. The classical 
approach involves the estimation of the power spectrum *rom known values 
of the autocorrelation function p., |kj < H, where M is less than or 
equal to the number of observations in the given time series. The 
standard assumption is that P. = 0 for jk| > M, but usually a weight­
ing function is also introduced and multiplied by o. and the result 
is Fourier transformed. Given a set of autocorrelation function values 
ij. witn the imposed condition that the power spectrum be non-negative 
definite, there usually exist infinitely many power spectra which will 
be consistent with the given data. Maximum entropy spectral analysis 
is based on the idea of choosing the spectrum which corresponds to the 
most random time series whose autocorrelation function agrees with given 
values. 

C. Statement of the Problem 
Find a real positive function P(f^ which maximizes the entropy 

function 

(2.7) I M In P(f) df 
"fM 
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under the constraints 

. f f « 
l 
-f.. 

(2.8) pk = I P^ f^ e x P ( i 2 i r f k & t ) d f » 

where -M ̂  k <_ M, At is the sampling interval, and p. the 
autocorrelation with time lag kit, i = /-l and fj. = j - ^ is the 
Nyquist frequency. 

D. Solution to the Problem 
Wiener has shown that the power spectrum P(f) is the discrete 

Fourier cosine transform of the autocorrelation p. . So P(f) has a 
Fourier series representation 

/« «i „,,v 1 +c° -l"2irfkAt (2.9) P(f) = JT I pk e 

M k=-"° 

Substituting (2.9) in to (2 .7 ) , we get 

(2.10) I -
r f M i i 1 +v°° a - i2 i r f kAt , A f 

l n ( 2 ? ~ 1 P | ( e ) df . 
f M k=-°» 

Since the o. 's are known for -M <_ k <_ M, expression (2.10) w i l l be 

maximized with respect to the >. ' s , with | k | > M. Setting the 

appropriate derivat ives to zero gives 
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(2.11) 31 rf, M 
1 -i2irf£At 

?f 
ar 

-f

M [zr f p k e 

-l"2irfkAt 

f f M -l"2Trf£At 
M e 2f, M -f, 

TJJf df 

M 

= 0, \l\ > M . 

But [P(f) ]~ has a Fourier expansion so that 

(2-1 2> fP(f)r' = 2 K e -1 " ^ , . _-i2iTfmAt 

m: = _00 

Thus (2.11) becomes 

(2.13) 31 
3p 

1 
2f. 

rf., +» 

£ " M 
M ( y e-i2irfmAt) i 2 7 r f£At 

-f, m=-
df 

M 

r f - +-
j r - £ > (cos 2TifAtm - i sin 2irfAtm) x 

M (cos 2TrfAt£ - i sin 2irfAt£) df 

= 0 if \t\ > M 
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Because of the orthogonal properties of sines and cosines, (2.13) 
implies that A = 0 for iml > M. m 

From (2.12) and the preceding, we get 

(2.14) p ( f ) = - M 1 

r ^ „-i2irfmAt 
- .j "m '" m=-M 

Thus (2.8) becomes 

(2.15) P k 
f u i?^fkAt M e A f —j5j — df 

• _ r -i2irfmAt 
-fu ) xm e 

M
 r -M m 

Let z = e - 1 . Under this transformation, 
dz = - i 2 ^ t e " l 2 T f lt: df, df = -dz/i2 ,Atz and (2.15) changes to 

1 f z ^ " 1 

<2-1 6> ° k ^ 2 7 f e ? -W d z . 
m=-M m 

where the contour integral around the unit circle |z| = 1 is computed 
in the counterclockwise direction. 

M 
Now 7. x z must be real and positive for \z\ = 1 since we 

m=-M m 

require P(f) to be real and positive. So 

<2-") "„ \ ^ • < L l . «"> * 

m=-M m m=-M 
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where * denotps complex conjugation and z 2* = 1. 
The expanded form of the left hand side of (2.17) is 

M l M 
\Q + A z + ....+ A z + A z" + + A_M z , whereas the right hand 

* * _ 1 * - M * * M 
side is XQ *\x z 1*...*.^ z " * ^ z + ...•>._„ z". By 
equating the coefficients in (2.17), we have the relationship 

(2.18) A. = A * , j = 1,2 ,H, 
J J 

and 

(2.19) I M >„ *" = *0
 + X l Z + + > M z M 

m=-M 

* -1 * -M 
+ X l z + XM Z 

M 
By the fundamental theorem of Algebra I ^ z m has 2M roots and fur-

m=-M m 

thermore is factorable in the form 

m=-M 
(b 0

 + b_, ;:_1 + ..+ b_ M z" M) 

< V b, z + + b Mz M) x 
* -1 * -M. 

(b 0
 + b, z * + b M 1 ") 
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Factoring b Q frcm (2 .20) leads t o 

( - . 2 1 ) I x m z m = b Q

2 ( l + a , z + + a M z M ) x 
m=-M 

JM 
* - 1 * - M 

(1 + a, z ' + + a M z ") 

%/2Vt]\.lQ^z ( 1 ^ 1 ( 1 ^ 1 • 
where b Q > 0 , a Q = 1, a. = b.; / b Q , a .* = b . * / b 0 , i « l , 2 M 

and 2 fM At = 1. 

Let PM = 2 f M / b ^ . Then PM > 0 and Equation (2 .14) 

becomes 

(2 .22) P(f ) = 1 
M 
I >•„*' m 

m=-M m 

P M A t 

[mO m / \m=0 m / 

The autocorrelation values in (2.16) simplify into 

(2.23) - M 
pk " 27T 

-k-1 dz 

(X >« «•) ( 1 *» 2 1 
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-M <.k 1 M . Replacing k by k- j with j ^ 0 in (2.23) gives 

(2.24) V j 2TT 
•k+j -1 dz 

I" 3m A (l C I'") 
\m=0 m / \m=0 m / 

Mult iply ing (2.24) by a.* and forming summations resul t in 

J - 1 * -k 

(2.25) I 
k=0 

a k p k - j 
rM 
2TT 

I a,, z 
k=0 dz 

L m / \m=n m 

-nr 

PM f 7 J " ] 

2*i J V dz , j > 0 
.in 

ni-0 

What needs to be done at tin's point is to simplify the contour integral 
on the right hand side of (2.25). To do so requires Cauchy's famous 
theorems in complex variables theory (see Nehari 1968). 

Theorem A: Let f(z) be analytic in a region R and on its boundary C. 
Then: 

(2.26) o f(z) dz = 0 . 
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Theorem B: Cauchy's Integral Formula. If f(z) is analytic inside and 
on the boundary C of a simply-connected region R and a any 
point inside C, then 

(2.27) f(a) = L 1 Ilii 2iti J z-a 
C 

dz 

For j = 0, Equation (2.25) becomes 

M (2.28) I a 
k=0 k M k Pu ' 

M 
2*i 

1 
M 
I a m 2 m 

m=0 m 

z 

M .m Let f(z) = 1/ E a_z . Then f(z) is analytic inside and on the 
m=0 m 

unit circle |z| = 1 . Thus by Cauchy's integral formula, 

(2.29) » £ o 2iri M 

m=0 m 

dz 
z" P M f < ° > = P M 

since f(0) = a = 1 • 

For j >. 1, 

(2.30) 2 n i 

1 z J " 1 

H d z a 2 T T 1 

m=0 n, 
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. ,3-1/ r a ,m where g(2) - z J */ E a_z , a function which is analytic inside 
ra=0 ™ C 

and on the unit circle |z| = 1. By Theorem A, 4 g(z) dz = 0. So 

(2.31) IT 

J-l dz = 0, j > 1 
I a m 2 m m=0 n 

By combining (2.25), (2.29) and (2.30), we get 

(2.32) 
M 
T a * 

j p

M i f J = 0 , 

^0 k **'* I k=0 i f j > 1 

Or s im i la r l y , since P*k ,• = P^.b* (2.32) becomes 

H iP M i f 3 = 0 , 
(2.33) I p . . a = 

k=0 K J K lO i f j > i • 

The matrix equation corresponding to (2.33) is 

(2.34) 

po pl 
P-l p o PM-1 

P-M P-M+1 

1 " 
" " * " 

a l 0 

, 
= 

r 

> . 
0 
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The elements a., i = 0,1,2,.,.,M with a = 1 are normally called 
filter or reflection coefficients and Equation (2.34) is the equation 
for designing an M + 1 term prediction error filter with mean square 
error P„. The meaning of these terms will become clearer in the next 
section. The matrix in (2.34) is a Toeplitz matrix. 

Briefly reviewing the results of this section, w» see that the 
power spectrum which maximizes (2.7) subject to (2.8) is the one given 
in (2.22). We can rewrite (2.22) in the following way: 

(2.35) P(f) = g — 
' 1 + 7 a z m \ : 

m=l 
P,ft 

- x v ft-i2-fmAt,2 
1 + ). am e I m=l 

since z = e ' and a n = 1. The terms P u and a . 
u Mm 

m = 1, ..., M are given by the solution to the matrix equation (2.34). 
Once these are known, the power spectrum P(f) can be computed for values 

i i of the frequency f in the range - o T T - * - TAT " 

E. Predictive Filtering and the Mean Square Error P.,. 
As in Chapter I, let the given real time series be x Q, x., ..., 

xn-l' Assume further that the mean of the process has been approxi­
mated and subtracted from the x.'s. The mathematical derivations in 
the preceding sections do not directly involve the x.'s. Instead, the 
autocorrelation function values if known provide the basic information 



29 

in calculating the power spectrum P(f). However, by working with the 
x.'s directly, one can arrive at the same matrix equation (2.34). The 
idea is to apply the filter coefficients a., i = 1, ..., M, with M < n 
to the time series through a linea** prediction relationship. 

Let the time series x Q, x,, ..., x , be written in the form 

Xg, X p *2» *•*' Xt-M' Xt-M + 1' "*' xt-l' xt'*"* xn-l* 
Consider the expression 

M 
(2.36) I a s x = x - H * l X - ... - ^ x t _ M ) , 

s=0 

where a* = 1. Furthermore let 

(2.37) ^ - j M s ) x t. s 

Then 

M 
(2.38) e t = x t - x t = J Q V t - s 

is actually the error in predicting x. from the previous values 
xt-l* ***' Xt-M ^ m e a n s °f t h e Prediction coefficients i,, a 2, 

'**' aM. The error e t, therefore, has to be kept close to a minimum 
for a good prediction. 
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The mean square error is defined to be 

(2.39) , 2, „ ^ | H E { e t
2 } - E | ( x t - x t ) 2 } = E J g o , s V s ) 

where E stands for the expectation operator. Now 

: {e t

2 } - E j [ x t - j x (-a s) x t . s ] ? j 

(2-40) = Ê x 2 ' - 2 J (H» ) E.U.x. J 
I t ) s = l s | t t"^' 

+ E [ I H , $ ) x t _ s ] 2 . 
I s=l s i s j 

Since the x.'s are assumed to be given, we would like to 
mean square error with respect to a., j = 1, ..., M. 

\ 2I 
' L.V s 2 E / + 2 j ( , £\ 

0 a i ; t ^ s=i s / t 

(2.41) 
« 0 . 

By definition, the cutocorrelation is 

(2.42) « t'EJx,x I. . 
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for real x values. So (2.41) becomes 

M 

(2.43) 2 P j + 2 J j (a s) P j _ s = 0 , 

or 

K 
(2.44) Pi + I a p. = 0, j = 1 , . . . , M 

J s = l 1 _ s 

We thereby have the system of equations 

pl + al °0 + + aM °1-M = ° 

o 2
 + ^i °i + + aM °2-M = ° 

(2.45) 

DM + al ̂ M-l + • • • • + aM p 0 = ° ' 

The above system of equations shows that each p., j=l, ..., M is a 
linear combination of the others. To complete the set, one adds the 
equation 

(2.46) O 0
 + al°l + • • • • + a M " M = E ) e t X M 

which follows from (2.38) since 
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E)e t x ' = E. I 3 x x • 
I u x\ ls=0 ' 

(2.47) M » i M 

= I a E.x t x /.= I a o 
s=0 s / t Z S ^ s=0 

We can actually show that P„ whose value appears in Equation 
(2.33) can be expressed as 

(2.48) P M = E»e t x t| = E ^ 2 ) . 

That is, P„ is just the least mean square error in the linear 
prediction. From (2.33) and (2.47), it follows that 

(2.49) P M = j o a s p s = Eje t xt|. 

To show that P M = FJe?> we first note that from (2.49) it 
follows that (2.46) can be rewritten with the quantity P M on the 
right hand side and when this equation is appended to the system (2.45) 
ttie result is identical to the system (2.34). This follows from the 
fact that P = p . Equation (2.34) is pre-multiplied by the row 
vector El a< a« ... a M] to get 
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[1 a, a 1 a 2 aM ] 

(2.50) 

>0 pl 
°-l °0 

I °-M P-WH 

. o M-l 
= P M ' 

>: 

from which it follows that 

(2.51) 
V 

M M 

v=0 s=0 v v 3 a S 

M M 

= I I a v E{x V v ' a < v=0 s=0 ' l 5 L v ' " 

1/8 
E, (si '• 'J 

Applying (2.39) gives 

(2.52) M 
\{ M 

E I a„ x 
)\s=0 s "t-sj ̂  ^ M 

For a fixed M and set of M filter coefficients, every x. in the 
set <Xg, x,, .,., x , I can be predicted linearly as long as one 
stays within the set of x - values. We can think of this as the 
process in Diagram 2.1 with a = 1. The above process is called 
filtering. In particular, it is called forward filtering, x. being 
predicteo from its M previous values. Backward filtering, on the other 
hand, is described in Diagram 2.2. 
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ORNL-DWG 7 7 - 2 0 0 6 0 

INPUT 
X t - M » - - . x t 

FILTER COEFFICIENTS 
(I . a, , a M ) 

OUTPUT 
M 

e t = Z o s X | - s 
s = 0 

Diagram 2 . 1 . Forward f i l t e r i n g . 

ORNL-OWG 7 7 - 2 0 0 5 9 

INPUT 
X t - M , . - , X t 

FILTER COEFFICIENTS 
( ! , 0 i , - - . . , a M ) 

OUTPUT 
M 

h t = 2 a sxt-M+s 
s = 0 

INPUT 
X t - M , . - , X t 

FILTER COEFFICIENTS 
( ! , 0 i , - - . . , a M ) 

OUTPUT 
M 

h t = 2 a sxt-M+s 
s = 0 

Diagram 2.2. Backward filtering. 

In Diagram 2.2, x t M is predicted from its M future values x._ M +p *t-M 
x.. The error in the prediction is h. and 

M 

(2.53) 
ht = J Q

 as xt-M+s 

aM Xt + aM-l Xt-l + • ' • ' + al Xt-M+1 + Xt-M 

Let 

(2.M) Xt-M = \}
 ( as ) xt- M+s 
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Then 

E ) h t \ = E ) ( x t - M - X t - M } \ 

(2.55) 

= E Xt-M " L '" a

s ) xt-M+s 

By talcing the par t ia l derivat ive of E<h. >wi th respect to 

a. , j = 1, . . . , M and equating the results to 0, we get 

(2.56) 

4t 2) 
3a. 

J 

3 
3a. 

E { X t - M X t - M } - 2 J / - a 

• • ! 

r M 12I 
l, K > xt-M*sJ ,_ 

M 
- 2E-;x t.Mx t_M + j u 2 ^ (H I S ) E ; (x t . M + s ) ( -x t . M + j ) N 

= 0 . 

By applying 1 ie definition of the autocorrelation function to 
(2.56), the- following formula is obtained: 

(2.57) 
M 

.'jM a sp.. s=0, ^ 1 , , M 
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Equation (2.57) is exactly Equation (2.44). This implies that forward 
and backward filtering lead to the same matrix equation and that 

(2.58) P M = E.»e.?l. = Oh.'t M | t | | t t 

for all possible t. 
The following simple example will help illustrate the ideas de­

scribed in this section. Suppose the time series is the set of values 
A = |x Q, X., x,,, x-l . Let M = 2. The set A has two M + 1 
ordered subsets: A. = <x Q, x., xA and A- = ix,, Xp, x_>. 
Denote the filter coefficients by a Q = 1, a,, a«. Then both x Q 

and Xj can be predicted from their future values by backward 
filtering and 

(2.59) 
x 0 = ^~ al^ xl + ^ a 2 ^ x2 

x-, = (--aj) x 2 + (-a2̂
 x 3 » 

*. /s where x Q, x, are the predicted values of x Q, x, respectively. 
The backward filtering errors are: 

(2.60) 

h 0 ~~ x 0 x 0 = x 0 + h x l + a 2 x 2 ' 

h-i = X-* ~ x-i — x-i •*• 91 %r\ d^x« . 
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On the other hand, x 2 and x., are predicted by forward filtering and 

x 2 = (-a^ x 1 + {-a2) xQ , 
(2.61) 

x 3 = (^) %2 + (~a2^ xl * 

where x2» x- are the predicted values of x 2 and x. respectively. 
The forward filtering errors are: 

(2.62) 
6Q = X^ X^ Xo 1^1 ^9^n * 

e 3 " x3 x3 = x3 + al x2 + a2 xl 

Briefly summarizing the discussion in the preceding pages, in pre­
dicting a point in a time series, either from its future or past values, 
one should minimize the mean square error P M with respect to the fil­
ter coefficients a.. In the next section, we discuss an algorithm 
(developed by J. P. Burg, 1975) which determines the values of the 
a.'s and P u in Equation (2.34). 

F. The Burg Algorithm for Estimating PM and the Filter Coefficients 
J. P. Burg's algorithm for finding the filter coefficients and P M 

in Equation (2.34) depend on both forward and backward filtering, i.e., 
the points in the time series are predicted from their previous and 
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future values. The solution to Equation (2.34) is baser, or, a modified 
version of the Levinson algorithm for solving a Toeplitz matrix equa­
tion. Since the algorithm is an iterative procedure, the filter coeffi 
cients (1, a,, a„, .... â J will be written as (1, a,.,, a-.., ..., au,). 

Starting with a one-point filter ( a ^ = 1 ) , we have 

(2.63) [ P 0 ] [1] = [P 0] or P(J = P(J 

So the value of PQ is determined by the autocorrelation ?Q. The two-
point filter has the matrix equation 

(2.64) 
°0 °1 

^ °0J '11 

Assuming that a,, and P, have been determined (the actual computa­
tions are described in the next section) the three-point filter is 
obtained from the preceding equation by reans of the following exten­
sion: 

(2.65) 

J0 pl p2 
°1 p 0 nl 

°2 n. °0 

1 

'11 + C, 

0 

'11 

p l 

0 + c l 

*1 

0 
p. 



where it is required that 

(2.66) / + c l P l - 0 

We note that the vectors c 1 

the reverses of '11 and 

"0 ' 
a l l 
1 

I" -
p l 
0 

-V 

and c 1 0 
A 

are just multiples of 

respectively. The reason for also 

applying the filter in reverse is that each point in the time series 

V xi » • • • 9 
x n - l ^ s P^'dicted forward and backward. The three-point 

f i l t e r then is ( 1 , a, 2» a 2 2 ) where 

(2.67) 

a12 " all + cl all ' 

3pp = C-i i / = 1 1 1 

Extending the matrix equation in (2.65) leads to: 

(2.68) 

P 0 o} 

nl °0 

n, o. 

"2 n3 1 0 
\ 

D 
2 

°1 °2 
i 

n l 

a12 

a22 
+ C 2 

a22 

a12 
> ~-

0 

0 
+ c : > 

°1 c0 0 1 *2 
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where in this case the four-point filter is (1, a, 3, a„-, a „ ) 
with 

(2-69) 
a ] 3 = a]9 + c 2 a?2 , 

a23 = a22 + c 2 a12 ' a33 = C 2 

Again it is required that 'y + c~ P ? = 0. 
Continuing in this manner, we get the general form: 

(2.70) 

J0 "1 

-i 

M 'JM-1 

r* 

JM-1 

°M-2 

0 

'1,M 

'2,M 

JM,M 

M 

valid for any M < n. 
Furthermore, for i = 1, ..., M-l, 

ai,M = ai,M-l + CM-1 aM-i,M-l ' 

(2.71) aM,M = CM-1 ' PM = PM-1 + CM-1 AM-1 , 

AM-1 + CM-1 PM-1 ° 



Ml 

t x 

Now since-^w, = - c.. , P^ ^ then 

?y. = PM-1 + CM-1 *M-1 

(2.72) _ p . r
 2 P , 

" PM-1 M-l M-l 
PM-1 "-4-J 

2 
PM-1 (1 "" W 

The least mean square error P M can only be estimated in this 
algorithm. Let us go back to the time series |x Q, x,, ..., x , i 
and assume that there are L possible subsets of the form ix. „, 
x t _M + j,..., x t I, j = 1, ..., L. By applying the filter (1, 
a, M, ..., eL. M ) in a forward manner to each of the x. , 
j = 1, ..., L, we get 

*t. + al,M x t r l + • - + aM,« \.-H 

Xt- + ( al,M-l + CM-1 aM-l.M-l^ x t 1 - 1 

,2 ? 3 j + ( a2,M-l + CM-1 aM-2,M-l ) Xt--2 

+ CM-1 Xt.-M ' 

J - I , . . . j L 
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Equation (2.73) gives the error in predicting x t from its previous 
J M values. Since there are L equations of the form (2.73), the mean 

square error P„ can be estimated by the squared averages 

P1M = ^ YJ [Xt1
 + (3T,M-1 + CM-1 aM-l,M-l) X t r l 

( 2 7 4 ) + " " " + (aM-l,M-l + V l •l.M-l1 X t r M + l 
-I 1 

+ (CM-1 Xt j-M ) 

L where the r.'s are weights such that 7. y. = 1 and y. > 0. J j=l J J 

The terms in (2.74) can be re-grouped using the quantities 

Xi = aM-l,M-l Xt.-M+1 + • - • + ai,M_i x
t.-l + x

t. ' 

'?'75^ 'j = Xt.-M + al,M-l V-M+l + • • • + aM-l,M-l Xt.-1 ' 

.1 = 1 L . 

which are seen to be a forward prediction error and a backward predic­
tion error respectively. The new expression is then 

L 2 

(2.76) P 1 M = ^ v ^ v s - i ?y 



At 

I f on the other hand, the filter (1 a, M ... â -J were applied 
backward, then 

Xt.-M + al,M Xt--M+1 + a2,M V - M + 2 + - • • + aM,M xtj 

(2.77) 

Xt--M + (al,M-l + CM-1 Vl , H - l ' Xt.-M+1 
J .1 

+ ^a2,M-l + CM-1 aM-2,M-l^ xt.-M+2 

+ • ' • + (aM-l,M-l + CM-1 al,M-l ) X t - 1 

+ CM-1 Xt 

As was noted e a r l i e r , the backward and forward f i l t e r s should produce 

the same mean square arror P.,. So P., can also be estimated by 

2M = .}=i Y i [ V M + ( a i-M _ 1 + C , M a"-]^]\ •M+l 

(2 .78 ) 

+ ^ a 2 , M - l + CM-1 a M-2,M-l^V-M+2 

+ • • • + CM-1 X t J 

' I Y * ( & i + C M - 1 ^ • 
i= l .ivt'.i "M-1 T 
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Thus one class of estimates for P.. is 

(2.79) PM ' 2 ( P 1 M + P 2 M } 

» A '• (,. • CM_, s / + U- + V l c c . ) 2 

where it is required that the Y. be specified. 

6. Andersen's Version of the Burg Algorithm for Estimating Coefficients 
In applying the above algorithm, one would start with an estimate 

So. 

of P Q. Then at each stage M, the quantify ^u/^fgi is set equal 
to zero. For M = 0, P Q is estimated by 

P = r 0 0 

!?..B0) 
( i x " ; 1 

where r Q is an estimate of the autocorrelation OQ. 
For M = 1, the set ix Q, x,, ..., *n_A would have n-1 

subsets: jx Q, xA , ix^ x 2l, .... I \ . 2 , V l } a n d t h e 

average power is: 

(2.81) Pl = \ ?T-T % [(xt + aH V l ) 2 + (Vl + aH V J ' 
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where the weights are Y. = ^p\ » J* = ° n-2 (see N. Andersen, 
1974). Equating the partial of P. with respect to a,, to zero, we 
get 

9 P 1 
3 a " 2 ( n - l ) -

11 J 

i n _ 2 r 
n^ry , L L 2 ( x j + a n X J>I } V i 

(2.82) 

+ 2 ( x j + l + a H *3] X i J "- ° * 

So 

n-2 /n-2 ? 

(2.83) a n = - 2 ^ 0

x i x j + i / j = V V + x / + i 

Since a-^ is known at this point, one solves for P, by using 

(2.72), 

(2.84) P} = PQ (1 - a ^ ) = r Q ( l - a^ ) . 

For M=2, the set | x Q , Xj, . . . , x j i has n-2 subsets with 

M + 1 = 3 consecutive elements in each subset: i xg , Xj, x 3 I , 

| x r x 2 , x 3 I , . . . . { x n 3 , x n 2 , x n j I . The resi-lting 

average power i s : 
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(2.35) 

2 " 2 2 X j M + a22 X j+2^ o ---o / x. T a, 2 n-2 j S Q L j 1 

+ ( x j + 2 + a ! 2 X j 

1 i n ~ " 3 1 
2 H"-5" i 0 | [ x j + ( a H + a 2 2 a l l> X M 

+ a 2 2 * i + 2 ] + [ x j + 2 + ( 3 1 1 + a 2 2 a n } x j + l 

+ a22 x / | • 

since a,p = a,-, + a~i a i i ^ r o m (2.67). Thus 

! A i _ L y 3 

> a22 2 n - 2 j=0 
2 ( x j + a l l V l + a 2 2 a U Y- . 

+ a 
(2.86) 

22 xj+2 ) ( a11 Xj+1 + Xj+2^ + 2 ( xj+2 

+ a ^ x, ; + 1 + a 2 2 a n x 1 + 1 + a 2 2 x .11 ( a H xj+l + *A 

= 0 
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The value for a ? ? is the following fcrm: 

(2.87) 

n 3 2 2 
a22 = ~2 -lQ

 ( a l l x j x j + l + a l l x j + l + a l l x j + l x j+2 

+ XJ XJ+2>/ i Q

( x j + 2 a l l x j * j + l + 2 a l l 4 + l 

2 
+ 2 a l l Xj+1 Xj+2 + x j +2 ) 

Since a 2 2 is known, P2 is given by the expressi on: 

(2.88) P 2 = ̂ (1 - a 2 2 ) . 

Continuing in this manner, at the M stage, there will be n-M 
subsets of |x Q, x,, ..., x A and they are of the form: 

|x 0, Xp .... xMj,, |xp x 2
 X M + 1 [ ' "•» | xn-M-l' 

Xn-M' ***' x
n_ii* T n e average output power is then 

1 1 (n-l)-Mr M 
PM = 2f^M I [ ( x.i + l=]

 ak,M xi +k> 

(2.89) 

M 2-| 
+ (VM +

 k\}
 a k , M x j W J 

1 1 Cn-D-MF M 2 

2n^" .l£o L k V k ' M " + k ) 

' ( J 0
 ak,M Xj+M* ) J ' 
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where a Q M = 1. From (2.71), we reca l l that a. M = a. M 1 + 

a--, aM_. u j , i = U 2, . . . , M-1. I f we impose the added condition 

that a M = 1 and a. = 0 for i > M, then (2.71) holds for a l l M 
0,M 1,M 

and (2.89) s impl i f ies to : 

(2.90) 
1 1 (n-l)-M( M , 

+ C k = o ( £ k ' M _ 1 + * m a M " k ' M _ l ) X i + M " k " 1 l 

1 JL 
2 n-M 

(n-l)-M [" M M 

J 0 [Jo a k ' M _ 1 * 1 + k + *M M k=0 a M-k.M- l x j+k) 2 

Let 

M 2 
+ ( I ak,M-l \?+M-k + 3MM J Q

 aM-k,M-l xj+M-k ) 

(2 .91) 
M M 

.jM = J 0

 ak,M-l Xj+k = J - Q

 aM-k,M-l Xj+M-k , 

M 
q jM = . L aM-k,M-l Xj+k = J n

 ak,M-l Xj+M-k , 
3=0 k=0 

3 = 0 , 1 (n -1 ) - M 
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Then 

, . (n-l)-Mr 2 -q 
( 2 - 9 2 > PM = I ^ lQ IjPjM + aMM V + ^ jM + aMM P

j M

} J 

By setting dPu/^^M* ~ 0> w e 9 e t t n e v a ^ u e * o r af*i : 

(n-l)-M /*»-•_/ " 9 ? 

/

n-l)-M ~ 
(J.93) a w = -2 _J o P j H q j M / J o (P , K + qj„) 

The recursion formulas for the p. and q- are derived from 
rjm ^jm 

(2.71) and (2.91) They are: 

(2.94) P j M - p i f ¥ H + 3 ^ ^ Q j ^ , 

qjM = qj+l,M-1 + aM-l,M-1 Pj+1,M-1 • 

The starting values for the equations in (2.94) for M=l are: 

(2.95) p ^ = x. , q j l = x j + 1 , j = 0, 1, . . . , n - 2 . 

The equations in (2.94) and (2.95) are implemented in the computer 
program which is discussed later in tin's report. 
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CHAPTER III 

APPLICATIONS OF MESA AND FOURIER ANALYSIS 

A. Comparative Study of MESA and Fourier Analysis. 

EXAMPLE 3.1. 
To study the effectiveness of the two methods, consider a mathema­

tical test case consisting of sine functions. The equation is: 

x t = 3 sin (.05(2:*)) + 10 sin (0.1(2~t)) + 5 sin (0.2(2-t)) + 
8 sin (0.21(2^t)), 

t = 0,1..., 99. 

No trend in the time series is removed in the analysis. The discretized 
function x. and *ts spectra are shown in Figures 3.1A, 3.IB, and 3.1C. 
By examining the equation for x t, one can tell that the true periods 
are at the frequencies: f = 0.05, f = 0.1, f = 0.2, f = 0.21, corre­
sponding to periods: P = 20, P = 10, P = 5 and P = 4.76 respectively. 
Table 3.1 gives a listing of the periods as predicted by bc-th forms of 
analysis. 

As one can inftr from Figures 3.IB, 3.1C and Table 3.1, MESA gives 
somewhat better predictions of the frequencies of the periodic compo­
nents. The number of filter coefficients M used in MESA for this par­
ticular problem is 51. 
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TABLE 3.1. 

FREQUENCY COMPONENTS OF THE SiNE PROBLEM 
OF EXAMPLE 3.1 (100 data points} 

Frequencies at which Frequencies predicted Frequencies predicted 
true periods occur by MESA - 51 filter by Fourier analysis 

coefficients used 

(1) 0.05 0.0500 0.0475 
(2) 0.10 0.1000 0.1000 
(3) 0.20 0.2000 0.1975 
(4) 0.21 0.2125 0.2125 

EXAMPLE 3.2 

What happens in the spectrum of the time series x. in Example 3.1 

if the number of sampled points is reduced? Suppose only 20 points are 

used, say at t = 0, 1, ..., 19. The shorter time series x. is shown 

in Figure 3.2A and its spectra in Figures 3.2 B and 3.2 C. Table 3.2 

lists the frequencies for both spectra. 

TABLE 3.2. 

FREQUENCY COMPONENTS OF THE SINE PROBLEM OF 
EXAMPLE 3.1 (20 data points) 

Frequencies at which Frequencies predicted Frequencies predicted 
true periods occur by MESA - 13 filter by Fourier analysis 

coefficients used 

(1) 0.05 0.0475 0.0300 
(2) 0.10 0.0975 0.0925 
(3) 0.20 0.1925 
(4) 0.21 0.2075 0.2075 
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Since the number of data points is relatively small, one certainly 

can expect shifts in the spectral peaks. Such shifts are present in 

both Figures 3.2B and 3.2C, but the frequencies predicted by MESA are 

consistently as accurate or more accurate than those predicted by 

Fourier analysis. The true peak at f = 0.2 is missing in the Fourier 

spectrum, but is approximated by f = 0.1925 in the MESA spectrum. The 

fact that MESA is able to distinguish between two very close frequencies 

indicates one strong advantage this method has over Fourier analysis. 

One should also take note that the longest period P = 20 is approximated 

by P * 21.053 by MESA, but is given as P = 33.33 by the Fourier spec­

trum. 

So far the applications we have been considering involve mathemati­

cal test cases, where the periods of the functions are known in advance. 

In the following three examples, we present real time series. 

EXAMPLE 3.3 

Figure 3.3A gives a plot of the MacKenzie River regon lynx fur 

returns of the Hudson Bay Company from 1821-1934 (Elton and Nicholson 

1942), a period covering 114 years. It is evident that a definite pat­

tern exists. In fact, as one closely examines the points, a period of 

roughly 10 years emerges. Indeed, both Fourier and MESA spectra bring 

out this dominant period as can be seen in Figures 3.3B and 3.3C. Both 

lynx spectra agree quite closely in their estimates of the period of the 

major peak and of the two more important minor pesks, corresponding to 

periods of roughly 38 and 11 years. The cycle of about 38 years seems 
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to be a harmonic of 9.66 years, the major period, for 9.66 x 4 = 38.64 

years. 

TABLE 3.3 

FREQUENCY COMPONENTS OF LYNX DATA 

Major frequencies Corresponding Major frequencies Corresponding 
predicted by MESA periods predicted by periods 
- 69 filter Fourier analysis 
coefficients used 

(1) 0.0258 38.65 0.0258 38.65 

(2) 0.0959 10.42 0.0918 10.89 

(3) 0.1035 9.66 0.1035 9.66 

(4) 0.1310 7.63 0.1327 7.54 

(5) 0.2086 4.79 0.2078 4.31 

EXAMPLE 3.4 

Another well-studied time series is the Zurich sunspot record from 

1700 to 1976 (see Figure 3.4A) as given by M. Waldemeier. The sunspot 

time series shows a stroi.g periodicity of 11 years. There also seems to 

be a period of about W> years if one divides the interval 1700-1976 

into roughly 1700-1800, 1800-1900, 1900-1976. Table 3.4 gives a listing 

of the more dominant peaks in the spectra (Figures 3.4B and 3.4C). 

The 99.83 year - period appears to be a harmonic of 9.983, since 

9.983 x 10 = 99.83. Several papers have been written [see for example 

(Currie 1972), 'Cole 1973)] in an attempt to explain the different per­

iods (other than those appearing in Table 3.4) in the sunspot spectrum. 

Some authors have claimed that certain periods are the results of beat 
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TABLE 3.4 
FREQUENCY COMPONENTS OF SUNSPOT DATA 

Major frequencies 
predicted by MESA 
- 160 filter 
coefficients used 

Corresponding 
periods 

Major frequencies 
predicted by 

Fourier analysis 

Corresponding 
periods 

(1) 0.01001 99.83 0.01001 99.83 

(2) 0.0175 57.05 0.0175 57.05 

(3) 0.0834 11.98 0.0826 12.10 

(4) 0.0909 10.99 0.0901 11.09 

(5) 0.0943 10.60 0.0952 10.51 

(6) 0.1001 9.98 0.1001 9.98 

frequencies (Wolff 1975). It is commonly accepted that the cycle of 
about 11 years is a real one. 

In the sunspot and lynx records, the number of available data 
points is more than 10 times the length of the most dominant periods 
(the MESA estimates of which are 9.66 years in the lynx and 10.99 in 
the sunspots). Both MESA and Fourier analyses are in agreement with 
regard to the frequency estimates in the lynx spectrum and the sunspot 
spectrum. The performance of Fourier analysis is comparable to that of 
MESA in cases where there are long records available for the time series 
under study. 
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EXAMPLE 3.5 

We now consider a shorter time series consisting of 42 data points 

- the annual commercial landings of the striped bass from the Middle 

Atlantic region in the years 1930 - 1971 (Van Winkle et al., in press) 

(see Figure 3.5A). A summary of the frequency components is listed in 

Table 3.5. 

TABLE 3.5 

FREQUENCY COMPONENTS 0^ MIDDLE ATLANTIC STRIPED BASS COMMERCIAL LANDINGS 

Major frequencies Corresponding Major frequencies Corresponding 
predicted by MESA periods predicted by periods 
- 26 filter Fourier analysis 
coefficients used 

(1) 0.0250 39.93 

(2) 0.0550 18.15 0.0509 19.64 

(3) 0.0793 12.61 

(4) 0.1302 7.68 0.1310 7.63 

(5) 0.2671 3.74 0.2621 3.82 

The spectra in Figures 3.5B and C.5C differ in the frequency inter­

val (0.00 - 0.10). In the Fourier spectrum, only one peak at f = 0.0509 

appears within the interval. A lot of unresolved power is also 

present. In the same interval the MESA spectrum has three peaks at f = 

0.0250, f = 0.U550, and f = 0.0793. The frequency f = 0.2621 with cor­

responding period P = 3.81b in Figure ?.5R [denoted peak (5)] appears to 

be a harmonic of f = 0.1310, since 2 x 0.1310 = 0.2620. 
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B. The Effect of Noise 
To compare the performance of the two methods when there is noise 

in the time series, we consider the sine function of Example 3.1, but 
utilize only the first 20 points (from t = 0 to t = 19). There are two 
major reasons for doing so. First of all, the longest period of the 
sine function is at frequency f = 0.05, corresponding to a period of P 
= 20. In Fourier analysis, the longest period predicted is the length 
of the time series. Secondly, we would like to see how well MESA and 
Fourier analysis perform whenever the length of available data is rela­
tively short. We take note that when the number of points is 100, the 
predictions given by both methods are in fairly good agreement (see 
Table 3.1). When the number of points decreases to 20, the difference 
between the MESA spectrum and the Fourier spectrum can easily be 
detected (see Table 3.2). The equation under study here is: 

x = 3 sin (0.05(2~t)) + 10 sin (0.1(2-t)) + 
5 sin (0.2(2-t)) + 3 sin (0.21(2~t)) + 
R [ L ; N(0, 6.5 J) , 

t = 0, 1, ..., 19, where 
R[t; N(0, 6.5 0] = a random number drawn for each time t from a 

normal distribution N(0,6.5 * ) ; 
N(0, 6.5 O = the normal distribution with mean 0 and standard 

deviation 6.5 /; 
6.5 = h (3 + 10 + 5 + 8), the average of the amplitudes; 
'<• - the noise level on a scale of 0.0 to 1.0. 
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TABLE 3.6 
FOURIER ANALYSIS: FREQUENCY COMPONENTS OF EXAMPLE 3.1 

(20 data points at different noise levels) 

Noise Level Frequencies (f) of the three highest peaks 
(0 0.05 0.10 0.2100 

0.00 0.0300 0.0925 0.2075 

0.05 0.0300 0.0925 0.2075 

0.10 0.0300 0.0925 0.2075 

0.20 0.0275 0.0925 0.2075 

0.30 0.0275 0.0900 0.2075 

Table 3.6 gives the estimated Fourier frequencies for various 
noise levels. The peak at f = 0.05 is approximated by f = 0.03 when 
x = 0.0, 0.05 and 0.10. As x increases to 0.20 and 0.30, the peak 
shifts even farther away from the true one. In the sine function under 
study, the largest amplitude is 10 and it belongs to the sinusoid with 
period at f = 0.10. This sinusoid is least affected by the increase in 
noise. The frequency estimate of f = 0.10 is f = 0.0925 for the first 
four levels of a and only drops to f = 0.09 when • increases to 0.30. 
The third peak of the sine function is at f = 0.2000 and does not appear 
in Table 3.6 at any noise level. This is because the true peak at f = 
0.2100 is very close to the true peak f = C.2000. As a result, there is 
a lot of unresolved power at f = 0.2075, at all levels of i in Table 3.6 
(see Figure 3.2B for * = 0.00). 
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In Table 3.7, the results from MESA are given at different values 

of the number of filter coefficients M. For M = 3 and = 0.0, 0.05, 

0.10, 0.20, 0.30, one obtains a very poor spectral representation indi­

cating only one of the four frequencies. As M takes the values 4, 5, 6, 

7, at least *"wo of the periods are resolved at ;t = 0.0, 0.05 and 0.10. 

As the level of noise goes up, the frequencies undergo greater shifts 

for these values of M. Moreover, when i = 0.30, spurious peaks appear 

at f = 0.4100 (for M = 6) and f = 0.3525 (for M = 7). Using M = 8, 9, 

10, 11 results in a spectrum with three of the four frequencies of x. 

at low levels of noise. As M takes the values 12 - 19 and when the 

noise level stays relatively low, all four frequencies are estimated but 

only with the addition of spurious peaks as well. 

We notice that using too small a value of M results in low resolu­

tion, and using too high a value of M results not only in high resolu­

tion but also in the appearance of several spurious peaks. Furthermore, 

for both high levels of noise and large values of M, the number of spu­

rious peaks tends to be high. 

Relatively good spectra are obtained for values of M in the range 

8 - 14. Although spurious oeaks do appear, MESA still gives better 

estimates than Fourier analysis. Also the problem of sidebands in 

Fourier analysis is absent from the MESA spectrum (see Figures 3.IB, 

3.1C, 3.2B and 3.2C). 

Figures 3.6A, 3.6B and 3.6C illustrate the MESA spectrum of x. 

at i = 0.0, u = 0.10, and < = 0.30 respectively. The value of M for 

these plots is 10. Because of the linear plot scaling, the peaks at 
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TABLE 3.7 

MESA: FREQUENCY COMPONENTS OF EXAMPLE 3.1 
(20 data points at different noise *°vels) 

Number of 
filter 
coefficients 

(H) 
OX 5% 

Noise Level 

10% 20% 30% 

3 0.1925 0.1900 0.1900 0.1900 0.1775 

4 0.0850 

0.2050 

0.0850 

0.2050 

0.0850 

0.2075 

0.1950 

5 0.0925 0.0900 0.0825 0.0875 0.1000 

0.2075 0.2075 0.2050 0.2075 0.2075 

6 0.0550 

0.0975 0.0900 0.0875 0.0825 0.0850 

0.2075 0.2075 0.2050 0.2050 0.2050 

0.4100* 

7 0.0950 0.0925 0.0900 0.0850 0.0825 

0.2075 0.2075 0.2050 0.2050 0.2025 

0.3525* 

8 0.04"5 0.0550 

0.0950 0.0950 0.0900 0.0900 0.0850 

0.2075 0.2075 0.2050 0.2050 0.2025 

•Denotes frequencies at which spurious peaks occur. 
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TABLE 3.7: Cont'd. 

Number of 
filter 
coefficients 

(M) 
0% 5% 

Noise Level 

10% 

(a) 

20% 30% 

9 0.0525 0.0525 

0.0950 0.0950 0.0950 0.0900 0.0900 

0.2075 0.2075 0.2050 0.2050 0.2025 

0.3275* 

0.4475* 

10 0.0475 0.0500 0.0500 

0.0950 0.0950 0.0950 0.0925 0.0900 

0.2075 0.2075 0.2050 0.2050 0.2025 

0.3125* 

0.4025* 

11 0.0500 0.0475 0.0500 0.0525 

0.0950 0.0950 0.0950 0.0950 0.0925 

0.2075 0.2075 0.2050 0.2050 

0.3100* 

0.4050* 

0.2025 

0.3075* 

0.4025* 

12 0.0425 

0.0700* 

0.0475 0.0575 

0.0950 0.0950 0.0975 0.0975 0.0925 

•Denotes frequencies at which spurious peak: occur. 
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TABLE 3.7: Cont'd. 

Number of 
filter 
coefficients 

(M) 
OX 5X 

Noise Level fa) 

10X 20% 30% 

0.1875* 

0.2075 

0.2200* 

0.2075 0.2050 0.2050 0.2025 

0.3125* 0.3125* 0.3075* 

0.4100* 0.4075* 0.4025* 

13 0.0475 0.0475 0.0475 

0.0975 

0.1925 

0.0950 0.0950 0.0975 0.0900 

0.2075 

0.2200* 

0.2075 0.2050 0.2050 0.2025 

0.3150* 0.3100* 0.3050* 

0.4125* 0.4000* 0.3950* 

14 0.0450 0.0500 0.0500 

0.0950 

0.1925 

0.0950 0.0950 0.0950 0.0925 

0.2075 0.2075 0.2050 0.2050 0.2025 

0.3175* 0.3100* 0.3050* 

0.4125* 0.4000* 0.3950* 

•Denotes frequencies at which spurious peaks occur. 
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TABLE 3.7: Cont'd. 

Number of 
filter 
coefficients 

(M) 
OX 5* 

Noise Level (a) 

10X 20X 30% 

15 0.0475 

0.0800* 

0.0975 

0.2075 

0.2225* 

0.0450 0.0525 

0.0975 0.0950 0.0950 0.0975 

0.1875 

0.2075 0.2050 0.2050 0.2025 

0.3175* 0.3125* 0.3075* 

0.4125* 0.4000* 0.3950* 

16 0.0350* 

0.0500 

0.0900* 

0.0425 0.0525 

0.0975 

0.1875 

0.0975 

0.1875 

0.0950 0.0950 0.0875 

0.1225* 

0.2075 0.2075 0.2050 0.2050 0.2025 

0.2675* 

0.3153* 0.3125* 0.3125* 

0.4125* 0.4000* 

0.4750* 

0.3975* 

0.4750* 

•Denotes frequencies at which spurious peaks occur. 
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TABLE 3.7: Cont'd. 

Number of 
filter 
coefficients 

(M) 
0* 5* 

Noise Level 
10% 

(a) 
20% 30% 

17 0.0500 0.0425 
0.0850* 

0.0575 0.0550 0.0475 

0.0975 0.0975 
0.1850 

0.0950 
0.1600 

0.0950 0.0900 

0.2075 0.2075 0.2050 0.2050 0.2025 
0.2725* 

0.3150* 0.3150* 0.3150* 
0.4125* 0.4000* 

0.4750* 
0.3975* 
0.4750* 

18 0.0325* 0.0375* 
0.0500 0.0425 0.0650 0.0550 0.0425 
0.0875* 0.0825* 0.0900* 
0.0975 0.0975 

0.1800 

0.0975 

0.1600 

0.0975 0.0950 
0.1300* 

0.2075 
0.2225* 

0.2075 0.2050 0.2050 

0.2675* 

0.2025 

0.2725* 
0.3250* 0.3100* 0.3150* 0.3150* 

•Denotes frequencies it which spurious peaks occur. 
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TABLE 3.7: Cont'd. 

Number of 
filter 
coefficients 

(M) 
OX 5X 

Noise Level 

10X 

(a) 

20% 30% 

0.3350* 0.4000* 0.3975* 

0.4150* 0.4125* 0.4750* 0.4750* 

19 0.0325* 

0.0500 0.0425 

0.0375* 0.0300* 0.0300* 

0.0875* 0.0825* 0.0650* 0.0625* C.0800* 

0.0975 0.0975 0.0975 0.0950 

0.1350* 

O.IOOP 

0.1425* 

0.1800 

0.2025* 

0.1800 0.1600 

0.2025* 

0.2075 

0.2250* 

0.2075 0.2050 0.2050 

0.2700* 0.2725* 

0.3250* 0.3100* 0.3150* 

0.4125* 0.4125* 0.4725* 0.4725* 

•Denotes frequencies at which spurious peaks occur. 
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0.3075 and 0.4025 in Figure 3.6C cannot be seen, but do show up when a 
logarithmic scale is used. 

The preceding studies gives some indications of the advantages of 
MESA over Fourier analysis. Below are the major points to be consid­
ered in choosing between the two methods. 

Fourier Analysis MESA 

1. Assumes a zero extention of the 
data and use; data windows. 

2. The longest period predicted 
is the length of available data. 

3. Sideband effects are produced 
resulting from power leakage. 

4. Frequency components very close 
to each other cannot be resolved. 

1. Makes no assumptions 
outside the given data and 
no data windows are used. 

2. Can predict periods longer 
than the length of avail­
able data. 

3. No sidebands are produced. 

4. Can resolve frequency 
components very close to 
each other. 

Another basic difference between the MESA spectrum and the Fourier 
spectrum is that in the former, the power in the spectral peak is pro­
portional to the area under the curve, whereas in the latter, the power 
is proportional to the height of the peak. 
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CHAPTER IV 

GUIDELINES IN SPECTRAL STUDIES 

A. The Akaike Final Prediction Error (FPE). 
The determination of the number of filter coefficients (M) which 

produces the best spectrum is one of the major unsolved problems in 
MESA. As a general rule, using a very small value for M results in a 
spectrum with low resolution; on the other hand, a very large value of 
M, which is close to the total number of data points n results in spuri­
ous peaks in the spectrum. A common practice is to use values of M 
close to half the total number of data points. 

T. J. Ulrych (1975) suggested the use of the Akaike final predic­
tion error criterion. This criterion is expressed in terms of the mean 
square error P M of the prediction filter used to estimate the MESA 
spectrum. The idea is to get the least value for P M at which point 
the error in the prediction is minimum. 

Again our time series will be x Q, x., ..., x .. The final 
prediction error is defined by: 

(4.D FPE(M) = Q . P [ l , 

where P.. is the expression in Equation (2.92) and 

f n + M 
n - M 

n + M + 1 

i f the time series is not detrended. 

(4.2) g = ) -• .- (» + TT » i f the mean is removed. 

" - T M V S i ' ^ t h e s e r i e s i s l i n e a r l y detrended, 
v. 
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To implement the FPE criterion, onfe computes Lquation (4.1) for all 
M < n-1. The value of M which gives the smallest FPE(H) determines the 
number of filter coefficients to use. Table 4.1 lists the FPE values of 
the sine function in Example 3.1. The FPE values are given for V = 1, 
..., 97. They indicate a final prediction arror function which attains 
a minimum at M = 77. 

TABLE 4 1 
FPE VALUES FOR EXAMPLE 3.1 (IOC data points) 

Nuincer of filter FPE Number of filter FPr 
coefficients K coefficients M 

1 6.67667D-01 21 4.69691D-12 
c 2.935050-01 22 8.43425D-13 
3 1.659960-01 23 7.30391D-13 
4 8,869490-01 24 2.63503D-14 
5 2.945J5D-01 25 9.825^30-15 
6 1.922596-91 26 6.92125 0-15 
7 9.21715D-02 27 4.309120-15 
8 1.60844D-03 28 3.76044D-15 
9 7.561I6D-04 29 1.37526D-15 

10 2.983650-04 30 9.0O214D-16 
1J 2.36250D-04 31 9.20203D-16 
12 4.74525D-06 32 4.59301D-16 
1? 1.097800-06 33 2.444620-16 
14 5.55949D-07 34 2.46991D-16 
15 3.85160i/-07 35 2.122350-16 
16 6.046070-08 36 1.97891D-16 
]7 2.051210-08 37 1.088590-16 
13 3.47970D-09 38 1.096430-16 
19 3.10793D-09 39 8.104640-17 
20 1.06768D-11 40 7.901300-17 
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TABLE 4.1: Cont'd. 

Numbe*- of filter FPE Number of filter FPE 
coefficients M coefficients M 

41 7.692020-17 71 6.31891D-18 
42 6.86446D-17 72 6.05030D-18 
43 6.86533D-17 73 5.54125D-18 
44 6.749520-17 74 5.77307D-18 
45 6.879120-17 75 5.96710D-18 
46 3.21366D-17 76 5.859300-18 
47 2.15421D-17 77 4.79736D-18 
48 2.16067D-17 78 5.04358D-18 
49 2.01605D-17 79 5.313350-18 
50 2.063810-17 80 5.38276D-18 
51 2.073320-17 81 5.68238D-18 
52 1.95511D-17 82 5.97227D-18 
53 1.64197D-17 83 5.76230D-18 
54 1.05644D-x7 84 6.00796D-18 
55 1.01181D-17 85 6.44054D-18 
56 1.023510-17 86 6.10300D-18 
57 9.436250-18 87 5.217970-18 
58 9.292540-18 88 5.61166D-18 
59 9.395710-18 89 6.01996D-18 
60 9.39461D-18 90 6.240870-18 
61 8.66899D-18 91 6.85661D-18 
62 7.066010-18 92 7.35459D-18 
63 7.218890-18 93 7.65730D-18 
64 7.072700-18 94 7.14762D-18 
65 7.22471D-18 95 8.588230-18 
66 7.424770-18 96 1.061010-17 
67 7.288080-18 97 1.39827D-17 
68 6.615680-18 
69 6.181020-18 
70 6.396B9D-18 

The spectrum for M * 77 (Figure 4.1) shov/s the peaks at f = 0.05, 

0.10, 0.20, and 0.2125. These are the same frequencies predicted with 

M = 51 (see Figure 3.1C). Although a minimum FPE 1s obtained for M = 

77, we studied several spectra for M in the interval (50, 80). The FPE 
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assumes a relatively flat valley in this interval. Hence, very good 

estimates of the true pezk* are produced. In this case the FPE does 

not seem to be a very discriminating criterion. 
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Fig. 4.1. Maximum Entropy Spectrum of Example 3.1 with M=77. 

As another example of the unreliability of the minimum FPE crite­

rion, we have plotted the FPE for the Middle Atlantic striped bass 

landings (Example 3.5) in Figure 4.?A. The FPE minimum is at M = 1. 

We have already noted that using very small values of M results in a 

poorly resolved spectrum. However, as one examines the plot for 

increasing values of M, a major numerical difference is noted between 

M = ?5 and M = 26. The FPE function increases at almost every step 

before M = ?5 and then takes a sudden drop at M = ?6. It is interesting 

to see what happens to the spectrum as M goe., from 25 to 26. 
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Figure 4.28 shows the spectrum for M = 25 and Figure 4.2C for M = 26. 

A major change occurs in the frequency interval (0.0, 0.1) as M changes 

from 25 to 26. Instead of just one major peak within this interval when 

N! = 25, three appear when M = 26. It appears that the three peaks are 

brought into 'focus'. 

For many of the other time series that we have analyzed, the same 

kind of behavior occurs - that is, when the FPE takes a sudden drop in 

value, the spectrum produces sharper peaks. Whether, of course, the 

other two peaks that come into 'focus' are significant is another ques­

tion. 

It is also good practice, when deciding what value of M to choose, 

to ref«r to the Fourier spectrum of the time series as a guidf in deter­

mining what value of M would give a good MESA spectrum. 

3. Fisher's Test Statistic - The Periodogram Test 

The periodogram is one of the earliest forms of spectral estimates. 

It can actually be derived from the sample spectrum in Equations (1.11), 

(1.12), (1.13). Using the same notation as in Chapter I, the periodo-

gram values FF(f) are given by the formula: 

(4.3) FF(f) = £ fa(f) 2 + b(f) 21 , 
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where f = k/n, k = 1, ..., m if n - 2m. If n = 2 m + 1, Equation (4.3) 
applies for f = k/n, k = 0, 1, ... m. Since we are using dis­
crete values for f, (4.3) can be simplified into: 

(4.4) FF

k -1 (y + > k

2 ] 

One of the questions often considered is whether the maximum value 
of FF. is significantly above the noise level. With Fisher's test, we 
proceed the following way to answer the question. Let 

FFL = the largest periodogram ordinate, and 

m 2 FF|( = the sum of the periodogram ordinates. 
k=l 

The test statistic used is 

(4.5) = FF, 
m O/m) £ FF, 
k=l 

Fisher (1929) showed that for g > 0, the probability that the lar-
m 

gest of m normalized terms (FF./ £ FF., 1 * 1 , ..., m) should 
1 k=l k 

exceed g is 

(4 .6) V f"'1 •: g} m 0 - g ) m - ' - HiiiLdJLJLLjLial m-1 

M ) sflm^sTT ( 1 _ s g ) 
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where s is the largest integer less than 1/g. Table 4.2 gives the 1 

and 5 percentage points for the distribution of £ as given by W. Fuller 

(1976). 

TABLE 4.2 

PERCENTAGE POINTS FOR THE RATIO OF LARGEST 
PERIODOGRAM ORDINATE TO THE AVERAGE 

Number of ordinates Probability of larger value 
0.05 0.01 

2 
3 
4 
5 
6 
7 
8 
9 
10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 
100 
150 
200 
250 
300 
350 
400 
500 
600 
700 
800 
900 
1000 

1.950 1.990 
2.613 2.827 
3.072 3.457 
3.419 3.943 
3.697 4.331 
3.928 4.651 
4.125 4.921 
4.297 5.154 
4.450 5.358 
5.319 6.103 
5.408 6.594 
5.701 6.955 
5.935 7.237 
6.295 7.663 
6.567 7.977 
6.785 8.225 
6.967 3.428 
7.122 8.601 
7.258 8.750 
7,378 8.882 
7.832 9.372 
8.147 9.707 
8.389 9.960 
8.584 10.164 
8.748 10.334 
8.889 10.480 
9.123 10.721 
9.313 10.916 
9.473 J1.079 
9.612 11.220 
?.733 11.344 
9.642 11.454 
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To illustrate Fisher's test, the lynx data will be used. The sam­
ple spectrum (Figure 3.3B) exhibits the tallest peak corresponding to a 
period of 9.66 years. Recall that the straight line trend was 
subtracted from the data before calculating the spectrum. The null 
hypothesis is 

H Q: x t = ;; + 8t + e t 

The al ternat ive hypothesis is 

H A : x t = u + B t + A s i n (2:;t / 9.66) + ? + e 

J t 

where e. is the stochastic error term. 
The frequencies used for the sample spectrum are f = i/114, i 

1,2,. . . , 57. Then 

F F L / (1/5?) £ FF k = (1.42571 x l O 8 / (l/57)(2.79734 x 10' 

29.C511 

From Table 4.2, the 1% point for this value of i, is about 8.20. So 
29.055 > 8.20 and H is rejected. One concludes that the 9.66 period 
is statistically significant. 
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C. The Cumulative Periodogram Test 
In analyzing a real time series like the lynx data, our normal 

course is to remove the linear trend in the data before analysis. That 
is, we really are fitting the model 

x t = u + ?.t + e 

The series that then undergoes analysis is e\, the estimated error. 
Thus a question that one might ask is whether the e\'s under study 
comprise just white noise. 

It can be shown (Box and Jenkins 1970) that the power spectrum 
2 2 P(f) for white noise has a constant value 2a (a is the e e 

variance for -) over the frequency interval [0.0, 0.5j. Thus the 
integrated spectrum for white noise is 

•r. (4.7) PP(f) = { P( V) dv = 2 o\ f , 

with f defined in the interval [0.0, 0.5]. 
2 Dividing both sides of (4.7) by a gives the equation 

(4.3) PP(f) /a2 » 2 f 
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2 
Thus the p lot o f PP( f ) /a e against f i s a s t ra ight l i n e jo in ing (0,0) 

to (0 .5 , 1). For tes t data, the integrated spectrum can be approximated 

by the cumulative periodogram CP.: 

(4.9) CP. = > FF, / > FF, , k = 1 , 2 FFt / I FFJ • 
i=i / j= i 

k ~ /L r r i / Z , r r j ' K ~ ' ' • ' •' m ' 
i=l / j= l 

which is compared with the white noise straight line. 
To determine the significance of the deviations of the cumulative 

periodogram of the test data from the theoretical straight line joining 
(0,0) to (0.5,1), limit lines can be drawn on each side of the theoreti­
cal line, using the Kolmogorov - Smirnov test (Box and Jenkins 1970). 
If indeed the series e t were to comprise white noise, then the cumula­
tive periodogram would cross these limit lines with a stated probabil­
ity. It should be pointed out however, that the probabilities are only 
approximated. The limit lines in the frequency interval [CO, 0.5] are 
given by the equations: 

(4.10) y = 2 f + K / /q~ 
— it 

where 

(4-11) ) (n-2) / 2 , if n is even 
(n-1) / 2 , if n is odd, 

f is the frequency in the interval [0.0, 0.5], n is the total number of 
data points, a the stated probability. 
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The cumulative periodgram of a truly random series would then lie 
outside the limit lines of Equation (4.10) for an approximate 
fraction a of the time. Table 4.3 lists K versus a. This table is 

a 
adapted from Box and Jenkins (1970). 

TABLE 4.3 
VALUES OF i AND K NEEDED FOR CUMULATIVE PERIODOGRAM TEST 

a 

Probability a K a 

0.01 1.63 
0.05 1.36 
0.10 1.22 
0.2b 1.02 

Figure 4.3 is the cumulative periodogram of the lynx data after the 
linear trend is removed. In this case n = 114. One can see that the 
periodogram has certainly Tossed the limit lines, y = 2 f ± K Q 0 5 

/Vq~, where q = yj(HA-2)/2 = 7.48. Our conclusion therefore is that 
ef is not white noise and the errors are r,ot independent. The model 
x. = v- + St + e. is thus inadequate. 

D. The Integrated Maximum Entropy Spsctrum 
In the sample spectrum in Fourier analysis, the power density in a 

peak (i.e., the strength of contribution of the frequency f) is directly 
related to the peak amplitude. In the maximum entropy spectrum, the 
power density is directly related to the area under the spectral peak 
[see Lacoss (1971)]. So in order to judge the contribution of a spec­
tral peak fn MESA, the area under the peak has to be computed. This 
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Fig. 4.3. Cumulative periodogram of the Lynx Data. 
Solid Curve - Cumulative periodogram. 
Dashed lines - Limit lines y = 2 f + K Q Q 5 / v̂ qT 

suggests the use of an integrated spectrum obtained from the convolution 
of the MESA spectrum with a rectangular window of height unity and width 
equal to the effective width of the peaks in the Mt~A spectrum. The 
heights of the peaks in the integrated spectrum will then be propor­
tional to the corresponding power densities. 

The maximum entropy spectrum as given by Equation (2.35) is 

(4.12) P(f) 
P M A t 

M 2 
-i27ifmAt I 1 + > am e 

m=l 
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The integrated spectrum IP(v) will then be of the form 

IP (v,) = p + (4.13) IP (v,.) = | _ 1 + ] P(f) df, 
i 

where f.+, - f* is the bandwidth of integration and 
vi = f fi +l + V / 2 « 

To illustrate the above ideas, consider the spectrum P(f) in 
Figure 4.4A. By choosing an appropriate width of integration, one can 
find the areas under the two spectral peaks. Figure 4.4B shows the 
estimated integral of P(f) where 

(4.14) 
IP(v.j) = J i *l ?(f) df. 

ffJ + 1 IP (v-)= P(f) df. 
J f. J 

For an M - length prediction error filter, only M/2 + 1 discrete 
frequency spectral components can be obtained (Jensen and Ulrych 1973). 
rence to obtain an estimate of the bandwidth of integration we take the 
Nyquist frequency f M and divide it by M/2 + 1. Once the integrated 
spectrum is computed, the height of a peak would then be proportional tc 
the power density. 
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Fig. 4.4. (A) A sample maximum entropy 
spectrum. (B) The integrated 
maximum entropy spectrum. 

The integrated MESA spectrum for a given time series is very simi­
lar in appearance to the Fourier spectrum for the same series, but jt 
is not possible to easily judge whether or not a peak in the integrated 
MESA spectrum 1s significantly above the noise level because there does 
not yet exist a MESA analogue of Fisher's test for the perlodogram. 
The reason is that at the present time no ona knows the statistical 
distribution of integrated spectral estimates for random time series. 
It Is, however, possible to obtain a significance test by a rather cum­
bersome Monte-Carlo technique which has been described by Jensen and 
Ulrych (1973). Essentially what one does is to generate a large number 
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of random time series having the same number of sample points and the 
same sample spacing as the series being studied. One then calculates 
the integrated MESA spectrum of each of these random series using the 
same number of filter coefficients and the same integration window width 
used to construcc the integrated spectrum of the original sample. One 
can then use this collection of integrated spectra to empirically con­
struct a table giving, as a function of peak height, the probability of 
obtaining that peak height by chance simply by counting the number of 
spectra having peaks that high or higher and dividing by the total num­
ber of spectra used in the p.^cess. The quality of the approximate 
probabilities obtained in this manner will, of course, improve as more 
random time series are used in the procedure. 
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CHAPTER V 

THE COMPUTER PROGRAM AND ITS USE 

A. Explanation of the Subroutines 

Essentially, the program consists of the following routines: 

(1) Main program - which initializes the data values and other 

parameters needed in spectral analysis. 

(2) Subroutine TRANSl - which provides different calls to SPECTR. 

(3) Subroutine SPECTR - which does spectral analysis using both 

Fourier and ME^A methods. In turn, SPECTR calls: 

(a) Subroutine OETRND - a routine to be provided by the user 

if detrendinc is done. 

(b) Subroutine SFT - computes the Fourier sine and cosine 

terms needed to produce the sample spectrum. 

fc) DCADRE - a built-in IMSL subroutine used in computing the 

integrated spectrum if it is desired. 

(d) Double Precision Function SPCVAL - computes the function 

used in integrating the spectrum. 

(e) Subroutines DOPLT, D0PLT1, D0PLT2, D0PLT3, D0PLT4, D0PLT5, 

00PLT6, D0PLT7, D0PLT8, D0PLT9, SINGLE, GPHBGN, GPHBGl, GPHEND, ANGIIC 

- perform the necessary plotting using the DISSPLA routines. 

1. The Main Program 

The parameters which are given initial values are read in this sec­

tion of the program and are transferred to TRANSl and SPECTR by the 

common statement: 



90 

COMMON/SPECBL/OELTA, YEAR(600), Y(600), XD(600), VMAX, Z(600), V(600), 
S(600), FPE(600), XDIFF(600), DATE(600), X(600), 
ACS(600), BSN(600), AMP(600), ASF(600), PERI0D(600), 
NPTS, NFILT, NV, MC0UNT(600), IPRINT, IPLOT, ITREND, 
IFPEPL, IINTSP, IAUTCV, IYWACV 

Table 5.1 lists in alphabetical order the variables which are read, 
their dimensions, types and what they represent. Currently, the dimen­
sions allow a maximum of 600 data points to be analyzed by ^PECTR. 

TABLE 5.1 
LIST OF VARIABLES READ IN THE MAIN PROGRAM 

Variable Dimension Type Explanation 

DATE 600 REAL*8 time array (times at which sample 
values occur). 

DELTA REAL*8 sampling interval. 
IAUTCV 1*4 indicator for option to plot MESA 

estimate of autocovariance function. 
IFPEPL 1*4 indicator for option to prin'/plot 

final prediction error. 
IINTSP 1*4 indicator for option to compute 

integrated MESA spectrum. 
IPLOT 1*4 indicator for option to plot 

spectra. 
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TABLE 5.1. Cont'd. 

Variable Dimension Type Explanation 

IPRINT 

ITREND 

IYWACV 

MCOUNT 600 

NAM 14 
NTILT 

NPTS 

NV 

1*4 

1*4 

1*4 

1*4 

Real*4 
1*4 

1*4 

1*4 

indicator for option to print 
output. 
indicator for option to detrend 
data. 
indicator for option to compute and 
plot Yule-Walker estimate of the 
autocovariance function. 
contains the array of numbers which 
correspond to the number of filter 
coefficients desired in each MESA 
spectrum. 
title for the data set. 
total number of maximum entropy 
spectra to be calculated with 
different values of the number of 
filter coefficients. 
number of data points in time 
series. 
number of frequencies desired in 
output; should not exceed a maximum 
value cf 599. 
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TABLE 5.1: Cont'd. 

Variable Dimension Type Explanation 

VMAX Real*8 maximum frequency for the output 
spectrum; has a maximum value of 
0.5, the Nyquist frequency. 

XLBL 2 Real*4 label for time axis (x-axis) used 
in plotting. 

Y 600 Real*8 time series fco be analyzed. 
YLBL t Real*4 label for time series data (y-axis) 

used in plotting. 

The indicators IAUTCV, IFPEPL, IINTSP, IPLOT, IPRINT, ITREND, 
IYWACV should be initialized to values of 0 or 1. In each case, 1 is a 
positive response and 0 is a negative response. 

The variables NAM, XLBL, YLBL, which are read in the main program, 
appear in the common block BLKLBL. These are mainly used for identifi­
cation of data and plots. BLKLBL is shared by the Main program, TRANSl, 
SPECTR and DOPLT. The form of the statement is 

C0MM0N/BLKLBL/NAM(14), XLBL(2), YLBL(2) . 
The input cards, all of which are read in the main program, must 

have the following formats. The formats appear in the order the cards 
are read. 
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(1) Input card on first READ statement. 
XLBL YLBL DELTA NPTS NFILT NV VMAX 

$ % 

2A4 2X 2A4 ̂ ST ElO?:' T T T F I T EloTo 
XLBL and YLBL must terminate with a dollar sign. 
(2) Input c?rd on second READ st?tement. 

NAM 
S 

V ^ r 

14A4 
HAM must also end in a dollar sign. 

(3) Input cards for third READ statement. 
MCOUNT(l) MCOUNT(2) MCOUNT(NFILT) 

15 15 15 
(4) Input cards fir fourth READ statement. This set contains the time 

series to be a.ia7yzed. 
DATE(l) Y(l) 
DATE(2) Y(2) 

DATE(NPTS) Y(NPTS) 

F4.0 F10.0 
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Input card for the fifth READ statement. 
IPRINT IPLOT ITREND IFPEPL IINTSP IAUTCV IYWACV 

15 15 is ~rr ~TT ~nr ~ir 
A flowchart of the main program is given in Figure 5.1. 

ORNL-DWG 77 18821 

1 500 

Stop ii ail sets 
of data have been 
read 

Stop ii ail sets 
of data have been 
read 

End Stop ii ail sets 
of data have been 
read 

End Stop ii ail sets 
of data have been 
read 

Read XLBL. YLBL. DELTA. EOF 
NPTS. NFILT. NV. VMAX 

1 
Read NAM 

' ' 
Read MCOUNTII), 
1 = 1. NFILT 

\ 
Read OATE(I). Yd). 
1 = 1. NPTS 

' ' 

Read IPRINT. IPLOT. ITREND. 
IFPEPL. IINTSP, IAUTCV. IYWACV 

l ' 

Calls io TRANS1, TRANS2. TRANS3. 
TRANS4. TRANS5 

\ ' 
IO 1 

Fig. 5.1. Flowchart of the Main Program. Numbers 
(e.g., 1 and 500) refer to statement 
numbers in the program. 
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2. SUBROUTINE TRANS1 
The variables in this subroutine are those that appear in the corn-

men area SPELBL. This subroutine allots the user to perform transforma­
tions on the raw data (e.g., take logarithms) before doing spectral ana­
lysis. Up to five different spectra with five different transformations 
are allowed. 

The basic statements in TRANS1 are the following: 
(1) SUBROUTINE TRANS1 

Optional user supplied statements for desired transformation on data. 
CALL SPECTR 

RETURN 
(2) ENTRY TRANS2 

Optional user supplied statements for second desired transformation. 
CALL SPECTR 

RETURN 
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(3) ENT*Y TRANS3 
Optional user supplied statements. 
CALL SPECTR 

RETURN 
(4) ENTPY TRANS4 

Optlor Mser supplied statements. 
CALL SPECTR 

RETURN 
(5) ENTRY TRANS5 

Optional user supplied statements. 
CALL fPECTR 

RETURN 
If the user wants to analyze only the input data, he need not sup 

ply additional statements and any of the 4 additional entries can be 
effectively deactivated by omitting CALL SPECTR. 
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An example of data transformation using the second Entry call 
(i.e., ENTRY TRANS2) is the following: 

ENTRY TRANS2 
DO 20 I = 1, NPTS 
Y(I) = OLOG(Y(I)) 

20 CONTINUE 
CALL SPECTR 
RETURN 

In the preceding statements, the natural logarithm of the input data 
Y(I), 1=1, ..., NPTS is taken and the result is stored in Y(I) again. 
Thus when SPECTR is called, the logarithmically transformed data are 
analyzed. The program listing for SUBROUTINE TRANSl given in Appendix 
III gives the configuration of statements needed to first analyze the 
original data and then its logarithm. 

3. SUBROUTINE SPECTR 
The main function of SPECTR is to perform the fcllowing: 

(1) Detrend the input data by calling DETRND if desired; 
(2) Compute: 

(a) the Yule-Walker estimates of the autocovariance function if 
desired. 

(b) the Foirisr spectrum. 
(c) the periodograr.. ordinates and their sum. 
(d) the cumulative periodogram. 
(e) the maximum entropy spectrum. 



98 

~ (f) the autocorrelation function resulting from the maximum entropy 
computations. 

(g) the integrated maximum entropy spectrum if desired. 
(h) the final prediction error if desired. 

(3) Print and plot computed values. 
A flowchart of subroutine SPECTR appears in Figure 5.2. Table 5.2 

lists the? the parameters in subroutine SPECTR which appear in common 
blocks on DIMENSION statements. This list includes the variables which 
must appear in the calling program and the arrays whose dimensiun the 
user might want to alter if he desires to make changes in the 
programs. Variables that are only used internally in SPECTR or in 
subroutines called by SPECTR are not included in the list. 

4. SUBROUTINE DETRND 
DETRNO is called by SPECTR with the statement: 

CALL DETRND (NPTS, DATE, YEAR, Y, XDIFF, X, SFPE) 
where 

NPTS - number of data points, i.e., length of time series. 
DATE - time arrjy that must not be destroyed. 
YEAR - user-evaluated time values; these are to be initialized 

in DETRND. 
Y - input time series values; these values must not be 

destroyed. 
XDIFF - array containing the detrended data; computed 1n DETRND. 
X - array containing the trend of the data; computed in DETRND. 
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««*«a>Mk. 

900 

I Cm* MD 

1 " ' " " ^ .WILT 

'- » [ KITUOH I 

Fig. 5.2. Flowchart of Subroutine GPECTR. Numbers (e.g. , 100 3nd 300) 
correspond to statement numbers in the program. 
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TARLE 5.2 
LIST OF PARAMETEkS IN SUBROUTINE SPECTR 

Variable Dimension Type Explanation 

A 600 
ACFN 600 
ACS 600 
AMP 600 
ASF 600 

B 600 
BSN 600 
CUMPER 300 

DATE 600 
DELTA 

FPE 600 

FPER 300 
IAUTCV 

IFPEPL 

IINTSP 

Real*S 
Real*8 
Rsal*8 
Real*8 
Real*8 

Real*8 
Real*8 
Real*8 

Real*8 
Real*8 
Real*8 

Real*C 
1*4 

1*4 
1*4 

Vector of working storage. 
Vector of working storage. 
Vector of working storage. 
Vector of working storage. 
Vector containing Fouri'-r power 
spectra! values. 
Vector of working storage. 
Vector of working storage. 
Array of cumulative periodogram 
values. 
Time values for input series. 
Sampling interval ('delta T'). 
Array containing final prediction 
error. 
Array of periodogram frequencies. 
Autocovari«nce plotting flag (Burg 
estimate). 
Final prediction error flag. 
Integrated spectrum flag. 
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TABLE 5.2: Cont'd 

Va> iable Dimension Type Explanation 

IPLOT 
IPRINT 
ITREND 
IYWACV 
MCOUN" 

NAM 
NFILT 

NPTS 

NV 

PERDG 
PERIOD 

600 

14 

300 
600 

1*4 
1*4 
1*4 
1*4 
1*4 

1*4 
1*4 

1*4 

1*4 

Real *fi 
Real*8 

PPEk 300 Real*8 

Plotting flag. 
Printing flag. 
Detrending flag. 
Yule-Walker autocovariance flag. 
Vector of prediction error filter 
lengths to use. 
Title for the data sec. 
Number of prediction error filter 
lengths to try. 
Number of data points in time 
series. 
Number of frequencies at which 
spectrum is calculated. 
Array of periodoqram values. 
Vector of working storage. Upon 
return tc the main program, this 
vector contains the periods 
corresponding to the frequencies in 
V. 
Array of periodogram periods 
corresponding to FPER. 
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TABLE 5.2: Cont'd 

Variable Dimension Type Explanation 

VMAX 

XD 

600 

STATE 2 

600 

600 

600 

XOIFF 600 

Real*8 Maximum entropy spectral values are 
stored in this array. 

Real*4 Label for dependent variable- (y -
axis) 

Real*8 Output vector of frequencies at 
which spectrum is calculated. 

Real*8 Maximum frequency at which spectrum 
is to be calculated. 

Real*8 Upon returning frem OETRND (if 
detrending is done), it should 
contain the trend of the input 
data. It is later used as a vector 
of working storage. 

Real*8 If detrending is done, it should 
contain the detrended data; if not, 
it is the original data. Spectral 
analysis is applied on XD. 

Real*8 Upon returning from DETRND, it is 
the detrended data. It is later 
used as a working vector. 
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TABLE S.d: Cont'd 

Variable Dimension Type Explanation 

Y 600 Real*8 Input time series values. 
YEAR 600 Real*8 Vector of working storage (can be 

used as time variable in DETRN0). 
YTIME 2 Real*4 Label for the time axis. 
Z 600 Real*8 Prediction error filter 

coefficients. 

SFPE - number cf components in the trend of the time series to be 
removed. For example, if the mean i_ removed, SFPE = 1; if 
the intercept and slope are to be removed, SFPE = 2, and so 
on. SFPE is given the value 0 in SPECTR if detrending is 
not done. 

Should th,> user choose to analyze the original data without 
detrending, toe dummy subroutine in Table 5.3 may be used. 

If the mean of the input data is to be removed, i.e., the model 
x t = M + e. is to be fitted, then the subroutine in Table 5.4 will 
be appropriate to use. 

Table 5.5 contains a detrending subroutine in which the linear 
trend of a time series is eliminated. A least-squares routine BI.SQ is 
called to perform the fitting of the straight line to the data. A 
write-up of BLSQ appears in Appendix II. SUBROUTINE BLSQ is available 
from disk at ORNL (see, for example, control card for "BROOKS.LOAD. 
MODULES" in Tables 6.3 and 6.4). 



Table 5.3. Dumny subroutine DETRND 

(Statement number 
i columns 1-5 
i r 

Continuation 
column 6 

i I Fortran statement 
columns 7-72 

SUBROUTINE DETRND(NPTS,DATE,YEAR,Y,XDIFF,X,SFPE) 
IMPLICIT REAL*8(A-H,0-Z) j 
DIMENSION DATE(l), YEAR(l), Y(l), XDIFF(l), X(l)' 
RETURN 
END 

L 



A det'-endirg subroutine for removal of the mea-i of a tine series 

Continuation 
column 6 

Fortran statement 
columns 7-72 

SUBROUTINE DETRND(NPTS,DATE,YEAR,Y.XDIFF.X.SFPE) 
IMPLICIT REAL*fi(A-H,0-Z) 
DIMENSION DAT£(1). YEAR(l). Y(l), XDIFr(l). X(l) 
SFPE - 1.0 

i 
; AVNAGE = 0 . 0 
' DO 100 I -- i , NPTS 
; AVRAGE -- AVRAGL • Y d ) 
CONTINLT 
AVRAGC '• AVKAGI. / W'TS 
DO 300 i = l , NPTS 
nil) AVRAGE 

' xDirr(i) -- Y(I) - x(i) 
, CONTINUE 
RETURN 

i END 

Explanation 

Since only the- mean is removed, SFI'L 1 

Compute the mean of the 1 array. 

Store the trend of the data in Y arroy. 

Store tho detiindod data in XDIII array. 



Table 5.5. A detrending subroutine for the removal of the linear trend in a time series 

Statement 
number 

columns 1-5 -t-
Continuation 

column 6 
Fortran statement 

columns 7-72 

SUBROUTINE DETRND(NPTS.DATE,YEAR,Y,XDIFF,X,SFPE) 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION DATE(1),YEAR(1),Y(1),XDIFF(1),X(1), 
A{601,3),IRUN(601),C0CF(2),C0LF2(2),T(2,2),T1(2,2). 
.VAR(2,2) 
NROW = 601 

NLSCOL = 2 

NT = 2 

Explanation 

SFPE = NLSCOL 

00 50 I = KNPTS 
YEAR(I) = 1 - 0 . 5 
A(I,1) = 1.0 
A(I,2) = YEAR(!) 

NROW is the row dimension of the least 
squares matrix A. 
NLSCOL is the number of coefficients of 
the linear fit. 
NT is the row dimension of the matrices 
i 
|T and "H, which are computed in the least 
I 

jsquares routine BLSQ. 
SFPE = NLSCOL since there are 'wo 
linear coefficients - the int --cept 
and slope - to be removed. 

Initialize the time variable 
Set up the least squares matrix. 



Taule 5.5. (continued) 

1 Statement 
| number 
columns 1-5 

! . . . 
Continuation 

column 6 
Fortran statement 

columns 7-72 

50 

70 

1 

CONTINUE 
CALL BL$Q(A,Y,C0EF,RES1D,IRUN,T,T1,HPTS,NLSC0L. 
NR0W.NSLC0L) 

00 80 I = 1.NLSC0L 
SUM =0.0 
00 70 J = 1.NLSCOL 
SUM = SUM + T1(I,J) * COEF(J) 
CONTINUE 

| C0EF2(I) • SUM 
| CONTINUE 
| 00 90 1 = 1.NLSC0L 
! COEF(I) = C0EF2(I) 

CONTINUE 
00 100 1 = l.NPTS 
X(I) = A(I,NLSCOL + 1) 

Explanation 

Call the least squares routine BLSQ 
to perform the linear fit. 
Compute the coefficients of the Hnn?r 
fit using values returned from BLSQ. 

o 

i C0EF(1) contains the intercept, of t(^ 
time seriei. 

I C0EF(2) contains the slope- of the trend 
line. 

I The trend of the data comes bi._k in 

i A(1,NLSC0L + 1) and is stored in X array. 



Table 5.5. (continued) 

Statement J j 
number I Continuation • Tortran statement 

columns 1-5. column 6 columns 7-72 
XOIFF(l) = Y(l) - X(l) 

100 ' CONTINUE 
RETURN 
END 

Lxplanution 

The detrended data is stored in XDlfl 
array. 

8 
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SUBROUTINE BLSQ returns (in the array Tl) the information needed to 
compute the variance - convariance matrix of the coefficients (i.e. the 
slope and intercept) and these values could be stored in the array VAR 
which is not used in the preceding program (Table 5.5). A SUBROVTNE 
DETRND which does add this final step is given in the program 
listings in Appendix IV. 

It should be obvious from studying Table 5.5 and Appendix II how to 
remove more complicated detrending functions using BLSQ or even a non­
linear least squares program if needed. 
5. SUBROUTINE SFT 

The computation of the factors 

«£l n-1 
2^ Xj cos 27rjf , 2_, x j sin 2ir.if , 
j=0 j=0 

from Equations (1.12) and (1.13) respectively, which are used in the 
evaluation of the sample Fourier spectrum, is done in SFT. Subroutine 
SFT is called by SPECTR with: 

CALL SFT(X0, ACS, BSN, V, KFl, MYR, PI) . 
The corresponding arguments in SFT are gtven by: 

SUBROUTINE SFT(X, A, B, V, K, N, PI) 
These arguments are described in Table 5.6. 
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6. DOUBLE PRECISION FUNCTION SPCVAL 
The double precision function SPCVAL computes for any frequency 

the maximum entropy spectral value P(f) as given by Equation (2.35). 
SPCVAL is used in the integrated maximum entropy spectrum calculations 
It is the function Nhich is integrated by the INSL subroutine OCAORE, 
which is described in Appendix I. The INSL subroutine DCAORE is 
available from disk at ORNL (see, for example, control card for 
"JDAIMSL1" in Tables 6.3 and 6.4). Table 5.7 lists the important 
parameters in SPCVAL. 

TABLE 5.6 
A LIST OF THE PARAMETERS IN SUBROUTINE SFT 

Variable Dimension Type Explanation 

A 1 Real*8 

B 1 Real*8 

K 1*4 

N 1*4 

PI Real*8 

The array containing the factors 
n-1 

Z x. cos 2 Ttjf upon return. It 
j=0 J 

has a maximum dimension of 600. 
The array containing the factors 
n-1 

Z x. sin 2 irjf upon return. It 
j=l J 

has a maximum dimension of 600. 
Number of frequencies at which 
spectrum is calculated. 
Number of points in the series 
under analysis. 
The real number *. 
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TABLE 5.6: Cont'd 

Variable Dimension Type Explanation 

Real*8 Output vector of frequencies at 
which spectrum is calculated. 

Real*8 Time series under analysis. 

TABLE 5.7 
A LIST OF PARAMETERS IN THE FUNCTION SUBROUTINE SPCVAL 

Variable Dimension Type Explanation 

AMP 
DTIME 
FREQ 
M 
PI 
SPCVAL 
Z 

600 

600 

Real*8 The array containing P„. 
Real*8 The time interval At. 
Real*8 The frequency f. 
i*4 The number of filter coefficients M. 
Real*8 The real number ir. 
Real*8 The spectral value P(f). 
Real*8 The array of filter coefflcents 

a1,M' 
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7. SUBROUTINE DOPLT 
Subroutine DOPLT Is a plotting routine which calls other subrou­

tines primarily fro* the plotting package DISSPLA (DISSPLA is a univer­
sal package that performs the necessary plotting). DISSPLA is availcble 
from disk at ORNL (see, for example, control card for "DISSPLA.LOAD" in 
Tables 6.3 and 6.4). There are nine ENTRY statements, the function of 
each are listed as follows: 

(1) ENTRY D0PLT1 - plots the original data against the time 
values; if the data are detrended, the trend is also plotted on the same 
set of aws^-

(2) ENTRY D0PLT2 - if detrending is performed, the detrended data 
are plotted against the time values; the line y = 0 is also included n 
the plot and serves as a reference line for the residuals. Furthermore, 
a plot of the residuals against the fitted values or trend is done. 

(3) ENTRY D0PLT3 - plots the Yule-Walker autocorrelation function 
against the lag values if IYMACV = 1. 

(4) ENTRY D0PLT4 - plots the Fourier sample spectrum against fre­
quency; it also plots the cumulative Fourier power spectri/n against fre­
quency. The 95% KoTmogorov-Smirnov bounds are also plotted on the 
latter graph. 

(5) ENTRY DOPLT5 - plots the Burg autocorrelation function against 
the number of filter coefficients if IAUTCV * 1. 

(6) ENTRY D0PLT6 - plots the maximum entropy spectrum against fre­
quency. 

(7) ENTRY D0PLT7 - p?ots the integrated maximum entropy spectrum 
against frequency if IINTSP « 1. 
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fo/ ENTRY D0PLT8 - plots the final prediction error against the 
number of filter coefficients if IFPEPL = 1. 

(9) ENTRY D0PLT9 - plots the periodogran and cumulative 
periodogram as a function of frequency. The 95% Kolmogorov-Smirnov 
bounds are included in the latter plot. 

The other subroutines called by OOPLT after each ENTRY statement 
are mainly for setting up the axes for plotting. They are: 

(1) SUBROUTINE SINGLE - transforms double precision variables into 
single precision. This is necessary since DISSPLAroutines handJPiiiTy*'.J. ~~%^s§ 
Real*4 information. 

(2) SUBROUTINE ANGTIC - controls the numbtr of tick marks and 
angular position of the numbers on the ax.es. 

(3) SUBROUTINE GFHBGN - sets up the initial x and y axes for plot­
ting according to the range of the data pain. 

(4) SUBROUTINE GPHBG1 - sets up the initial x and y axes for plot­
ting the FPE. This uses logarithmic scaling of the axes, as contrasted 
with GPHBGN which makes use of linear scaling. 

(5) SUBROUTINE GPHEND - plots the specific curve and draws a frame 
about the picture. 

All the necessary parameters for plotting are transferred to Sub­
routine DOPLT by the two common blocks SPECBL and BLKLBL. 

http://ax.es
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CHAPTER VI 

ILLUSTRATION OF THE USE OF THE PROGRAM 

A. An Ecological Example 
The time series we will consider is the striped bass catch per unit 

effort data for the commercial fishery in the Hudson River from 1955 -
1975, a series of length 21 years. The set of input cards appears in 
Table 6.1. The first card contains the label?, for the x and y axes, the 
time interval, the number of points in the time series, the number of 
times MESA is to be performed, the number of frequencies and the maxi­
mum frequency. The second card has the label for the time series data. 
The third card is the number of filter coeffiripnts used. The time 
series follows on cards 4 - ?A. The last card has all the options to 
print, to plot, to detrend, to compute the FPE, to compute the inte­
grated spectrum to compute the autocorrelation function from MESA, and 
to compute the Yule - Walker estimates of the autocorrelation. All 
these option indicators are given the value 1. 

The data were detrended rsing a SUBROUTINE DETRND which removed a 
linear trend by calling BLSQ, the least squares procedure (DETRND is in 
Appendix IV and BLSQ in Appendix II). Spectral analysis was done on 
botii the raw data and tha natural logarithm of the raw data. However, 
only output for the raw data will be presented. The printed output 
appears in Figure 6.1 and the plots in Figure 6.2A thru Figure 6.2L. 
The printout on the residual sum of squares, coefficients of the linear 
fit, and variance-covariance matrix come from DETRND. DISSPLA plot 
messages are also inserted. 
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Table 6.1. Input cards for the Hudson River catch per unit effort data 

Card 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

YEAR $ _ _ CATCH _ _ $ 1.0 21 1 199 0.5 
HUDSON RIVER CATCH PER UNIT EFFORTS 

18 
1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1968 

1897. 

2550. 

2456. 

2479. 

3985. 

4089. 

2372. 

1670. 

2039. 

1378. 

1952. 

2842. 

3595. 

3397. 

TIME SERIES DATA 



Table 6.1. (continued) 

Card 

18 1969 _ 4852. 
19 1970 _ 2608. 
20 1971 _ 1743. 
21 1972 _ 1213. 
22 1973 _ 4273. 
23 1974 _ 1*29. 
24 1975 _ 1480. 
25 1 

^ TIME SERHS DATA 

NOTE: '_' indicates a space. 
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» PUTS IS Of TF* M I 6 H I I I4F0T D»T» 1IVB00T »«T PPIOt T»«8SFO«IS»TIOi|s 

8005C* I I I H CMC*. H I » » I t IFTC1TJ 

TE»P * 

1.45500 03 
1.4560D 03 
1.4570D 03 
1.45600 03 
1.4540D 01 
1.46000 0? 
1.46100 03 
1.46200 03 
I . 1 S 1 K 0? 
1.46*00 03 
1.46500 03 
1.46600 03 
1.46700 0 3 
1.46800 03 
1.4640D 03 
1.97000 03 
1.4710E 03 
1.47200 01 
1.47100 03 
1.»7*0D 03 
1.V750D 03 

C/F * 

1 .8470000 03 
2.5«oooeo 0 3 
2.*56OOO0 03 
2.•790000 03 
1.4850000 03 
•-084000C 0 3 
7.3720000 03 
1.«70000D 0 * 
2-0144400 03 
1.1700000 01 
1-45200CD 03 
2.0*20000 03 
1.5450000 03 
3.3470000 03 
• • •$20000 03 
2.CO8O00n 03 
1.7*30000 03 
1.2130000 01 
• .2730000 03 
1.(241000 03 
1-M0000C 03 

I fSIOOM. SOR OF SgOkOES = 2 . 2 5 2 2 2 1 0 07 

COFFPICIF.8TS CF t3E L t l U I FIT 

i r tFOCIPt » 2.710*260 03 SLOFF » -1 .2 *81020 PI 

?»»I»»CI-COT«»I»iCE H1T8IX 

FC1 CCL0R8 

1 2.2*171547707163800 C- -1 .616(2775**5* *600D 0* 
2 -1.616»2775*»58»600D 0* 1.514*5500*2*615200 03 

rue sFEcrifti • •ursrs FILL OF HPPLIF!> TO TR« DFTFKVDFO »»T» 

TF»F t C/E f 0F.T8F.80F0 C / f t 

1.45*00 OJ 1.8970000 01 -f.. 15*6*60 02 
1.45600 0 1 2.5500000 03 -1 . ( 980100 02 
1.45700 03 2-15*0000 03 -2 .3112120 02 
1.45000 0 1 2.4740000 03 - 1 . 4 5 * 3 4 * 0 02 
1.4540D 01 1.4850000 03 i .1212*2n 0 ) 
1.46000 0 1 • .0840000 03 1. *1442*0 01 
1.4610D 01 2.1720000 OJ - 2 . 6« 14140 02 
1.4620D 0 1 1.6700000 01 -4 .5171210 02 
1.4610D 0 1 2.0140000 01 -5 .7201010 02 
1.46*00 03 1.178000D 01 -1 .2201*80 01 
1.46500 01 1-4520000 01 -« .1166670 02 
1.46*00 0 3 2.8*20000 01 2.690'52D 02 
1.46700 03 1.S456000 01 1.03*1 47C 01 
1.46000 0 1 1,1470000 01 « . M ^ i e o 02 
1.46400 0 1 ( .8520000 01 2. 1170*10 01 
1.47000 0 3 2. 6060000 01 8 .57(2*20 01 
1.47100 0 1 1,7*30000 01 -1.665758P 02 
1.47200 01 1.211000D 01 - 1 . 28 184*0 01 
1.47100 01 ( . 2 730000 01 1. 7887880 01 
1.47*00 0 1 1.(240000 0» -1 .0 (25100 01 
1.47500 0 1 1.(600000 01 -9 .788 (850 02 

F i ' | . 6 . 1 . '.'.andiird compute output. 
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•icr «o. } IITS TM Tin? 
PCSIBOaL! » S . flTTEV »«10?S* 

PICT TC- 1 I 1 I J 
PICT 5 1 2 . 5 0 . 0 1 TOK 11 J 0 » . W » « JC**»UI . O M l M 5 S P « » • » ft.P 

9 * ? l PC-P PICT 

scon, MIS titer* 
Ttrr. H I S tticTR 
SC1TT- O l i e i l 0 . 2 * 9 0 1 0* t M T . O i I S l P - 0 . 1 5 0 0 * • » 

I C f l Z . H I S U M » » 
ST*.* S i l t g . U N t 02 1»ITS/IPC1I 

fPOT. » I l * t I K I I 
5T*P S M I C-tCOOI 01 « * R S / T * C « 

looTict cr c i n m pamc*L MIGIR . 
I * 1 . 5 0 T« 2 - 5 » I S C l m . 

?*o» IOPIS Lcrr copitf op p*ci 

T « i e - * » L K * ISTIM.TC OF MTCCOtPElaTTOP POk.TIOP 

0 . 0 
1.000C 00 
2 . 0 0 0 0 00 
3.11010 00 
•-00OC 00 
5 .1C09 03 
ft.OOOC 00 
7 .000B 00 
0.0C0D 00 
O.flOOC 00 
1 . 0 0 0 9 01 
i. toon oi 
i.iOoe oi 
1.3000 01 
l.kCOD 01 
1 W0C 01 
t.ftOOD 01 
t .7«00 01 
1.000C 01 
1.0000 01 
2.OCO0 01 

••TOCOM-

i.cooooo oo 
2.072*30-01 

- 1 .0523*0 -01 
-1 .»311»0-91 
-1 .600130-01 
- * . 5»0050-<M 
-1.SO072O-01 

• - 2 2 M 0 B - 0 2 
* . 0 5 * 7 0 0 - 0 2 
2 . 1 M 0 2 0 - 0 1 
2.«<7**D-01 

- 7 . 0 5 7 5 * 0 - 0 2 
- 1 . * « 7 * * » - 0 1 

5.227570-02 
- 1 . 5 5 2 * 2 0 - 0 2 
-1 .2*10SD-01 
- 3 . 0 5 2 3 * 0 - 0 2 

5 . 3 7 0 1 0 0 - 0 2 
- • . 7 7 * 0 3 0 - 0 2 

* . * 2 5 0 t D - 0 2 
3 . 5 « * 2 1 0 - 0 2 

PZtK-DOGIH'! 

« r * t o . PtPIOO PrtlODOGPKI 
OPOIPUTt 

c inoLaTi fe 
i c t T o o o n t M 

1 0.0»7«2 21.00000 «.700750 05 0 .02*70 
2 0 .0452* 11.50000 7.527130 Oft 0.3ft«00 
3 0 . 1 * 2 ( 6 7.00000 1.ft*«220 Oft 0.5277ft 
• 0 . 1 0 0 M 5.25000 7.C30OO0 05 0.55007 
* 0 .23 (10 • .20000 2 .« * *110 OS 0 .«7«5* 
« 0. i *571 3.50000 3.5250*9 Oft 0.03315 
7 0.33333 1.00000 • . 2 5 * 6 5 0 05 0.05705 
P 0.3»00« 2.02500 3. 2*«3*0 05 0 . M t * C 
* 0.«2«57 2.33333 «.«*712D 05 0 .00731 

10 0 . *T«1« 2.10000 t.112070 Oft 1.00000 

SOD OP P f l t O t C a l M 0»Dt»»TlS - 2 . 2 5 2 7 2 0 0 7 

•.MtMIR 0H»I»»T« 7 7 . 5 2 7 1 3 0 Oft OCCOPIPfi »T PPPOOFPCT • • . 5 2 1 0 1 0 - 0 2 

PISRfJ STATISTIC • 3 .3*20*0 00 

l O M f l OP OPCIIITES • 10 

fn i . 6 . 1 . (continued!. 

PKPfQn ' 1 . 0 5 0 0 0 0 01 
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~9». OP *0TST!F r*tI9»TH5 «.97«C»'K> 0" 

• TT^COPSEH-ICI PC9CTI"* MLCSr 

5-0 
1.90C000B 00 
2.000' ,COO 00 
s.foocco* oo 
•.ccooero go 
'.on^ocoo 03 
' . 0 0 9 3 0 0 0 0 0 
7.COOQCOC 00 
i.cooooeo o« 
9 . 0 0 0 0 0 0 9 0 0 
1 . 0 0 0 0 0 0 0 0 1 
1.10CCOOB 0 1 
1 .2000COD C I 
1-100OOOD 0 1 
l-«OOCCOC 0 1 
1.1C0CC0B 0 1 
I . ICOOOOO 0 1 
t.ieocoon oi 
1-800CCOC 0 . 

i.cr.ooooo oo 
2 - 1 1 0 1 0 7 B - 0 1 

- 1 . 0 2 0 6 1 * 0 - 0 1 
- J . 1 6 7 7 9 1 0 - 0 1 
- 1 . ' 1 I M » - 1 t 
- 6 - 0 9 0 6 0 1 0 - 0 1 
- 1 . 2 9 9 1 8 7 0 - 0 1 

1 . 0 2 1 0 * 9 0 - 0 1 
2 . 0 * 2 9 1 2 0 - 0 1 
l . * 9 * * 9 2 B - 9 1 
».5"S0»"'2D-01 

- l . * 1 3 0 1 » 0 - H 
- 1 . 6 1 0 1 3 * 0 - 0 1 
- 9 . 8 2 1 0 9 7 B - 0 2 
- 1 . 6 8 1 2 0 ' B - O l 
- 1 - 9 0 * 1 * 1 0 - 0 1 

I . 111192B-01 
3 . 6 7 * 1 0 2 0 - 0 1 
i - 5 9 6 2 0 9 0 - 0 1 

• • I I - O P I F r . f c i t M L P C O M E P srtcTPX 

» T C T « T PFtCOtJCT = 1 - 0 0 0 0 - 0 1 

P f s c i " T r c » e » * c n o - H = I . O C O D - 0 2 

• T » » l PPEDICTIOH EIRCP - 1. 10111 07 

H r o o » T - 1 * PIEOOEUCT PERIOD R H I I 9 0 S PtTPOPT P C ' I I I E f M P L I T O O f 
I = I 0 . 0 0 . 0 a . 1 * * 9 1 * ! * 0 * 1 . 2 7 9 7 0 * 0 - 1 1 
I - J 0 . 0 0 2 1 1 2 B 1 9 * . 0 0 1 • . 1 * 9 2 1 0 0 0 * l . » * 8 2 * 8 0 0 0 
I •: 1 0 . O O 1 0 5 1 1 1 9 9 . 0 0 0 * . 2 t 3 1 * O D 0 « 7 . * 1 5 * * 9 0 0 0 
T = • 0 . 0 0 7 1 1 7 7 1 1 2 . * * 7 * . l » 9 9 3 1 r 0 * 1 . 6 « 7 1 * * 0 0 1 
1 s e 0 . 0 1 0 0 1 0 1 9 9 . 1 0 0 • . ' 7 1 2 7 * 0 0 * 2 . 8 7 1 9 9 0 0 0 1 
I s * O . 0 1 2 1 * 2 0 7 9 . 1 0 0 * . R 2 7 « 0 1 D 0 * * . 1 * 9 7 0 7 0 0 1 
[ s 7 0 . 0 1 1 0 7 1 * «*. in 1 . 1 1 9 * 6 * 0 0 » 6 . 1 * 2 0 9 9 0 0 1 
T -: 9 0 . 0 1 7 1 * 7 0 1 H . 9 1 7 1 . 1 * * 7 1 * 0 0 » 8 . 9 7 * * 9 1 0 0 1 
T » O 0 . 0 2 0 1 0 0 1 • 9 . 7 1 0 * . 1 1 * 1 2 1 0 0 * 1 . 0 1 * 0 2 1 0 0 2 
J z 10 0 . 0 2 2 * 1 1 1 • • . 2 2 2 * . * • 1 7 * 1 0 n * 1 . 2 2 6 2 * * D 0 2 
r e 11 0 , 0 2 1 1 2 1 6 1 9 . 9 0 1 7 . 7 » 1 0 * 7 D 0 » 1 . ( 1 * 0 2 7 9 0 2 
I « 12 0 . 0 2 7 * 1 * 2 M . I 12 " . 9 1 2 * 2 0 0 0 * 1 . 6 * 2 9 2 * 0 0 2 
T * 11 0 . 0 1 0 1 1 0 8 1 ) . 1 6 7 1 . 0 * 3 * * 0 0 0 1 1 . * 3 < « * 6 D 0 2 
f * 1» 0 . " 1 2 * * 1 1 1 0 . 1 1 1 1 .2<«2661 ) 9 ' i 2 . 0 0 * 1 2 9 0 0 2 
J m 11 0 . 0 3 1 1 7 1 9 2 9 . * ? 9 1 . 1 1 1 1 0 1 0 0 1 2 . 1 1 * 4 * 6 0 0 2 
; • 1« 0 . 9 1 7 * * * * 2 1 - 1 1 1 1 . 9 * 9 2 * * 0 09 2 . 2 * 1 1 1 * 0 0 2 
! • 17 0 . 0 * 0 2 0 1 0 i » . * 7 1 2 , 1 * 9 * 1 9 0 0 1 2 . 1 * 0 1 1 * 0 0 2 
Jm 18 0 . 0 * 2 7 1 1 * 2 3 . * 1 2 2 . 9 * 1 1 * 9 0 0 1 2 . ( 1 0 6 1 0 0 0 2 
J m 10 0 . 0 * 1 2 2 * 1 2 2 . 1 1 1 1 . 1 9 1 6 6 * 0 0 1 2 . ( 9 7 * * 6 0 0 2 
f » 2 " 0 . 0 * 7 7 1 1 7 2 0 . 9 * 7 * . 7 1 « 9 1 ' > D 0 1 2 . 1 2 * 9 6 0 0 0 2 
[ • 21 0 . 0 * 0 2 1 1 1 1 9 . 9 0 0 1 . * 1 * * I 2 0 0 1 2 . 1 1 * 9 1 1 0 02 
f « 22 0 . 0 1 2 7 * 1 * 1 9 . 9 1 2 1 . 1 0 2 6 7 7 0 0 1 2 . 1 M M 7 0 0 2 
J • 2 1 0 . 0 1 1 2 7 * * 1 1 . 0 9 1 * . » 7 0 2 0 ! 0 0 1 2 . 6 * 9 1 3 2 0 02 
I s 2 * 0 . 0 1 7 7 * * 9 17. 1 0 * 1 . 1 * 1 0 9 9 0 0 1 2 . 7 1 2 7 2 1 0 0 2 
f * 2 * 0 . 0 * 0 1 0 1 1 I H . 1 9 1 1 . * * * 1 1 * P 0 1 2 . 9 H 1 8 7 0 02 
I • 26 0 . 0 ' . . ? • « - - • 1 1 . 9 2 0 1 . 0 1 7 * 2 0 0 0 1 1 . 1 * 1 9 6 1 0 02 
I m 27 0 . 0 * 1 1 2 * * 1 1 . 1 0 * • . 1 l 9 » « ? n 0 1 ! . « 1 7 0 J » 0 0 2 
T • 2» 0 . 0 6 - * 8 ) * 2 1 » . 7 * t • • 1 1 2 * 1 2 0 0 1 1 . 7 - > 1 « 2 1 0 92 
t * 20 0 . 0 7 0 1 1 1 * I t . 2 1 * 1 . M I 6 0 7 * 0 1 « . 2 0 2 2 7 3 0 02 
| m 10 0 . 0 7 2 * 6 * 1 1 1 . 7 2 " i.<.fooi»n oi • . 6 1 0 0 * 9 9 02 
f m 11 0 . 0 7 1 3 7 * 9 H . 7 * 1 3. ' .«0»79T> 0 1 1 . 1 2 a l * * 0 02 
I « 12 0 . 0 7 7 * * 9 * 1 2 . 9 1 9 ) . * 0 0 7 9 I D 0 1 9 . 6 H 7 0 9 0 02 

f i'». h. I. i'ffint m u p d 
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' 1 0,-080*020 1 2 . * ) * 
1 * 9.78291*6 12 .0 -1 
1 * 0.985*271 11.706 
1 * 1."97*3*7 I 1 . » 7 1 
r» C. 090*525 11.056 
K> 0.09296*6 11-757 
7 * 0. 095*77* 10.»*9 
• 0 0.3979899 n . r i 5 
• 1 0.1005025 9.959 
• 2 9.10 30151 9.707 
• 1 0 . 105527* 9 . * 7 * 
** 0.1080*02 9 . 2 * 6 
* 5 0.1105528 9 . 0 * 5 
• 6 5.11306*1 * - • » • 
»? C. 11**779 8.652 
M 0.1180905 8.168 
• 9 1.12060 JO 4 .2 *2 
5 0 0.1231156 " . 1 2 2 
51 0. 125»281 7.9«0 
52 0.1291*07 7 . 8 0 * 
53 0-1306511 7 - 5 * * 
5* 9-13316*8 7.509 
55 0.135678* 7 .170 
5« 0.1181910 7.216 
57 0.1*07015 7. 107 
58 9.1*32161 6 .982 
59 0.1*57296 6 .862 
60 9.1*82*12 6 .7*6 
C I 0.1507538 6.633 
.* 0.1532663 * . * 2 * 
6 1 0.1557769 6.«19 
«« 0.1582915 6 .317 
6 * 0.16080*0 6.219 
66 0.1633166 6 .121 
67 0.1658291 6.010 
68 0.1683*17 5 .9 *0 
6 * 0.17085*3 5 .851 
7 0 0.1733666 5.766 
7 1 0.175879* 5.696 
72 0.1781920 5.606 
7 1 0.18090*5 5 .528 
7 * 0.181*171 5 . *52 
7« 0. 1859296 5.778 
7« 9.1888*22 5.107 
77 0.19095*8 5.217 
79 0.193*673 5. 169 
79 0.1959799 * . '91 
80 0.198*925 5.0711 
8 1 0.2010050 * . * 7 5 
82 0.2035176 «.91« 
* i 0,2060102 * . 85o 
6 * 0.2085*27 a. 795 
85 0.2118**1 ».718 
8 * 0 . 2 1 3 5 * . : * . « * 2 
67 0.216080* « . *28 
8 * 0.2185« ,30 ».575 
69 0.2211055 • - 5 2 * 
99 0.2216181 ».»72 
<>1 0.2261307 • - •22 
9 2 0.2286*32 a. 17* 
93 1.2111558 * . 12t 
<» 0.2116*81 * . 2 » 1 
95 0.2161809 ».23« 
96 0.2185915 • •189 
9 * 0 .2 * 121)60 J . 1»« 
9 1 0. : *17186 «. "13 
99 0.2*62312 8 . 0 * 1 

100 0.2*87*17 • •020 
1 0 1 0.2512*61 1.980 
107 0.2537688 1.9*1 
1 0 1 0.256 281* 1.902 
1 0 * 0.25870*0 1.86* 
105 0.2611065 1.827 
106 0.2638191 1.790 
107 0.2663317 1.755 
108 0.2689**2 1.720 
1 0 9 0.2711568 3.685 
H O 0.2718691 1.6<1 
1 1 1 0.2763819 1.618 
112 0.27889*5 1.586 
1 1 1 0.281*070 1.55* 
1 1 * 0.2819196 1.522 
115 0.286*122 1.991 
116 0.2*898*7 3.*61 
117 0.291*571 1.811 
118 0.2919698 1.*02 
119 0.296*82* 1 . 171 
120 0.2989950 1.1*5 
121 0.1015075 1.117 
122 0.10*0201 1.289 
1 2 1 0. 1065127 1.262 
12» 0. 1090*52 1.2 16 

1.7J6, '?*" »« 
7 . ' 7 1 8 9 0 ' n* 
* . 77»1«<B 0* 
* .98322*!" <"* 
C . ' * H 0 2 D 9 * 
7 .2<*«163 0* 
* . * * 7 6 1 » D 95 
1.30*9*9!> 0« 
T.9*7977;. Of 
1.2*»»12!) 0* 
6 . 1711980 06 
1.1290618 07 
2.216 3*2? 07 
1.615061! 1 C7 
7 . «5»889D 06 
* .6*62*OC 06 
1-110926O 06 
2.310*79C 06 
1.8*27283 06 
1.57290SD 96 
1.3921910 06 
1.2671020 Of 
1.1706200 -6 
1.0*2*001) f * 
9 .9697* ;p 95 
8 .9*80230 0« 
7.69J913D 05 
6 .53067*0 05 
5.«*1985D 05 
• . • 9 1 1 7 0 0 C5 
1.701*700 0* 
1.0725710 05 
2.5779190 05 
2 .19*78*0 05 
1.9000*7C 0 * 
1.67»76*p 0* 
1.5037*10 05 
1.176*800 0* 
1.28*302C 05 
1.221*190 05 
1.185*120 0* 
1.1711*10 05 
1 . 18516*0 05 
1.2210*60 05 
1.2900150 05 
1.1«261*D 05 
1.5*12590 05 
1.752*1*0 05 
2.052909') 0* 
2 . *870970 05 
3. 131810D fl« 
». 12*«7*C 0* 
5 . 7 * 1 500 05 
8 .530M5D 15 
1.1670090 f6 
2.1*07220 r.t 
1.861102O 06 
• .5857750 0* 
3 . * *0*01D 06 
2.2011560 9* 
1.**5i)88n Of 
t.O!7»21D 0 ' 
7.9257510 05 
( . 8 2 35750 05 
5.*5«118n 05 
• .81165*!) 05 
* .1701710 1 * 
* . 0 8 * 0 1 9 0 05 
1.6»»66*r 05 
1.7«-)7" --.i 0', 
3 . 6 5 7 1 ) 9 0* 
3.5906*60 f,« 
3 .618*77r 0« 
3,*95010n 05 
1.85771*0 05 
1.*1(I5190 05 
1.821*060 05 
J.8»*1690 0* 
' . 6 i « * » * r 05 
1.6575610 05 
1.9072570 0* 
* . 1206*2t> 05 
» .9995* *0 05 
6 .1*77910 05 
8.2299610 05 
1.2511MD 06 
2. 15*71»P 06 
6.7126110 0* 
2.5636670 07 
' .191710 0 06 
1.6*7?«9n Os 
6.9511*60 05 

6 .110 1T2-" "2 
6.5797713 1? 
7 .016*9*0 *? 
7 - *6»2J*9 I - " 
) . " * l f l l ? ? *2 
« . 1964*1? )7 
9-*9251«» 12 
9.7119210 12 
1.«119«6P 07 
9.017»200 "2 
•». 1O2207D 02 
9.110 1360 02 
» .0 *39221 02 
8.9675270 92 
9 .92*8910 0.2 
1.6*«711D 02 
• -»101999 02 
1.186770D 0? 
* .»26 7»19 12 
7 . 6 * 9 9 * * 0 02 
7 .3616*00 12 
7.071712D 02 
6.7770850 02 
6.9910789 02 
6.1816960 02 
6.88159*D 12 
5 .578*1*0 02 
5.245127D 02 
» .9*02790 02 
».6005700 02 
< . 2 » ) ! ) M 12 
1.86619*0 02 
1 . * *676*0 02 
3.0516150 02 
2.617536D 02 
2.1721519 02 
1.726*280 02 
1 .30*15*0 12 
5 .626**2D 11 
8 .10*6720 01 
1.0000150 02 
1.1581020 02 
1.78579JP 92 
2.230599D 12 
2.670228D 92 
1.0927*30 32 
1,*905920 12 
7.858719D 92 
a . 1915*70 12 
• . • 9 27110 02 
* . 7 5 « * 7 1 0 02 
».9791060 12 
5 .14*2550 02 
5 .11626*0 02 
5.*1026?0 02 
5.609167D 02 
5 .55*6760 12 
5.567171D 02 
6.5*76119 92 
6.196601O 92 
S . * l19900 92 
5. )100fl*n 12 
* . 15*72*0 12 
• .978016!) 12 
• . 7 7 0 6 * 9 0 02 
».*117910 12 
«.270>>o»D 02 
1.99611*0 1? 
).688«27D 12 
) . 1901680 02 
1 . '101510 02 
2,87*7«»0 12 
2.71702BP 92 
2.6702760 02 
2.7569910 12 
2.969109U 17 
3.2697110 32 
1 .6859O0 02 
• .1277190 12 
».6f9907!) 02 
6 .05161*0 9J 
6 . * 9 . 9 * 6 o 97 
5 .90)9260 92 
6 .77*5970 92 
6 .596)129 97 
6 .8*91510 9? 
7.016 .110 97 
7. 150 2*0 92 
7. 1 8 6 6 1 0 92 
7 .1* *1599 92 
7.02115*0 07 
6.12"' i1»0 17 

r l i | . 6. I I r nnf t n „ . < 
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= 1 2 * 1 . 1 1 1 « « 7 0 1 . 2 1 1 l . « T 7 * A « B I S * . S S 0 2 1 S B 0 2 
* 1 2 * 9 . M M 7 0 * 1 . 1 " * 2 . 2 1 * 7 2 1 9 1 * ' . 2 0 5 M S B 9 2 
- 127 1 - M 4 S 0 2 4 1 . 1 * * 1 . * * 1 * 1 0 0 0 * S . T M 7 1 0 D 9 2 
= ' 2 * 1 . 1 1 * 9 * * 5 1 . 1 J * 1 . 9 2 4 * 2 * ! ! rt* S . 1 2 S 0 0 7 9 0 2 
• 1 2 * 7.»2isc»e ! . 1 1 * 7 . * 1 T M * 5 0 * a . 0 0 * 7 9 7 0 0 7 
* I I P a.92*120* l.'"** 5 . 4 * 7 0 7 5 0 «» a . 2 a * 2 » * 0 9 > 
- I l l 1. 32**112 1.0*2 * . ( 7 * 7 4 * 0 0 * l . * * * 7 0 S O 0 2 
= 112 4.12*1*57 1.01* l . » ! 5 « W 0 * 1 . 0 * 1 0 1 2 9 0 2 
= U > 9.111*S»1 1 . 4 1 * 1 . 2 2 4 0 * 2 0 0 * 2 . » 2 1 * 0 * 0 0 2 
* 11» 1-11*170* 2 . 4 * 2 2 . 7 » 2 * * 1 S 0 * 1 . 0 1 1 2 * 5 0 0 2 
* U S 0 . 1 < i i f > l 2 . 4 7 0 2 - « a * 0 * * l > 1 * 1 . 2 2 0 * 1 7 0 9 2 
* 1 * 2 . 1 1 4 1 4 * 0 2 . * a * 2 . l 4 * 1 4 7 p 0 * 7 . 1 7 0 7 9 1 0 9 1 
J 117 9 . 1 * 1 7 0 * 5 2 . * 2 « 2 . 0 1 9 1 2 * 1 9 * S . 1*4 * * 7 0 0 1 
= 1 « \ m n i i 2 . » 1 S 1 . 4 7 0 1 * 4 3 0 * • . 0 « » » J % 9 0 1 
= 1 1 * 3 . 3 * * 7 1 1 1 2 - » * « 1 . 7 » * S * 7 D 0 * 1 - 2 2 1 0 * > 0 9 2 
s I V * 1 . I « < 2 « « 2 2 . * * ' » . 7 » I » 7 2 B O * l . * 2 S 9 7 e 9 0 2 
s 1*1 0 . 1 * 1 7 * * f > 2-»*3 I . M I H I t 9 * • . • 0 * 7 1 7 9 0 2 
- 1*2 9 _ 1 5 * 2 7 1 * 2-«?l l . t « * * S 7 0 0 * 2 . 2 * t * 2 * 9 9 2 
s 1*1 9 . 1 5 * 7 * 1 * 2 - 0 4 1 l . S S » « S « 9 a * 2 - S 2 * * * 7 P 9 2 
> 1 « * 9 . 1 S * 2 * « 5 2 . 7 9 } 1 , * * 0 * } J B «• 2 . * * S S ? « 0 0 2 
- las 0 . 1 « t l W * 0 : . 7 « * 1 . 7 M M 7 0 0 * 2 . 7 * 7 7 * 9 ) 0 9 2 
= l » * 3 . 1 « * 1 2 1 6 2 . 7 * 5 i . « m » ; 0 * 2 . 0 1 2 5 * 9 0 9 2 
* 1*7 t . * « » W 2 7 . 7 2 * i . * • * • * » » 9 * 2 . 9 0 2 M 7 P 9 2 
= 1 M 0- l * * l * *7 2 . 7 9 7 2 . 0 8 * 0 2 1 0 I t * 2 . 7 1 1 0 1 0 9 9 2 
s 1*4 0-1714541 2 . * " * 2 . 2 « * 7 « J 1 0 » : . 5 * 7 * 0 9 ) 9 9 2 
= 1 » 4.17*171* 2 . « 7 l ? - « 7 * 2 M 0 0 * 2 . 1 7 7 7 * * 9 0 7 
5 1 * 1 9_17«*«*» 2 . * S 1 2 . 7 1 * 0 * * 0 1% 2 . 1 5 U 1 7 9 0 2 
a" 1*7 1 . 1 7 * 1 * 7 0 2 . * 1 4 2 . * « * 5 * 7 0 0 * 1 . 9 1 0 1 1 7 0 9 2 
= 1*1 1 . 1«1*«!4S 2 . * 1 » 1 . 2 * 7 7 2 * 0 0 « l . * * 7 7 7 5 9 0 2 
= 1 * * 1 . 1 B * » 2 2 I 2 . M l ) . * . * ( U « D 0 * l . * 5 S * 1 « 0 0 2 
* 1S« 3 . 3 4 * * 1 * 7 2 . * » * J . 7 * « W 0 0 0 « 1 . 1 1 1 1 9 1 9 9 2 
* I S * <h. 1 M * * 7 2 2 - 5 * « l . * » € 0 « 1 0 0 * 1 . 7 7 1 9 * 7 9 0 7 
: 1ST 9 . 1 4 1 4 5 4 * 2 . 5 * 1 • . 1 0 1 7 2 1 0 0 * 1 . i * * * l * 9 0 2 
= 1*4 0 . 1 9 M 7 2 * 2 . S I S * . 1 1 S * l l « 0 0 * 1 . S 1 0 9 0 1 9 0 2 
I 1*« 0 . 3 * * 4 4 * 4 2 . * 14 * . 0 « 7 0 1 S D 0 * 1 - . 0 7 5 1 9 9 2 
= 1*0 9 . 1 « * * 5 7 5 2 . « 0 3 * . 0 0 7 1 0 1 0 1 * • . 0 * 1 1 5 2 9 07 
* 1 M 9 . * 0 2 9 1 9 1 2 . * » « j .*»io2so a* 2 . 2 1 * * * 19 0 2 
= 1*2 O . « 0 » 5 2 2 * 2 . « 7 2 1 . 7 7 1 7 T S D 0 * 2 . * 3 0 0 9 * 0 9 2 
= 1*» 0 . » 0 7 0 1 * 2 2 . * * 7 l . « * 7 * 1 ' 3 1 * 2 . 6 1 1 * 5 7 0 9 2 
* 1 * 1 O . « 0 4 5 » 7 7 2 . » » 2 l . * » 2 * « ) D 1 * 2 . 7 * 0 * 1 1 0 01 
= 1*5 < . _ * t 7 9 « 0 1 2 . * ? 7 » . S S * 7 * 1 D 0 * 2 . 9 * 0 « 1 7 9 0 2 
« 1 * * 1 _ « l * 5 7 7 * 2 . * 1 2 1 . S 4 7 2 S 4 0 9 * 2 . * 1 « * 7 J O 0 2 
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> .<M1!«21> 9 4 S . H H 4 1 7 D 04 2 . 1 1 4 4 5 * 3 0 1 
* . S * S 7 » W If S . M T 1 M 0 »« 2 . 0 2 S M 1 0 0 0 
l . » « 4 » e i » o« S . » « » J 2 4 0 04 2 . « 1 3 1 « 1 B 0 1 
2 . ? £ 1 0 S * D 0 * S . 3 4 2 * 5 * 3 4 * 1 . 2 2 2 S * 7 B 0 0 
> . » C S § I I » 5 5» S . 0 I 2 2 7 S B 0 * 2 . 4 2 0 4 2 2 0 0 0 
1 - < 1 1 7 » 2 t « 0 * c . J**t<10-> 0 * 1 .SO14S0B 0 1 
» . « 2 * T S f » US 1 . M 1 2 1 4 V 0 * • . * 2 S M * B 0 0 
» . « 2 3 S r 5 0 OS 2 . * 1 « * 7 2 B «• 1 . 0 5 6 1 0 2 0 0 0 
S . » S « ) W O OS I . M 2 7 0 « B 04 « . 3 4 ( 0 7 4 0 - 0 1 
« . S 1 1 « » B OS 1 . M 4 S « 1 D 4 4 2 . 0 1 7 1 7 7 B 0 4 
« . 7 T « t 7 t O <IS t . r r s n w 74 4 . * 4 4 « 7 3 B - 0 I 
» . 0 M « M 9 <1« 1 . 1 > 6 » 1 7 D S« * . ( « S S 1 2 0 - 0 1 
l . » e * * 6 e 9 us 1 . 0 « « 3 « 2 0 04 2 . 5 7 7 0 0 5 0 - 0 » 
1 . 7 « « 1 1 I D OS « . l « * 7 « 1 0 0 3 ! . M * « 4 7 0 - 0 1 
K 6 S 7 1 1 » 0 0 « * . • 7 * 7 1 2 0 » 3 « . 0 0 4 S « « D 0 0 
) . S 4 C « t « D OS 4 . I M 0 3 0 3 0 1 2 . 4 S * « * 4 B 0 0 
l . « » e » 2 T I » OS * . « « * S 7 S » 03 2 . 7 5 * 4 4 1 D 0 0 
J . « * S 0 1 0 9 OS « . a t ) « 3 3 e 4 1 2 . n > * « 7 4 9 0 0 
1 . • * • » • ? ! • » 5S » . * O S 1 2 e B « 3 2 . 3 0 1 3 4 1 0 0 0 
l . « » C S » » D OS « . « 2 l « 7 « 0 43 J . 1 5 2 0 4 5 0 0 0 
J . « 2 » M * 9 OS e . * i * o a i o 03 1 . 3 2 * * * 2 0 - 0 1 
! . » « • « • » 0« • . 2 f l J « T * D m 2 . 5 H W J 4 B - 0 1 
J . S I M M S ("• • . 7 « « 1 « « B 43 5 . 5 5 1 5 2 0 > O 1 
l . « S > 7 S * t r OS 1 . 0 S * 2 t l B 0 * l . » « 0 7 4 0 B 0 4 
l . « 0 7 » T « ' OS 1 . 2 2 M X 9 44 3 . 1 1 1 7 4 4 B 0 4 
• - J 2 0 M 2 1 OS l . ' S (10»B 0 * t . 2 1 * 4 * 7 0 0 0 
« . « * s * » e <i«. }.*• 2 10S9 9 * 0 . 1 0 7 7 2 5 9 4 0 
« . « » T t » 5 0« S . « * 7 S 7 7 0 J * J . 1 * 1 * 0 1 0 0 0 
* . 2 2 S < » 1 9 OS 1 . 0 0 4 0 1 S O OS 4 . 4 1 5 4 2 1 B 0 1 
t . 2 S n « « o i t 1 . 0 7 « * S 4 B 3S * . S 0 4 « « 1 0 0 1 
2 . 1 S » 7 1 » 0 !<• I . J > * ^ , S O OS • . 4 0 * 0 * 1 8 0 0 
* . 7 I 2 * W < 0« 1 . M « 2 3 » » OS 2 . * 4 4 1 4 ( D 0 1 
2 . S » 3 « 7 0 07 1 . 7 « 1 S 0 0 B OS 3 . 2 0 * 4 5 1 0 0 1 
S . » » 1 7 1 0 0 <i« » . 0 7 » 2 « S ' 3 I S 4 . 4 * * 2 1 2 9 0 1 
1 . * « 2 2 « » D Of 1 . 0 S S 7 J 2 3 OS 5 . 3 4 4 1 1 7 B 0 1 
f . . » S S 1 7 * 3 OS 1 . 0 I « « 1 I O OS 2 . 0 4 * * 2 3 0 0 1 
l . * 7 7 » 0 * r <1« 4 . 1 1 7 1 * 0 0 0 * 1 . 0 * 4 7 2 4 0 0 1 
2 . 2 1 0 7 J 1 B 0< S . 1 1 S S 7 3 3 0 * « . M * 1 1 7 B 3 0 
1 . « * H I 0 B » • 1 . 1 7 « 7 * i B 0 * 2 . 1 1 4 S 5 0 0 0 0 
1 . 7 i ^ 9 2 * D 3« * . 0 1 0 0 4 2 0 03 2 . 2 * 2 5 5 7 0 0 0 
7 .S17« f ,» r> •)» 1 . SO 30270 03 • . 1 1 4 5 * 3 3 - 0 1 
* . » f 7 0 7 S f 1 » 7 . 1 I 4 2 S 0 0 0 1 1 . 1 7 » 3 4 4 B - 0 t 
i . ' n i w i o« 1 . * * 2 S 2 0 D 0 1 * . 5 2 1 1 4 4 0 - 0 1 
1 . P 1 S « 2 » B 0 « 1 . 2 » * ' 1 2 3 0 1 1 . 0 0 0 4 * 5 0 - 0 1 
» . 2 ^ » a » 2 D » « I . 1 0 4 S O 4 B " 1 4 . 7 4 O O 0 7 D - 0 7 
2 . 7 C 2 » * i e 1* » . 1 * 1 2 7 1 0 0 2 4 . * - » C 1 3 1 B - C 2 
2 ,«» '»C»SC 0 » 7 . 1 » 0 7 » 1 0 0 2 7 . * * l * * 2 B - 0 2 
2 . 1 « 0 » 7 P 0> * . 2 2 S I I 1 4 0 2 1 . 4 « * 2 * 2 D - 0 1 
2 . 0 1 ( ! 1 2 f 3 7» S . S 4 2 2 0 1 0 72 1 . 2 2 4 5 7 0 B - 0 1 
1 . « 7 0 1 S « D 1« S . 1 1 * 4 4 2 0 12 • . 0 1 4 2 3 1 0 - 0 2 
1 . 7 » * S » 7 r 0* » . H 7 1 1 2 3 0 2 5 . • 5 4 5 * 4 0 - 0 / 
1 . 7 C H 1 2 P " » • .SftStSOB 02 1 . 0 1 1 0 0 * 9 - 0 2 
i . * f i ) i i r o * * . » I 1 2 4 S B 02 7 . 0 5 7 2 2 2 9 - 0 2 
1 . S » f M 7 D 0» • . 3 4 O 1 S 0 3 42 2 . 1 * 2 5 7 7 0 - 0 7 
1 . S S * * S S O « • • . 1 4 4 4 4 1 9 0 2 1 . 2 2 0 0 4 * 0 - 0 3 
1 . » * 1 « I J 3 «• • . • 1 4 2 J S 0 3 2 1 . 0 » S 7 » 1 0 - 0 7 
1 . •»»«»•??> 0» • . * * 7 S * f o i 2 1 . 1 7 ' 5 « l B - O J 
I . H 1 1 I 1 U 0 » « . H 7 S 4 2 f . » 0 2 2 . 2 * 4 5 1 2 0 - 0 1 
1.">«S»«0O C« S . 1 7 » 4 » S " 0 2 2 . 2 0 4 5 1 1 9 - 0 7 
2 . 1 » * 0 2 » D * • S . « » 3 » 2 « B 02 4 . 0 2 0 0 2 * 0 - 0 2 
2 . ? * « 7 < > | P 0> S . 4 7 0 2 3 * 0 92 1 . « 0 S * 7 4 D - O 1 
? . « 7 » 2 1 7 9 0» « . » * 7 / I S * 0 42 1 . 2 5 1 * 1 7 9 - 0 1 
2 . 7 1*<lf,»P 0 « * . 4 4 S S U D 0 2 * . « 2 1 * * 2 9 - 0 2 
2 . -» l l »S«S0 0 » 7 . S 1 7 * 4 « 0 0 2 l . » 7 » 7 7 « B - 0 l 
1 . 2 * 7 1 2 * 0 P» 4 . 3 * * * 1 0 0 0 2 1 . 3 2 5 » 2 » 9 - 0 1 
> . S * « 1 1 S O 0 * 0 . S S S 2 S 7 0 0 2 2 . 0 4 0 2 1 2 0 - 0 2 
1 . 7 ^ * MOO 0 « * . 4 7 * 7 4 1 0 0 2 2 . 7 0 7 * 7 * 0 - 0 1 
i . o m o n i o « • 4 . 3 1 4 1 * 1 0 4 2 }. 5 * t l 0 * 0 - 4 7 
• . 1 0 1 7 2 1 0 0 * 4 . S « S 0 2 * 3 0 2 1 . • 5 * * 4 0 9 - 0 2 
« . 1 1 S M « 0 0 « 1 . 7 1 2 M S B 0 2 5 . 4 2 0 1 1 W - 0 2 
• . 0 » 7 0 I S D 0 * • . 7 » * S 1 0 I > 0 2 2 . M l 7 4 2 0 - 0 1 
* . l 0 7 i m o o« 4 . 7 1 4 3440 0 2 1 . • 1 7 * 1 7 0 - 0 1 
» . 1 " H 0 2 S O 0 « 4 . 4 S 1 1 4 1 B 0 2 4 . 6 4 2 M 0 0 - O 7 
1 . 7 7 1 7 1 S O 0 1 4 . S 1 7 S 3 4 B 12 6 . * 1 7 0 4 1 0 - 0 2 
l . * » 7 0 1 S O « • 4 . « 2 7 * 1 * B 0 2 J . J » * 4 4 4 0 - 0 2 
1 . S 9 2 0 4 1 P 0 » 4 . 1 S 4 4 1 4 B 0 2 2 . 0 4 7 1 4 * 0 - 0 2 
i . s s * 7 * i o n« 4 . 17141SB 02 3. 7 3 * » * 1 9 - 0 1 
J . S f , 7 2 S f B 0 1 4 . S 0 0 0 4 0 0 0? 1 . * 1 « 5 5 7 D - 0 7 
) . * 1 2 2 7 0 0 0 * 4 . 7 0 3 1 9 7 0 0 2 * . » 2 2 4 » 0 B - 0 2 
3 . 7 * 1 2 2 7 0 0 « 1 . 0 2 * 7 2 2 9 0 1 1 . 5 2 « 2 1 7 0 - 0 1 
l . < » » » « » 7 n o» 1 . 1 0 1 4 * 2 0 1 1 2 . 5 * 5 1 1 0 9 - 0 1 
• . 7 * 7 D 7 « 0 Ot 1 . 2 1 1 * 4 0 0 0 1 • . 3 " » 0 » * 0 - O I 
» . * " » i 2 « n o» 1 . 1 7 1 0 7 1 0 0 1 S . 7 « 1 * 2 0 0 - 0 2 
' . 2 7 B 0 2 3 O 1 « 1 . 4 0 3 0 0 7 0 0 1 1 . 0 7 4 * 4 0 0 - 0 1 
* . 0 1 1 1 1 1 0 0 « i . i « * m « n 0 1 2.10«»2*0-0l 
7 , ? 2 * S e 7 0 1« 2 . * 7 0 4 7 0 0 0 1 • . 2 1 2 1 5 * 0 - 0 1 
H . S S I S S 7 0 Ot 1 . 3 0 4 * 0 * 0 0 1 4 . 0 5 7 * 0 * 0 - 0 1 
i . 1 2 i» i»r» os * . f 4 « i * s n 0 1 4 . 7 4 5 1 * * 0 - 0 1 
< . o o * n t f O os 7 . 0 * S * 7 0 D 11 2 . PIU 20 1*0 0 0 
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2.0«C«1«B 01 1-061526P • ' .» 2.0«« ,2**!> 00 
~-<i202»»» OS 1 . < i l « W 0 * * .2»*0C*O 00 
t . i e i i s c g «* 1.INUS209 T «. * *1«T09-O1 
7. tows*? o; ?.9»1T71» 0 » • . • T S U T O - f l * 
t . 2 « 6 * * * 9 r* 2 .20«64*0 *» l .O«2T*»0 00 
1-6772I6.D 06 2 . 11***0B «• 1.727*522 Ot 
I . i * 705*9 96 2. 10250*0 0 * «.«2««1<B 07 
i . ; « i > n g •>» 2-«0«S?7j •M 2. 2*10*29 00 
• . • • 3 1 3 7 0 01 2 . K 3 U S O 0 « 1.»27**OB-01 
6 . 7 a a * i « B os 2 .22**S«» <M 7 . 2515*«B-«1 
5 . 5 7 2 * * 7 9 Of 1.*707710 9* * . 1 * « 2 * « B 00 
« . « « 3 M * S OS 1.60*7050 *• 7 .2* *222B 00 
• . S « 7 * * 7 D 05 I . S O M M B Oa 2. 11*7070-01 
• • • • 3 2 5 1 0 »5 1.*<*7S*B 0 * 2.021*709 00 
« . *72S060 OS I . S S S I M * 7« 3.07539 ID 00 
S.15**70B 05 1.*2 3*029 0 * 7. • 0 1 3 * 0 0 - 0 1 
* . 0 * 0 * * 5 B OS 2 . M 1 T M D 9 * 1.**0101C 01 
T .9770MB OS 3.07S«fl«3 *• 2 .04*0729 01 
1-0W222B 0* 0 . 0 0 . 0 
1.5373*10 0« 0 . 0 0 . " 
2.SS1J1IB 0« 0 . 0 0.3 
«.*S2S22B 0« 0 . 0 0< «1 5 . * * M 2 5 0 06 0 . 0 

0< «1 

max. foment* mo* 

•man cv rn.TR PINL ratBicrio* cotrricivBrs ntot 

1 2 1 . 3 * 3 0 0 0 OC 
2 3 » . « « 7 * 1 * OC 
3 • 1 . 5 7 5 1 0 6 0 « 

• S 1 . 7 3 1 * 7 0 O t 
s • 1 - 0 * 3 5 7 0 0 « 

« 7 1 . 1 0 3 2 1 0 0 « 
7 • 1 . 2 S « 5 * B 0 « 

• » 1 . 3 7 2 * 1 0 0 0 

» 10 1 . M 3 t 7 0 0 * 
10 11 1 . 2 0 7 * 0 0 0 « 
11 12 1 . 1 1 0 1 * 0 0 « 
12 13 * . S 1 S 2 1 0 0 0 
1 1 1« 1 . M 7 1 1 0 0 * 
1 * 15 2 . 2 1 1 * 0 0 0 « 
I S 1« 2 . 7 7 6 1 7 0 0 « 
H 17 3 . 70 60 SO 06 
17 1 0 5 . 5 7 5 * * 0 0 « 
10 1 * 1 . 1 0 1 0 3 0 0 7 

I " • 17B O . M * 7 2 1 « 2 - * » * 
T ' 1 7 * 0 - » » 7 2 1 6 2 2 - 2 1 * 
T 100 0 - » * 7 M 7 2 . 2 2 1 
t> 101 0 . » S 2 2 6 1 1 2 . 2 1 ' 
X" 102 0 . « 5 » 7 7 1 * 2 . 1 * * 
r« 1 * 1 0 . » 5 7 2 * * » 2 . 1 0 7 
t> 1 0 * 0 . « 5 * 7 « * 0 2 . I T S 
i < IBS 0 . M 2 1 1 I * 2 . H 1 
i ' > ICC • L « « * « 2 * l 2 . 1 5 1 
i > • 107 0 . « « 7 H * 7 ) . 1 M 
i > • 100 0 . M 9 M 9 2 2 . 1 2 * 
t • 1 0 * OLS721C10 2 . 1 1 7 

z< ' 1 * 0 • . • 7 M 7 M 2 . 1 0 6 
I " • 1 * 1 0 . * 7 7 ] * t * ^ . 0 * 5 
I « • 1 *2 • . * T M * * S 2 . 0 0 * 
I > • 1 * 1 • . • • 2 * 1 2 1 2 . 0 7 1 
I < ' 1»» • - • • • * 2 M 2 . 0 6 2 
I ' " 1 *5 • . • • 7 * 3 7 2 2 . 0 5 2 
I < ' 1 *0 0 . * 0 * * * * 7 2 . 0 * 1 
I > > 1*7 0 . « * 2 * 6 7 3 2 . 0 H 
T - •• 1 *0 0 . « * « * 7 » * 2 . 0 2 4 
t ' 1 * * 0 . * * 7 * « 7 a 2 . 0 1 0 
1 • 2 0 0 0 . S O O 0 0 0 * 2 . 0 0 0 

f ig . 6.!. (continued). 

http://rn.TR
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A. Hudson River catch per unit effo.-t data; dahsed line 
represents the linear trend (Source for the time 
series: Texas Instruments, Inc., 1977, p. 76, 
Table 7.2-1). 
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B. Detrended Hudson River catch per unit effort; solid 
line represents the axis y = 0. 

FKJ. 6.2. Analysis of the Hudson River catch per unit 
effort data. 



127 
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2000-0 

0RNL-OWG 78-5380 

FITTED VALUES 

C. Residuals versus fitted values. 
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ORNL-OW 78-5881 
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-0-S 

D. Yule - Walker autocorrelation function. 

Fig. 6.2. (continued), 
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E. Periodogram. 
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F. Cumulative periodogram. 

Fig. 6.2. (continued). 
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G. Fourier amplitude spectrum. 
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II. Cumulative Fourier power spectrum. 

fig. 6.2. (continued) 
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I. Burg autocorrelation estimate. 
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J. Maximum entropy spectrum with M = 18. 

Fig. 6.2. (continued). 
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K. Integrated maximum entropy spectrum. 
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L. Final prediction error 

Fig. 6.2. (continued). 
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B. Setting up the Program for Execution 
The time It takes to run the program depends on many factors, pri­

marily the length of tfe time series, the number of frequencies used, 
the number of times MESA is performed and the use of other options. 
Table 6.2 lists a few examples indicating the time and core used. 
Although the list is short, It i:> hoped that it will serve as a guide 
in the classification of a progra.ii run. All the data were linearly 
detrended. 

For users at ORNL, Table 6.3 is a typical setup of the job control 
cards for a Class C job with disks used for plotting. Similarly, 
Table 6.4 is a setup for a class E job with the use of tapes in plot­
ting. The job initials BLKL (wherever they appear) should be changed 
to that of the user's. 

The inclusion of the following cards is explained: 
1. "//_DD_DSN = SYS2.DISSPLA,DISP = SHR "gives 

access to the plotting routines. 
2. '7/_DD_DSNAME = BROOKS.LOAD.MODULES " gives access 

to the BLSQ. 
3. "//_DD_DSNAME = JDAIMSLl.REF 10276 " gives access 

to DCADRE. 

http://progra.ii


Table 6.2. List of programs runs; I^TO and core used. 

Number of IPRINT 1PL0T ITREND 1FPEPL IYWACV IINTSP IAUTCV Number of Mcount Logarithmic Computer time 
points in frequencies values transform and core used 
time series 

21 yes yes yes no yes no no 600 

21 yes yes yes yes no no no 600 

31 yes yes yes no yes yes no 501 

42 yes yes yes no no no no 600 

70 yes yes yes no no no no 201 

114 yes yes yes no no no no 600 

260 yes yes yes no no no no 600 

277 yes yes yes no nc no no 600 

277 yes yes yes yes no no no ouu 

analyzed 

8-17 yes 1,04 minutes 
286 K 

19 yes 23.90 
286 K 

seconds 

15,16 no 41.88 
280 K 

seconds 

40 yes 28.37 
320 K 

seconds 
u> 

30 no 11.35 
280 K 

seconds 

69 no 21.26 
286 K 

seconds 

109 
107 

no 35.46 
290 K 

seconds 

160 yes 49. 78 
320 K 

seconds 

27b yes 1.06 n 
320 K 

Hnutes 
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Table 6.3. Job setup for disk plotting 

//BLKL JOB (16064),,ENV_2001_X-10JCIRK' 
//*CLASS_CPU91=5M,REGI0N=540 
//EXECFORTHCLG,PARM.F0RT='XREF', 
//_PARM.GO='TIME=5.0,EU=-l,DUMP=-I,S0=51',REGION.G0=540K 
//FORT.SYSINDD* 

source deck 

/ * 

//LKED.SYSLIBJD 

//_DD 

//_DD 

V_DD_DSN = SYS2.DISSPLA,DISP=SHR 

//„DD_DSNAME=BR00KS.LOAD.MODULES,UNIT=2314, 

//_V0LUME=SER=ZZ2ZZZ,DISP=SHR 

//_DD_DSNAME=JDAIMSL1.REF10276,UNIT=2314,VOL=SER=CADPK1,DISP=SHR 

//LKED.PLOTSUBS_DD_DSN=OGSPLOTH,DISP=SHR 

//LKED.SY5IN_DD_* 

INCLUDE_PLOTSUBS 

/ * 
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Table 6.3. (continued) 

//G0.FT49F001J)DJJNIT=IN20U2,DISP=(NEW,KEEP), 

//_SPACE=(3208,40,RLSE),DSN=PL0T00.BLKL, 

//_DCB=(RECFM=VS,LRECL=3204,BLKSIZE=3208) 

//G0.FT05F001 DD * 

data cards 

/ * 

/ / 
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Table 6.4. Job setup fb» tape plotting 

//•NOSEQCARD 
//BLKL_JOB_(^6064),,ENV_2001_X-10JCIRK, 

//*CLASS_CPJ91=5M,REGI0N=540,LINES=4U,CAR0S=10,SPECIAL=TAPE 
//*PL0T_ _NUMBER=30 
//_EXEC_F0R1HCLG,PARM.F0RT='XREF', 

//_PARM.G0='TIME=5.0,!:U=-1 ,DUMP=I,S0=51' ,REGI0N.G0=540K 

//FORV.SYSIN DD * 

source deck 

/* 

//LKED.SYSLIB DD 
// DD 
// DD 
// DD_DSM=SYr)2.DISSPLA,DISP=SHR 
// DD DSNAME=BR00KS.LOAD.MODULES,UNIT=2314, 
// VOLUME=SER=ZZZZZZ,DISP=SHR 
// DD DSNAME=JDAIMSL1.REF10276,UNIT=2314,VOL=SER=CADPK1,DISP=SHR 
//GO.PLOTTAPE DD ,!NIT=TAPE7,LABEL=(,NL),DISP=0LD,V0LUME=SER-15 
,'/G0.FT05F001_DD..." 
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Table 6.4. (continued) 

data cards 

/ * 

/ / 
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APPENDIX I 

DESCRIPTION OF FUNCTION DCADRE* 

FUNCTION DCADRE (F,A,B,AERR,RERR,ERROR,IER) 
DCADRE- -S/D LIBRARY 1-

DCADRE 
F 

A, 8 
AERR 
RERR 
ERROR 
IER 

FUNCTION - INTEGRATE F(X) FROM A TO B, USING CAUTIOUS 
ADAPTIVE ROMBERG EXTRAPOLATION. 

USAGE - FUNCTION DCADRE (F,A,B,AERR,RERR,ERROR,IER) 
PARAMETERS DCADRE - ESTIMATE OF THE INTEGRAL OF F(X) FROM A TO B. 

A SINGLE-ARGUMENT REAL FUNCTION SUBPROGRAM 
SUPPLIED BY THE USER. F MUST BE DECLARED 
EXTERNAL IN THE CALLING PROGRAM. 

THE TWO ENDPOINTS OF THE INTERVAL OF 
INTEGRATION. (INPUT) 

DESIRED ABSOLUTE ERROR IN THE ANSWER. (INPUT) 
DESIRED RELATIVE ERROR IN THE ANSWER. (INPUT) 
ESTIMATED BOUND ON THE ABSOLUTE ERROR OF THE 
OUTPUT NUMBER, DCADRE. 

ERROR PARAMETER 
WARNTNG ERRORfWITH FIX) = 64 + N 

N = 1 IMPLIES THAT ONE OR MORE SINGULARITIES 
WERE SUCCESSFULLY HANDLED. 

N = 2 IMPLIES THAT, IN SOME SUBINTERVAL(S), 
THE ESTIMATE OF THE INTEGRAL WAS ACCEPTED 
MERELY BECAUSE THE ESTIMATED ERROR WAS 
SMALL, EVEN THOUGH NO REGULAR BEHAVIOR 
WAS RECOGNIZED. 

TERMINAL ERROR = 128 + N 
N = 3 -- FAILURE DUE TO INSUFFICIENT 

INTERNAL WORKING STORAGE. 
N = 4 - FAILURE. THIS MAY BE DUE TO TOO 

MUCH NOISE IN THE FUNCTION (RELATIVE 
TO THE GIVEN ERROR REQUIREMENTS) OR 
DUE TO AN ILL-BEHAVEC INTEGRAND. 

N = 5 INDICATES THAT RERR IS GREATER THAN 
0.1, OR RERR IS LESS THAN 0.0, OR RERR 
IS TOO SMALL FOR THE PRECISION OF THE 
MACHINE. 

PRECISION - SINGLE/DOUBLE 
REQD. IMSL ROUTINES - UERTST 
LANGUAGE - FORTRAN 

•Reprinted from IMSL LIBRARY 1. 
IV) S/370 - 360, 1975. 

Reference Manual. Edition 4 (Fortran 
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FUNCTION DCADRE(F,A,B,AERR,RERR,ERROR,IER) 
Purpose 
DCADRE attempts to solve the following problem: Given the name F of a 
real function subprogram, two real numbers A and B, and two non-negative 
numbers AERR and RERR, find a number DCADRE such that 

B 
/ F(x)dx-DCADRE 
A 

max I AERR,RERR 
B 
/ F(x)dx 
A ) 

Algorithm 
This routine uses a scheme whereby DCADRE is computed as the sum of 
estimates for the integral of F(x) over suitably chosen subintervals of 
the given interval of integration. Starting with the interval of 
integration itself as the first such subinterval, cautious Romberg 
extrapolation is used to find an acceptable estimate on a given 
subinterval. If this attempt fails, the subinterval is divided into two 
subintervals of equal length, each of which is considered separately. 
See reference: de Boor, Carl, "CADRE: An algorithm for numerical 
quadrature", Mathematical Software (John R. Rice, Ed.), New York, 
Academic Press, 1971, Chapter 7. 
Programming Notes 
1. DCADRE can, in many cases, handle jump discontinuities and certain 

algebraic discontinuities. See reference for full details. 
2. The relative error parameter RERR must be in the interval [0,0.1]. 

For example, RERR=0.1 indicates that the estimate of the integral 
is to be correct to one digit, whereas RERR=10 calis for four 
digits of accuracy. If DCADRE determines that the relative 
accuracy requirement cannot be satisfied, IER is set to 133 (RERR 
should be large enough that, when added to 100.0, the result is a 
number greater than 100.0). 

3. The absolute error parameter, AERR, should be nonne^ative. In 
order to give a reasonable value for AERR, the user must know the 
approximate magnitude of the integral being computed. In many 
cases 1t Is satisfactory to use AERR*0. In this case, only the 
relative error requirement is satisfied in the computation. 

4. We quote from the reference, "A very caut^ny; man would accept 
DCADRE only if IER 1s 0 or 65. The merely reasonable man would 
keep the faith even if IER 1s 66. The adventurous man is quite 
often right 1n accepting DCADRE even «f IER is 131 or 132". Even 
when I'£R*0, DCADRE returns the best estimate that has been computed. 
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APPENDIX II 
DESCRIPTION OF SUBROUTINE BLSQ* 

Identification 
Linear least squares solution. 

Purpose 
ALSQ and BLSQ are double precision FORTRAN IV subroutines to solve 
the linear least squares problem by applying the Householder 
reduction to the least squares matrix [lj. Both programs use the 
same technique in solving the least squares problem; however, BLSQ 
returns additional information useful in statistical 
applications. Both programs have subordinate entries, ALSQ1, 
BLSQ1, which enable the user to perform additional fits at very 
little cost once the least squares matrix has been reduced. 

Method 
The linear least squares problem to be solved may be formulated as 

follows: given n x m (m < n) matrix A of rank m and an n-vector y 

find an m-vector b such that 

||Ab - y | | 2 = min. (1) 

The programs, in effect, use the Householder reduction of the matrix A 
to triangular form to find an n x n orthogonal matrix H such that 

•Reprinted from Westley and Watts, The Computing Technology Center 
Numberical Analysis L1b,-*ry. CTC - 39. (Oct. 6, 1970) pp. 383-386. 
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T 
HA = (2) 

0 

where T is an m x m upper triangular matrix and "0" is an (n - m)xm null 
matrix. If we let U be the n x m matrix consisting of the first m 
columns of H (in order) and V be the n x (n - m) matrix consisting of 
the remaining col'jmns and consider the new least squares problem of 
minimizing |(Uc - y || , then 

c = U Ty (3) 

and 

b = T-lc. (4) 

ALSQ performs the Householder reduction (2) and uses equations (3) and 
(4) to calculate b. BLSQ calculates and returns the vector c and the 
matrices T and T" which are useful in statistical applications. The 
vector b may subsequently be calculated by the user from equation (4). 
Both programs return the approximating vector Ab = Uc and the residual 
sum of squares Ab - y . 

Under the usual statistical assumptions of regression analyses, it 
can be shown that the number of runs in V T

y m i- n u s o n e n a s the binomial 
distribution with parameters n - m - 1 and .5. If the problem being 
solved involves fitting continuous functions of a real variable, a sta­
tistical test based on the above may be expected to be powerful when the 
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fit inadequately represents the data. Because of this, BLSQ returns the 
number of runs in V y. 

Usage 
The calling sequence for ALSQ is: 

CALL ALSQ(A, Y, B, R2, N, M, NA), 
where 

A is a doubly subscripted double precision array containing 
the least squares matrix. The elements of A are altered 
by the program. 

Y is a singly subscripted, double precision array 
containing the vector to be fit. The elements of Y are 
unchanged by the program. 

B is a singly subscripted, double precision array which 
upon return contains the coefficients of the fit. 

R2 contains, upon return, the double precision residual sum 
of squares of the fit. 

N is the integer number of rows in the least squares 
matrix. 

M is the integer number of columns in the least squares 
matrix. 

NA is the integer first dimension of the array A. 
The program requires that the array A be dimensioned so that it 

will hold one extra row and one extra column in addition to the least 
squares matrix, i.e., the dimension of A must be at least N + 1 by 
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M + 1. Upon return from the program, the locations A(I, M + 1) contain 
the components of the approximating vector Ab (see Method). 

A second entry, ALSQl, allows the user to obtain additional fits 
without repeating the reduction of the least squares matrix. ALSQ must 
be called before calling ALSQl, and the contents of the array A must not 
be changed between these calls. 

The calling sequence is: 
CALL ALSQKY, 8, R2, K) 

where Y, B, and R2 are the same as above and 
K is the number of columns of the least squares matrix to 

fit to the vector Y; e.g., if K = 4, the first four 
columns of A will be fit to Y returning four 
coefficients in the array B. K must be less than or 
equal to M in the call ALSQ. 

This entry also returns the approximating vector in the locations 
A(I, M + 1). 

The calling sequence for BLSQ is: 
CALL BLSQ(A, Y, C, R2, IRUN, T, Tl, N, M, NA, NT), 

where A, Y, R2, N, M, and NA are the same as in the calling sequence 
for ALSQ and 

C is a singly subscripted, double precision array which 
upon return contains the coefficients of the transformed 
problem given by (3). 

IRUN is an integer array whose 1 element contains upon 
return the number of runs in V y after f columns of 

the least squares matrix have been fitted. 
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T is a doubly subscripted, double precision array which 
upon return contains the upper triangular transformation 
matrix of equations (2). 

Tl is a doubly subscripted, rtouble precision array which 
upon return contains the inverse of the transformation 
matrix. 

NT is the first dimension of the arrays T and Tl. 
BLSQ also has a second entry, BLSQl, to calculate new fits. The same 
restrictions apply to the use of BLSQl as apply to ALSQl. The calling 
sequence is: 

CALL BLSQlfY, C, R2, IRUN, K ) , 
where Y, C, R2, IRUN are the same as in the calling sequence of BLSQ 
and K is the number of columns of the least squares matrix to fit to the 
data. Both BLSQ and BLSQl return the components of the approximating 
vector in the locations A(I, M + 1). 

Coding Information 
Although these programs are coded in double precision arithmetic, 
they may be easily converted to ?1ngle precision. Additional 
accuracy may be obtained in the single precision program by accumu­
lating inner products in double precision. The places where this 
should be done are signaled by the appearance of the variables SS 
and PP. 

Reference 
(1) Golub, G. (1965): "Numerical methods for solving linear 

least squares problems," Numer. Math. £, 206-216. 
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(2) Uampler, R. H., "An Evaluation of Linear Least Squares 
Computer Programs," J. of Research of NBS, Vol. 73B, No. 2, 
p. 59. 

Author 
G. W. Stewart, I I I , formerly with the Computing Technology Center, 

Union Carbide Corporation, Nuclear Division, Oak Ridge, Tennessee. 

[Editor's Note: For an evaluation of ALSQ in single and double 

precision see (2). Unfortunately, the single precision version 

reported in (2) did not accumulate inner products in double 

precision.] 
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APPENDIX III 
PROGRAM LISTING 



u r n l i .a | j«a ?• j os/sto POBTBAB a 
ooarxua om-vas - B»BB» a«»,oM-oj,ii»ac»T«io,sita-ooooa, 

sonaca,rsct>ic,ii)iisTfaooaca,io», a»a, ioaoiT,iD,iaiF 
c 
c 

ISa 0 0 0 3 l a P U C I T I U l M | M , 0 - t l 
xsa 0 0 0 3 a a » i * « a a a , a i . B i „ T U i . 
isa oooa coaaoa /SPBCBI/ DBm,TB*a<too).T<«oo).iD(sooi, 

i f u a i . t ( 6 O 0 | , * | t o o i , a ( 6 0 0 i , p p B ( t o o i , i D i p p ( e o o i , 
2 D » T B ( « O O ) , X < « O 0 ) . k C 3 < l 0 0 t , B S B ( » 0 0 ) , « a P < t 0 0 ) , k 3 P ( « 0 O ) , 
3 rBaxoo<too),atrs.ariLT,af,BcoaaT<ooo),XMtaT,moT,iTasao, 
« XPPBPL.IIBTSP.mJTCT.mikCT 

ISB OOOi COBBOB /BLRlBiyaAB(1«) . ILBL(2 | ,TLBL(J) 
c 
c 
c 
c 
c IBITIBLIBB muss. 
c 
c l u i n • IDBBTIPIBB (UBBD FOB TIBB AXIS <»JI 
c 
C T U B B l • IDBBTIVIBB FOB T i l l SBBIIS OUT* <AB> 
c 
c t a n • SABPIIBG T I « IBTBBVAL 
c c arts • BOBBBB or OUT* FOISTS IB TIBB saaias c 
C BPXLt • TOTAL BOBBBB OP TIBBS aABIBOa BBTBOPT IS 
C TO BB MBB BITB DirPBBBBT TAL0B3 POB 
C TBS BOBBBB OF PIITEB C0BFPXCIB8TS 
C 
C BT • BBBBIB 0» rBSOOSBSXtS BBBDBD IB OOTMT 
C 
C TBKI • BAXIBOB PBBQOBBCT FOB OOTPOT 3PSCTB0R 
C (SBOOLO BOT BXCBBD TBB BTOOIST PBBOOBBCT). 
C 
C BAB » TITtB FOB TBI OATA StT (ABO) 
C (TITIB rtlBTBD AT TOP OF TBI PtOTS. 
C 
c 
c 
c 
c 

XSB 0 0 0 6 1 COBTiaOB 
c 

ISB 0007 H i t ( 5 . 2 0 , BBD»500| I l S l . U B l . D I l T A , BPTS, BPItT,SF,TBA( 
ISB OOOS 20 POBBAT < 2 A « . 2 X . 2 A « , 2 X , B 1 0 . 0 , 3 X S , B 1 0 . 0 ) 
XSB 0 0 0 9 BBAD ( 5 , 2 1 , BBO-500) BAB 
XSB 0 0 1 0 21 POBBIT (ISA*) 

c 
c 
c auo BCOOBT. acoon is TBB ABBAT OP BOBBBBS BRICB coaaastoso to TRB 
C lOBBBB OP PXLTBB CDBPPTCXBBTS DBSXB80 IB TBB NAXXBOB BBTBOPT. 
C 
c XSB ooii aaao «o, <«cooiT(r),r-i,»riLTi 

XSa 0 0 1 2 BO POBBUT (1M5J 
c 
c 
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ism n.t t an n | os/160 roar iiki • 
cotaxua o n i o n - aaaa- •*ia,orT-02,n»tc»T-«o,siti»ooooii, 

3o«acB,BBcsic,ioii5T,aooBCR,tou,a»r,aotDXT,io,xaar 
c 

ZSB 0002 SOBMBTXBB tIM5t 
c 

X3B 0003 imtCXT »B»l»e <»-*,0-X) 
XSB 0000 BBkI.*« akB.XLSl.TlBl 

c 
ISO 0009 COBtOB /SVBCBL/ DBL' \,TBkB<«00),T(«QO),XD(600)t i vam.a«oo) ,»{»oo) ,s(»oo> , rat (too) .zoxrrisoo), 

3 DkTB(600),l (000) ,KC3(t00),B3a f600),«ar (600) ,«3r(«00|, 
3 NBXOB<«00) .avrS.ariLT.af ,RC00BT(«00t ,XrBXIT,W.01,X9*BBD, 
• xrrB»L,ixsTsr,iAO*cv,XTaikCT 

xsa oooo 
c 

COBBOB / B H L B V / a k B p * ) ,ILBI.<2) ,TLBL(3) 

ISO 0007 
xsa oooa 
zsa ooo9 

c 

c 
c 

x ioe • o 
M i at io 

i o roBBftt < i a t . « » i » i T s i s or TBB O M S I I M xaror >, 
i «D«Tft B I T B O B T » » T rarok TBiasroaRfcTioas'/) 

XSB 0010 

c 

c 
c 

c m . s r t c r i 

xsa ooii 
c 

c 
atTvaa 

ISB 0013 
XSB 0013 
xsa ooia 
xsa 0019 
XSB 0010 
xsa 0017 
xsa 0019 
ISB 0030 
XSB 0031 
xsa 0033 

c 

c 

BBTBT T»kBS2 
X I M - 1 
r a x a * 30 

3C rOBBAT ( 1 B 1 , , U k l T S I S Of TBI lOOkBXTBB Of TBI OBIOIBkl. OkTA' 
BO 90 > 1 , l t T S 
I P <T(X) .BQ.0. | 1(1) - 1 . 
i ( n - O I M U P I ) 

SO COBTIHB 
C k t t SBBCTB 
BBTOBB 

XSa 0033 
c 

c 

c 

I B f i l TBKB33 

xsa 0 0 3 * 

c 

c 

c 
asTvaa 

XSB 0039 
c 

c 
c 

I ITBT TBkBJi 

xsa ooaa 

c 

c 
c 

*nmw 

XSB 0037 e 
c 

c 

• ITBT TBAB39 

ISB 0031 

e 
c 

c 
•noi i 

ISB 0039 
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m t i Ji.e ( JOE ?« > OS/360 FORTRAH N 

ORNL-OWC 7 8 - 5 8 5 0 

; ' » H L I » CPTIONS - NAM- lt»lE,orT»0J,WRRCHT-60,SIER«0000E, 
SOOACE, I K t K , HOLIST,H00ECR,lOA0,HAP,HOE0IT,l0,EEEr 

c 
c 

15)1 0002 SORROUTIHE s j t c n 
c 
c n AUK. in ENTROPT SPECTRAL AHALTSIS SOBROOTIHE 
c 
c 
c 
C ACS > UC10R Or H O K U M STORAGE (Sk i l l LIHGTH AS V) 
C C»t USr I S TO COHPUTE INTEGRATES SPECTRUH 
C I P THAT OPT J Oil I S CHOSIR. I F SO, THEN ASP 
c M I L c o m I I I FINAL IRGEORATIO SPKTROH UPON 
C RITURH TO CALLING PROGRAM. 
c 
c AHP > VICTOR or I O K I K S STORAGE ISARE LINGTH AS ») 
c 
c Asr > fouuM pout* SPECTRUM or DATA (HEREIN CALCOLATED) 
c <Dis:lissome SANK LENGTH AS »I 
c 
C RSN > Victor . OP VORKINa STORAGE (SAUK L I N O T H AS V) 
c 
C CUNPER • CUHOLATIVt PERIOOOGRAR. 
c 
C BAT I • l i s t VALUES FOR INPOT S I I I I S . 
c 
C DELTA > SIBPLIHG INTERVAL ('OELTA T<| 
c 
c r n • FINAL PREDICVXOR ERROR (CALC. HERIIN) 
C THIS ADHAT SHOULD HAVE SAHC DIRER. AS HCOUHT. 
c 
C F l i t > PIRIOOOGRAH FREQUENCIES. 
c 
C IAUTCV * AUTOCOVARiANCE PLOTTING UAG (SURG ESTIMATE). 
C I F ( I A U T C » . NE.O) PLOT THE AUTOCO»ARlANCE rONCTIOH 
c t r < i A i n c » . e o . o i DON'T H O T 
c 
c H P E P L • rpE FLAG 
c :r( ir<'EPui iE.o) PRINT AND PLOI riNAi PEEOICTION 
C ERROR VS. HO. LAGS USED. 
C IFIIPPEPUEQ.O) OOH'T PRINT A»D PLOT PPE 
c 
C IINI5P • INTEGNATED SFECTRU* FUG 
c i f t i m r s p . H E . 0 ) c A i c , P E I H T , ARI> PLOT THE 
c INTEGRATED SPICTRA. 
C i r d t H T S P . C O . O I DON'T CALC. IHTEG. SPECTRA. 
c 
C IPLOT > PIOTTINO FLAG 
£ I M I P L 0 T . R E . 4 ) PLOT DATA AHO SPECTRA 
C IF(IFLOT.EQ.O) DON'T PLOT 
c 
£ I Pic I NT ' PRINTING FLAG 
C T F ( I P R I N T . NE.O) PRINT DATA ANt SPECTRA 
C I P ( I P A I N T . El),01 OOH'T PRINT 
C 
C I U E N D * p l I H S k ^ I N u F U G 
C i r ( I T k E N a . N U O ) USE DETRENOED TINE SERIES 



C TO COBPDTC THI SPECTRA 
C i r t l T K d O . EQ.O| USE IAN DATA 

C I M A O • IDLE-WALKER AQTOCOV A l l AH CB FLAG . 
C XrtHRACV.NE.O) CALCULATE, n I R > AID PLOT THE 
C YOLS-NALRER ESTIMATE Or THE 
c AUTOCOVARXANCE MECTION 
C IP( ITVACT. tQ.O) DON'T CALC0LAT1 TOIE-VALKII 
C ESTIMATE 
C 
c acoorr > VICTOR or IRED. ERROR FILTER LENGTHS TO USE 
c 
c NAM - TITLE rca THE PATA SIT <TITLE ror THE PLOTS) 
C M I . or 80 CHARACTERS <10A8) fHOIRG IITH S c 
c m i l > NO. or PREDICTION EREOR EILTBR LENGTHS TO TRT 
c (tikGTH or pico. ERROR ULTER • NOMBER or LAGS) 
c 
c NPER > no. or PEHXODOGRAH OEDINATES. (HPE» » GREATEST INTEGER 
C . V I . E T A / 2 ) . 
c 
C NFTS > NO. OP OAT A POINTS IN TIRE SERIES. 
c 
C NV » NO. Of FREOOENCIBS AT NHICH SPECTRON I S TO RE CALC. 
C 
C PIREC - PIR1CDOCRAR VALUES. 
C 
C PERIOD « VECTOR Or HORHIHG STORAGE (SAHI L1NGTU AS V) 
C OWN IE TOM THIS VECTOR CONTAINS THE PERIODS 
C CORRESPONDING PO THE r'EQDENCIES IN f . 
C 
C PPER « FUXO0OGRAH PIEIODS IE CORRESPONDENCE IITH m * . 
c 
C S » TNt HAKEUM ENTROPI SPECTRON. ONI ELEMENT 
C rOE EACH ELENENT IN VICTOR » . 
C THIS ARRA1 I S NRITTEM OVER FOR EACH NEW 
C »ALDE Or NCOOrV OPCM RETOEN TO CALLING 
C PROGRAM, IT ' I L i . CONTJU1 THE IAST SPECTROM 
C COMPUTED, L . E . . THE SPECTRON CORRESPONDING 
C THE LAST LAO VALUE IN RCOONT ARRAT. 
C 
C STA1E • lABIL rOR DEP. VAIN. (TIME SERIES) AIIS 
C MAI. Or E CHARACTERS |A8) ENDING alTN » 
C 
C V • OSPOT VECTOR Or FREQUENCIES AT tHICH SPECTROH 
C I S CALC. (HEREIN GENU AT ED) . SNODLO BE 
C DIMENSIONED t o HAVE AT LEAST (NP»1) ELEREMT i . 
C 
C VHAE • RAX. PRIC. AT WHICH SPECTROH I S TO BE CALC. 
c 
C I » UPOR RETtURIEG FROH DETRHD I S THE TREND OF THE INPOT DATA. 
C IT I S LATER OH OSED AS A BOEKING VECTOR. 
C 
C ED > IP DETRENOING I S DONE, I T I S THE CETRENDED DATA. 
C I f OSTRINDIN I S NOT DONE, I T I S THE ORIGINAL DATA. 
C HESA AND FOORIER ANALTSIS ARE PIRPORRED ON I D . 
C 
C X D i r r - 3PON RSTORHINE fRON DETRND I S THE DETRENDED DATA. 
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1SI 302? 
i s * 002a 
I S I 0 0 2 9 
I S * 0030 

I S * 0 0 3 * 
I S * 0033 
I S « 003« 
I S * 00 3* 
I S * 0037 

I S * 0038 
I S * 0039 
I S * 0 0 * 0 
I S I 00)11 
I S I 00 *2 

CALL ttTUtl ( *PTS. DATE, T (AH, T. XDIPP, X.SPPE) 
DO 170 l » 1 , » P T S 
i O ( i i • i c i r r d ) 
CO«TINUE 

PLOT OATA AIS ITS T U N C COMPONENT. 

i r ( i n o i . i Q . o ) GO TO 200 
c A i i c c r i T i 

200 I f ( I 1 *X«D.NC.O) GO TO 300 
PRINT 202 

202 POIRAT ( 1 H 0 / / / 1 R 0 , « T H I SPECTRAL ANALTSIS K i l l BE • , 
1 •APPLIED 10 KAN OATA IITHOOT HEBOTUG THE T R E H M / / / / ) 

srn » 0 . 0 
220 00 2»0 1 - 1 , N I T S 

X0(1> » H I ) 
2«C CONTINUE 

GO TC 310 

I S * 00fc3 
I S * 0 0 * » 
I S * 00«% 

IS* 00*8 
IS* 0047 
IS* 00*8 
IS* 00*9 
IS* OOSO 
IS* O0S1 

IS* 00S2 
IS* 0053 

I S * OOS* 
I S * 00S8 
I S * OOST 
I S I 0 0 * 8 
I S * 00S9 
I S I 0060 
I S * 0081 
I S * 00 *2 
I S * 0 0 * 3 

30C C?N1INUE 
PRI fT 302 

302 PORHAT ( 1 R 0 / / / 1 H 0 , "THE SPEC THAI. ANALTSIS H i l l BE ' , 
1 ' A P P 1 K C 10 THI DSTRCNOED O A T A * / / / / ) 

P H U T 303 , T U B * . STATE. STATE 
303 PORHAT <1HO/ /1H0,2X.2A«.12X,2A«,1OX,<SETRE*DIO * . 2 A « / | 

00 30!. I>1 .»PTS 
PIIMT 30«, DA1EIH, 1 ( 1 ) . XDIPP(I) 

30« P O R R A T ( I H . i i o n . « , a » , i p o i « . i > . e i . i P D U . 4 ) 
30$ CONTINUE 

POT I * PLOT POS DETRE*D«D JATA. 

C A l l 8CPIT2 
310 CORTMUE 

CCRPOTt T O l l - I A H E * ESTIMATES OP AOTOCOTABIAVCE 
•O«CTIO* if e i s iaco . LAG TALOES STOBAO IH X, 

ACT rORCTICM VALUES STOUO IN X O I P f . 

irillMACT.SO.O) GO TO %00 
A* • »PTS 
CRIAN'O.CDO 
DO »10 I > 1 , VSTS 
C R » « » C R ! A * * XO<I» 
1(1) • (1-1) 
iDirriD«o.ooo 

RIO COIUKOE 
CRIA*>C*SAR/A* 
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I S * 006« 
I S * 0065 
IS* 006* 
I S * 0067 
I S * 0068 
I S * 0061 
IS* 0070 
I S * 0071 
I S * 0072 
IS* 007 3 
I S * 007* 
I S * 007S 
IS* 0076 

» 3 0 

« « 0 

»«5 

00 ««0 I « l , RPTS 
U A G - I - 1 
m i • RPIS - iLAG 
oo «3o j«i,*m 
4l«C*JMU« 
IDIIP<l)-ItIPHD«(< ID ( J ) - € » » « ) • ( ID(,IUO)-CHrm|| 
C O * T I N 0 * 
loifrdt-ioinu)/** 
CONTINOJ 
X0P1 • KDIIF<1> 
00 ««S I •> 1. »PTS l eums • intf(i)/xoFi 
CONTI*0( ISN 0077 

IS* 0078 
IS* 0079 
IS* 0080 
IS* 0081 
IS* 0082 
IS* 008 3 

is* ooa« is* ooas 

IS* 0086 
IS* 0087 
is* ooaa 
IS* 0089 
IS* 0090 
IS* 0091 
ISN 0092 
IS* 0093 
IS* 009« 
IS* 0095 
IS* 0096 
IS* 0097 
IS* 0098 
IS* 0099 
IS* 0100 
ISM 0101 
ISN 0102 
IS* 0103 
IS* 010« 
IS* 0105 
ISN 0106 
IS* C1K8 
IS* 0109 
ISN 0110 
IS* 0111 

PIIIT « 0 
• SO rO**AT (1*1.'TOLI-KAI.KE* 8STI*ATC Or AUTOCOmLATIO* 

1 •»«*CTIO»V/'B0.»«.'l.Wf1«f ,»<"«>COM.V) 
00 «60 I-1.NPTS 
P*I«T «s s , x(i\ .xoirr(i) 

• 55 tORJWT OK , 1*110. 3.5X. 1PE12.5) 
«60 CO*TI*0* 

c m cot vi 3 

CORIUTE pmoooGim* AND rooRitt SPECTROH. 

• t * 
«T • 1 

502 

503 

PI8ST TNI fCHCDOGRAil A*0 C0MH.ATIV8 PEHODOCRAR. 

PTISP » »PTS / 2 
*Pl» " PIMP 
OO S02 J»1,»JE» 
AJ • 0 
PPI*(J) « AJ / »PTS 
PPM (J) « 1.0P0 / rPSR<J| 
COITIIOS 
CAll SPT (IC. ACS. BS «, f t * * , MPK.NPTS, PI» 
SDRPt* • 0 . 0 0 0 
I*C»TA - 2 .000 / »PIS 
oo S03 i - i . m » 

THO*TA • |ACS(I)**2 • BS*(I)**2) 
SOB PI* « P£RDG(I) 

5 0 5 

PiatG<i> 
SODPIR > 
CONTKOE 
OSUfl * 0 .0 SO 
PIRNAI v pr*DC(1) 
IHAI - 1 
DO 505 I»1,*P£« 
DSOR • 0508 • PSROCII) 
CORIER(l) > DSD* / SUNPn 
IP <PE*DG(I) . l » . PER4AX) CO TO SOS 
PEDUM > PIRIWII) 
MAX ' I 
CONTINUE 
FISHER • PiRRAX / {(1.000/MPCR) • SURFER) 
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I S I o i « s 

C 
c 

6 0 0 11 » I I I - 1 
I S I o u t SON • 0 . 
I S I O U T DO 620 1 - 1 . I l l 
I S I 0 1 * 8 SOI • S08 • X D ( I ) * * 2 
I S I 0189 6 2 0 C O I T I I U B 
I S I OISO sua > < 0 8 / i i « 
I S * 01S1 M » » ( i ; » s o * 
I S I 01S2 x i > i r r < i ) • » n p ( i | 

c 
c 
c a A i i a o a i i t i o r x C C H F O T A T I O I S B E G I I H E I E . 
c 

I S I 01S3 i r i « G « c 
I S I o i s « DO I O O O i r » i . i r i i r 
I S I 0155 i r m s > i r i A G * i 
I S I 01S6 IF ( U U e . C T . 1 ) GOTO 79S 
I S I 01S8 H « 1 
I S I 0159 ACS(1) - »D(1> 
I S I 0160 B S I I I 1 I • I D ( I I I ) 
I S I 016 1 DO 6 * 0 I - 2 , 1-1 
I S I 0162 ACS ( I ) • EC ( I ) 
I S I 0163 as i ( i - i ) * ID (i) 
I S I 0164 6*C COIX I IOE 
I S I 016S 6 6 0 O l d • 0 . 
I S I 0166 DDE* • 0 . 
I S I 0167 IB « I T I - B 
I S I 0168 DO 68C 1*1 , t in 
I S I 0169 DICK « D»0» • » C S U ) « B S 8 | I ) 
I S I 0170 D«ZI • DDE! • ACS ( I ) " 2 • 851(1 ) * * 2 
I S I 0171 68C C O I T I I 0 8 
1 3 1 0172 t ( 8 ) » 2 • 0IOB/DDE8 
I S I 0173 A r r t f t o t » n ( ( « l ' 0 . - M « l " J I 
I S I 017<i g i o a • ( ! • • . ; 
I S I 017S QDEt « H » - « 
I S I 0176 I f ».TREND.Eg.0 00 TO 690 
I S I 0178 g i o a > d i u a « s r r £ 
I S I 0179 QDEI > CCE» - ittt 
I S I 0180 690 C O M I 8 0 E 
I S I 0181 i r ( g c i i . i c o . cat g o E i « i . o o - s 
I S I 0183 FPE(B) « A8P(B*1) • v,><aa/OOI8 
I S I 0 1 8 * i r ( L I E . 1) GO TO 760 
I S I 0186 700 I D I I M 2 ) * I D l r r ( l ) • E ( 1 ) 
I S I 0187 720 8 » 1 * 1 
I S * 0188 8 1 « B- 1 
I S I 0189 DP 730 1 * 1 , 8 1 
I S I 0190 TEAB( I ) ' 7 ( 1 ) 
I S I 0191 730 COIT I IOE 
I S I 019J 18 • I 7 E - S 
I S I 0193 DO 7«0 I - 1 , N 8 
I S I 0 1 9 * ACSJ1) » ACS I I ) - T E » * ( 8 - 1 | » B S I ( I ) 
1 5 1 019S B S I ( I ) » S S N 0 M ) - * S « I ( . 1 - U » A C E ( I « 1 ) 
I S I 0196 7«C C O I I I I U E 
I S I 0197 GO TO 660 
I S I 0198 760 HI - 1 - 1 
I S I 0199 CO 780 1 - 1 , 1 1 
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IS* 0201 
IS! 0202 
IS! 0203 
IS* 0204 
I SI 020S 
IS* 02 0C 
ISI 0207 
IS* 020* 
ISI 0209 
ISI 0210 
IS* 0211 
IS* 0213 
IS* 021* 
ISI C21S 
ISI 0216 
ISI 0217 
ISI 0216 
IS* 0219 
IS* 0220 
ISI 0221 
ISI 0222 
IS* 0223 
IS* 022* 
IS* 022S 

C c c c c ISI 022« 
ISI 0227 
IS* 0221 
ISI 0230 
ISI 0232 
ISI 0233 
ISI 023* 
ISI 0235 
ISI 0236 
IS* 0237 
ISI 0230 
IS* 0139 
IS* 02*0 
IS* 02*1 
IS* 02*2 
IS* 02*3 
IS* 02«« 
IS* 02* S 
IS* 02*6 
IS* 02*7 
IS* 

IS* 

02*8 

02*9 
IS* 02 Su 

1(1) • T f»»u) - z ( n > « m * ( * - i ) 
7to c o r n DUE 

so* • o. 
00 790 I -1.R 
so* • so* • i o i r r < a * i - i ) » z ( i j 

7."0 C0*T1«DE 
«Di r r<a* i | - son 
GO TO 798 

795 C0ITIIII 
« » RC0U*T(1P-1| 

79C comwoi 
IP ( i . t c a c o o w n r i ) G O T O 620 

800 GO 10 720 
820 DO 8*0 1 * 1 . M l 

csua » o. 
00 8*0 J*1,R 
E»T » - 2. • PI • J • » ( l ) • DELTA 
C» > CCRPLKO.DO.EKT) 
CSO* • CSUr - Z<J)*CDEIP(CT| 

8*0 CONTINUE 
CSUR • 1.»CS0R 
R > |CDABS(CS4)tl|)**2 
S( I ) • <ARI(R»1) • DEITA) / ( I 

8*0 COIT1R8Z 
IK ' ICO Dill (IF) 

PiillT CUT AUTOCORRELATION AND EITIOFT VALUES. 

NIIREt) ' 1.000 / (2.000 • DELTA) 
lESe* > «TIR!i)/((DPL0AT(8COtl*T(IP))/2.0nnt «1.0D0) 
IP ( I f l I » T . E ^ O ) GO TO 980 
IT (IAOTCT.Ei.0 0 0 TO 891 
FIIVT 869,RCOOIT(1P) 

889 POIRAT (IHI.'HCOOIT > ' . I S / / / I 
PRINT 870 

870 PORIAT (IHO/lhO,•AUTOCORRELATION PONCTION VALUES'//. 
1 1N0.alAG>,20X,*AOTOCOR«.V) 
•CT • aCCUIT(IP)«1 
IDP1 - IDIPf (1) 
DO 875 I>1,BC1 
AC-MI ) • ZDIPPI' 1 / I DPI 

875 CONTINUE 
00 890 I»1.RCT 
1(1) • 1 - 1 . 
MINT 880. 1 | I ) , ACfMD 

880 POIiAI (1H .1P2E19.8) 
890 C O * * I * * l 
891 COIUIOI 

p u r r 8 9 S , 8 I I I I O , I I S M , P P « ( I C ) 
895 POIRAT tlKI.'RMIITOfl tNTROM AID fOOIlE* SFBCTIA' , / / / , 

1 1*0,'NTQOIST P-EQUENCT - •.1FD10. 3 / / . 
2 1R0,'I ISOIOTIOI BANDHIDTH • • , 1 P D 1 0 . 3 / / / , 
3 1BC,'PINAL PREDICTION BRPQI • « , 1 f010 .3 / / / ) 
P I I I T 900. iccurr(ip) 

900 POIBAT |1H0,«RCO0*T»«.13,61.'PRSQOBNCt*.61,•PERIOD*.10Z, 
I ' H A I I I M t H i o ( r ' , 7 i , < r o o i i i i ARPLITODBM 
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1S1 02S1 
I S * 02S2 
I S * 025* 
I S * 02SS 
I S * 0256 
I S « 02S7 
I S * 02S8 
I S * 02S9 

C 
c 
c 
c 
c 

I S * 02*0 
I S « 0262 
I S « 026* 
I S * 026S 
I S * 0266 
IS II 026? 

c 
c 
c 
c 
c 

I S « 0268 
c 
c ISK 0270 

I S * 0271 
ISM 0272 

15* 0273 
ISN 027* 
IS« 0275 
IS* 0276 
IS* 0277 
IS* 0276 
IS* 0280 
ISN 0281 
Iss 0282 
IS* 0283 
IS* 024* 
I S * 0 2 4 5 
I S * 0 2 9 6 
I S * 0 2 8 8 
I S * 0 . ( 9 

ISN 0 2 9 0 
! S « 0 2 9 1 
I S * 0 2 9 2 
I S * 0 2 9 3 

DO 9 6 0 1 - 1 , K M 
IF | V ( I ) . E Q . 0) 3 0 TO 9 2 0 

9 1 0 PERIOO(I) - W » (.1) 
CO TO 9 1 0 

9 2 0 p t m o s i i ) - o . 
9 1 0 P*IHT 9 « 0 , I , V ( D , P E « I O 0 ( I | , S ( I ) , A S r ( l ) 
9»C PORItAl (1H . • I > > , I * . 1 v I , P 9 . 7 , 6 X . F 1 0 . 3 , 6 X , 1 P X 1 9 . 6 , 6 X , 1 F E 1 9 . 6 ) 
9 6 0 CORTINOE 

PICT RAXIRUN E*T*OPt AND 'AUTOCORAEIATION rONCTION. 

9 8 0 IP ( I P I O I . E Q . O ] 0 0 TO 91 
IP (I fct lTCV.E^Q) GO tO 90 
CAM. 00P1TS|RCT,HC,ACPN) 

9C tONTINOE 
C A l l E C P l t t ( H P 1 , l l C > 

9 1 CONTINUE 

CONFUTE INTEGRATED SPECTRU* I P DESIRED 

I P ( 1 I * T S I . E ( . C ) SO TO 10JO 

NINOOH ' PlSBH/2.000 
PIIHT 9 9 1 . * I « 0 C U . H C O U N T ( I P ) 

9 9 1 rORH*I (INI. 'INTEGRATED NAXIPIU* E»TROP» S P E C T R O H * , / / / , 
1 INO. 'HICIH OF INTEGRATION Ml NOON * * , 1 P D 1 0 . 3 , / / / , '. 
2 1 H 0 , , l ! C C U » T « ' , l 3 . ' ' * . ' P » E < | U E * C t « , 6 X , , " , E R I O 0 ' , 1 0 X , 
3 'MAX. ENT. SPEC. ' . 7 X , •INTEGRATED SPECTRON*.7X, 
« "ERROR * C . ( I*YER. S P . ) ' . / ) 

* I*0C2*VINCCII /2 .0D0 
SPC9IN - SPCVL1 (AAP, I, DELTA, KlM,*) 
CO 9 9 5 I - 1 . H 1 
1LC»V ( I ) -NIK002 
t O P » * ( I ) 4VIXP02 
I 7 I I U 0 . CE.0 .0CO) . A*U, |PUP.LE.NYF*E&>) GO TO 9 9 2 
M l ) * 0 .0DO 
8(1) • 0.000 
GO TO 995 

9 9 2 CONTINUE 

A ( I | > D L A 9 R C ( S r c V A L f U O , V U P , O . O C 0 , O . 0 0 1 D 0 , 
1 EF.ROI.UR) 

8 ( 1 ) - PRPOR 
IP ( I H . I E . 66) SO TO 495 
PRINT 9 9 3 , 1 . it*. * ( . ) , A | I ) , 8 ( 1 ) 

9 9 3 PORHAT ( 1 K O / 1 H 0 . M • • , I* , 5 1 , ' I E * • • , I 3 , 5X , ' P R E J , «• 
1 1 P C 1 < l . 6 , 5 I , < I N T E G » A t • • , 1 P O I k . 6 , 5 X , • E»«OR IARAN.ETER 
2 1 F C U . 6 / ) 

9 9 * CONTINOE 
DO 9 9 7 I » 1 . K I 1 
PRINT 9 9 ( , I , V ( I ) , F E * 1 0 D ( I | , S ( 1 ) , A ( I ) . 8 ( 1 ) 

9 9 6 PCknATIIh ,< | c < , l < i , I J I , P 9 . 7 , t . X , P 1 i > . 3 , 6 X , 1 P E 1 9 . 6 , 6 I , 
1 1 P r i 9 . 6 , « X , 1 P E 1 9 . 6 ) 
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IS* 02"» 
IS* «2»S »»•» crr.-ikot 

C»il OOPlT7(RFl,!IC.»t 

IS* 029) 
IS* 0249 
ISM 0)00 

IS* 0)01 
IS* U)02 
ISK 0303 
IS* 010* 
IS* 0)0% 

IS* 0306 
IS* CJ07 
IS* 0i08 

c 
1 0 0 0 CO«TI«<U 
C 
C 

It (ItPlH.H.O) »ETU»» 
• * I»T 1010 

1010 POSMlt (1H1,*r : i»L PREDICTION MHO* 1 . / / H i t , 2 1 , 
i • i».3i .«i iuaB»" or Tinat> ,<.i.-ti*.' i rKt I C T I O » » , / I H 
I e i . ' ccc i r i c iENTS ' . I U . ^ C I I O * 1 , / / ) 
DO 102C l-1.SC 
n « i « i 
PHINT l o n . i . i i . r p t m 

101* rot SAT ( IH , 1 3 , 1 1 * . 121, 1P012.S) 
1020 .-'>rTI»OI 

c 
c 
e 
c 
c 

n o t THE riNAi P»«DICT:.~» . ' j i o t . 

c m i i»Ptr« 
•Eton* 

••J 
o 

http://l-1.SC
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• • • • f 0 * T * A N C R O S S f t t t t l U Z l L I S T I N 0 » » 4 * « 

COSB 0059 0 0 6 0 0060 0061 00s» 
0097 0097 0098 0103 01 On 0101 
0131 0131 0 1 ) 2 3147 0110 0 1 * 1 
0194 0 1 4 * 0 1 9 * 0195 0195 019% 
0291 0292 0 2 9 2 029 ] 0?»3 025,' 
0281 0284 0285 0289 0288 0249 

0219 

0188 0192 0199 0195 0198 0200 

0288 0292 

s i a toL U 7 . I U X 1 . s T A i t n i K T n o a t t t s 
A 0011 0280 0204 o;se 0292 0295 
» 0011 0281 0285 0288 0292 
1 0022 0023 0023 0028 0C29 0 0 ' 9 0939 0040 0040 0048 00 *9 004 9 00 *9 

0065 0069 0 0 * 9 0071 0071 007* 0075 0075 0079 0080 0090 0 0 9 * 0097 
0 1 0 * 0108 0109 0 1 2 1 0122 0122 0125 0 1 2 * 0126 0 1 2 * 0127 0127 0130 
0 1 * 2 0 1 * 2 0163 0 1 * 3 C16B 0 1 * 9 0169 0170 0170 0189 C190 0190 0193 
0199 0200 0200 0200 0203 0 2 0 * 0 2 0 * 0 2 1 * 0217 0223 0238 0 2 ' 9 0239 
02 52 0 2 5 * 025* 0 25* 0257 0257 0257 0257 0257 0275 027* 02 77 0280 
0298 0291 C292 0/ V C292 0292 0292 0292 0301 0302 0303 0303 

J 0 0 * 7 0 0 * 8 0069 0 J r d 0089 0090 00<M 0091 0135 f>13« 0137 0216 0217 
K O H * 0114 0114 C114 C I l H 0114 0114 
a 0158 G1*7 0172 0173 0173 01?J 0174 0175 0183 0181 0184 0187 0187 

0200 0203 C20* 0206 0209 0211 0 2 1 * 0223 0 2 7 * 
s 0006 0223 0257 0492 
* ooot 0118 0119 0122 0122 0122 0124 0217 0252 0254 0257 0276 0277 
I 0006 0027 C0«0 0080 C2 42 02 *3 
7 ooot 0023 0027 0060 00 *9 
Z 0 0 0 * 0172 C173 0 1 8 * C190 0200 0200 020* 0219 o;7» 
A J 0089 0090 
AH 005b 0063 0071 
C » 0010 0218 0219 
E I 0222 0223 
I F 01S4 C209 0211 0 2 2 * 02^7 02 12 0 2 3 * 0249 0271 
1 1 0302 0J03 
SC 022S 0247 0 2 * 4 0 i * 6 0295 0J01 
m 0188 ( 1 8 9 0198 0194 
«R 0 1 * 7 0168 0192 0 1 9 ] 
« T O O M 0065 0119 
111 0145 01 *0 0161 
r i 0012 0093 012* 0217 
XO 0 0 0 * 0029 0040 0059 C 0 D 9 0069 0093 0124 0 1 * 8 0159 0160 0162 0163 
ACS 0 0 0 * 0093 0097 0 1 2 * 0 1 . 6 01S9 01*2 0 1 * 9 0170 0144 01*4 0195 
AHF 0 0 0 * 0151 0152 017J 0171 018 3 0223 027* 
A S I 0 0 0 * 0 1 2 * 0127 1 2 7 CI 11 0257 
ssx 0006 0093 J097 J124 0126 01 17 01 *0 0 1 * 3 0169 0170 0194 0195 019» 
» « T 0217 0218 
F P E 0 0 0 * 0183 0247 0303 
I E * 0284 0 2 8 * 0298 
K f f 0120 0121 
K M 0095 0120 0124 0125 01 tO 01 }•> 016 3 0146 0214 02S1 02*6 0 2 7 * 0275 
nci 0 2 3 * 0238 0 2 * 1 0 2 * 4 
M R 0005 0007 0016 
N I U 0 0 * * 00*7 
X T * ooa« 0124 0126 0 1 2 * cw> 0 147 )150 6 1 * 0 O K I 0174 0175 0192 
S f t 009 J 0124 
sun J 1 4 * C148 0148 0150 01 SO 0 U 1 0202 0 204 0204 0206 
» U > 0276 « > • > * •.284 
VUt 02 n < » * • > 028* 
Acr.i 0011 '.239 C243 0<*4 
c ' i i i 0010 «215 0214 0219 0 2 2 1 0221 0222 
B.VCI 00" ' . 0023 0027 CC49 
D D M 01*6 0170 0170 0172 
ONUfl 0165 0169 0169 017,1 
DSUS 0100 0104 u!04 0105 
rj>E» 0008 0090 0091 0CS1 CI 14 0 116 
I t A S 0 0 * 5 0 0 6 * 0 0 6 * 
I N K 0 1 0 . 0109 C116 0116 

0291 02 35 
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t t « * H C R O S S * 
S 7 S 6 0 J . I I T i n U S T » 1 M I H T MOHBEII^ 
J U G 0 0 * 8 0 0 6 9 
i r n 0 0 6 7 0 0 8 8 0 0 9 3 C C 9 * C 1 0 3 O i l ' ou« 0 1 1 6 0 1 4 3 
H F T S G 3 0 * 0 0 2 2 0 0 2 7 0 0 2 8 0 0 39 OOHi 0 0 S 6 oosa OOfiU 
P P M 0 0 0 8 0 0 9 1 O I K 0 1 1 6 
Q D U 0 1 1 5 0 1 7 9 C 1 7 9 ciei C U 1 0 1 B 3 
u»u« 0 1 ? « 0 1 7 8 0 1 7 8 0 1 8 3 
S P P E 0 0 2 7 0 0 3 8 C 1 7 8 0 1 7 9 

m i 0 0 0 * 0 1 1 9 
i r n 0 0 7 3 0 0 7 5 C 2 3 7 0 2 3 9 
TE6K 0 0 0 b 0 0 2 7 0 1 3 1 0 1 3 2 0 1 3 6 0 1 9 0 0 1 9 « 0 1 9 5 0 2 0 0 
I S D N 0 1 2 9 C I 3 2 0 1 3 2 0 1 3 7 0 1 3 9 
ZS0.1 0 1 3 * 0 1 3 6 C 1 3 * 0 1 3 7 
CBABS 0 2 2 2 
C O U P 0 2 1 9 
C a i » « 0 0 5 7 C 0 5 9 0OS9 0 0 6 1 0 0 6 3 0 0 * 9 0 0 6 9 
B U T * 0 0 0 6 0 2 1 7 C 2 2 3 0 2 2 6 C 2 7 » 
D O P L T ,">013 
os on 0 * 2 7 
E«»OI 0 2 6 • 0 2 8 5 
inxo 0 1 5 3 0 1 5 5 C 1 5 5 0 1 5 6 
I P L O T 0 0 0 * 0 0 3 1 0 1 * 1 0 2 6 0 
W L T 0 0 0 6 0 . 5 9 
P 0 6 1 0 0 8 0 0 9 7 0 0 9 8 0 101 0 1 0 u 0 1 0 6 0 1 0 8 O i l * 
P i M P 0 0 0 6 0 0 8 7 
8 Z S B H 0 2 2 7 0 2 « 7 0 2 7 0 
STAT I 0 0 0 5 0 0 0 7 0 0 1 8 0 0 0 6 0 0 4 6 
xoirr 0 0 0 6 

0 2 3 9 
0 0 2 7 0 0 2 9 0 0 4 9 0 0 6 1 0 0 6 9 0 0 6 9 no7i 0 0 7 1 

T T I R E OOOS 0 0 0 7 CO 18 0 0 1 * 
c o a p i i 0 0 0 8 0 1 0 5 O i l * 
K A M I 0 2 8 « 
DC IIP 1.1 o;io 
O B i i m o 0 0 2 7 
oriokT 0 2 2 7 
D O P I T 1 0 0 33 
D O P L T 2 0 0 5 2 
0 C H . T 3 0 0 8 3 
SOP I T * 0 1 « « 
DOPLTS 0 2 6 4 
DOPJ.T6 0 2 6 6 
D 0 P I T 7 0 2 S 5 
O O P I T S 0 3 0 6 
D O P L T 9 0 1 < I 3 
n s M t 0 1 1 1 0 1 1 6 
I » D I C » 0 0 0 6 0 2 3 0 0 2 6 2 
IPPEPL 0 0 0 6 0 2 9 7 
I M T S P 0 0 0 6 0 2 6 8 
I P » « T 0 0 0 6 0 0 1 * 0 2 2 8 
I T P E V O 0 0 0 6 0 0 3 4 0 1 7 6 
X T W C f 0 0 0 c 00S.6 
acoo»T 0 0 0 6 0 2 0 9 0 2 1 1 0 2 2 5 C 2 2 7 0 2 3 2 0 2 3 6 0 2 * 9 0 2 7 1 
HTPIEO 0 0 0 « 0 2 2 6 0 ? 2 7 0 2 « 7 0 2 78 
P E R I O D 0 0 0 6 0 2 S » 0 2 5 6 0 2 5 7 0 2 9 2 

r u a u 0 1 0 1 0 1 0 6 0 1 C 8 0 1 1 1 0 1 1 6 
S P C » * l 0 0 0 9 0 2 8 * 

R E P r t L N C E I I S T I II 

007» 0079 0O8K 0.106 0090 0013 0095 0131 

0200 

0073 0075 0075 0060 01S2 01R6 0186 0200 0206 0217 
^1 
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• • • • •» c f t i > i c • o s s i t r t i t x c t i i s T i • O«»»»» 
J I U O l M T I H M . S T A 1 M U 1 IDNBtllS 
S K U O W 7 » 
5 K T 1 1 0 1 7 * 
STtCT« 0002 snarii oo»» <xm co»» oios out out tM»n ot>n oo9? 
KlaOON 0270 0 2 7 1 C273 
U » D 0 2 0J73 0 2 7 * 0277 

» 
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c c a a i u a OBXXOBS 

c c ISI 0003 
IS! 0003 xsa oooa XSB 0005 ISI ooo* IS* 0007 

BAB»» BAiB,o»T>02,Lia<c*T«60,sixa*ooooK, 
SOOBCI, EBCDIC, BOLIST,BODECK .LOAD,MAP,BOEDIT, ID ,X»EP 

i s a oooo 
I3B 0009 
ISM 0010 
I S * 0011 

IS* 0012 
I S * 0013 
IS* 0 0 1 * 
I S I 001S 

IS* 0016 
IS* 0017 
IS* 0011 
1S« 0019 
I S * 0020 
IS* 0021 
IS* 0022 
IS* 0023 
IS* 002* 
I S * 002S 
IS* 0026 
I S * 002* 
I S * 0029 
I S * 0030 
I S * 0031 
X?a 0032 
IS* 0033 
i s a 003* 
IS* 0034 

IS* 0036 
)S« 0P37 
IS* 0 0 3 * 

I S I 0039 
IS* 00*0 
I S * 00* 1 
IS* 00*2 
IS* 00*3 
I S * 00*« 
xsa ooas 

30M0UTXK OCMT 
I M P L I C I T a i * i * e ( A - n , o - x ) 
BEAL** XOBIG,XSTEF,T0*IG,TCTCLX,XAX,IAX 
BBAL«« BAB.TTIME.STATE 
BEAL** IS (600),TS (600) 
coaaoa / s u c e i . / D T i * s , m a ( 6 0 0 ) , c A T C H | 6 o o ) . x t ( 6 o o ) , 

1 VBAX.X (600) ,V (600) , S (600) , f PI 1600) .IDIPP ( 6 0 0 ) , 
2 DAT>.<600) .X 1600). ACS ( 6 0 0 ) . BSa (600) .AMP (600) .ASP (600) , frEBIOO (6 00) , 
3 *TA.«r i iT.xr .acooaT(6oo) . m i * T , X F i o T , m m , i r r i P i , i i * T s » , 
* IA0TC».JI«AC» 
coaaoa /tiKLev aAa(i*).tTias(2| ,STATE(2) 
coaaoa ,'p*oc»a/ FPXI(300> ,PPS*(300),PEBDG(300) ,CDRVII(300) 
coaaoa /QQXXI*/ xoriG.xsTEF.xoBiG, ICICLE,IAX .TAX,IOOM(3) 
uaiasioa ACI*(6CO),A(600) 

CAll CAlCaf 
XLOBG • 7. 
HOBO > s. 
aetata 

BBTBX OOPLII 
CAll SPaSGKIS.TS, DAXE, CATCH, MTA,»0*IG,XNAX,IOIia,TBAI) 
CALL TITISCBAM, 100.TTIBB, 100. STATE, 100,XLOia,UO*6) 
CALL Aaenc 
10MG • XS(1) 
XMAI • is(»TA) 
CAll. G*Af(XOEIG, 'SCALE 1,XRAX,r0*I6. • SCALE', TBAX) 
CAU BAIBEHS) 
CALL C0BVE(XS,TS,*YA.1) 
CALL alSITCBABKia*) 
i r (ITBHO.IO-0) GO TO 199 
CALL SlaGLE(XS,TS,DAIE,X,aTA> 
CALL I ASP 
CALL COBVKXS.lS.atA,0) 
CALI BESXTCOASB'I 

199 COBTIBOI 
CALL IBAME 
CAII BEDEL (O) 
BBTOBB 

S U I T OOPlli 
CALL 6FBBoa(xs ,rs , OATE.XDIFP. atA.xoaxo, X*AX. MXIG.TRAX) 
CALL TITLE |<DET*BB CIO OATAS<, 1 0 0 , T T i l l , 100,STATE, 100, 

i SLoae.Tioae) 
CALL AIGTIC 
XOBIO • I S O ) 
XBAX > X3(»TA) 
CALL e(At(XOBIG,'SCALE'.XMAX.IOIIG, •SCALE', T*AX) 
c a u . coaa*(XS,is ,aTA.O) 
00 300 I ' l . a i A 
TSUI * 0. 



I S * 00<l« 300 OORTIMOI 
I S * 00*1 CAU C « m t X 3 , I 3 . * 1 A , 0 | is* oo«e CAU mar 
I S * 00*9 CAll 1*9(1,(0) 

c 
c 
c n o t r . i s iowis AGAX»ST rxiTio VALUCS. 
c 
c v 

i s * 0050 C A U S M M U M . r s . x . j o i r r . «T*,xo»io, ia»x,Kniia,m*i 
IS* 0"*'. CAU IITltl'KSIDQAlS IS. riTTCO »»10IS*',«0C, "MTUD TALUtSfV 

1 100,'*B31DOkl,3t» ,100.7. ,S . ) 
If* OOSJ O U ARCTIC 
lj» 005J CAU Qm<tOIIG,<SCAl.I',mi[,tCSie,«3CAL|i,T*AX) 
IS* 00S« CAll UIUIISI 
IS* O05S CAU COSVtlXS.TS.MA.-t) 
13* 005* CAU MJIT<«AAPKtM) 
IS* 0057 CAll MAC! 
i s * »03o C A U i n n o i is* oo5» tern* 

c 
c 

ISM 00*0 m i l 0OPIT3 
13* 0041 CAU GPHM»<XS,TS.I.IDIfP.*rA,XO*ia.l«A*,*0»:<3,YHM| 
I S * 00*2 CAll T I T 1 K ' I 0 1 E - « » U I * A0TOC07RH.ATIONS', 100, 'IAGI', <00, 

1 'ACf. n . l ' . I O O . X U X Q . U O i G ) 
IS* 00*3 CAU OfHtatUORia.X0«14.X«AX,(MX,13,13 . VTAt 
is* oo*» i m i i 

c 
xs« oo*s , i n n t«Kl*<«r-i) 
1S| 00** CAll GM*eHlS,TS,T,ASF.KM.IOIUG,X*»X,T0RIa,rit»X| 
zs« oo«7 CAU. mi*crooni i« ANPIITODI srtcTioM'.ioo.^riiooiicTS'.ioo, 

\ 1 «A*»UT«»U',10%XlON<.,TLO*a) 
IS* OOtt v CAU enr*0<XO»IG,TO«IG,XKM,mX.X3,fS,KM> 
IS* 00*9 CAll, W1WJM1S,*S,»,»S»,1<H,X0MC,XR*X,101I0,T«AI) 
ISM 0070 CAU t m x r e a * . rooAit* r-o*t» i»JCT»oit*«.iof>.•F»*oux»eT»»,ioo, 

1 ••CMAUSID KHiM>,100,IlO»G,lflO|l«) 
IS* M i l CAU U«f(XOua;<3CAUMHM,I0*I«,*3CAlI<,TMX) 
IS* 001J CAM. C0M«Ut.t3.*T\ 0> 
IS* OJJ3 i r « J J ( n W » | . l 8 . » l M OQO » (»TA - J> / J 
IS* 00J4 ,ir,U*«(«T«/2)).*I.XTA) OOfl « <»" - 1) / J 
IS* 0071 UttWO * 1.-W / OS0*TIQQQJ 
IS* 00»« ISO) » '0 .0 I 
i s * 007* T « ( 1 | « »A«q 
m 225° ,*M» • «;s * O.O-*AIK» 
1S« 00«1 M O ) - 1 . 0 
I S * 0 0 4 ) CAU C U n | I S . 7 S , j , 0 ) 
! » • OQ*) X » 0 ) • 0 . 5 • IATXO 
IS* OOC* XSJI) " 0 . 0 r 
as* OMS i3 (» » o,• 
ISM 0*0* I3J2J • ( 1 . 0 - iATIO) 
U « 40%1 CAU. C « 1 1 t * S . - J S , I , t » 
» t | 000* CAU MAM 
1 3 * 0 0 ( 9 CAU IHOri(0| 
13* 0090 l l t O I * 

c 
C ;-

ORNL-DWC 70-5866 

oo 
CO 



ORNL-OWG 78-S867 

ISB 0091 
ISB 0092 
I S * 009 3 

I S ! 0 0 9 * 
I S * 009 S 
isa 0096 
I S * 009? 

c 
C 

is* 0098 
I S * 0099 
I S * 0100 

I S * 0 1 0 1 
I SB 0102 
isa 0103 
.s« 0 1 0 * 

c 
c 

I S * 010S 
I S * 0106 
I S * 0107 

I S * 0108 
ISM 0109 
I S * 0110 
I S * 0111 

c 
c 

I S * 0112 
I S * 0113 
I S * O i l * 
I S * 0115 
I S * 0116 
I S * 0117 
I S * 0118 
I S * 0 U 9 

I S * 0120 
I S * 0121 
I S * 0122 
I S * 0123 
ISK 0129 
I S * 0125 

c 
c 

I S * 0 1 2 * 
I S * 0127 
I S * 0128 

I S * 0129 
I S * 0130 
I S * 0 1 3 1 

I S * 0 1 3 2 
I S * 0133 
I S * 0 1 3 * 

E»T»I oopmiarT,nc.»cPH) 
C A l l GPHBG»<XS,TS.X. ACP*. RCT. XORIG.XRAX .TO* 1 0 , YBAX) 
C A l l T I T I B | 1 R . l . ' P R B Q O B a c I l ' . . 1 0 0 , • BURG AOTOCOBRBLATIONS' . 

1 100,XLOB«.T10BG) 
CULL R I S S « 3 | > * 0 . OP IXLTB* COBPS. I S * » . 1 0 0 , . S , H O * G » . 2 5 ) 
CALL l»T B O(RC , 3 . 5 , TLO R G *. . 25 ) 
CALL GPHC«0<XO*IG,YORIQ.1IUX,1IUX.ZS.1S .RCT) 
BBTOB* 

BBTRI D 0 P : t 6 ; ( P ,RC) 
CALL 6 P H : - 6 * ( X S , T S . T , S , K P 1 , X 0 a i G , X a A X , T 0 * l a , T a A X ) 
C A l l T I T I S O N . l . ' m t Q O R I f C T l ' . I O O . ' a R S A T A L O M ' , 1 0 0 . 

1 XLOBG.TI0BS1 
C A l l a t S S A G ( ' * 0 . OP P U T * * COBPS. I S I , , 1 0 0 , . S , T L O N G * . 2 S I 
CAXI I * T I 0 ( R C , 3 . 5 . Y 1 0 * G « . 2 S ) 
CALL GPRl*0tXOBIG,TORtG,XRAX,TBAX,X3,T3,<v.*1) 
»BTOB* 

BRTRT D0PLT7(KP1,nC,A) 
CALL GPRBG*(XS,TS ,V, A . B P 1 , XOBIG, XaAX,TORIG,TRAX) 
C A l l ? i r i B ( 1 H . 1 , ' P a i Q U E * C I « > . 1 0 0 , < I R ? E G R A T B D SPECTROHI'.IOO, 

1 XlOr^.TlOBGl 
C A l l * I S S A G | ' * D . OP rlLTBR -OBPS. I S $ « , 1 0 0 , . 3 , Y L 0 * S * . 2 J ) 
CAl ' . ( T « 0 ( a r . 3 . S . T L O * G « . 2 S ) 
CALL GPBiae(XOBIG.rOBIG.XRAX, XRAJ.XS.TS .KPI) 
BBTOB* 

BRTBT 00PLT8 
»»A2 • BTA - 3 
CALL GPB8G1<XS, tS ,NYA2,PPB) 
XAX " XUCBG 
XSTBP • PL0AT4RYA) / X A X 
BSTBP * X51XP 
XSTBP « PLCAT(*STRP) * 1. 
CALL T I T I U A A R . 1 0 0 . H O . Of P l l T E B CORPS. $ • , 1 0 0 , 

1 • » I « A l PBIBICTIOa ERRORS*.100,XLORG.YLOVG) 
C A l l XTXCKS(S) 
CALL TLOQ<B0Rl<'.XSTEP,Y0*I3,YCYCLI) 
CALL CORTXfXS, < S , * Y A 2 , 0 ) 
C A l l PBABB 
C A l l BBDPl(O) 
BBTOBB 

E8TIT D0PL19 (KP1, 8PIB) 
C A l l GPBBGB(XS,YS,rPIB.PBaDG, * P B B , X 0 B I 0 , XRAX.YOBIQ.YRAX) 
CALL TITLB^PBBIODOGBABS'.IOO, •raBOOBRCTS' . lOO, 

1 « P 0 1 B * » « . 1 0 0 , 1 1 0 * 0 . 1 1 0 * 0 ) 
CALL GPRiaCCXOBIG,TO*IG,XRAX,TRAX,XS,tS,aPBBj 
C A - l G P R B G i ( I S , I S . f P M . C 0 R P t * , * P X » , X O » i a , I R A I R i r . t R A X ) 
CALL I I T U C C O B D L A T M B PEBIOOOGRARX' , 100 , ' P B K U £ * C T $ « , 1 0 0 , 

1 'NCBRALUIS PCBBBS'.IOO.ILOBG.ILOBGI 
CALL GAAP(XOBIG,>SCALB'.XPAX.XOBIO,•SCALB',TRAX) 
CALL C O B « B | X S , X S , R P B * , 0 ) 
I P < l 2 » m A / 2 ) ) . I ( J . MA) QQQ • (BYA - 2) / 2 
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• « • • • » O U T R A N C II 0 S S i i r i i i ii l X > T I N 0«»»»» 
S I M M i i n i i u s : A i i a t i T M i m a s 
• AT 10 0077 0079 ooao 0083 0086 0138 0140 0 1 * 1 0 1 4 * 0147 
k t S I T 00 2S 0011 0056 
STATI 000% 0 0 0 * 0018 00.18 
Tinr 0 0 1 1 0030 00S1 0062 1167 0070 007 3 0100 0107 0119 0128 0131 
ttirr 0007 0037 004 0 0 0 6 1 
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TOt lG 0 0 0 * 

0110 
0010 
0121 

con 
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0037 
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SlwC.lt 0 0 2 * 
IT ICXS 0120 
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APPENDIX IV 
LISTING OF SUBROUTINE DETRND 



11TRI 2 1 . B ( J5J i « , OS/HO FORTRAR H 

COBFXUR OFI10IS • RARB* R»II ,OFT«02 , l I«BCIT-*O,SI t l«O000 l ( , 
. . . S0ORCR.BBCBIC.ROUST.ROBRCK,LOAD.RAF.ROROIT,10,TRRf 
I SI 0 9 0 2 SOBROOTXRR 0RTBRD(RTA ,OATR,TRAR,CATCH,t»CFr,f , SFFR) 

c 
c 
C A • RATRII OF DIRRRSXOR RIA»1 RX RISCOIM. QS*D IB BISQ. 
c 
C C.'TCR - XBPOT TIRR 3RRIBS VALORS. 
C 
C CORF • FRCTOR CORTAIIIRS Tilt COCFFICIMTS OF Tit* IXRVAR FTT. 
c 
C C0BF2 • ROtKIRO TRCTOR OF SARB ISBOTR AS CORF. 
C 
C OATB - TXBR 1A10BS FOR XRFOT SRRIRS. 
C 
C RISC01 • RO. OF CORFFICIRRTS OF THR LIRRAA FIT. 
C IFOR • ROR DIRBRSIOR OF RATRTX X. 
C 
C BTA • RO. OF DATA FOIRTS IR TIRR SBBIES. 
C 
C X - IIRRAR TRRRP OF TINR SRRIRS <RRRBIR CALCOLATCD ARD 
C BBTQBR10). 
c 
C XMFF • OBTRBHDBD TIRE SIBIRS (RRRRIR CAUrOlATFO ARD R1TDRRID). 
C 
C TBAR • TIRR TARIARLR (RRRBI* CAtCOLATRO). 
C 
c 
e 
c 

ISO 0 0 0 3 IBFUCIT RIAL*fl<A-R,0-tl 
I I I 0 0 0 4 OXRBBSXOR DATa<1) ,T BAR (1 ) ,CATCH< t ) ,XD IPP< 1 | , X ( 1} 
ISR 0005 CXRIRSIOR A ( » 0 1 , 3 ) , IR0R(&01) ,CORF< 10» ,T<2 , 2) ,T1 ( 2 , 2 ) .FAR «2. 2) 
XSR OOOC »XRSR3XOR CORF2(10) 

c 
c 
C IRXTXAtXSR TAL0R3. 
C 
c 

ISR 0007 RROR • «01 
XSR 0 0 0 0 RUCOl - 2 
ISR 0 0 0 9 Rt • 2 
ISR 0 0 1 0 SFFR » RLSCOL 
ISR 0 0 1 1 00 SO 1 - 1 . RI» 
ISR 0012 TBAR <I) • I - . S 
XSR 0 0 1 3 A J I . 1 ) • 1 . 0 
ISR 0014 A ( 1 . 2 ) • TBAR4D 
XSR 0 0 1 5 SO CORTIROB 

c 
c 
C CALL LBAST SOB ABBS ROOTIRB. 
C 
c 

ISB 0 0 1 * CALL SLSO (A.CATCR.ZORP.RBSID.IROR.T.TI. ifA.Rt.SCOl. RBOf, RlSCOt) 
XSR 0017 0 0 RO I - I .RtSCOl 
XSR 001B SRR > 0 . 

http://ifA.Rt.SCOl
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