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INTRODUCTION 

STATUS OF THE PEATGAS PROCESS 
By - D .  V .  Punwani 

I n s t i t u t e  of Gas Technology 

The United S t a t e s  has  t h e  l a r g e s t  pea t  r e sou rces  i n  t h e  world, a f t e r  

Russia .  The energy contained i n  t h e  U.S. pea t  r e sou rces  i s  estimated1 t o  b e  

about  1440 quads. I n  t h e  cont igous 4 8 ' s t a t e s  t h e  pkat  d e p o s i t s  a r e  gene ra l ly  

l oca t ed  i n  a r e a s  w i th  no s i g n i f i c a n t  r e sou rces  of o t h e r  f o s s i l  f u e l s .  There- 

f o r e ,  f o r  t h e  pea t - r ich  r eg ions  i n  p a r t i c u l a r ,  and f o r  t h e  n a t i o n  a s  a  whole, 

pea t  r e p r e s e n t s  a  very  important  energy r e source .  

Pea t  has  been ex tens ive ly  used i n  Europe and Russia f o r  yea r s  a s  a '  source  

of energy. Russia a lone  has  76 e l e ~ t r i c i t y ~ g e n e r a t i o n  p l a n t s  fue led  by p e a t .  

Some of t h e s e  p l a n t s  a r e  a s  l a r g e  a s  730 MW. Therefore,  Russia has  been 

ha rves t ing  pea t  commercially on l a r g e  s c a l e s .  I n  t h e  North American con t inen t ,  

even though t h e  techniques of ha rves t ing  pea t ,  f o r  h o r t i c u l t u r a l  purposes,  a r e  

t h e  same a s  those  used i n  Europe and Russia ,  t h e  s c a l e  of ope ra t ion  is  much 

smal le r .  Experimental e f f o r t s  a r e  now underway i n  t h e  U.S. by t h e  F i r s t  Colony 
2 

Farms, i n  North Caro l ina ,  wi th  t h e  o b j e c t i v e  of ha rves t ing  pea t  on a  l a r g e  s c a l e .  

The U.S. Department of Energy (DOE) i s  planning t o  fund3 e f f o r t s  i n  t h i s  a r e a .  

Pea t  d e p o s i t s  i n  t h e  U.S. occur  gene ra l ly  a t  t he  ground s u r f a c e ,  wi th  . 

very  l i t t l e  o r  no overburden. These d e p o s i t s  have an average depth of about 

7  f e e t  and a  maximum depth of on ly  about  25 f e e t .  Therefore,  pea t  ha rves t ing  

has  no s i g n i f i c a n t  problem of overburden, and land reclamation i s  e a s y . .  Cur- 

r e n t l y ,  most of t h e  pea t land  .(over 52 m i l l i o n  a c r e s )  i s  non-p roduc t ive .  Af t e r  

ha rves t ing  t h e  p e a t ,  t h e  land could be  used f o r  crop and t r e e  product ion,  

w i l d l i f e  h a b i t a t s ,  and l a k e s  and ponds f o r  f i s h  product ion.  Reclamation e f f o r t s  

i n  ~ u r o ~ e ~  a s  w e l l  a s  i n  North h e r i c a 5  have been very  s u c c e s s f u l .  Therefore,  

on an o v e r a l l  b a s i s ,  l a rge - sca l e  u t i l i z a t i o n  of pea t  should have a  p o s i t i v e  

impact on t h e  environment a s  w e l l  a s  on t h e  socio-economic system. 

I n  J u l y  1976, t h e  I n s t i t u t e  of Gas Technology s t a r t e d  working on a  pea t  

g a s i f i c a t i o n  pro,gram j o i n t l y  funded by t h e  U . S . Energy Research and Development 

Adminis t ra t ion  (now t h e  U.S. Department of Energy) and t h e  Minnesota Gas 

Company. The o b j e c t i v e  of t h i s  program i s  t o  experimental ly  o b t a i n  g a s i f i c a t i o n  

d a t a  wi th  Minnesota pea t  i n  . . l abora tory-  and process  development u n i t -  (PDU) 

s c a l e  equipment and t o  eva lua t e  t h e  economics of conver t ing  Minnesota pea t  t o  

SNG. I n  September 1978, t h e  program was modified t o  i nc lude  g a s i f i c a t i o n  t e s t s  
. . 

with  p e a t s  from Maine and North Carolina,.  
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The p e a t  g a s i f i c a t i o n  r e s u l t s  ob ta ined  wi th  Minnesota reed sedge pea t  i n  
* 

t h e  l abo ra to ry - sca l e  equipment have been r epor t ed6  ' prev ious ly .  The PEATGASTM 

Process  concept  f o r  conver t ing  pea t  t o  SNG has  a l s o  been presented p rev ious ly .  637 

The PEATGAS r e a c t o r  concept i nco rpora t e s  s ing le - s t age  short-residence-t ime 

h y d r o g a s i f i c a t i o n  i n  d i lu te -phase  cocu r ren t  con tac t ing ,  followed by a  f l u i d i z e d -  

bed cha r  g a s i f i c a t i o n  wi th  steam and oxygen, a s  shown i n  F igu re  1. 

This  paper p r e s e n t s  some of t h e  r e s u l t s  of t h e  PDU-scale hydrogas i f i ca t ion  

and char  g a s i f i c a t i o r l  t e s t s  w i th  Minnesota pea t , '  q u a n t i t a t i v e  k i n e t i c  d e s c r i p t i o n s  

f o r  t h e  g a s i f i c a t i o n  of Minnesota p e a t ,  and a  pre l iminary  process  des ign  f o r  
9  conve r t ing  Minnesota pea t  t o  250 X 10  Btu/day of SNG by t h e  PEATGAS Process .  

PDU-SCALE HYDROGASIFICATION TESTS 

A f t e r  completing l abo ra to ry - sca l e  hydrogas i f i ca t ion  t e s t s ,  PDU-scale t e s t s  

were i n i t i a t e d  i n  August 1977 w i t h  Minnesota p e a t .  The tests wi th  t h i s  pea t  

a r e  now e s s e n t i a l l y  complete and work has  been i n i t i a t e d  wi th  North Caro l ina  

pea t .  The primary o b j e c t i v e  of conduct ing PDU-scale t e s t s  was to ' de t e rmine  

t h e  e f f e c t s  of i n i t i a l  scale-up from the  labora tory-sca le  equipment. Therefore,  

t h e  gas - so l id s  con tac t ing  i n  both  t h e  labora tory-  and PDU-scale r e a c t o r s  was 

cocu r ren t  and i n  d i l u t e  phase. The hydrogas i f i ca t ion  PDU r e p r e s e n t s  a  scale-up 

of about  250 times t h e  l abo ra to ry - sca l e  h y d r o g a s i f i e r .  The t e s t s  i n  t h e  

l abo ra to ry - sca l e  equipment were conducted wi th  hydrogen and/or  helium, whereas 

t h e  tests i n  t h e  PDU were conducted wi th  hydrogen, steam-hydrogen, and s y n t h e s i s  

gas .  The PDU t e s t  r e s u l t s  a r e  i n  ve ry  good agreement w i th  t h e  r e s u l t s  obtained 

i n  t h e  l abo ra to ry - sca l e  equipment. 

Equipment 

A b lock  flow diagram of t h e  t e s t  equipment cons t ruc ted  f o r  t h i s  s tudy  

is  shown i n  F igure  2 .  The equipment i s  designed t o  o p e r a t e  a t  temperatures  and 

p r e s s u r e s  a s  high a s  1 6 0 0 ~ ~  and 1000 p s i g ,  r e s p e c t i v e l y .  The main component 

"of t h e  equipment i s  a h e l i c a l l y  c o i l e d  d i lu te -phase  t r a n s p o r t  r e a c t o r  made from 

160 f e e t  of 1-inch Schedule-160 s t a i n l e s s - s t e e l  p ipe .  The c o i l  i s  about  1 5  

inches  i n  diameter  and has  a  v e r t i c a l  he igh t  of about  10 .5  f e e t .  The r e a c t o r  

is  hea ted  by a  s e t  of two r a d i a t i v e  h e a t i n g  elements .  F ive  thermocouples a r e  

used f o r  monitor ing t h e  temperature p r o f i l e  i n  t h e  r e a c t o r .  

* The I n s t i t u t e  of Gas Technology o f f e r s  PFATGAS r e s e a r c h  and development, 
engineer ing ,  t e c h n i c a l ,  and educa t iona l  s e r v i c e s  r e l a t i n g  t o  t h e  PEATGAS 
Process .  
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Figure 1. SCHEMATIC DIAGRAM.OF THE PEATGAS REACTOR 
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F i g u r e  2. BLOCK FLOW DIAGRAFI FOR THE LIFT-LINE REACTOR TEST EQUIPMENT 



A l l  t h e  feed  gases ,  a f t e r  mixing, go through a supe rhea t e r  be fo re  en t r a in -  

ing  t h e  s o l i d s  and e n t e r i n g  t h e  r e a c t o r .  Pea t  i s  fed  by a screw feede r  i n t o  

a t r a n s f e r  l i n e ,  where i t  is  en t r a ined  by t h e  superheated feed  gases ,  and t h e  

mixture  f lows through t h e  r e a c t o r .  

Downstream of t h e  r e a c t o r ,  produ.ct gases  and pea t  char  f low through a 

cyclone where most of t h e  char  i s  separa ted  from t h e  gases  and flows down t o  

t h e  bo t tom. rece ive r  dur ing  t h e  nonsteady-state  per iod and t o  t he  top  r e c e i v e r  

dur ing  t h e  s t eady  s t a t e .  Downstream of t h e  cyclone,  t h e  product gas  flows 

through t h e  s o l i d s  f i l t e r ,  then '  through t h e  condenser and t h e  knoclcout po t s .  

An on-.line i n f r a r e d  ana lyze r  is used t o  measure t h e  hydrocarbon con ten t  of 

t h e  product gas  and tb h e l p  i d e n t i f y  t h e  s t eady- s t a t e  per iod .  Gas is also 
, 

c o l l e c t e d  ingas - sample  ho lde r s  t o  e s t a b l i s h  ave rage .gas  composition over a ' 

predetermined t ime per iod  . 
Resu l t s  and Discussion 

The t y p i c a l  proximate and u l t i m a t e  ana lyses  of t h e  Minnesota pea t  used 

i n  t h e  27 tests conducted wi th  t h i s  pea t  i n  t h e  c u r r e n t  s tudy ,  and t h e ,  ope ra t ing  . .' 
. . 

ranges  covered i n  t h e  PDU g a s i f i e r s . a r e  shown i n ' T a b l e s  1 and 2 ,  r e s p e c t i v e l y .  

F igure  3 shows t h e  q u a l i t a t i v e  model developed f o r  t h e  i n i t i a l  hydro- 

g a s i f i c a t i o n  of pea t .  It shows t h a t  t h e  products  of primary d e v o l a t i l i z a t i o n ,  

due t o  t h e  a p p l i c a t i o n  of h e a t  a lone ,  c o n s i s t . o f  l i g h t  hydrocarbon gases  

(p r imar i ly  methane and e thane  p l u s  e thy lene ) ,  carbon oxides  (carbon monoxide 

p lus  carbon d iox ide ) ,  hydrocarbdn l i q u i d s  (C3 and h i g h e r ) ,  wa te r ,  and a c t i v e  

char,which con ta ins  base carbon ( t h e  non-vola t i le  carbon) .  The presence of 

hydrogen dur ing  d e v o l a t i l i z a t i o n  l e a d s  t o  s e v e r a l  secondary hydrogenation 

r e a c t i o n s  which i n c r e a s e  t h e  y i e l d s  of l i g h t  hydrocarbon gases  and benzene 

and decrease  t h e  y i e l d s  of o i l s  and cha r .  By analogy wi th  t h e  behavior  of 

bituminous c o a l s ,  i t  is assumed t h a t  i n  t h e  presence of hydrogen, even though 

t h e  p roduc t ,  d i s t r i b u t i A n  may d i f f e r ,  t h e  q u a n t i t y  of v o l a t i l e  matter evolved 

remains t h e  same a s  i n  a n  i n e r t  atmosphere. The q u a n t i t a t i v e  d e t a i l s  of tee 
hydrogas i f i ca t ion  model were p re sen ted8-a t  t h e  r e c e n t  ACS meeting i n  Miami. 

Some of t h e  h i g h l i g h t s  a r e  presented here .  



Table 1. TYPICAL ANALYSES OF THE MINNESOTA PEAT 
USED IN THE HYDROGASIFICATION STUDIES 

Process Develupn~en t 
Proximate Analysis, wt % Unit 

Moisture 
Volatile Matter 
Fixed Carbon 
Ash 

Total 

Ultimate Analysis, wt % (dry) 

Carbon 
Hydrogen 
Nitrogen 
Oxygen 
Sulfur 
Ash 15.68 

Total 100.00 

Average Feed Peat Particle 
Size, inch 
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T a b l e  2.  RANGE OF OPERATING CONDITIONS USED 
FOR PEAT HYDROGASIFICATION TESTS 

P r o c e s s  Development 
U n i t  

P e a t  Feed Rate, l b / h r  5-12.5 

Feed Gases H2,  H -H 0 ,  S y n t h e s i s  Gas* 2 2 

Hydrogen P a r t i a l  P r e s s u r e ,  a t m  4.3-36 

0 .  
Maximum Temperature,  F 1000-1500 

Gas Flow Rate ,  SCF/hr 400-1030 

Rcsidcnce Timc, sec 3-22 

* 
Component CO 

C02 H2 CH4 H2° 

Mole % 1 3 . 3  1 9 . 3  28.2 0 .9  38.3 

7 
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P R I M A R Y  . SECONDARY HYDROGENATION- 
D ~ V O L A T I L I Z A T I O N  
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~ i ~ u r e  3 .  QUALITATIVE MODEL. FOR INITIAL PEAT HYDROGASIFICATION 

LIGHT HYDROCARBON GASES 

BENZENE 

LIGHT HYDROCARBON GASES 

PEAT O f  L S  

I +H, ACTIVE .CHAR I 
-. (Cl and C2)  

CHAR 



The r e s u l t s  show t h a t  t h e  y i e l d  of l i g h t  hydrocarbon . . gases  (C1 and C2) 

dur ing  primary d e v o l a t i l i z a t i o n  a t  temperatures  above 1 0 0 0 ~ ~  is  only  about  1% 

t o  4% of t h e  feed  carbon i n  p e a t ,  which is  comparable w i th  t h e  va lues  repor ted  

f o r  l i g n i t e s  and h igher  ranked c o a l s .  The u l t i m a t e  y i e l d  of hydrocarbon 
0 l i q u i d s ,  inc luding  C is  achieved a t  temperatures  above 1000 F. Upon comple- 

3 ' 
t i o n  of primary d e v o l a t i l i z a t i o n  about  35% of t h e  feed  carbon is  p re sen t  i n  

t h e s e  hydrocarbon l i q u i d s .  The l i m i t i n g  y i e l d  of a c t i v e  cha r ,  which .conta ins  

t h e  n o n v o l a t i l e  carbon, is  about  48% of t h e  t o t a l  feed carbon i n  pea t  and i s  
0 - .  

achieved a t  temperatures  above 1300 F. 

I n  t h e  presence of hydrogen, t h e  major secondary hydrogenation r e a c t i o n s  

involve  t h e  conversion of hydrocarbon l i q u i d s  .and n o n v o l a t i l e  carbon i n  t h e  

a c t i v e  char  t o  l i g h t  hydrocarbon gases .  I n  t h e  PDU t e s t s ,  t h e  y i e l d  of l i g h t  

hydrocarbon gases  from hydrogenation of hydrocarbon l i q u i d s  a t  temperatures  

above 1 3 5 0 ' ~  averaged about 20% of t h e  feed carbon (about 57% of t h e  t o t a l  

carbon j n  t h e  hydrocarbon l i q u i d s )  wi th  no evidence of a hydrogen p re s su re  

e f f e c t  over t h e  4 t o  70-atmosphere range.  The e f f e c t  of temperature on t h e  

hydrogenat ion of hydrocarbon l i q u i d S  is shown i n  F igure  4.. The appa ren t ly  
0 

r ap id  change between 1200 and 1 4 0 0 ~ ~  i n d i c a t e s  a very  high energy of a c t i -  

: v a t i o n  and imp l i e s  t h i s  r e a c t i o n  is complete w i t h i n  a couple of seconds a t  

1 4 0 0 ~ ~ .  It is t h e  unique f e a t u r e  of pea t  t h a t  t h e  amount o f '  l i g h t  hydrocarbon 

gases  produced from the'  secondary hydrogenation l i q u i d s  T s  from"5 t o  10 times 

as much as t h a t  produced during primary d e v o l a t i l i z a t i o n .  I n  t h e  c a s e  of 

o t h e r  c o a l s ,  t h e  r a t i o  i s  about  1 :.' 
During secondary hydrogenation, l i g h t  hydrocarbon gases  a r e  a l s o  formed 

by t h e  a d d i t i o n a l  conversion of n o n v o l a t i l e  carbon ( r e f e r r e d  t o  a s  base .carbon)  

which would, i n  a n  i n e r t  atmosphere, completely go t o  cha r ;  i n  hydrogen, . 

however, by competing pa ths ,  t h i s  base  carbon can  go t o  l i g h t  hydrocarbon 

o r  t o  cha r .  The product of t h i s  char-hydrogen r e a c t i o n  has  b e e n ' r e f k r r e d  
10 

t o  ' a s  t h e  r a p i d - r a t e  methane. 

The u l t i m a t e  y i e l d  of hydrocarbon gases  by t h e  r a p i d - r a t e  r e a c t i o n ,  a s  

w i th  t h e  bituminous and l i g n i t e  c o a l s ,  is  .a l so  hydrogen-pressure-d.ependent. 

The rate of i t s  formation a l s o  a p p e a r s . t o  be.dependent  on hydrogen p re s su re .  

The l i m i t i n g  r ap id - r a t e  hydrocarbon y i e l d ,  based on runs  a t  s u f f i c i e n t l y  

h igh  temperatures ,  is  shown i n  F igu re '  5. . . . 

9 
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F i g u r e  4 .  HYDROCARBON PRODUCTION I N  HYDROGEN 

20- 
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HYDROGEN PRESSURE, otm ~ f e 0 6 ~ 8 6  

F i g u r e  5. EFFECT OF HYDROGEN PRESSUKE ON THE ULTIMATE 
RAPID-RATE HYDROCARBON GAS YIELDS ABOVE 1300 F 

HYDROGASIFICATION TEMPERATURE, OR 

0 CONSTANT HEAT-UP 0 0 
. A 

A ISOTHERMAL 
0 
0 

8 

- 

0 

A 

0-  
A A 

* 1 I I 
I200 1400 I600  I 8 0 0  

I N S T I T U T E  0 F G A S  T E C H N O L O G Y  

2 0 0 0  



A mathematical k i n e t i c  model has  been e s t a b l i s h e d  f o r  t h e  l abo ra to ry  and 

PDU d a t a ' t o  p r e d i c t  product  d i s t r i b u t i o n  f o r  pea t  g a s i f i c a t i o n .  A comparison 

of t h e  c a l c u l a t e d  y i e l d s  w i th  t h e  measured va lues  of l i g h t  hydrocarbons i s  

shown i n  F igure  6. Except f o r  t h e  lowest  po in t ,  t h e  temperatures  a r e  su f -  

f i c i e n t l y  h igh  t h a t  t h e  range of y i e l d s  is  p r imar i ly  due t o  v a r i a t i o n  i n  

hydrogen p a r t i a l  p r e s s u r e  and i t s  e f f e c t  on u l t i m a t e  r ap id - r a t e  hydrocarbon 

gas  y i e l d .  

An a d d i t i o n a l  r e a c t i o n  t h a t  can b e '  foilowed i n  t h e  PDU is  t h e  formation 

of benzene from t h e  primary l i q u i d  products .  The u l t i m a t e  benzene product ion  

a s  a func t ion  of t h e  hydrogen p a r t i a l  p re s su re  i s  shown i n  F igure  7 .  It i s  

based on the  assumption t h a t  above 1 4 0 0 ' ~  t h i s  r e a c t i o n  is  complete.  Where 

t h e  temperature i s  nonuniform, a n  e f f e c t i v e  k i n e t i c  temperature based on an  

a c t i v a t i o n  energy of 60,000 Btulmole and a f i r s t - o r d e r  r a t e  l a w  was used.  An 

e s t ima te  of t h e  e f f e c t  of temperature on benzene y i e l d  is  presented  i n  F igure  8 .  

PDU-SCALE CHAR GASIFICATION TESTS 

The r e s u l t s  of l abo ra to ry - sca l e  g a s i f i c a t i o n  t e s t s  conducted i n  a thermo- 

ba lance  wi th  char  from Minnesota pea t  have been r epor t ed  previous ly .  7711 The 

thermobalance t e s t s  were conducted wi th  samples of a few grams. S imi la r  

t e s t s  have been s u c c e s s f u l l y  used12 f o r  developing d i f f e r e n t i a l  k i n e t i c  

equat ions  f o r  c o a l  c h a r s .  

These k i n e t i c  equat ions  a r e  u s e f u l  i n  developing k i n e t i c  models f o r  char  

g a s i f i c a t i o n  i n  i n t e g r a l  r e a c t o r s .  The model f o r  t h e  i n t e g r a l  r e a c t o r s  would 

vary  depending upon t h e  r e a c t o r  system. Since t h e  PEATGAS r e a c t o r  i nco rpora t e s  . . 

a f luidized-bed char  - .  g a s i f i e r  , t h e  PDU-scale . . .. t e s t s  ,were ,conducted i n  a f l u i d i z e d -  

bed us ing  steam and oxygen. The t e s t s  w i th  Minnesota pea t  char  have been 

completed, and t e s t s  have been i n i t i a t e d  wi th  char  from North Caro l ina  pea t .  

Subsequently,  t e s t s  w i l l  b e  conducted wi th  char  from Maine p e a t .  I n  a d d i t i o n  
. . 

t o  ob ta in ing  k i n e t i c  d a t a ,  t h e  PDU tests. w e r e  a l s o  used t o  o b t a i n  s i n t e r i n g  
. . . . . . 

r e l a t e d  information.  

Equipment 

The equipment used f o r  t h e  char  g a s i f i c a t i o n  t e s t s  was t h e  same used 

previously13 f o r  g a s i f i c a t i o n  t e s t s  w i th  c o a l  cha r s .  A c ros s - sec t iona l  view 

of t h e  r e a c t o r  used i n  t h e  t e s t  program i s  shown i n  F igure  9 .  The upper 

s e c t i o n  of t h e  r e a c t o r  was expanded t o  a diameter  of 16  inches  t o  minimize 
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CALCULATED TOTAL LIGHT HYDROCARBON GAS YIELD, 9. of feed corbon 

F i g u r e  6 .  COMPARISON OF EXPERIMENTAL AND CALCULATED LIGHT 
HYDROCARBON GAS YIELDS FROM THE 0 . 8 - I N C H  COILED-TUBE REACTOR STUDIES 

12 

I N S T I T U T E  0 F G A S  T E C H N O L O G Y  



. . . . 

. . . . 

Figure 7. EFFECT OF HYDROGEN PARTIAL'PRESSURE ON THE 
ULTIMATE BENZENE YIELD ABOVE 1300'~ 
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Figure 8. EFFECT OF HYDROGASIFICATION TEMPERATURE ON BENZENE YIELD 
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f i n e s  carry-over.  Twenty-two thermocouples were loca t ed  a long  t h e  tube  w a l l  

and s i x  i n s i d e  t h e  thermowell t o  o b t a i n  temperature p r o f i l e s  i n  t h e  f l u i d i z e d  

bed. 

The char  r equ i r ed  f o r  t h e  g a s i f i c a t i o n  t e s t s  was prepared by d e v o l a t i l -  

i z i n g  pea t  i n  a 10-inch-diameter f luidized-bed r e a c t o r  by us ing  n i t rogen  a t  

about  1 0 0 0 ~ ~ .  The char  w a s  f ed  t o  t h e  r e a c t o r  i n  a free-board above t h e  bed 

and i t s  feed  r a t e  was maintained a t  a s teady  r a t e  by a screw feeder  l oca t ed  

a t  t h e  bottom of a n  unheated, p re s su r i zed  hopper which contained enough char  

f o r  a n  8-hour t e s t .  Bed h e i g h t  was c o n t r o l l e d  by manual adjustment  of another  

screw f e e d e r ,  which de l ive red  t h e  r e a c t o r  char  t o  a p re s su r i zed  s o l i d s  

r e c e i v e r .  This  f eede r  was manually c o n t r o l l e d  t o  main ta in  t h e  bed a t  t h e  

d e s i r e d  l e v e l ,  a s  i nd ica t ed  by a r a d i a t i o n  gage. 

I n  many runs ,  oxygen flow was purposely increased  u n t i l  s i n t e r i n g  occurred 

i n  t h e  f l u i d i z e d  bed. S i n t e r i n g  was noted by sharp  temperature i nc reases  i n  

t h e  bed. This  type  of o p e r a t i o n  pinpointed t h e  i n i t i a t i o n  of s i n t e r i n g  a t  

t h e  p a r t i c u l a r  f l u i d i z a t i o n  v e l o c i t y  and temperature used.  Af t e r  shutdown, 

s o l i d s  samples were obta ined  from t h e  top  of t h e  r e s i d u e  r e c e i v e r  and t h e  

r e a c t o r  bed, s i n c e  t h e s e  represented  s t eady- s t a t e  samples. 

R e s u l t s  and Discussion 

~ i n e t e ' e n  t e s t s  have been conducted covering a wide range of ope ra t ing  

cond i t i ons  a s  shown i n  Table 3 .  Carbon conversions up t o  97 percent  of t h e  

feed  carbon i n  t h e  char  have been achieved.  

S ince  t h e  g a s i f i c a t i o n  c h a r a c t e r i s t i c s  of t h e  char  depend upon t h e  tempera- 

t u r e  and on the  type  of gases  p re sen t  dur ing  d e v o l a t i l i z a t i o n ,  t e s t s  were con- 

ducted i n  a thermobalance t o  e v a l u a t e  t h e  g a s i f i c a t i o n  c h a r a c t e r i s t i c s  of t h e  

cha r  produced by d e v o l a t i l i z i n g  pea t  i n  n i t rogen  a t  1 0 0 0 ~ ~ .  It was determined 

t h a t  t h i s  char  behaves very  s i m i l a r l y  t o  t h e  char  d e v o l a t i l i z e d  i n  hydrogen a t  

1 5 0 0 ' ~  and then  cooled down t o  ambient cond i t i ons .  However, t he  r e a c t i v i t y  of 

bo th  of t h e s e  cha r s  i s  lower than  t h e  char  d e v o l a t i l i z e d  i n  hydrogen a t  1500°F 

and then  gas i f i ed ,wi thou t  coo l ing  t o  t h e  ambient cond i t i ons ,  a s  w i l l  b e  t h e  

c a s e  i n  an  i n t e g r a t e d  PEATGAS r e a c t o r .  A comparison of t h e  r e s u l t s  ob ta ined  

i n  thermobalance t e s t s  w i th  t h e  t h r e e  cha r s  i s  shown i n  F igure  10 .  Therefore,  

as long a s  proper r e a c t i v i t i e s  a r e  used i n  ana lyz ing  t h e  f luidized-bed char  

g a s i f i c a t i o n  d a t a ,  i t  i s  n o t  e s s e n t i a l  t o  supply hydrogas i f ied  char  f o r  char  

g a s i f i c a t i o n  t e s t s  i n  t h e  PDU. 

16  
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Table 3 .  OPERATING RANGES (MINNESOTA PEAT) 
FLUIDIZED-BED GASIFICATION TESTS I N  PDU 

TYPES. OF FEED: RAW AND CHAR 

~ e a t / ~ h a r  Feed Rate,  l b l h r  
. .  . 

. . 

FEED GASES:' STEAM AND OXYGEN 

. T o t a l  P re s su re ,  p s i a .  

SteamICarbon Feed Ra t io ,  mol/mol 

F l u i d i z a t i o n  Veloc i ty ,  f t / s  
. . 

0 
,Jvlaximurn Bed ~ e m ~ e r a t & e ,  F 

Carbon Conversions, % of t o t a l  feed. ' 

Bed Ash Content,  w t  % 
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. . .  

D e v o l a t i l i z a t i o n  
Atmosphere, 

Temp , 
~ u n  No. Mol % OF 

- PT-31 50 H2-50 H20 1500 
0 PC-20 100 N 2 ,  1000 
A L L - I 1  100 H2 1400 

0 8 16 2 4 3 2 40 4 8 5 6 6 4 

Time, min 

F igu re  10 .  A COMPARISON OF THE GASIFICATION RATES OF PEAT 
AND PEAT CHARS AT 1 5 0 0 ~ ~  I N  A STEAM AND HYDROGEN MIXTURE 

(H20/H2 = 1) AND A TOTAL PRESSURE OF 515 PSIA 
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I n  o rde r  t o  apply t h e  k i n e t i c  equat ions  developed e a r l i e r ,  on t h e  b a s i s  

of t h e  thermobalance t e s t s ,  t o  t h e  f luidized-bed PDU t e s t s ,  some assumptions. 
14 

have t o  be  made about  t h e  gas-so l id  mixing modes. I n  IGT's prev ious  s t u d i e s  

wi th  g a s i f i c a t i o n  of c o a l  c h a r s  i n  a f l u i d i z e d  bed, s a t i s f a c t o r y  r e s u l t s  were 

obta ined  by assuming complete backmixing of t h e  gas  and . s o l i d s  i n  t h e  r e a c t o r .  

A t y p i c a l  comparison of t h e  c a l c u l a t e d  and t h e  expe r ihen ta l  y i e l d s  achieved 

i n  some of t h e  PDU tests i s  shown i n  Table 4 .  It shows t h a t  t h e  k i n e t i c  model 

developed f o r  t h e  f luidized-bed g a s i f i c a t i o n  of p e a t  char  p r e d i c t s  t h e  exper i -  

mental y i e l d s  of methane .and carbon oxides  ve ry  well.. However, t h e  c a l c u l a t e d  

y i e l d s  of hydrogen a r e  lower t,han those  obta ined  exper imenta l ly .  

The e f f e c t s  of temperature and f l u i d i z a t i o n  v e l o c i t y  on s i n t e r i n g  

c h a r a c t e r i s t i c s  of pea t  char  a r e  shown i n  F igure  11. The r eg ions  above and 

below t h e  shaded band r e p r e s e n t  t h e  r eg ions  of s i n t e r i n g  and s i n t e r - f r e e  

ope ra t ions ,  r e s p e c t i v e l y .  F igure  11 shows t h a t  i n  o r d e r  t o  achieve  s i n t e r - f r e e  

ope ra t ion  a t  a  p a r t i c u l a r  temperature i n  a f l u i d i z e d  bed w i t h  steam and oxygen, 

a  c e r t a i n  minimum f l u i d i z a t i o n  v e l o c i t y  must be  maintained.  This  minimum 

des ign  v e l o c i t y  can be  obta ined  from Figure  11 corresponding t o  any tempera- 

t u r e  i n  t h e  range  of 1 7 0 0 ~   to 1950'~.  S imi la r  des ign  curves  have been developed 
1 3  

f o r  g a s i f i c a t i o n  of c o a l  char  i n  f l u i d i z e d  beds wi th  steam and oxygen. 

PROCESS DESIGN 

A process  des ign  has  been completed f o r  product ion  of 250 b i l l i o n  Btu 

per  day of SNG from Minnesota p e a t .  The reason f o r  s e l e c t i n g  t h i s  p l a n t  
16  

s i z e  is  t h a t  i t  has been used i n  t h e  p a s t  f o r  eva lua t ing  v a r i o u s  c o a l  gas i -  

f i c a t i o n  processes .  The b a s i c  flow.scheme is  very  s i m i l a r  t o  a  c o a l  g a s i f i -  

c a t i o n  p l a n t .  D e t a i l s  of t h e  process  des ign  have been r epor t ed  e a r l i e r .  
1 5  

The r e a c t o r  ope ra t ing  cond i t i ons ,  s e l e c t e d  f o r  completing t h e  prel imin-  

a r y  process  des ign  f o r  conver t ing  pea t  t o  SNG by t h e  PEATGAS Process ,  c o n s i s t  
0 

of 500 ps ig  p re s su re ,  1 7 0 0 ' ~  char  g a s i f i e r  temperature,  and .440 F pea t  d rye r  

temperature.  Ma te r i a l  and energy ba lance  c a l c u l a t i o n s  a s  w e l l  a s  r e a c t i o n  kin- 
0 

e t i c  and thermodynamic cons ide ra t ions  y i e l d  a  hydrogas i f i e r  temperature of 1475 F. 

F i f t y  percent  mois ture  con ten t  pea t  is rece ived  i n t o  t h e  p l a n t .  Af te r  

g r ind ing  and screening ,  pea t  i s  t r a n s f e r r e d  t o  lockhoppers used f o r  feeding  

t h e  pea t  i n t o  t h e  h igh  p re s su re  PEATGAS r e a c t o r  a t  500 p s i g .  With 50% mois ture  

content  p e a t ,  t h e  lockhopper feed  system a t  500 p s i g  is  p r e f e r r e d  t o  a s l u r r y  

feed  system because t h e  lockhopper feed  system e l imina te s  t h e  need f o r  e x t e r n a l  
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Table 4. COMPARISON OF EXPERIMENTAL AND CALCULATED C W  GASIFICATION RESULTS 

Run No. PSO-6 

Operat ing Condit ions 

0 '  
Temperature, F 1 7  10 
P re s su re ,  p s i a  380 
F l u i d i z a t i o n  

Veloc i ty ,  f t / s  0.78 
S t  eam/ Car-~on 

Rat io ,  mol/mol 3.32 

Experimental Calcu la ted  Measured Calcu la ted  Measured Calculated 

Product Yie lds ,  % of 
feed  carbon 

Methane 5.7 7.2 6.9 6.7 5.3 6.8 
Carbon Dioxide 59 .O 57.2 60.6 60.6 63.8 63.2 
Carbon Monoxide 23.2 23.2 20 .O 20.2 27.5 27.5 

Hydrogen, SCF/mol 
carbon , 257.9 215.0 307.9 222.6 344.8 237.1 



NO SINTER 

0.50 0.60 0.70 0.80 0.90 1 .OO 

FLUIDIZATION VELOCITY (Vp ) ,  f t / s  

F i g u r e  11. EFFECTS OF TEMPERATURE AND GAS VELOCITY 
ON SINTERING WITH MINNESOTA PEAT 
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d r y e r s .  Also, t h e  raw gas  from t h e  PEATGAS r e a c t o r  can  go d i r e c t l y  i n t o  t h e  

CO-shift r e a c t o r  - e l imina t ing  t h e  need f o r  t h e  sh i f t - s team.  I n  a s l u r r y  feed  

system, pea t  would have t o  b e  d r i e d  t o  about  10% mois ture  and then  s l u r r i e d  

w i t h  about  67% o i l .  Downstream of t h e  PEATGAS r e a c t o r  o i l  would have t o  be  

condensed o u t ,  and mixed wi th  a d d i t i o n a l  steam be fo re  e n t e r i n g  t h e  s h i f t  

r e a c t o r .  Our pre l iminary  eva lua t ion  i n d i c a t e s  t h a t  t h e  advantages of t h e  lock- 

hopper system overweigh i t s  d isadvantages  of h igher  equipment c o s t  and h igher  

compression energy requirements  . 
A comparison of feed  requirements  and by-products f o r  t h e  PEATGAS Process  

w i t h  some of t h e  c o a l  g a s i f i c a t i o n  processes  f o r  weskrrn c o a l  is  shown i n  

Table 5.  The information about  t h e  c o a l  g a s i f i c a t i o n  processes  was obtained 

from publ i shed  r e p o r t s .  16'17 The PEATGAS p l a n t  r e q u i r e s  a t o t a l  of about  

56,300 tons  per  day of "as rece ived"  pea t  conta in ing  50% mois ture .  Of t h a t  

p e a t ,  78% i s  g a s i f i e d  and 22% i s  used a s  b o i l e r  f u e l .  The p l a n t  r e q u i r e s  

1,506,140 l b / h r  of process  steam and 3914 tons  of oxygen (commercial g rade ,  

98% p u r i t y )  on a d a i l y  b a s i s .  These steam requirements  a r e  w i t h i n  t h e  range 

of 1,016,000 and 1,670,000 l b / h r  steam requirements  f o r  an  equ iva l en t  s i z e  

wes tern  subbituminous c o a l  g a s i f i c a t i o n  p l a n t  f o r  SNG product ion a s  shown i n  

Table 5 .  The oxygen requirements  of t h e  PEATGAS Process  a r e  lower than  those  

of t h e  c o a l  g a s i f i c a t i o n  processes ,  except  t h e  HYGAS@ Process .  The d a i l y  

y i e l d  of u s e f u l  by-products from t h e  peat-to-SNG p l a n t  a r e  about  136,000 ga l luns  

of benzene, 6680 b a r r e l s  of f u e l  o i l ,  565 tons  of anhydrous ammonia, and 52 

long  tons  of s i l l fu r .  Compared t o  g a s i f i c a t i o n  p l a n t s  based on a western 

subbituminous c o a l ,  pea t  g a s i f i c a t i o n  by t h e  PEATGAS Process  produces l a r g e r  

amounts of anhydrous ammonia and lower y i e l d s  of s u l f u r .  This  i s  because of 

t h e  h igh  n i t rogen  and low s u l f u r  con ten t s  of pea t .  The energy content  of t h e  

by-products i n  t h e  PEATGAS p l a n t  i s  70 b i l l i o n  Btu. The t o t a l  f u e l  (SNG, 

benzene and f u e l  o i l )  ou tput  of t h e  p l a n t  i s  about 309 b i l l i o n  Btu per  day. 

An o v e r a l l  energy d i s t r i b u t i o n  around t h e  e n t i r e  pea t  g a s i f i c a t i o n  com- 

p l ex  is  summarized i n  F igure  12 .  It shows t h a t  t h e  o v e r a l l  thermal e f f i c i e n c y  

of t h e  process  is  67% and t h a h o f  t h e  t o t a l  energy inpu t  t o  t h e  pea t  g a s i f i -  

c a t i o n  complex, 52.4% i s  converted t o  SNG and 12.2% i s  converted t o  l i q u i d  

hydrocarbons (benzene and f u e l  o i l ) .  
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Table  5. 'MW MATERIALS AND P~RODUCTSFOR NOMINAL 250 X l o 9  BTUIDAY SNG PLANT 

PROCESS : P EATGAS . WGAS BI-GAS SY NTHANE LURGI 
. . 1 - Raw Mate r i a l  Pea t  .Montana Subbituminous Coal 

Moisture Content of Raw Mate r i a l ,  w t %  50 22 

Feed Requirements (d ry ) ,  tonslday A2 Y 3 B2,4 

Process  21,951.3 13,629.6 13,870.8 21,733.2 19,031 15,163.2 

Fuel  

To ta l  

Oxygen (98%), tonslday 3,914 .O 2,954.4 5,892.0 6,127.2 8,229 4,860.0 

Steam, l b / h r  

Process  Makeup Water, gpm . 2,060 1,906 2,156 . , 2,009 12,800 2,434 

BY-PRODUCTS 
c , . 

Liquid Fuels ,  bb l lday  ' ' 9,919= 4,594 -- 4,286 -- 9,411 

Ammonia, tonslday 565 88.8 92.4 86.4 180 140.4 

S u l f u r ,  long tonslday 52 88.9 - 96.4 112.5 155 85.7 

Export Power, kW -- -- -- -- -- 128,190 

Export Char, tonslday -- -- -- -- 1,277 - - 

z 1 )  Coal g a s i f i c a t i o n  d a t a  f o r  va r ious  processes  taken from "Factored Est imates  f o r  Western Coal: Commer- 
o c i a l  Concepts In te r im Report," prepared by C .  F.  Braun f o r  ERDA, October 1976. ~ 
r 2) Weiss, A.  J . ,  "The Synthane Process:  A Technical and Economic Assessment," paper presented a t  t h e  Miami 

I n t e r n a t i o n a l  Conference on A l t e r n a t i v e  Energy Scurces,  Miami, December.1977. 

l o  3) Coal feed  i n j e c t i o n  i n  f reeboard .  
I *  4) Coal feed  i n j e c t i o n  i n  deep bed. 
I 

5) Inc ludes  benzene. 
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Figure 1 2 .  ENERGY DISTRIBUTION FOR THE PEATGAS REACTOR 
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A comparison of t h e  sources  of methane and o v e r a l l  p l a n t  thermal 

e f f i c i e n c y  f o r  t h e  PEATGAS Process  wi th  those  f o r  some of t h e  c o a l  g a s i f i c a t i o n  

processes  is  shown i n  Table 6 .  I n  t h e  PEATGAS Process ,  78% of t h e  t o t a l  methane 

produced i n  t h e  p l a n t  is  made i n  t he  g a s i f i e r  and only 22% of t h e  methane has  

t o  be  made by c a t a l y t i c  methanation of carbon monoxide and hydrogen. I n  com- 

pa r i son ,  c o a l  g a s i f i c a t i o n  processes  r e q u i r e  h igher  percentages ,  31-74%, 

of t h e  methane t o  b e  made by c a t a l y t i c  methanation. High methane formation i n  

t h e  PEATGAS r e a c t o r  f a v o r s  h igher  o v e r a l l  thermal e f f i c i e n c y  of t h e  process .  

SUMMARY 4 

G a s i f i c a t i o n  tests w i t h  a Minnesota reed  sedge pea t  have been completed 

i n  l abo ra to ry - sca l e  a s  w e l l  a s  i n  PDU-scale equipment. ,The t e s t s  i n '  t h e  

PDU-scale equipment, which r e p r e s e n t  a scale-up of 250 t imes t h e  , laboratory-  

s c a l e  equipment, confirm t h e  r e s u l t s  ob ta ined  i n  t h e  l abo ra to ry - sca l e  equip- 

ment. The PEATGAS Process  f o r  conver t ing  pea t  t o  SNG is  thus  ready f o r  t h e  

next  l o g i c a l '  s t e p  i n  i t s  deirelopmeht - l a rge - sca l e  p i l o t - p l a n t  t e s t i n g .  

A mathematical model t h a t  d e s c r i b e s  t h e  k i n e t i c s  of t h e  Minnesota pea t  , 

has  been developed f o r  t h e  PFATGAS Process .  A complete process  des ign '  has  been 

prepared for a pre l iminary  base  c a s e  f o r  producing 250 X 10' ~ t u l d a y  of SNG 

, . from t h e  Minnesota pea t  (conta in ing  50 percent  mois ture  c o n t e n t ) .  The p l a n t  

thermal e f f i c i e n c y  of t h i s  process '  i s  es t imated  t o  b e  67 pe rcen t .  

Process  economics f o r  t h e  completed base-case process  des ign  a s  w e l l  a s  

s e v e r a l  modified des igns  w i l l  b e  eva lua ted .   he l abora to ry - sca l e  a s  w e l l  a s  

t h e  PDU-scale t e s t s  w i th  t h e  p e a t s  from North Carof'ina and Maine w i l l  b e  

completed. 
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Table 6.  COMPARISON OE METMNE SOURCE AND OVERALL EFFICIENCIES 
FOR THE PEITGAS PROCESS W I T H  THOSE FOR COAL GASIFICATION PROCESSES 

RAW MATERIAL : PEAT . MONTANA SUBB ITUMINOU s1 
PROCESS : PEATGAS HYGAS B I-GAS SYNTHANE LURG 

A~ ~3 
G a s i f i e r  Conditions 

Pressure ,  p s i g  510 1200 1260 1000 600 400 
No. of Stages 2 3 2 2 1 1 
Temp. Range, OF 1475-1700 1360-1850 1600-2800 1690-1800 1500-1800 700-2000+' 

Source of Methane 
I n  Product Gas, 
% of t o t a l  

G a s i f i e r  5 
7 8 6 1 26 69 48 48 

Methanator 2 2 3 9 7 4 31 5 2 52 

Overa l l  E f f i c i ency ,  
Products  a s  % of 
Coal H.H.V. 6 7 

1 )  Derived from "Factored Est imates  f o r  West.2rn Coal Commercial Concepts,' ' by C .  F. Braun 
f o r  ERDA, October 1976. 

2) Coal feed i n j e c t i o n  i n  f reeboard .  

3)  Coal feed i n j e c t i o n  i n  deep bed. 

4) S ing le  feed .  

5) Inc ludes  methane e q u i v d e n t  of C2H6 and C2H4,  a s  w e l l  a s  CH4, formed i n  t h e  g a s i f i e r .  
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