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We present here an elementary introduction to the subject of
nucleus-nucleus collisions at high energies. It begins with a
discussion on the relevant kinematicayariables to establish the
language for these collisions. It examines the question of
particle production and the characteristics of the loss of baryon
energy in an inelastic nucleon-nucleon collision. The geometrical
aspect of_é nucleus-riucleus collision is then described in terms
of the Glauber multiple-collision model. As the theory of
relativistic heavy-ion collisicn bhus not yet reached a stage
whereby the dynamics can be examined from a fundamental theory,
various phenomenological wmodels have been proposed. The
assumptions used in various models are described. Future use of
relativistic heavy-ion collisions to study the quark-gluon plasma

is briefly discussed.



I. INTRODUCTION
Recently, there is much interest in relativistic heavy-ion

collisions which stems from the possibility of creating matter
with very high energy densities.1 The energy densities may be
high enough to exceed the critical energy density for a phase
transition from the ordinary confined hadronic matter to the
unconfined quark-gluon plasma. Experimental searches and
identification of the quark-gluon plasma may provide new insight
into the question of quark confinement. Furthermore, the creation
of the domain of high energy density, albeit within a small region
of space and time, may allow one to study matter under unusual
conditions such as those which exist in the history of the early
universe.

We expect the occurrence of high energy density regions in
heavy-ion reactions for the following reasons. It is known that
in a high-energy nucleon-nucleon collision, the nucleons lose much
of their energy and a large number of particles:are produced. A
nucleus-nucleus collision consists of many nucleon-nucleon
collisions, Qualitatively speaking, the effect of the
nucleon-nucleon collisions in a nucleus-nucleus reaction is
roughly additive in mnature. Furthermore, because of Lorentz
contraction, these nucleon-nucleon collisions occur at about the
same time in about the same spatial region (in the center-of-mass
system). There is, therefore, a cooperative slowing-down of the
baryons and a nearly simultaneous production of overlapping
domains of high energy densities to lead to regions of very high
energy densities. .

We expect the occurrence of high energy density regions in
two different situations: in the "stopping" region at about a
few GeV per nucleon in the C.M. system, and in the "central
rapidity" region at the higher energy of about 100 GeV per nucleon
in the center-of-mass system. In the first situation, we envisage
the collective slowing-down of the baryons in the center-of-mass

frame so that the the nuclear matter is nearly stopped in that



frame. The type of quark-gluon plasma which may be formed in this
region is a baryon-rich quark-gluon plasma. At higher energies,
the ‘baryons cannot be completely stopped. They are slowed down
but still proceed forward in the C.M. frame after inelastic
collisions. When the baryons are well separated, the energy which
is trapped between the colliding nucleons may become liberated in
the region between receding baryons, the "central rapidity"
region. The additive effect of many such colliding nucleons may
produce a quark-gluon plasma with small baryon content. As the
net baryon content of the early universe is very small™, this type
of quark-gluon plasma is of special astrophysical interest.

A quantitative understanding of the detaliled dynamics of
nucleus-nucleus collisions is useful for an assessment of the
possibility of quark-gluon plasma formation. The knowledge of the
dynamics will also help one separate out the signals which are
expected in the hadronic phase and the signals which are peculiar
in the quark-gluon plasma phase. We need to know how a baryon may
be slowed down in its passage through a nucleus and how particles
are produced iIn a nuclear environment. How the heavy-ion
collisions proceed is the subject of current investigations and
will be the main focus of the present lecture here.

High-energy heavy-ion physics is an emerging field, both
experimentally and theoretically. The development is still iﬂ a
state of flux. Many models have been proposed and many more may
yet come as the problem is not completely solved. It is
appropriate to review the status of present research and to
prepare here a set of tools so that newcomers can make use of
these tools to make contributions in this area. For this purpose,

simple problems are posted in the lecture notes.



II. KINEMATIC VARIABLES

In relativistic heavy-ion collisions, as well as in
nucleon-nucleon collisions, it 1is convenient to use Kkinematic
variables with suitable properties under Lorentz transformat.ons.
The 1light-cone variable x, the rapidity variable y, and the
pseudo-rapidity variable n are kinematic variables which are
commonly used. It is worthwhile to discuss these variables in
some detail to establish the proper language to describe
relativistic collisions.

In many processes, a particle c can be 1identified as
originating from or related to another parent particle b. For
example, in the reaction b + a » ¢ + X , the detected particle c
can sometimes be considered as fragmenting from the incident beam
particle b. The light-cone variable x is introduced to specify
the relationship between the four-momentum of the daughter
particle ¢ and the four-momentum of the parent beam particle b.
In these reactions, quantities along the direction of the incident
beam, which we call the longitudinal axis, have properties quite
different from those along the transverse directions perpendicular
to the beam axis. We shall designate the =z-axis as the
longitudinal axis. In terms of the energy g and the longitudinal

momentum c, the light-cone variable x is defined as

X - 0 =z (2.1)

where we use the same symbol to represent a particle and its
four-momentum. That is; c = (co , 2) and b = (bo , 3). Under a
change of the Lorentz frame, the numerator in Eq. (2.1) transforms
in the same way as the denominator. Therefore, the light-cone
variable x is independent of the Lorentz frame. This variable is
sometimes called the forward light-cone variable and is denoted by

X, when we want to distinguish it from the backward light-cone




variable x_appropriate for target fragmentation.

At very high energies when the energy and the longitudinal
momentum are approximately the same, the light-cone variable x is
just the longitudinal momentum fraction of the daughter particle c
relative to the parent particle b. For this reason, the variable
x is sometimes callei the longitudinal momentum fraction or simply
the momentum fraction of ¢ relative to b.

The daughter particle ¢ may be a particle detected as a free
particle in an apparatus. In this case, the particle 1is not
subject to interactions and its four-momentum obeys the
on-the-mass-shell relation:

c2 - cg- 22 - mcz (2.2)
where mcis the rest mass of ¢. The four-momentum ¢ now has only
three degrees of freedom, and it can be represented by (X'gT)

2> .
where c,, is the transverse momentum of particle c¢. There is a

T
simple transformation which gives (co,g) in terms of (x,zT )

(Problem 2.1).

In some problems, particle ¢ is not a free and detected
particle and is still subject to interactions in the fragmenting
system. The four-momentum of ¢ will not obey the
on-the-mass-shell relation (Eq. 2.2). Its four degrees of freedom
can be specified by the Lorentz invariant quantities (x, -C)T’ cz)

2 2 32 2
where c"= cy-¢ or by (x+,x_,cT).

Problem 2.1
Show that when particle ¢ is on the mass shell, o and c, are

related to x by

2
o,

1
Co =~ 3 [ x(bytb,) + —WJ

0

and 2

P

1
c, =3 [ X(bgtb)) - —— 55355/
0 z
where mz -m2+22
T c T °



Problem 2.2
The Feynman scaling variable x_ for a detected particle ¢ is

F
defined as

*

c

z
Xp = —%

c

max

where the asterisk stands for the center-of-mass system. By going
to the center-of-mass system, show that in the case of very high
eﬁergies, the light-cone variable x coincides with the Feynman
scaling wvariable. Note, however, that the light-cone variable

*
differs from the Feynman scaling variable when e, is small or

negative.

The light-cone variable x introduced in Eq. (2.1) is useful
when we want to describe the particle ¢ iIn terms of the
fragmentation of the beam particle b. Fragmentation of this type
is called a projectile fragmentation reaction. There are
situations where we wish to consider a particle c¢ as originating
from the target particle a. Fragmentation of this type is called
a target fragmentation reaction. In that case, it is convenient
to define the backward light-cone variable x_ appropriate for the

target fragmentation region as

x 0 = (2.3)

The light-cone variable x_1is also independent of the Lorentz
frame, and it obeys relations similar to those given above for the
light-cone variable x. It gives the longitudinal momentum
fraction of particle ¢ relative to the parent particle a. As the
variables X, and x_ are independent of the frame of reference, it
is often convenient to work with light-cone momentum coordinates
p,=cgtc, and p_=cy-c, instead of < and e,. The ratio of the
light-cone momentum coordinate of the daughter particle to that of

the parent particle gives then the momentum fraction carried by



the particle.
Another useful wvariable in common use to describe the

kinematic condition of a detected particle is the rapidity
variable y. It is defined in terms of its momentum by
c, + ¢
y = % in 32—_—‘_,—2— (2.4)
0 z
The rapidity variable depends on the frame of reference, but the
dependence is very simple (Problem 2.3). The rapidity of one
frame of reference is related to the rapidity in another frame of

reference by an additive constant.

Problem 2.3
Show that under a Lorentz transformation from a laboratory frame

to a frame moving with velocity B, (for simplicity, we shall use
units in which ¢ = h = 1.), the rapidity of the particle in the

new frame y' is related to y by

y' =3 - ¥
where
-1, 1+8
Yo T2 -8 .

Prove that Yo is the rapidity the particle will have if it travels
witih the velocity B in the laboratory frame.

Problem 2.4
In the collision of a (beam) nucleon with momentum bz on a target
nucleon a at rest, show that the initial rapidities of the
particles are
Yg= 0,

and

Yy = sinh™d¢ b, / mg ).
where My is the nucleon rest mass. Show that a nucleon traveling

with the velocity of the center-of-mass frame has a rapidity given



by

Yom = (Vg * ¥y /2 -

cm

Thus, in the nucleon-nucleon center-of-mass frame

* *
Yo~ (Ipyg)/2  and  y=(yp-y,)/2 .

The simple property of the rapidity variable under Lorentz
transformation makes it a suitable choice to describe the dynamics
of relativistic particles. To go from one frame of reference to
another frame of reference, it is only necessary to find the
rapidity Yo corresponding to the moving frame in question and
change the rapidity variables by this additive constant. This is
similar to the situation in non-relativistic kinematics where the
longitudinal velocity in one frame is related to the logitudinal
velocity in another moving frame by an additive constant. This
similarity is not a surprising = result because
non- relativistidally, y 1s equal to the longitudinal velocity: v,

For a given incident energy, the projectile particles and the
target particles have definite rapidities (Problem 2.4). The
region in between the projectile rapidity and the tnrget rapidity
is called the 'central rapidity region. The rap;dity of the
produced particles lies mostly in this region.

If the particle ¢ is a free particle, then it is on the mass
shell. Its four-momentum has only three degrees of freedom and
can be represented by (y, ZT)' There is a simple transformetion

which gives (co,z) in terms of (y, 2&) (Problem 2.5).

[==m----
Problem 2.5
Show that if ¢ is on the mass shell, then co and c, are related to
y by

c, = Dy cosh y ,
and
] c, = mp sinh y .



From the definitions of x and y, it is easy to show that

m, )
x = —— & 7B, (2.5)
, Ty
and conversely,
y =yt In x + In (mb /mT) . (2.6)

These relations also indicate that a complete description of the
full dynamical range requires both the x and the y wvariable.
Specifically, for reactions leading to particles with momentum
close to that of the incident beam, the light-cone variable x is a
more appropriate quantity to use. A projectile fragmentation
reaction 1is characterized by detecting particles with the
light-cone variable close to unity. 1In this region, the rapidity
variable changes only slightly and is relatively insemsitive to a
large change of longitudinal momentum. On the other hand, for
those particles detected with a momentum fraction small compared
with the momentum of the incident beam., a small region of the
light-cone variable x is transformed into a large region in the
rapidity variable y. To examine these particles in these regions,
the rapidity variable y is a more appropriate kinematic variable.
We shall use these two variables interchangeably as the situation
warrants.

Experimentally, a particle c¢ is often characterized by the

pseudo-rapidity variable n which is defined as

n=-1In[ tan (8 /2) ] (2.

where ® is the laboratory angle of the detected particle. In

terms of the momentum, the pseudo-rapidity variable can be written

as
1 |2| +c,

n=3 1n - (2.8)
[e] - ¢
z

It is easy to see that the pseudo-rapidity variable coincides with

the rapidity variable when the momentum is large.

7)



Problem 2.6
Show that the variable y and n are related by
1 J pi coshzn +-m§ + Py sinh g
Yy == In ,
2 .
20 + mT - pT sinh g

'l p,f. cosh

- and conversely,

1 cosh y ¢/1 - m2/ mi coshzy + sinh y
n =3 In =
cosh y f/l - m2/ mi coshzy - sinh y

Show that if particles have a distribution dN/dy in terms of the
rapidity variable y, then the distribution in the pseudo-rapidity

variable n is

dN
dy

dN ; 2 2 2
~an flz -m / oy, cosh' y

Show that in the region of y much greater than 0, dN/dn and dN/dy
are approximately the same, but in the region y close tb 0; there
is a small depression of the diStributioﬂ'adN)dn due to the
transformation. ( In collider experinents at high energies when
dN/dy has a plateau shape, this transformation gives a small ‘dip’
in dN/dn around n = 0.3’4)

10



IIT. NUCLEON-NUCLEON COLLISIONS

The search for exotic behavior of quark-gluon plasma requires

a comparison with what is expected from normal behavior without
the contributions from the quark-gluon plasma sources. It is
therfore useful to work out what 1is expected from "normal”
collisions. Whether or not the energy density is high enough for
a phase transition also requires an understanding of the dynamics
of nucleus-nucleus collisions whiﬁh remains a subject under
investigation. Attempts have been made to relate the
nucleus-nucleus results to those from nucleon-nucleon collisions.
In relativistic nucleus-nucleus collisions, there are

peculiarities of the collisions which arise from the relativistic
 nature of the process so that a nucleon-nucleon collision in a
nucleus need not be the same as that in free space. Nevertheless,
information from nucleon-nucleon collisions provides valuable data
and concepts for nucleus-nucleus collisions. For this reason, it

is useful to discuss the physics of nucleomn-nucleon collisions in

some detail.
3.1 Particle Production in Nucleon-Nucleon Collisions

The nucleon-nucleon inelastic cross-section is approximately
32 mb which is relatively energy 1ndependent5. About 6% of this
can be attributed to diffractive dissociation for which the
leading particle 1loses very little energy. Elastic or
diffractive dissociation collisions lead to a small loss of the
energy of the nucleons. Thus, for our discussion of particle
production and stopping of baryons, two nucleons undergoing
elastic or diffractive dissociation collisions can be considered
as suffering essentially no collision at all. On this basis, we
shall consider only non-diffractive inelastic collisions unless
specified otherwise. For simplicity, by a nucleon-nucleon
collision, we shall mean a non-diffractive inelastic

11



nucleon-nucleon collision with a cross-section ain°f about 30 mb.

Inelastic collisions at high energies are characterized by
the production of a large number of particles, most of which are
pions3’5. The mechanism leading to particle production is
. qualitatively u.nderst:oods-8 as arising from the Schwinger
mechanism in which the two colliding particles form a strong
constant-force field between them, much like the case of a linear
string. Particle-antiparticle pairs are produced by one particle
tunneling from the negative energy sea to the posicive energy
continuum, leaving a hole in the negative energy sea in one region
and a particle in the positive continuum in another region. The
physics of such a phenomenon can be illustrated with a simple
example of Klein-Gordon particles in a constant-force field of
finite dimension§ (Proble‘m 3.1). (The more exact, but more
complicated case of Dirac particles in a constant-force field

with a finite dimension has been solvedg. However, for ’

simplicity, it will not be discussed here).

. : !
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Fig. 1. The potential Ao(z).
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Problem 3.1

Consider a particle with a mass m In a static linear vector

potential A4 = (a,Ao) of the form (Figure 1 ):

kL for z = -L
A = -kz for -Lsz=<1L
-kL for L=<z

The Klein-Gordon equation for the particle is

[ - % - o ] $=-0. -

Show that by making the transformation

§=/2 [ E+k(z-1) )/ /&
where E is the energy of the particle, the equivalent Schrddinger
equation is formally the same as that in the tunneling of an
inverted parabolic barrier. The tunneling is permitted for states
in the interval
~-kL + mc2 < E s kL - mcz .
Show by the WKB method that the penetrability for a negative
energy state at E=0 to tunnel to the positive energy continuum is
P = exp ( -2xa )
where

a = (m2+3§)/2k .
With this result, show that in the vicinity of z=0, the production
rate for a pair per unit volume per unit time is

k2 e-rm%/k
2

8x

W -

which is identical to the Schwinger6 result.

The results in Problem (3.1) indicates that the transverse
momentum serves to provide an effective transverse mass to the
particle and this effective mass must likewise tunnel through the
barrier. It must work against the field and is therefore limited

by the field stremgth k to result in a transverse momentum

13



distribution of the form exp (-« 3§/k). It also shows that there
is no particle production if the length of the string 2L is less
than Z2m/k. If one takes the quark mass to be10 about 350 MeV, and
the string tension k to be 1 GeV/fm, then the minimum length
required for particle production is 0.7 fm for a particle with
pT-O but increases to 1 fm for a quark with a transverse momentum
of 0.35 GeV.

The above static problem (Problem 3.1) contains exact
solutions11 which involve parabolic cylinder functions
Numerical solutions show that the penetrability has spatial
oscillations for finite systems. As expected, the smaller the
system, the greater is the amplitude of oscillation.

The problem we discuss is one with the geometry of a parallel
plate. One may well ask on what basis can it be applied to
nucleon-nucleon collisions which are better described by a flux
tube of radius R. For a transverse momentum greater than about
h/R and in the interior of the tube, the wave equation can be
approximated to be that for the parallel plate. However, for

small transverse momenta, it is necessary to take into account the

fboundary condition in the transverse directions and the solution

. of the parallel plate will not be appropriate there. As yet, how

particles are produced in a flux tube geometry has not been

studied.

Although a numerical solution of the problem posted in Prob.
3.1 has been obtained, and the spatial variation of particle
prodution probability has been calculated, the solutions cannot
yet be applied quantitatively to nucleon-nucleon collisions at
high energies. For the latter collisions, the end points of the
linear force field move with high velocities which will affect
particle production. We are now studying how this time dependence
may affect particle production.

Much insight in particle production mechanism is provided by
examining a 1+]1 dimensional QED problem with massless fermions in

which a charge fermion (a quark, say) and its anti-particle pulls

14



apart with the speed of 1ight.7 It is known that because of the

gauge property of the field, the 1+1 dimensional QED with massless
fermions is equivalent to a scalar field with a massive scalar
particle. The scalar particle can be thought of as a
fermion-antifermion pa1r13. The motion of the end-point fermions
creates a time-dependent dipole field between them which acts as
an external field to excite these fermion-antifermion pairs into
the continuum. Applied to the problem of particle production in
nucleon-nucleon or in e' e’ collisions, one obtains the following
space-time description of the dynamics when a quark q and

7’8. When the separation

anti-quark q pull away from each other
between the quark q and the anti-quark q is greater than a certain
length (of the order of '0.5-1.0 fm, say), a pair of
quark-antiquark qlil will be produced. The produced &1 will
travel toward q while the produced 9 will travel toward q,with
94, and 94 forming two separated s;rings. In the separated
strings, as the end points of the strings are still pulling apart,
further production of qq pairs will break the string into more
pleces until each string is separated into a yo-yo state]'a

(Problem 3.2) which can be considered as a relatively long-lived

L—x

Figure 2. Inside-outside cascade picture of particle production.
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resonance. This process starts from the creation of a pair in the
inside region between the two separating particles and follows
with the breaking of the strings in the outside region. It 1is
called the inside-outside cascade picture of particle
product:ion.ls’7 (Figure 2) '

Problem 3.2
Consider a massless quark pair ql-iz with the following Hamiltonian,

> >
H= |p1| + |p2| + k lxl- x2| . ,
Initially, both quarks are at the origin and have momenta pl(O)
and p2(0) < 0. (Figure 3)

X

Figure 3. Space-time dynamics of a yo-yo state.

Use the Hamilton'’'s canonical equatien to show that the velocities

and momenta of these two particles are
1 for t=xT
x,(t) = 2
1 -1 for T,<tsT

. -1 for t < Tl
xz(t) = 1 for Tis tsT

16



- kt + pl(O)
py(E) = { - k(t-T,)

k(t:+T2-2T3)

and
+ kt + p2(0)
p,y(t) -{ + k(t-T;)
- k(t+T1-2T3)
where
T;= -p,(0)/k
T4- T2+ 2T1’ and
Problem 3.3

Consider a massless ql-éz pair with q; moving initially in the
forward direction with momentum Py (0)and &2 moving in the backward
direction with momentum p2(0). The Hamiltonian is given by H in

Problem 3.2. At time tyr @ pair §3-q4 is created with zero

momentum. (Figure 4)

Fig. 4 Space-time dynamics after the creation of the 63-q3 pair
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The Hamiltonian becomes
H= :Pll + |P2| + |P3l + |P4l +k | X" 3| + k| X" x4|
Show that the time dependence of the velocities and momenta of 9,

and i3 are:

1 for t < Tl
x;= { -1 for Tl <t = T3
1 for T, <t=<T
5
-3_ { 1 for TO <t= T4
-1 for T, <t=<T
5
- kt + pl(O) for t = Tl
pl(t) - - k(t-Tl) for Tls t < T2
- k(2T2-t-T1) for Tzs t s 15
k(t-T3) for T3s t < T5
and
k(t-To) for Tb s t=< T2
p3(t) - k(2T2-t-Tb) for Tz st= T4
-k(c-T4) for T4 =t =< T5

Note that the dynamics of these two quarks 9 and i3 are the same
if they originate from the point C at Tc (Figure 4) with momenta
p3(Tc) - —k(To- Tc) and pl(Tc) - k(Tl-Tc).

In the dynamical case with the end points moving away from
each othe:, the probability distribution of the momentum fraction
carried by the produced pair has not been worked out quantum
mechanicaily from a theoretical viewpoint. Many phenomenological
models have been put forth to specify the distribution f(x) of the
location of the light-cone variable x for one of the two particles
in the intermediate qq pairs. For example, there is the
Feynman-Field parametrizationle,

f(x) =1 - a+ 3a (l-x)z
with a ?value of a = 0.77. The SLAC formula17 gives a
distribution,

18



2
1 1
f(x)-——x{l-—x-l_x}

where ¢ is a reference scale. On the other hand, the Lund model

.assumes:' a distribution of the form

1 a 1 a bm2T
£(x) = = x “[__T"_X_]ﬁexp - —

where a, . aﬂ , and b are free parameters. This form of

distribution was based on the requirement that it gives a rapidity
distribution of produced particles which has a plateau shape at
high energies and that the distribution is the same whether the
string is broken from the left or from the right. A good fit to
experimental data can be obtained with a ~a ﬁ-l and b=0.7 GeV-z.

The most extensive numerical investigation of the above
space-time development of a q-q pair has been carried out by the
Lund group? In their calculations, one starts with either end of
the q-q system and the distribution f(x) gives the location of the
vertex which divides the system into two parts (as in Problem
3.3). One part is considered an excited hadron resonance ( a
yd-yo state) while the other part will wundergo further
fragmentation with the same probability function f(x) to divide
the string into more parts. The division 1is stopped when the
available energy of the string is lower than a certain limit.
Phenomenologically, the Lund model has achieved a considerable

degree of success.

As 1s well known, for a given total energy loss, the
multiplicity distribution in pp collisions is wider than the
multiplicity distribution in e+e i} collisions18 . The particle

production mechanism which works in ete” collisions is different
from the mechanism in pp collisions. The above scheme which is
directly applicable to e+e- collisions, needs to be modified to
make it applicable to hadron-hadron collisions. A new version of
the Lund model has been proposedlg’20 in which the hadrons under

an inelastic collision are assumed to exchange momentum and become

19



two independent and excited clusters. The probability
distribution for the exchanged momentum is taken to be a
particular form. After the exchange of momentum, the two clusters
each decay into hadrons in accordance with the space-time
dynamics of the q-q evolution as in the earlier version of the
Lund model. A generalization of this "independent excitation"
scheme has been used for heavy-ion collisionslg’zo.

Experimental data4 of nucleon-nucleor: collisions reveal that
about 90% of the produced particles are pions; the rest consists
of kaons, baryons, anti-baryons and other particles. Their
average transverse momentum is about 350 Mev/c which is increased
slightly at very high energiesa. The total multiplicity of
particles increases with the C.M. energy approximately in a
logarithmic way. The rapidity distribution is in the form of a
bell-shaped curve for ¥s = 10 GeV, but at the ISR energies with /s
up to 63 GeV, the rapidity distribution dN/dy of the produced
charged particles assumes the shape of a plateau having a value of
about 2 in the central rapidity region.

For many practical applications, it |is desirable to
parametrize the particle production data in terms of simple
functions.. There is now a good collection of experimental data
to permif é simple parametrization. In the p+p = xi + X reaction,
the momentum distribution of the produced pions follows a simple
(1-x)® relation in the projectile fragmentation regiona’s, with a
=~ 3 - 4. There is a similar distribution for the pions produced
in the target fragmentation region. It 1is convenient to
parametrize the rapidity distribution of the produced charged
particles in the following form:

a .
dN/dy = A [ (1- x;)( 1-x) ] (3.1)
where X, is the light-cone variable for projectile fragmentation

X, =moexp (y-y, ) /my

20



x_1is th light-cone variable for target fragmentation,

X_=m, exp ( Yp - ¥ )/ m N

and Yy and yp are the beam and target rapidity variables
respectively. The quantity o r is the pion transverse mass and is

2 2

set equal to o, * BT , Where BT

momentum <|3T|> of the produced particles. In this form, the
distribution exhibits a (l-x)a type behavior at the fragmentation
regions, a bell-shaped distribution at low energies and a
plateau-shaped distribution as energy increases. We find that the
following set of parameter521 gives a satisfactory description of
the experimental rapidity distribution of non-leading charged

particles:
A=20.75+0.38 In /s ,
a=35+0.71Invs , 3.2)
and ' B, ~ 0.27 + 0.037 In ’/s ,
where BT is in units of GeV/c and /s in units of GeV. The results

obtained by using this set of parameters are shown as solid curves
in Figures 5 and 6. There is a good agreement with the dN/dn
values at the central :rapidity region as a function of the center
of mass energy vs (Figure 5). There is alsd a good agreement for
the rapidity distribution dN/dn at vs=540 GeV obtained with the
CERN SPS collider4 (Figure 6). On fthe other hand, the rapidity
distribtuions obtained with this set of parameters are slightly
narrower than the rapidity distributions from the CERN ISR
experiments3. At the ISR energies /s from 24 to 63 GeV), there
is a substantial contribution of the leading baryons to the two
wings of dN/dn. The observed distributions are broader than what
is given by the parametrization of Eqs.(3.1,3.2) which includes
only non-leading particles. At the much higher energy of the SPS
collider, the leading baryons have rapidities much separated from

those of the produced particles so that Eqs.(3.1,3.2) can be
directly compared with experimental data which presumably do not
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include the leading particles.
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Fig. 6. dN/dq as a function of p

Fig. 5. dN/dn data at =0
for Ys=540 GeV

as a function of /s

From the distribution of dN/dy, one can integrate over the
rapidity variable to obtain the total multiplicity of non-leading

charged particles. Experimental measurements of the total charged

multiplicity include also the leading particle and occasionally

the target proton. To obtain the total charged multiplicity, we
therefore add a constant of 1.5 to the integral of Eq.(3.2) to
take into account the contributions from the leading particles.
The result is shown as the solid curve in Figure 7. It agrees

with experimental total average multiplicity data <m>.
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3.2 BARYON ENERGY LOSS IN AN INELASTIC COLLISION

In a nucleon-nucleon or a baryon-baryon inelastic collision,
there should be at least two baryons among the product hadrons
because of the law of baryon conservation. These baryons are
likely to be among the leading particles with oﬁe baryon in the
projectile fragmentation region and another one in the target
fragmentation region. If one considﬁrs the detected baryons as
related to the corresponding incident baryons, one can view an
inelastic collision as a reaction in which an energetic baryon
suffers a degradation of its energy after a collision. The degree
of 1inelasticity can be measured by the light-cone variable x
defined as the ratio of the light-cone momentum of the detected
l;aryon to that of the incident (parent) baryon [Eq. (2.1)]. For =x
» 0, the light-cone variable x and the Feynman scaling variable x
nearly coincide. As the phenomenon of Feynman scaling‘2
corresponds to the situation when the cross section plotted as a

function of the Feynman scaling variable is independent of the
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incident energy,

the present case

independent of the incident energy for

occurrence

of Feynman

scaling.

We

of do/dx
x> 0

show in Figure 8

being nearly

can be called the

the

experimental inelastic cross-section data5 for the
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Fig. 8. Experimental cross-section do/dx for p+pip+X.

reaction p + p > p + X as a function of x. The ‘distribution do/dx
for x » 0 is nearly independent of the incident energy for an
incident momentum of 100 GeV/c and 175 GeV/c (Figure 8). Thus,
there is a Feynman scaling for the inelastic cross section when
Piop exceeds about 100 GeV/c.
nucleon-nucleon data shows that Feynman scaling commences at a
slightly lower energy of many tens of GeV in the laboratory
system23.

To study the degrees 'of energy loss
collision, we examine the shape of the distribution do/dx as a
Except for the diffractive
the distribution

A systematic examination of the

in an 1inelastic

function of the light-cone variable x.
dissociation region in the vicinity of x = 1,
(i.e. the differential cross section) is nearly flat,

extrapolates
diffractive dissociation in our consideration (see Section 3.1),

If one

to small regions of x and does not include

an approximate representation of the (differential) cross section
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is
do/dx = %in 8¢ 1-x ) B(x-xL) / (l-xr) , (3.3)

where Xy is the lower 1limit of x as required by energy and

momentum consideration. It has a value which is much smaller than
unity24. [ Strictly speaking, the upper limit X, of x is not
unity, but the difference of Xy from wunity 1is small.
Furthermore, unlike the lower limit which is very important in
setting correctly the lower 1limit of the rapidity wvariable, a
small variation in the upper limit is of little consequence. We
shall take the upper limit as unity. ] The distribution (3.3)
shows that after an inelastic nucleon-nucleon collision, there is
an equal probability of finding a product baryon in the vhole

range of the light-cone variable. The average value of x is

<x> = 1/2 4 (3.4)
Therefore, on the average, the product baryon carries about half
of the initial light-cone momentum. This implies that about half
of the initial light-cone momentum of the baryon iIs lost. If the
incident baryon carries hundreds of GeV, then the energy-momentum
loss can be very substantial in magnitude.

In nucleus-nucleus collisions, the nucleons of one nucleus
suffer many collisions with nucleons of the other nucleus. 1In a
multiple-collision process, the loss of the incident energy and
momentum can be quite large and may lead to the "stopping" of the
baryons in the C.M. system. We shall return to this topic later
on.

The production of particles and the loss of baryon energy are
intimately related becauée the total energy of the system must be
conserved., There is, in‘fact, an experimental correlation between
the baryon energy loss and the multiplicity of particles
producedzs. The greater the energy loss of the baryons, the

greater will be the number of particles produced.
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IV. GLAUBER MODEL OF COMPOSITE-PARTICLE COLLISIONS

The Glauber mode126 of multiple-collision processes provides
a quantitative consideration of the geometrical sizes of the
composite particles when they collide. It is based on the concept
of a mean-free path with the assumption of a basic
"parton-parton" cross-section. In the naive quark model of a
hadron, the partons are just the valence quarks. 1In a nucleus,
the partons are the nucleons. When a parton of one particle
passes through the other particle, it may become excited and may,
in principle, have a different cross section. We can understand
much of the geometrical concepts of the collision process if we
take the basic parton-parton cross section to be the same
throughout the passage of the parton in the other particle.

We consider the collision pf composite particles B and A. We
begin by defining t(b)dg as the probability for having a
parton-parton collision within the transverse area element db
when one parton is situated at an impact parameter b relative to
‘another parton. The function ¢t(b) |is célled the basic
parton-parton thickness function. Clearly, the total probability
of a collision integrated over all impact parameters is unity and

t(b) is normalized accdrding to
j £(b) dB = 1 . (4.1)

We denote the parton-parton basic cross-section (for an inelastic
process, with the production of other particles) to be %in
Thus, when one parton is situated at an impact parameter b
relative to the other parton, the probability of having a
parton-parton collision is  t(b)o, . ’
We define next the probability of finding a parton in the
volume element dB.dz, in particle B at the position (ZB ,zB) as

B "B
pB(zB,zB) ngdzB which is normalized according to

j pB('b’B.zB) dB, dzg= 1 . (4.2)
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Note that p is equal to the usual number density function divided
by the number of partons in the particle. The probability
function of finding a parton in the particle A at the position
(3A,zA) can be similarly defined as pA(gA,zA) and normalized as

j py(B,,2,) dB, dz,= 1

We can now write down the probability for the occurrence of a
parton-parton collision when the particles B and A are situated at

an impact parameter b relative to each other. We call this

probability T(b)ain:
T(b)ain?- j pA(gA’zA) dBAdzA pB(BB'zB) dBdeB t(g - BA - BB) Oin

which defines the thickness function T(h) for the composite

particles A and B:

r(b)-j 0 (By.2,) dB,dz, p (By.zy) d'b’Bng t3-8,-3) . (4.3)

From Eqs (4.1) and (4.2), the thickness function is normalized

according to
[rw) dB-1. (4.4)

The probability for the occurrence of n 1inelastic
parton-parton collisions at an impact parameter b is given by
AB-n

Pn,B) - [Ag] [T(b)o, 1" [1-T(b)o, ] (4.5)

The total probability for the occurrence of an inelastic event in
the collision of A and B at an impact parameter B is the sum of
Eq.(4.5) for n=1 to n=AB :

daAB
SE - f P(n,B) =1 - [1 - T(b)o. JAB (4.6)
a2 in
n=1
Therefore, the total inelastic cross section a?g for the

collision of A and B is
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' AB
a‘;‘g - f dB {1 ; [ 1- :r(b)am] } (4.7)

With the probability of having n parton-parton collisions as given
by Eq. (4.5), we can find the average number of parton-parton

collisions at an impact parameter b as

AB
9
n(b) =~ } n P(3,b) = 4B T(b)o,_ (4.8)
n=1
The average number of parton-parton collision, "under the

additional condition of the occurrence of an inelastic collision,

is
AB
n’(b) = AB T(b)ain / { 1-011- T(b)ain] } . (4.9)

When we further average n’(b) over the Iimpact parameter b with the
weighting factor of the inelastic differential cross section, we get

the average number of parton-parton collisions in an 1inelastic

nucleus-nucleus collision:

AB

[#a@d c1-11-10)0,;1%)

(4.10)
[@ «1-11-10)0,1%)

<n> =

From Eqs. (4.7,4.10), we obtain the mean number of parton-parton
collisions in an inelastic collision of tii composite particles A and

B as

<> = B o, /. (4.11)

The basic thickness function t(b) can be well approximated

by a Gaussian function with a standard deviation ﬂp. If the
composite particles are small, their density function p can also
be taken to be a Gaussian funtion of the spatial coordinates.
Consequently, the thickness function of Eq.(4.3) can be

conveniently written as
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T(b) = exp ( -b2/26%) s2xp? (4.12)

where
£ -8+ 8+ 8.

In terms of the standard root-mean-squared-radius parameter T s
for particles A and B, the standard deviation ﬂA (or, similarly,
ﬂB) is given by 13
By~ Ty 77/ 73 .
The Gaussian form of the thickness function is actually a more
general shape than one may at first expect. It turns out that for
the collision of two composite particles with a relatively flat
spatial density in the shape of a Fermi distribution (as in the
case of a heavy nucleus), numerical calculations show that the
thickness function can be well approximated by a Gaussian
function, except that the effective parameter r}nwis slightly

1arger.27

With a Gaussian thickness function, the total inelastic cross

section can be obtained as an analytic function. (Problem 4.1)

Problem 4.1

Show that the total inelastic cross section for a Gaussian

thickness function is

AB
o8 2n522[1-(1-f)1]/1

-
in

i=1

which can also be written as

AB i
w3 (5] o

i=1 =1
where £ is a dimensionless quantity given by

2
fm %in / 2np

Prove that if f is small, then
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o = AB o

)
)

Problem 4.2
Consider a hadron-nucleus collision with a target mass A » 1 or a

nucleus-nucleus collision with A » B. The thickness function
obtained with a sharp-cutoff density distribution has the form

1/2

T(b) = (3/2xR) (B- 62)1/? §4(r-b)

where R is the sum of the radii of the two colliding particles.

Show that the inelastic cross section is

[ 1 - (1-F)A*2 1- (1-pt J }

A+ 2 A+ 1

a?ﬁ-tRz{1+—f2—

where F is a dimensionless ratio

F-3ain/21rR2 .

The formalism developed above is appropriate for the total
number of collisions and the total inelastic cross section. In
some problems, it is also necessary to know the history of the
collision process, as for example, in the dynamics involving the
slowing-down of the baryons.‘ It is convenient to adopt a
row-on-row picture of one row of n nucleons from nucleus B
colliding with another row of m nucleons in the other nucleus A.
We construct the normalized thickness function TB(bB) for the

nucleus B as
Ty (bg) = Tp(Bp) -jpB(BB 2y ) dzy (4.13)

The thickness functionl T A(b A) for the other nucleus A can be
similarly constructed. The basic unit of aresa is the
nucleon-nucleon inelastic cross section %in’ The probability of
finding a nucleon in & tube of cross section ¢ in 2t the transverse
coordinate -b)B is TB (bB)a in' The probability of finding n nucleons

in a tube of cross section %in at the transverse coordinate 33 in
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nucleus B is given by
B n B-n
. [n] [TB(bB)ain] [1- TB(bB)um] (4.14)
vwhich has an average value of
<n(bB)> - BTB(bB)ain . (4.15)
Similarly, the probability of finding m nucleons in a tube of cross

section %;n At the transverse coordinate -b’A in nucleus A is given

by

A m ' A-m
(m][TA(bA)om] [ 1- TA(bA)ain] (4.16)
which has an average value of
<m(bA)> - ATA(bA)ain . (4.17)

The probability of having a nucleon-nucleon collision in the area
element dgA is t(3-3A+3B)d3A where B is the impact paramater of B
relative to A. Putting all the factors together, we find the
probability of having n nucleons of B in a tube of cross section

o colliding with m nucleons of A in a similar tube is

in
n B-n
P(n,m,3,,8) -J e3-3,+3,)d8, [ﬁ][TB(bB)uin] [1-Tygo, ]

m ‘ A-m

A
X [m] [TA(bA)ain] [1- TA(D‘)ain] . (4.18)

The basic nucleon-nucleon thickness function £ can be approximated
by a delta function and the probability function P can be
simplified to be just products:

n B-n
P(n,m,B;,8) - [ﬁ] [Tg(bplo, 1 [ 1 - Ty(byo, ]

- A-m
x [Bir,BBpe) 111,381 . @19

For many problems, the dynamiés is insensitive to the spatial
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transverse coordinates 33 of the tube but is more sensi:t’ = to
the number of nucleon-nucleon collisions in the tube. One can
then iIntegrate the transverse coordinates 33 to obtain the
probabllity for collisions of n nucleons in B with m nucleons in A

at an impact parameter b :

->
- gy rp n B-n
P(n,m,b) -J N [n] (Tg(bglo, 1 (1 - Ty(byla, |
m A-m
x [‘;] (T,B+Bpo, 1 [ 1-T,B4Bpa, 1 . (4.20)

The results of Eqs.(4.19) and (4.20) are useful expressions for

nucleus-nucleus collisions.
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V. MODELS OF NUCLEUS-NUCLEUS COLLISIONS

The study of the dynamics of a nucleus-nucleus collision has
not yet reached a stage where such a process can be described from
the first principle, starting with the theory of QCD. The
phenomenon of hadronization and confinement are intimately related
and a non-perturbative QCD description is necessary. Even with
simple model interactions, a relativistic theory of a many-body
system interacting and producing particles has not been worked out
so that a quantitative description is available at present. The
investigation of such a problem constitutes one of the most
outstanding problems confronting the theory of nucleus-nucleus
collision today.

In the absence of a well-developed theoretical description of
the nucleus-nucleus collision, there are many different models
‘which attempt to describe the interaction processes. Many of
these models treat a nucleon as an excitable entity and quarks
enter only as a part of a collective cluster. These models have
achieved various degrees of success. There are also models which
treat nucleus-nucleus collisions completely at the quark 1eve1?8.
For the low P, phenomena, cheir success has been limited, as the
process of hadronization, confinement and recombination cannot be
well described. We shall discuss here those models which consider
hadrons as a collective unit in nucleus-nucleus collisions. All
these models assume a multiple-collision process such as the
Glauber-type model, for the geometrical part of the collision
process. The problem is reduced to a detailed description of the
space-time dynamics of what occurs when n nucleons from the beam
nucleus B collide with m nucleons from the target nucleus A. The
models differ in their assumptions as to how the particles share
their energies and where the sources of particle production are.
All of these models assume that, in accordance with experimental
observations, production of the non-leading particles occurs after
the two nuclel have passed through each other. This peculiar

behavior can be easily understood. After an inelastic collision,
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the colliding nucleons need to be separated by a distance of the
order of a Fermi in the C.M. system before particles can be
produced. However, when this occurs, the baryons have already
moved forward into a different spatial region away from the
production zone. Consequently, the produced particles do mnot

collide with the baryons of the incident nuclei.

5.1 The Lund Model for Nucleus-Nucleus Collisions

In the Lund model, it is assumed that for low-pt phenomena,
the hadrons are not transversely excited but - are only
logitudinally stretched. The hadrons undergoing interaction are
otherwise independent of each other. The collision of n beam
nucleons and m target nucleons will result in m+n excited hadrons.
These hadrons subsequently decay after collisions have been
completed and are the sources of particle production. The decay
of these stretched hadrons is analyzed in the same way as in the
decay of a stretched q-q pair which has been previously worked out
in the older version of the Lund model. |

To be more specific, the major assumptions of the Lund model
consist of the following :
1) The hadrons which participate in the collision are independent
and are individually excited. ' It is conveninet to represent the
momentum of a hadron by the 1light-cone momentum coordinates
(P+,P_) where the forward light-cone momentum P+ is the sum of its
energy and its logitudinal momentum Pz while the backward
light-cone momentum P_is the difference E - Pz. In the

collision of one hadron with v nucleons, the initial light-cone

momenta of these v+I1 hadrons are
(P m2/P ) and (mZ/P P, ) for i = 2 v+l
1+’ I+ i-774- P ¥TE

Collisions between the baryons will lead to the sharing of their
momenta, but there is otherwise no quantum number flow from one
baryon to another. After collision, the ith target baryons in the
set ({2,...,v+l) gain a momentum Q1+ in the forward light-cone
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direction but lose a momentum Q i- in the backward light-cone

direction. The resultant momenta are

2 .
(m /Pi-+ Qi+’P1- - Qi—) for i =2,...,v+l (5.1)
and the momentum of the incident baryon is
v+l v+l
2
P14 Z Qpyr ™ /P1-+Z ;.0 - (3.2)
i=2 i=2

2) It is assumed that the momentum transfer obeys a probability

distribution given by

(5.3)

Probability = 7 in+ 7 in-

@y /Py+ Q) (Wy/P; +Q; )
where the mass term comes from the lower 1limits of momentum
transfer while the dQ/Q type of probability distribution comes
from the Feynman parametrization of the momentum distribution of
the wee-partons. '

3) For nucleus-nucleus collisions, the above procedure is
similarly generalized. That 1is, in each binary collision of the
projectile baryon with momentum (Pt;;;.'Pb.) and a tnrgetﬁ baryon
with momentum (Pa +,P‘_ ), there is an exchange of momentum Q + and
Q_ to result in the momentum (Pb+- Q+,Pb_+ Q_) for the projectile
baryon and the momentum (P‘++ Q+,P‘_- Q_) for the target nucleon.
The only restriction is that Q+ and Q_ must be greater than zero
so that the dominant component of the momentum Pb+' Q . of the
projectile baryon and Pa_- Q_ of the target baryon will always
decrease in their magnitudes after collision. The probability
distribution of the exchange momentum is given by Eq. (5.3).

4) After the baryons complete their collisions, each excited
baryon is then studied to obtain the spectrum of the produced
particles., It is assumed that the decay of a final baryon with a
momentum (Pi+’P.i'-) is similar to the decay of a q-& system with a
massless quark traveling in the forward light-cone direction with
a light-cone momentum P i+ and an anti-quark traveling to the
backward light-cone direction with momentum P 4o A previous Lund

model for nucleon-nucleon collisions can be used for that purpose.
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The Lund model for nucleus-nucleus collisions has been

proposed only recently; it will be tested with the new data to
examine the validity of the model.

5.2 THE DUAL-PARTON MODEL

The dynamics in the interaction of hadrons in a nucleus is
described as proceeding in a different way in the dual-parton
model developed by Capella, Tran Thanh Van, and their
collaboratorszg. For the collision of one hadron against another
hadron, the dual-parton model contains the following assumptions:
1). Each hadron is considered to consist of two elementary
constituents. In the case of a meson, the constituents are a
quark and an anti-quark; in the case of a baryon, the constituents
are a quark and & di-quark. One infers the forms of the momentum
distribution of these constituents inside the hadrons from other
empirical considerations such as the dual resonance model.
Specifically, the momentum distribution of the valenge quark f;,

and the di-quark qu are assumed to be

2 -1/4

2 2
£,(x) = (xX+p/pP)

1.5

and f (x) =x .

qq( )

It is worth noting that the constituent partons here are not the
same as the partons in the deep-inelastic scattering processes.
They are "dual partons" which are assumed to contain features of

+

the non-perturbative QCD.
2). In a collision of these two hadrons, these constituents

fragment into the detected particles according to certain assumed
empirical fragmentation functions. For example, the fragmentation
functions for the valence quarks , and the di-quark to fragment
into x* are respectively

xD(vsn') = 0.5 (1+x)F(x)

and xD(ggsnt) = 0.675 (1-x)2 |
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where
F(x) = [ 1.3¢1-x)%+0.05 1 / (1-0.5x)

The resultant momentum distribution of the detected particle is
Just a folding of the momentum distribution of the c<onstituents
and the momentum distribution of the fragments coming from the
constituents.

Upon choosing the structure functions and the fragmentation
functions to fit experimental hadron-hadron data, the model 1is
then used to study hadron-nucleus, baryon-nucleus, and
ﬁncleus-nucleus collisions with additional assumptions about the
sea quark. For example, in the collision of a baryon with a
nucleus, the collision is assumed to proceed in the following way,

as shown in Figure 9 below:

- - (. X,
\?x' - quC , C
" C ¢

C C C
Cw)
cwm c 3 S

C C < ¢

'_/5/&

Fig., 9 Quark dynamics in the dual parton model.

It is assumed that the di-quark system of the incident baryon
proceeds forward and develops a chain with a valence quark of the
last struck nucleon (Chain 4 in Figure 9 ), while its valence
quark develops a chain with the di-quark system of the first
struck nucleon. The valence quarks of the target nucleons develop

chains with the sea-quarks of the projectile nucleons. (Chains 2
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and 3 in Figure 9). There are therefore two types of chains:
those not involving sea quarks and those involving sea-guarks. 1In
a collision of a baryon with n target nucleons, there are two
chains not involving sea-quarks and 2n-2 chains involving sea
quarks. Each chain leads to independent productions of particles.

The momentum distribution of the sea-quark is assumed to.be

given by a distribution of a form which goes as 1l/x as

x>0 :

£ x) = P+ Py gD
The sea quarks fragment into hadrons according to a prescribed
fragmentation function. For example, the fragmentation function

for a sea quark to go into a x' 1is assumed to be of the form
XD(S')”-'-) - F(x) ’

where F(x) has been given previously in the expression for
XD(vor').

With the introduction of the sea quark, the momentum
distribution of the produced particles can be obtained by a
convolution. While the dual-parton model has been applied to some
(light nucleus)-(light nucleus) collisions,29 it will be tested
with the new heavy-ion data from CERN.

5.3 THE MULTI-CHAIN MODEL

A different multiple-collision model, the multi-chain model
was proposed by Kinoshita, Minaka, and Sumiyoshi30. In this model
for a baryon-nucleus collision, incident baryons make collisions
with many nucleons in the target nucleus. Each collision leads to
the formation of a chain which 1later evolves into produced
particles. The leading cluster degrades its momentum as the
collision process proceeds. How the leading cluster loses energy
is taken to be an unknown and parametrized function P(x) to be
determined by experiment. A convenient parametrization of the
probability function P(x) 1is taken to be

P(x) = axa+1
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where x is the light-cone variable of the leading cluster. Other
methods of partitioning the light-cone momentum have also been
attempted. The momentum degradation of the leading cluster is
assumed to be éequential so that the momentum distribution after n
collisions is the folding of the momentum distribution after n-1
collisions and the probability function P(x). After each
collision, each chain also acquires a momentum fraction, and it
decays into hadrons, depending on a fragmentation function G
which is a function of the light-cone momentum of the chain. For
example, for charged secondary particles, the fragmentation

function was assumed to have the form:

G(z,x ) = (1- 2P (1-x )°

where z is the light-cone variable of the detected hadron relative
to the chain and x_ is the light-cone variable of the detected

hadron relative to the target nucleon.
5.4 Other Variations of the Multiple-Collision Model

Besides these models, there are many variations of the
multiple-collision model which differ in the way the energy and
the momentum of the particles are partitioned and the sources of
particle production. In the approach taken by the present
authorBl, nucleons of one nucleus form leading clusters as they
pass through and make successive collisions with nucleons in the
other nucleus. The baryon clusters degrade their energy and
momentum. It is assumed that an approximate description, subject
to modifications, is that the leading clusters degrade energy and
produce particles approximately as if they were in free space.
Each collision is a source of produced particles. The energy loss
in each collision leads to particle production as in free space,
except that these secondary particles emerge only after the
nucleus-nucleus collision has been completed. Consequently, the
produced non-leading particles do not make collision with the

projectile or the target nucleons. Results obtained with such a
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model give a reasonable description of stopping power when a
proton passes through a nucleus31. However, further tests and
modifications of the simple model may be necessary to confront the
new heavy-ion data that are zmerging.

A similar approach has alsc been taken by Ludlam32 and his
collaborators, which results in the HIJET computer program. It is
assumed in a similar way that the 1leading clusters in
nucleus-nucleus collisions make successive collisions with
nucleons of the other nucleus. In each collision, the energy loss
and the spectrum of produced particles are calculated with the
ISAJET program which has been written to reproduce the
nucleon-nucleon collision data. While the leading clusters can
continue on to make more collisions as they pass through the other
nucleus, the produced particles emerge only after the nuclei are
far apart and do not participate in secondary collisions. The
HIJET program has been used as an event generator to aid the
design of expermental detectors and has also been used to compare

with preliminary experimental data.
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VI. RELATIVISTIC HEAVY-ION COLLISIONS AND QUARK-GLUON PLASMA

From the experimental data in nucleon-nucleon collisions, we
know that an inelastic nucleon-nucleon collision is accompanied by
a large loss of the baryon energy which is released in the form of
produced particles in the central rapidity region. In
nucleus-nucleus collisions, the number of nucleon-nucleon
collisions can be wvery large. For example, in the head-on
collision of a uranium nucleus on another uranium nucleus, the
number of inelastic baryon collisions 1527 about 800. The
multiple collision models we discussed 1in the 1last section
indicate that the effects of the many collisions are rougly
additive. Lorentz contraction also makes the collisions to occur
in a very small spatial region and in a small teinpora]. extension.
In consequence, when the incident energy is appropriate (at about
a few GeV per nucleon in the C.M. system), the baryons in a
nucleus may make so many collisions that the 1leading baryon
clusters may be effectively stopped in the C.M. system. The
stopping of the baryons gives rise to baryon matter of very high
density and may lead to a transition from the confined baryon
matter to the unconfined quark-gluon plasma with a large net
baryon number density33'34. In the other extreme, at very high
energies, the slowed-down baryons after the collision still have
enough momentum to proceed forward. The energy lost by the
baryons 1s released in the form of produced particles in the
central rapidity region. As first suggested by Bjorken35, the
energy density there may be high enough to form a quark-gluon
plasma with a small baryon content.

We shall first discuss the latter case when the incident
energy is so high that the baryons are not effectively stopped in
the center-of-mass system. We can infer the energy density from
the rapidity density dN/dy of the produced particles‘”. For
simplicity, we consider the head-on collision of two equal nuclei
in the center-of-mass frame. There 1is a substantial Lorentz

contraction in the logitudinal direction so that one can neglect
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the longitudinal thickness of the nuclel in that frame. At a
proper time to of about 1 fm/c after the two nuclei collide with
each other, the baryons will be separated by a distance of about 2
fm and the hadrons will be produced in the form of free particles.
The longitudinal coordinate of a produced particle is related to

its rapidity by
zZ = to tanh y . (6.1)

The energy AE contained in the region of thickness Az between the

two nuclei is

dN d
AE = o, cosh y _3;_ a%— Az , (6.2)

where mT is the transverse mass (=0.4 GeV) and (mT cosh y) is the
energy of the produced particle. Using Eq. (6.1), the energy
density averaged over the overlapping area 4 of the colliding
nuclei is

AE dN T
- . (6.3)
d Az dy £, 4 [1- (z/to)z ] 3/2

The proper energy density is defined in the frame in which the

medium is at rest. The proper energy density of the matter at y =

0 (corresponding to the point z = 0) is therefore given by35

ay Ur
‘T & A (6.4)

In nucleus-nucleus collisions, experimental results and a simple
multiple-collision model calculation27 suggest that the effect of
multiple collisions on the rapidity density dN/dy 1is accumulative

and goes approximately as A%/B. For the head-on collision of 238U

on 238U at a center-of-mass energy of 30 GeV per nucleon, the

energy density in the central rapidity region has been estimated27
to be of the order of 5 GeV/fmS.
We can compare this erergy density with the energy density of

matter in the quark-gluon plasma phase as predicted by the
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lattice-gauge theory36. In the lattice-gauge theory calculationms,
there are the gauge fields and the fermion fields to be specified
at the lattice sites. The calculations are much simplified in the
pure gauge field theory with no dynamical quarks. It is found
that the deconfinement transition in SU(2) and SU(3) pure gauge
theories are respectively second37 and first order38. For the
SU(3) pure gauge theory, the deconfinement transition temperature
is 200-230 MeV 39 and the latent heat is 1.89 GeV/fm3.40 In
lattice gauge calculations with dynamical quarks, the effective
action is complex and the usual Monte Carlo method, which depends
on a positive-definite probability measure, becomes inapplicable.
Various methods have been proposed but major numerical
difficulties remain. Although there has been much progress,

reliable numerical results are not yet availavle. If the quark
mass mq is heavy, work done with the l/mq expansion (the hopping
parameter expansion), show that a first-order deconfinement
transition persists42 and that the energy density of the

quark-gluon plasma is of the same order as the Stefan-Boltzmann

energy density of a free quark-gluon plasmadj. The 1latter
quantity is
12 7 4

vhere the first contribution inside the square bracket comes from
the 8 gluons and'the second contribution comes from the quarks and
antiquarks with two favors, two spins and three color degrees of
freedom, Thus, 1f the tramnsition temperature is 200 MeV, the
energy density of the pure quark-gluon plasma is of the order of

2.5 GeV/fﬁB. However, the masses of the dynamical quarks in a
full QCD calculation are not large. Results from the hopping
parameter expansion can be only a qualitative estimate for the
full QCD dynamics. Nevertheless, the estimated energy density
achievable in high-energy heavy-ion collisions is about the same
as the estimated energy density of the quark-gluon plasma at the

transition temperature. High-energy heavy-ion collision may
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provide a tool to meet one of the requirements for quark-gluon
plasma production.

We turn now to discuss the possibility of using high-energy
heavy-ion collisions to produce a quark-gluon plasma with a high
baryon number content33'34. We can examine the dynamics of the
baryons in the center-of-mass system. The baryons of one nucleus
lose a large fraction of their logitudinal kinetic energy in their
collisions with the baryons of the other nucleus. The kinetic
energy of the baryons may be degraded so much that they are
essentially stopped in the center-of-mass system. It is possible
to make an estimate of the degree of stopping in such a case with
the multiple-collision model. The slowing-down of a nucleon in its
passage through another nucleus can be considered as arising from
a series of successive collisions, each collision resulting in a
loss of the momentum fraction x as 1if it would occur in free

space31. With such a model, we show in Fig. 10, a typical

z (fm)

Fig. 10 Space-time dynamics of colliding rows of baryons

at a laboratory energy of 15 GeV per nucleon.

space-time dynamics of the baryons in the collision of a tube of 4
nucleons (solid lines) with another tube of four nucleons (dashed
lines) in the center-of-mass system for the incident laboratory

energy of 15 GeV per nucleon34. After the collisions have
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finished, the baryons have small velocities and the baryon density
is large. Thé spatial density is about one order of magnitude
larger than the nuclear matter density at equilibrium. The
inclusion of mutual repulsion for baryon matter at high density
would reduce the maximum density achieved. Nevertheless, there is
a compression of the nuclear matter due to the slowing-down of the
baryons. Such a compression may produce baryon matter of high
density exceeding the baryon density for a phase transition from
the confined baryon matter to the unconfined quark-gluon plasma
with a high baryon number content.

With the experimental facilities capable of accelerating
heavy ions to very high energies coming online, many proposals
have been put forth to search for the state of a quark-gluon
plasma (see reference 1 for the latest reviews of this subject).
It is generally recognized that there is no unique single signal
which allows an unequivocal identification of the quark-gluon
plasma phase. What can be achieved may be an accumulative set of
evidences which taken together may hopefully indicate the
presence of the quark-gluon plasma phase.

One type of experiment suggests the examination of the
equation of state of the quark-gluon plasma by studying the
temperature and energy density relationship. Asbtemperature can
be measured by the average transverse momentum and the energy
density measured by the rapidity density dN/dy at the rapidity
plateau, a correlation of Py and dN/dy may reveal the peculiarity
of a phase transition. Specifically, there should be a large
range of the energy density over which there is a very small
change of the equilibrium temperature. If there is no change of
the temperature, the transition is a first order transition. If
there is a small change in equilibrium temperature, then the
transition is a second order transition.

Another suggested signal is the use of strangeness production
to infer whether the quark-gluon plasma phase has been reached.

With the formation of a quark-gluon plasma, a chemical and thermal
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equilibrium will allow the presence of substantial content of the
strangeness. This 1is because the critical temperature and the
mass of the strange quark are comparable. In contrast, hadronic
matter consists mainly of pion gas and has little strangeness
content. Another useful property is that after the quark-gluon
plasma phase has been reached and hadronization has taken place,
the strangeness content cannot be eliminated except by
annihilation with another anti-stange quark which occurs only
rarely. To measure the strangeness content, it is best to detect
anti-hyperons and the more favorable case is in a baryon-rich
quark-gluon plasma. The use of a K/n ratio 1is not a good
signature as this ratio is fixed by the entropy content and not so
much by the chemical and thermal equilibrium in the quark-gluon
plasma phase.

Leptons and photons interact only weakly with hadrons. It
has been suggested that one uses di-lepton pairs and direct
photons as a probe of the quark and antiquark density and the
temperature in the quark-gluon plasma phase. When quarks or
quarks and antiquark interact to produce these particles, their
reaction rates depend on the quark density and the quark
temperature. Lepton pairs from the quark-gluon plasma phase should
be dominant in the lower mass region between 300 and 500 MeV and
could be a very sensitive measure of the temperature reached in
the plasma phase.

It has also been suggested that one may wuse pion
interferometry to extract the temperature parameter, effective
source lifetime and transverse size. Other signals involve the

use of meson and baryon momentum distributieons and fluctuations

to detect the hydrodynamical expansion.
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VII DISCUSSIONS

Previous experimental investigations of high energy heavy-ion
collisions used only cosmic ray particles as the source of
projectiles. Much qualitative information has been obtained from
these studies.44 It 1is only recently that we are able to
accelerate heavy-ions to many tens of GeV per nucleon at
Brookhaven and at CERN. Future plans call for the possible
construction of a relativistic heavy-ion collider capable of
accelerating nuclei to an energy of 100 GeV per nucleon in the
center-of mass system. A new field of physics has been opened up
for quantitative investigation.

There are roughly two different but related aspects of high
energy heavy-ion physics. On the one hand, it provides a special
arena to examine the relativistic hadron dynamics and the process
of particle production. On the other hand, it can be used as a
tool for the possible production of matter with high energy
density or high baryon number content in which the constituent
quarks are not confined.

Nucleus-nucleus collisions differ from nucleon-nucleon
collisions in many respects. There is now the new degree of
freedom in the presence of other participating nucleons following
a single nucleon-nucleon collision. One elementary nucleon-nucleon
collision may not have finished before another elementary
collision begins. The presence of many nucleons participating in
a chain of collisions gives rise to shadowing effects and
interference of the elementary particle production processes. How
one can describe the mechanics of such a relativistic many-body
problem in terms of simple, basic physical principles constitutes
a major challenge of high-energy heavy-ion physics. The
phenomenological models available so far serve to abstract the
important aspects of the physics involved. They serve useful
purposes but many problems remain. For example, the break-up
probability in the Lund model is given by a function f(z) which is
obtained by requiring it to reproduce the empirical multiplicity
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distribution and the symmetry of breaking the string from the left
and from the right. It may be useful to work out the break-up
probability for a string with a Schwinger-type model having
rapidly moving boundaries. Likewise, the exchange of momenta
between two colliding baryons in the Lund model for heavy-ions
follows an assumed probability distribution. It is desirable to
work out whether the dynamics of model strings or vortex lines
indeed follows space-time motion of the prescribed type.

Aside from the question of the dynamics of the collision
processes, high energy heavy-ion collisions may provide the tool
to produce a quark-gluon plasma because of the high energy density
that can be achieved. The high energy density is expected because
of the accumulative effect of many collisions occurring in a small
spatial region in a small temporal extent. Future experimental
investigations include the search and the identification of the
quark-gluon plasma. If it would be detected, more experimental
investigations would be needed to examine its properties. The
study of the quark-gluon plasma constitutes another major
challenge of high-energy heavy-ion physics.

As of now, experimental information from the few experiments
at Brookhaven with 160 ions at 15 GeV per nucleon and at CERN with
160 ions at 60 GeV and 200 GeV per nucleon indicate that a large
number of particles are produced carrying away a large fraction of
the incident energy. For example, in the collision of 160 on Au
at a laboratory energy of 200 GeV per nucleon, a maximum total
multiplicity of 300 has been observed. The rapidity density is
high and suggests that an energy density of the order of 2-3
GeV/fm3 has been achieved.45 For a collision of two nuclei with
mass numbers A and B, the energy density goes as AB/(A1/3+B1/3).24
There will be a substantial increase in the energy density when
the projectile mass is increased. Future use of heavier
projectiles will facilitate the production of the quark-gluon

plasma, if there is indeed a phase transition from a hadron matter

to a quark-gluon plasma.
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