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We present here an elementary introduction to the subject of

nucleus-nucleus collisions at high energies. It begins with a

discussion on the relevant kinematic.. variables to establish the

language for these collisions. It examines the question of

particle production and the characteristics of the loss of baryon

energy in an inelastic nucleon-nucleon collision. The geometrical

aspect of a nucleus-nucleus collision is then described in terms

of the Glauber multiple-collision model. As the theory of

relativistic heavy-ion collision has not yet reached a stage

whereby the dynamics can be examined from a fundamental theory,

various phenomenological models have been proposed. The

assumptions used in various models are described. Future use of

relativistic heavy-ion collisions to study the quark-gluon plasma

is briefly discussed.



I. INTRODUCTION

Recently, there is much interest in relativistic heavy-ion

collisions which stems from the possibility of creating matter

with very high energy densities. The energy densities may be

high enough to exceed the critical energy density for a phase

transition from the ordinary confined hadronic matter to the

unconfined quark-gluon plasma. Experimental searches and

identification of the quark-gluon plasma may provide new insight

into the question of quark confinement. Furthermore, the creation

of the domain of high energy density, albeit within a small region

of space and time, may allow one to study matter under unusual

conditions such as those which exist in the history of the early

universe.

We expect the occurrence of high energy density regions in

heavy-ion reactions for the following reasons. It is known that

in a high-energy nucleon-nucleon collision, the nucleons lose much

of their energy and a large number of particles are produced. A

nucleus-nucleus collision consists of many nucleon-nucleon

collisions. Qualitatively speaking, the effect of the

nucleon-nucleon collisions in a nucleus-nucleus reaction is

roughly additive in nature. Furthermore, because of Lorentz

contraction, these nucleon-nucleon collisions occur at about the

same time in about the same spatial region (in the center-of-mass

system). There is, therefore, a cooperative slowing-down of the

baryons and a nearly simultaneous production of overlapping

domains of high energy densities to lead to regions of very high

energy densities.

We expect the occurrence of high energy density regions in

two different situations: in the "stopping" region at about a

few GeV per nucleon in the CM. system, and in the "central

rapidity" region at the higher energy of about 100 GeV per nucleon

in the center-of-mass system. In the first situation, we envisage

the collective slowing-down of the baryons in the center-of-mass

frame so that the the nuclear matter is nearly stopped in that



frame. The type of quark-gluon plasma which may be formed in this

region is a baryon-rich quark-gluon plasma. At higher energies,

the baryons cannot be completely stopped. They are slowed down

but still proceed forward in the CM. frame after inelastic

collisions. When the baryons are well separated, the energy which

is trapped between the colliding nucleons may become liberated in

the region between receding baryons, the "central rapidity"

region. The additive effect of many such colliding nucleons may

produce a quark-gluon plasma with small baryon content. As the
2

net baryon content of the early universe is very small , this type

of quark-gluon plasma is of special astrophysical interest.

A quantitative understanding of the detailed dynamics of

nucleus-nucleus collisions is useful for an assessment of the

possibility of quark-gluon plasma formation. The knowledge of the

dynamics will also help one separate out the signals which are

expected in the hadronic phase and the signals which are peculiar

in the quark-gluon plasma phase. We need to know how a baryon may

be slowed down in its passage through a nucleus and how particles

are produced in a nuclear environment. How the heavy-ion

collisions proceed is the subject of current investigations and

will be the main focus of the present lecture here.

High-energy heavy-ion physics is an emerging field, both

experimentally and theoretically. The development is still in a

state of flux. Many models have been proposed and many more may

yet come as the problem is not completely solved. It is

appropriate to review the status of present research and to

prepare here a set of tools so that newcomers can make use of

these tools to make contributions in this area. For this purpose,

simple problems are posted in the lecture notes.



II. KINEMATIC VARIABLES

In relativistic heavy-ion collisions, as well as in

nucleon-nucleon collisions, it is convenient to use kinematic

variables with suitable properties under Lorentz transformations.

The light-cone variable x, the rapidity variable y, and the

pseudo-rapidity variable rj are kinematic variables which are

commonly used. It is worthwhile to discuss these variables in

some detail to establish the proper language to describe

relativistic collisions.

In many processes, a particle c can be identified as

originating from or related to another parent particle b. For

example, in the reaction b + a. -> c + X , the detected particle c

can sometimes be considered as fragmenting from the incident beam

particle 6. The light-cone variable x is introduced to specify

the relationship between the four-momentum of the daughter

particle c and the four-momentum of the parent beam particle b.

In these reactions, quantities along the direction of the incident

beam, which we call the longitudinal axis, have properties quite

different from those along the transverse directions perpendicular

to the beam axis. We shall designate the z-axis as the

longitudinal axis. In terms of the energy c_ and the longitudinal

momentum c , the light-cone variable x is defined as
z

c_ + c
x - °- Z- (2.1)

b0 + \

where we use the same symbol to represent a particle and its

four-momentum. That is, c - (cQ , c) and b - (b. , 5). Under a

change of the Lorentz frame, the numerator in Eq. (2.1) transforms

in the same way as the denominator. Therefore, the light-cone

variable x is independent of the Lorentz frame. This variable is

sometimes called the forward light-cone variable and is denoted by

x when we want to distinguish it from the backward light-cone



variable x appropriate for target fragmentation.

At very high energies when the energy and the longitudinal

momentum are approximately the same, the light-cone variable x is

just the longitudinal momentum fraction of the daughter particle c

relative to the parent particle b. For this reason, the variable

x is sometimes calleI the longitudinal momentum fraction or simply

the momentum fraction of c relative to b.

The daughter particle c may be a particle detected as a free

particle in an apparatus. In this case, the particle is not

subject to interactions and its four-momentum obeys the

on-the-mass-shell relation:
2 2 +2 2 ,o o.

c - cQ- c - mc (2.2)

where m is the rest mass of c. The four-momentum c now has only

three degrees of freedom, and it can be represented by (x,c_,)

where c_ is the transverse momentum of particle c. There is a

simple transformation which gives (cQ,c) in terms of (x,c_ )

(Problem 2.1).

In some problems, particle c is not a free and detected

particle and is still subject to interactions in the fragmenting

system. The four-momentum of c will not obey the

on-the-mass-shell relation (Eq. 2.2). Its four degrees of freedom
-» 2

can be specified by the Lorentz invariant quantities (x, c , c )
2 2 ->2 ->

c cc or by ( x x c

2 2 >2 ->
where c - cQ-c or by (x+,x_,cr)

r
Problem 2.1
Show that when particle c is on the mass shell, cn and c are

V z
related to x by

l b
0 z

and

z 2 ' — 0 z ' x ( b + b )
2 2 ->2 ° z

where m^ -n>c+cT .



Problem 2.2

The Feynman scaling variable x F for a detected particle c is

defined as
*
c
z

F *

max

where the asterisk stands for the center-of-mass system. By going

to the center-of-mass system, show that in the case of very high

energies, the light-cone variable x coincides with the Feynman

scaling variable. Note, however, that the light-cone variable

differs from the Feynman scaling variable when c is small or

negative.

L

The light-cone variable x introduced in Eq. (2.1) is useful

when we want to describe the particle c in terms of the

fragmentation of the beam particle b. Fragmentation of this type

is called a projectile fragmentation reaction. There are

situations where we wish to consider a particle c as originating

from the target particle a. Fragmentation of this type is called

a target fragmentation reaction. In that case, it is convenient

to define the backward light-cone variable x appropriate for the

target fragmentation region as

(2.3,

"0 • *z

The light-cone variable x_ is also independent of the Lorentz

frame, and it obeys relations similar to those given above for the

light-cone variable x. It gives the longitudinal momentum

fraction of particle c relative to the parent particle a. As the

variables x and x are independent of the frame of reference, it

is often convenient to work with light-cone momentum coordinates

p-cn+c and p -cn-c instead of cn and e . The ratio of the+ 0 z - 0 z 0 z
light-cone momentum coordinate of the daughter particle to that of

the parent particle gives then the momentum fraction carried by



the particle.

Another useful variable in common use to describe the

kinematic condition of a detected particle is the rapidity

variable y. It is defined in terms of its momentum by

0

The rapidity variable depends on the frame of reference, but the

dependence is very simple (Problem 2.3). The rapidity of one

frame of reference is related to the rapidity in another frame of

reference by an additive constant.

I"""

Problem 2.3

Show that under a Lorentz transformation from a laboratory frame

to a frame moving with velocity &, (for simplicity, we shall use

units in which c - h - 1.), the rapidity of the particle in the

new frame y' is related to y by

y' - 7 - y0
where

1 7 1 + &
?() ~2ln 1 - & .

Prove that y. is the rapidity the particle will have if it travels

with the velocity & in the laboratory frame.

Problem 2.4

In the collision of a (beam) nucleon with momentum b on a target
z

nucleon a at rest, show that the initial rapidities of the

particles are

and

yb -

where m> is the nucleon rest mass. Show that a nucleon traveling

with the velocity of the center-of-mass frame has a rapidity given



by

7 - ( 7 + 7u) /2 •1 cm Ja Jb' '

Thus, in the nucleon-nucleon center-of-mass frame

L

The simple property of the rapidity variable under Lorentz

transformation makes it a suitable choice to describe the dynamics

of relativistic particles. To go from one frame of reference to

another frame of reference, it is only necessary to find the

rapidity y. corresponding to the moving frame in question and

change the rapidity variables by this additive constant. This is

similar to the situation in non-relativistic kinematics where the

longitudinal velocity in one frame is related to the logitudinal

velocity in another moving frame by an additive constant. This

similarity is not a surprising result because

non-relativistically, y is equal to the longitudinal velocity v .
z

For a given incident energy, the projectile particles and the

target particles have definite rapidities (Problem 2.4). The

region in between the projectile rapidity and the target rapidity

is called the central rapidity region. The rapidity of the

produced particles lies mostly in this region.

If the particle c is a free particle, then it is on the mass

shell. Its four-momentum has only three degrees of freedom and

can be represented by (y, C-). There is a simple transformation

which gives (co,c) in terms of (y, c_) (Problem 2.5).

r
Problem 2.5
Show that if c is on the mass shell, then cn and c are related to

0 z
7 by

cQ - nij, cosh y ,

and

c - m_ sinh y .



From the definitions of x and y, it is easy to show that

x — J 7b, (2.5)
mb

and conversely,

y - y + In x + In (m. /m^) . ,„ &\

These relations also indicate that a complete description of the

full dynamical range requires both the x and the y variable.

Specifically, for reactions leading to particles with momentum

close to that of the incident beam, the light-cone variable x is a

more appropriate quantity to use. A projectile fragmentation

reaction is characterized by detecting particles with the

light-cone variable close to unity. In this region, the rapidity

variable changes only slightly and is relatively insensitive to a

large change of longitudinal momentum. On the other hand, for

those particles detected with a momentum fraction small compared

with the momentum of the incident beam, a small region of the

light-cone variable x is transformed into a large region in the

rapidity variable y. To examine these particles in these regions,

the rapidity variable y is a more appropriate kinematic variable.

We shall use these two variables interchangeably as the situation

warrants.

Experimentally, a particle c is often characterized by the

pseudo-rapidity variable tj which is defined as

r, - - In [ tan (0 /2) ] (2.7)

where 0 is the laboratory angle of the detected particle. In

terms of the momentum, the pseudo-rapidity variable can be written

as

2
- c

z

It is easy to see that the pseudo-rapidity variable coincides with

the rapidity variable when the momentum is large.



r
Problem 2.6
Show that the variable y and 17 are related by

y-^-ln

2 2
cosh r\ + vC, + p™ sinh i;

PT

and conversely,

J 2 2 2
PT cosh r) + n£ - p y sinh tj

~2 ~2~ ~2~
1 - m / ml cosh y + sinh y

n — j - in — .
/ ~2 2 2~~

cosh y •/ 1 - m / m_ cosh y - sinh y

Show that if particles have a distribution dN/dy in terms of the

rapidity variable 7, then the distribution in the pseudo-rapidity

variable rj is

dN / . 2.2 .2 dN
— j — « / 1 - n / ni_ cosn y —.
at} T dy

Show that in the region of 7 much greater than 0, dN/dtj and dN/dy

are approximately the same, but in the region 7 close to 0, there

is a small depression of the distribution dN/dt) due to the

transformation. ( In collider experiments at high energies when

dN/dy has a plateau shape, this transformation gives a small 'dip'

in dN/dt) around rf « 0."3'*)

10



III. NUCLEON-NUCLEON COLLISIONS

The search for exotic behavior of quark-gluon plasma requires

a comparison with what is expected from normal behavior without

the contributions from the quark-gluon plasma sources. It is

therfore useful to work out what is expected from "normal"

collisions. Whether or not the energy density is high enough for

a phase transition also requires an understanding of the dynamics

of nucleus-nucleus collisions which remains a subject under

investigation. Attempts have been made to relate the

nucleus-nucleus results to those from nucleon-nucleon collisions.

In relativistic nucleus-nucleus collisions, there are

peculiarities of the collisions which arise from the relativistic

nature of the process so that a nucleon-nucleon collision in a

nucleus need not be the same as that in free space. Nevertheless,

information from nucleon-nucleon collisions provides valuable data

and concepts for nucleus-nucleus collisions. For this reason, it

is useful to discuss the physics of nucleori-nucleon collisions in

some detail.

3.1 Particle Production in Nucleon-Nucleon Collisions

The nucleon-nucleon inelastic cross-section is approximately

32 mb which is relatively energy independent . About 6% of this

can be attributed to diffractive dissociation for which the

leading particle loses very little energy. Elastic or

diffractive dissociation collisions lead to a small loss of the

energy of the nucleons. Thus, for our discussion of particle

production and stopping of baryons, two nucleons undergoing

elastic or diffractive dissociation collisions can be considered

as suffering essentially no collision at all. On this basis, we

shall consider only non-diffractive inelastic collisions unless

specified otherwise. For simplicity, by a nucleon-nucleon

collision, we shall mean a non-diffractive inelastic

11



nucleon-nucleon collision with a cross-section <*in°f about 30 mb.

Inelastic collisions at high energies are characterized by

the production of a large number of particles, most of which are
3 5

pions ' . The mechanism leading to particle production is
6 8

qualitatively understood " as arising from the Schwinger

mechanism in which the two colliding particles form a strong

constant-force field between them, much like the case of a linear

string. Particle-antiparticle pairs are produced by one particle

tunneling from the negative energy sea to the positive energy

continuum, leaving a hole in the negative energy sea in one region

and a particle in the positive continuum in another region. The

physics of such a phenomenon can be illustrated with a simple

example of Klein-Gordon particles in a constant-force field of

finite dimensions (Problem 3.1). (The more exact, but more

complicated case of Dirac particles in a constant-force field

with a finite dimension has been solved . However, for

simplicity, it will not be discussed here).

ORNL-DWG 87-94J3

Ag(x)+mc2

A0(i)
POSIT VE ENERGY CONTINUUM

-L

NEGATIVE ENERGY STAT -S

Fig. 1. The potential AQ(z).
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Problem 3.1

Consider a particle vith a mass m in a static linear vector

potential A - (6,An) of the form (Figure 1 ):

The Klein-Gordon equation for the particle is

I" (p - A)2 - m2 1 * - 0 .

Show that by making the transformation

$ --/2 [ E + k(z-L) )/ /~k

where E is the energy of the particle, the equivalent Schrfidinger

equation is formally the same as that in the tunneling of an

inverted parabolic barrier. The tunneling is permitted for states

in the interval

-kL + me2 < E 3 kL - me2 .

Show by the WKB method that the penetrability for a negative

energy state at E-0 to tunnel to the positive energy continuum is

P - exp C -2*a )
where

a - (m24j)/2k .

With this result, show that in the vicinity of z-0, the production

rate for a pair per unit volume per unit time is

2 2k -urn /k
w - — s - e f

a*
which is identical to the Schwinger result.

L

The results in Problem (3.1) indicates that the transverse

momentum serves to provide an effective transverse mass to the

particle and this effective mass must likewise tunnel through the

barrier. It must work against the field and is therefore limited

by the field strength k to result in a transverse momentum

13



-*2
distribution of the form exp (-ir Pj/k). It also shows that there

is no particle production if the length of the string 2L is less

than 2m/k. If one takes the quark mass to be about 350 MeV, and

the string tension k to be 1 GeV/fm, then the minimum length

required for particle production is 0.7 fm for a particle with

p-0 but increases to 1 fm for a quark with a transverse momentum

of 0.35 GeV.

The above static problem (Problem 3.1) contains exact
11 12

solutions which involve parabolic cylinder functions

Numerical solutions show that the penetrability has spatial

oscillations for finite systems. As expected, the smaller the

system, the greater is the amplitude of oscillation.

The problem we discuss is one with the geometry of a parallel

plate. One may well ask on what basis can it be applied to

nucleon-nucleon collisions which are better described by a flux

tube of radius R. For a transverse momentum greater than about

h/R and in the interior of the tube, the wave equation can be

approximated to be that for the parallel plate. However, for

,. small transverse momenta, it is necessary to take into account the

boundary condition in the transverse directions and the solution

of the parallel plate will not be appropriate there. As yet, how

particles are produced in a flux tube geometry has not been

studied.

Although a numerical solution of the problem posted in Frob.

3.1 has been obtained, and the spatial variation of particle

prodution probability has been calculated, the solutions cannot

yet be applied quantitatively to nucleon-nucleon collisions at

high energies. For the latter collisions, the end points of the

linear force field move with high velocities which will affect

particle production. We are now studying how this time dependence

may affect particle production.

Much insight in particle production mechanism is provided by

examining a 1+1 dimensional QED problem with massless fermions in

which a charge fermion (a quark, say) and its anti-particle pulls

14



apart with the speed of light. It is known that because of the

gauge property of the field, the 1+1 dimensional QED with massless

fermions is equivalent to a scalar field with a massive scalar

particle. The scalar particle can be thought of as a

fermion-antifermion pair . The motion of the end-point fermions

creates a time-dependent dipole field between them which acts as

an external field to excite these fermion-antifermion pairs into

the continuum. Applied to the problem of particle production in

nucleon-nucleon or in e e collisions, one obtains the following

space-time description of the dynamics when a quark q and
7 8

anti-quark q pull away from each other ' . When the separation

between the quark q and the anti-quark q is greater than a certain

length (of the order of 0.5-1.0 fm, say), a pair of

quark-sntiquark 9.13i will be produced. The produced q, will

travel toward q while the produced q. will travel toward q.with

qq. and q-q forming two separated strings. In the separated

strings, as the end points of the strings are still pulling apart,

further production of qq pairs will break the string into more
14

pieces until each string is separated into a yo-yo state

(Problem 3.2) which can be considered as a relatively long-lived

— X

Figure 2. Inside-outside cascade picture of particle production.
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resonance. This process starts from the creation of a pair in the

inside region between the two separating particles and follows

with the breaking of the strings in the outside region. It is

called the inside-outside cascade picture of particle

production. ' (Figure 2)

Problem 3.2

Consider a massless quark pair , with the following Hamiltonian,

k \x,- xn\ .

Initially, both quarks are at the origin and have momenta

and p2(0) < 0. (Figure 3)

Figure 3. Space-time dynamics of a yo-yo state.

Use the Hamilton's canonical equation to show that the velocities

and momenta of these two particles are

for t £ T2

for

x2(t)
for

for
r .
t

16



and

PM -

- fct + ?1(0)

- k(t-T2)

- k(t+T2-2T3)

+ fct + p2(0)

+ k(t-T2)

for

for

for

for

for

for

t < 1r

T3< t <

t <1.

Tj< t <

Tn< t <>

where

z- -p2(0)/k

V T2
+ 2

1, and

Problem 3.3

Consider a massless q,-q« pair with q- moving initially in the

forward direction with momentum p-COand In mov^n& ^ n tne backward

direction with momentum p~(0). The Hamiltonian is given by H in

Problem 3.2. At time

momentum.(Figure 4)

a pair IO-CL created with zero

Fig. 4 Space-time dynamics after the creation of the 9-,-fJo pair
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The Hamlltonian becomes

H - !P2I
 + \P2\

 + lpjl + 1*41 + k \ x^ x3\ + k \

Show that the time dependence of the velocities and momenta of q-

and q_ are:

1 for t < 1l

for T1 < t < T_

for 2%, < t < 2\.

-i for r4 < t <

and

- fct + Pl(0)
- k(t-Tz)

- k(2T2-C-T1)

k(t-T3)

k(t-T0)

k(2T2-t-TQ)

-k(t-TA)

for

for

for

for

for

for

for

t ^

Trs
T2%

T3*

To

T4

T
t

t

t

<

<

1

t

t

t

T2

T5

<

Note that the dynamics of these two quarks q. and q, are the same

if they originate from the point C at T (Figure 4) with momenta

P3(Tc) - -k(TQ- Tc) and p^) - k O ^ V .
L

In the dynamical case with the end points moving away from

each other, the probability distribution of the momentum fraction

carried by the produced pair has not been worked out quantum

mechanically from a theoretical viewpoint. Many phenomenological

models have been put forth to specify the distribution f(x) of the

location of the light-cone variable x for one of the two particles

in the intermediate qq pairs. For example, there is the

Feynman-Field parametrization ,

f(x) - 2 - a + 3a (1-x)2

• 17
with a value of a a 0.77. The SLAC formula gives a
distribution,

18



(}
where e is a reference scale. On the other hand, the Lund model

/
assumes a distribution of the form

f(x)

where a , ao , and b are free parameters. This form of
a p

distribution was based on the requirement that it gives a rapidity

distribution of produced particles which has a plateau shape at

high energies and that the distribution is the same whether the

string is broken from the left or from the right. A good fit to

experimental data can be obtained with a —a^—l and 6—0.7 GeV

The most extensive numerical investigation of the above

space-time development of a q-q pair has been carried out by the
o

Lund group. In their calculations, one starts with either end of

the q-q system and the distribution f(x) gives the location of the

vertex which divides the system into two parts (as in Problem

3.3). One part is considered an excited hadron resonance ( a

yo-yo state) while the other part will undergo further

fragmentation with the same probability function f(x) to divide

the string into more parts. The division is stopped when the

available energy of the string is lower than a certain limit.

Phenomenologically, the Lund model has achieved a considerable

degree of success.

As is well known, for a given total energy loss, the

multiplicity distribution in pp collisions is wider than the
+ - 18

multiplicity distribution in e e collisions . The particle

production mechanism which works in e e collisions is different

from the mechanism in pp collisions. The above scheme which is

directly applicable to e e" collisions, needs to be modified to

make it applicable to hadron-hadron collisions. A new version of
19 20

the Lund model has been proposed ' in which the hadrons under
an inelastic collision are assumed to exchange momentum and become

19



two independent and excited clusters. The probability

distribution for the exchanged momentum is taken to be a

particular form. After the exchange of momentum, the two clusters

each decay into hadrons in accordance with the space-time

dynamics of the q-q evolution as in the earlier version of the

Lund model. A generalization of this "independent excitation"
19 20

scheme has been used for heavy-ion collisions '
4

Experimental data of nucleon-nucleon collisions reveal that

about 90% of the produced particles are pions; the rest consists

of kaons, baryons, anti-baryons and other particles. Their

average transverse momentum is about 350 Mev/c which is increased

slightly at very high energies . The total multiplicity of

particles increases with the CM. energy approximately in a

logarithmic way. The rapidity distribution is in the form of a

bell-shaped curve for A * 10 GeV, but at the ISR energies with -/s

up to 63 GeV, the rapidity distribution dN/dy of the produced

charged particles assumes the shape of a plateau having a value of

about 2 in the central rapidity region.

For many practical applications, it is desirable to

parametrize the particle production data in terns of simple

functions.,, There is now a good collection of experimental data

to permit a simple parametrization. In the p+p -» x~ + X reaction,

the momentum distribution of the produced pions follows a simple
a 4 5

(1-x) relation in the projectile fragmentation region ' , with a

« 3 - 4. There is a similar distribution for the pions produced

in the target fragmentation region. It is convenient to

parametrize the rapidity distribution of the produced charged

particles in the following form:

dN/dy - A f ( 2 - x+)( 1 - x ) 1 (3.1)

where x is the light-cone variable for projectile fragmentation

x+ " \T exp ( y ' ?b > / m N •

20



x is th light-cone variable for target fragmentation,

X- " \T exp ( yT ' 7 * / m N '

and y. and y_ are the beam and target rapidity variables

respectively. The quantity m _ is the pion transverse mass and is

/ 2 2
set equal to / jr T , where B_ is the average transverse.

momentum <|p_|> of the produced particles. In this form, the

distribution exhibits a (1-x) type behavior at the fragmentation

regions, a bell-shaped distribution at low energies and a

plateau-shaped distribution as energy increases. We find that the
21following set of parameters gives a satisfactory description of

the experimental rapidity distribution of non-leading charged

particles:

A - 0.75 + 0.38 In /s ,

a - 3.5 + 0.7 In /» , (3.2)

and BT - 0.27 + 0.037 In -/s ,

where B- is in units of GeV/c and -/s in units of GeV. The results

obtained by using this set of parameters are shown as solid curves

in Figures 5 and 6. There is a good agreement with the dN/drj

values at the central rapidity region as a function of the center

of mass energy /s (Figure 5). There is also a good agreement for

the rapidity distribution dN/dtj at -/s-540 GeV obtained with the

CERN SPS collider (Figure 6). On < he other hand, the rapidity

distribtuions obtained with this set of parameters are slightly

narrower than the rapidity distributions from the CERN ISR

experiments . At the ISR energies (-/s from 24 to 63 GeV), there

is a substantial contribution of the leading baryons to the two

wings of dN/dij. The observed distributions are broader than what

is given by the parametrization of Eqs.(3.1,3.2) which includes

only non-leading particles. At the much higher energy of the SFS

collider, the leading baryons have rapidities much separated from

those of the produced particles so that Eqs. (3.2,3.2) can be

directly compared with experimental data which presumably do not
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include the leading particles.

OHNL-OWG I S - 10557

Ill I

10° 10'
/T(G«V)

Fig. 5. dN/dri data at 17*0
as a function of /s

Fig. 6. dN/dti as a function of
for /s-540 GeV

From the distribution of dN/dy, one can integrate over the

rapidity variable to obtain the total multiplicity of non-leading

charged particles. Experimental measurements of the total charged

multiplicity include also the leading particle and occasionally

the target proton. To obtain the total charged multiplicity, we

therefore add a constant of 1.5 to the integral of Eq.(3.2) to

take into account the contributions from the leading particles.

The result is shown as the solid curve in Figure 7. It agrees

with experimental total average multiplicity data <n>.
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Fig. 7. Total charged multiplicity versus /s.

3.2 BARYON ENERGY LOSS IN AN INELASTIC COLLISION

In a nucleon-nucleon or a baryon-baryon inelastic collision,

there should be at least two baryons among the product hadrons

because of the law of baryon conservation. These baryons are

likely to be among the leading particles with one baryon in the

projectile fragmentation region and another one in the target

fragmentation region. If one considers the detected baryons as

related to the corresponding incident baryons, one can view an

inelastic collision as a reaction in which an energetic baryon

suffers a degradation of its energy after a collision. The degree

of inelasticity can be measured by the light-cone variable x

defined as the ratio of the light-cone momentum of the detected

baryon to that of the incident (parent) baryon [Eq, (2.1)]. For x

>• 0, the light-cone variable x and the Feynman scaling variable

nearly coincide. As the phenomenon of Feynman scaling

corresponds to the situation when the cross section plotted as a

function of the Feynman scaling variable is independent of the

»„
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incident energy, the present case of da/dx being nearly

independent of the incident energy for x • 0 can be called the

occurrence of Feynman scaling. We show in Figure 8 the

experimental inelastic cross-section data for the
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Fig. 8. Experimental cross-section da/dx for p+p-»p+X.

reaction p + p - » p + X a s a function of x. The distribution da/dx

for x > 0 is nearly independent of the incident energy for an

incident momentum of 100 GeV/c and 175 GeV/c (Figure 8). Thus,

there is a Feynman scaling for the inelastic cross section when

Plab exceeds about 100 GeV/c. A systematic examination of the

nucleon-nucleon data shows that Feynman scaling commences at a

slightly lower energy of many tens of GeV in the laboratory
23

system

To study the degrees of energy loss in an inelastic

collision, we examine the shape of the distribution da/dx as a

function of the light-cone variable x. Except for the diffractive

dissociation region in the vicinity of x « 1, the distribution

(i.e. the differential cross section) Is nearly flat. If one

extrapolates to small regions of x and does not include

diffractive dissociation in our consideration (see Section 3.1),

an approximate representation of the (differential) cross section
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is

do/dx - a. 9( 1-x ) 9(x-x ) / (1-x ) , (3.3)
2.11 J-t J-i

where xT is the lower limit of x as required by energy and

momentum consideration. It has a value which is much smaller than
24 funity . Strictly speaking, the upper limit x of x is not

unity, but the difference of xjr from unity is small.

Furthermore, unlike the lower limit which is very important in

setting correctly the lower limit of the rapidity variable, a

small variation in the upper limit is of little consequence. We

shall take the upper limit as unity. The distribution (3.3)

shows that after an inelastic nucleon-nucleon collision, there is

an equal probability of finding a product baryon in the whole

range of the light-cone variable. The average value of x is

<x> - 1/2 (3 A)

Therefore, on the average, the product baryon carries about half

of the initial light-cone momentum. This implies that about half

of the initial light-cone momentum of the baryon is lost. If the

incident baryon carries hundreds of GeV, then the energy-momentum

loss can be very substantial in magnitude.

In nucleus-nucleus collisions, the nucleons of one nucleus

suffer many collisions with nucleons of the other nucleus. In a

multiple-collision process, the loss of the incident energy and

momentum can be quite large and may lead to the "stopping" of the

baryons in the C M . system. We shall return to this topic later

on.

The production of particles and the loss of baryon energy are

intimately related because the total energy of the system must be

conserved. There is, in fact, an experimental correlation between

the baryon energy loss and the multiplicity of particles
25

produced . The greater the energy loss of the baryons, the

greater will be the number of particles produced.
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IV. GLAUBER MODEL OF COMPOSITE-PARTICLE COLLISIONS

26
The Glauber model of multiple-collision processes provides

a quantitative consideration of the geometrical sizes of the

composite particles when they collide. It is based on the concept

of a mean-free path with the assumption of a basic

"parton-parton" cross-section. In the naive quark model of a

hadron, the partons are just the valence quarks. In a nucleus,

the partons are the nucleons. When a parton of one particle

passes through the other particle, it may become excited and may,

in principle, have a different cross section. Ve can understand

much of the geometrical concepts of the collision process if we

take the basic parton-parton cross section to be the same

throughout the passage of the parton in the other particle.

We consider the collision of composite particles B and A. We

begin by defining t(b)dt as the probability for having a

parton-parton collision within the transverse area element do

when one parton is situated at an impact parameter b relative to

another parton. The function t(b) is called the basic

parton-parton thickness function. Clearly, the total probability

of a collision integrated over all impact parameters is unity and

t(b) is normalized according to

t(b) dt - 1 . (A.I)J
We denote the parton-parton basic cross-section (for an inelastic

process, with the production of other particles) to be a.

Thus, when one parton is situated at an impact parameter b

relative to the other parton, the probability of having a

parton-parton collision is t(b)o. .

We define next the probability of finding a parton in the

volume element db^dz in particle B at the position (5D ,zDJ as

p^(b^,z^) db dz which is normalized according to

J ' V
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Note that p is equal to the usual number density function divided

by the number of partons in the particle. The probability

function of finding a parton in the particle A at the position

(6 ,z ) can be similarly defined as P A ^ A ' V a n d normalized a s

J
We can now write down the probability for the occurrence of a

parton-parton collision when the particles B and A are situated at

an impact parameter b relative to each other. We call this

probability T(b)a. :

T(b>°in " I >A<VV dV"A "B<VV dV*B t(t - \ - V *la '
which defines the thickness function T(b) for the composite

particles A and B:

T(b)-\

From Eqs (4.1) and (4.2), the thickness function is normalized

according to

J T(b) dt - 1 . C4.«;

The probability for the occurrence of n inelastic

parton-parton collisions at an impact parameter b is given by

P(n,t ) - P48] [T(b)a. ]n [1-T(b)a. J^3"" . (4.5)
l_ nj in in

The total probability for the occurrence of an inelastic event in

the collision of A and B at an impact parameter 5 is the sum of

Eq.(4.5) for n-1 to n-AB :

AB
- I P(n,t) - I - [2 -
n-1

AS
Therefore, the total inelastic cross section a. for the

in
collision of A and B is
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With the probability of having n parton-parton collisions as given

by Eq. (4.5), we can find the average number of parton-parton

collisions at an impact parameter b as

AB
n(b) - [ n P(n,b) - AB T(b)ain (4.8)

n-1

The average number of parton-parton collision, under the

additional condition of the occurrence of an inelastic collision,

is

n'(b) - AB T(b)a±n / \ 1 - [ 1 - TflOa^]*
8 I . (4.9)

When we further average n'(b) over the impact parameter b with the

weighting factor of the inelastic differential cross section, we get

the average number of parton-parton collisions in an inelastic

nucleus-nucleus collision:

f dt n'(b1 { 1 - [1 - T(b)a ] M)
<n> - — i - — -rf . (4.10)

J dt { i - [i ^

From Eqs. (4.7,4.10), we obtain the mean number of parton-parton

collisions in an inelastic collision of tli< composite particles A and

B as

<n> - AB a±n/ a^ . (4.11)

The basic thickness function t(b) can be well approximated

by a Gaussian function with a standard deviation B . If the

composite particles are small, their density function p can also

be taken to be a Gaussian funtion of the spatial coordinates.

Consequently, the thickness function of Eq.(4.3) can be

conveniently written as
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T(b) - exp C -b2/2B2) /2*B2 (4.12)

where

In terms of the standard root-mean-squared-radius parameter r
^ r rms

for particles A and B, the standard deviation B. (or, similarly,
is given by

BA- r A1/3/ /3 .
^A rms

The Gaussian form of the thickness function is actually a more

general shape than one may at first expect. It turns out that for

the collision of two composite particles with a relatively flat

spatial density in the shape of a Fermi distribution (as in the

case of a heavy nucleus), numerical calculations show that the

thickness function can be well approximated by a Gaussian

function, except that the effective parameter r is slightly
27 rms

larger.

With a Gaussian thickness function, the total inelastic cross

section can be obtained as an analytic function. (Problem 4.1)

r
Problem 4.1

Show that the total inelastic cross section for a Gaussian

thickness function is

AB
"in "

which can also be written as

AB i
AB
"in" "

1-2 j-1

where f is a dimensionless quantity given by

f - a.n / 2*B
2 .

Prove that if f is small, then
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** « AB a,
In in

Problem 4.2

Consider a hadron-nucleus collision with a target mass A • 1 or a

nucleus-nucleus collision with A > B. The thickness function

obtained with a sharp-cutoff density distribution has the form

T(b) - (3/2*1!?) (R2- b2)1/2 8(R-b)

where R is the sum of the radii of the two colliding particles.

Show that the inelastic cross section is

•2—' '•
2

F2

onlc

•

iSS

F

l- a

A +

ratio

- 3 a,in

2

/ 2KR2

1 -

A

- d-F)A+1

+ 1

L

The formalism developed above is appropriate for the total

number of collisions and the total inelastic cross section. In

some problems, it is also necessary to know the history of the

collision process, as for example, in the dynamics involving the

slowing-down of the baryons. It is convenient to adopt a

row-on-row picture of one row of n nucleons from nucleus B

colliding with another row of m nucleons in the other nucleus A.

We construct the normalized thickness function T-(bo) for the

nucleus B as

W " V V - J "B(tB >ZB ) dzB • <*-13)

The thickness function T (b.) for the other nucleus A can be
<A A

similarly constructed. The basic unit of area is the

nucleon-nucleon inelastic cross section a, . The probability of

finding a nucleon in a tube of cross section a . at the transverse
in

coordinate 5g is Ta(bg)ain' Th® probability of finding n nucleons

in a tube of cross section o. at the transverse coordinate t- in
in B
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nucleus B is given by

which has an average value of

B B B In

Similarly, the probability of finding m nucleons in a tube of cross

section a. at the transverse coordinate 6. in nucleus A is given

by

which has an average value of

<m(bA)> - ATA(bA)ain . (4.17)

The probability of having a nucleon-nucleon collision in the area

element do is t(t~tA+oB)dt. where 5 is the impact paraoater of B

relative to A. Putting all the factors together, we find the

probability of having n nucleons of I in a tube of cross section

a, colliding with m nucleons of A in a similar tube is

.m.tB.t) - JP(n,m.^^) - | t(5-1A+5B)d5A UtVV'in
1 [ 2 '

n B-n

The basic nucleon-nucleon thickness function t can be approximated

by a delta function and the probability function P can be

simplified to be just products:

*<n,m,tB.t) -

For many problems, the dynamics is insensitive to the spatial
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transverse coordinates oD of the tube but is nore sensit \» to

the number of nucleon-nucleon collisions in the tube. One cat:

then integrate the transverse coordinates &„ to obtain the

probability for collisions of n nucleons in B with m nucleons in A

at an impact parameter b :
->

n) n B'n

The results of Eqs.(4.19) and (4.20) are useful expressions for

nucleus-nucleus collisions.
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V. MODELS OF NUCLEUS-NUCLEUS COLLISIONS

The study of the dynamics of a nucleus-nucleus collision has

not yet reached a stage where such a process can be described from

the first principle, starting with the theory of QCD. The

phenomenon of hadronization and confinement are intimately related

and a non-perturbative QCD description is necessary. Even with

simple model interactions, a relativistic theory of a many-body

system interacting and producing particles has not been worked out

so that a quantitative description is available at present. The

investigation of such a problem constitutes one of the most

outstanding problems confronting the theory of nucleus-nucleus

collision today.

In the absence of a well-developed theoretical description of

the nucleus-nucleus collision, there are many different models

which attempt to describe the interaction processes. Many of

these models treat a nucleon as an excitable entity and quarks

enter only as a part of a collective cluster. These models have

achieved various degrees of success. There are also models which
28

treat nucleus-nucleus collisions completely at the quark level .

For the low p phenomena, cheir success has been limited, as the

process of hadronization, confinement and recombination cannot be

well described. We shall discuss here those models which consider

hadrons as a collective unit in nucleus-nucleus collisions. All

these models assume a multiple-collision process such as the

Glauber-type model, for the geometrical part of the collision

process. The problem is reduced to a detailed description of the

space-time dynamics of what occurs when n nucleons from the beam

nucleus B collide with m nucleons from the target nucleus A. The

models differ in their assumptions as to how the particles share

their energies and where the sources of particle production are.

All of these models assume that, in accordance with experimental

observations, production of the non-leading particles occurs after

the two nuclei have passed through each other. This peculiar

behavior can be easily understood. After an inelastic collision,
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the colliding nucleons need to be separated by a distance of the

order of a Fermi in the CM. system before particles can be

produced. However, when this occurs, the baryons have already

moved forward into a different spatial region away from the

production zone. Consequently, the produced particles do not

collide with the baryons of the incident nuclei.

5.1 The Lund Model for Nucleus-Nucleus Collisions

In the Lund model, it is assumed that for low-p phenomena,

the hadrons are not transversely excited but are only

logitudinally stretched. The hadrons undergoing interaction are

otherwise independent of each other. The collision of n beam

nucleons and m target nucleons will result in m+n excited hadrons.

These hadrons subsequently decay after collisions have been

completed and are the sources of particle production. The decay

of these stretched hadrons is analyzed in the same way as in the

decay of a stretched q-q pair which has been previously worked out

in the older version of the Lund model.

To be more specific, the major assumptions of the Lund model

consist of the following :

1) The hadrons which participate in the collision are independent

and are individually excited. It is conveninet to represent the

momentum of a hadron by the light-cone noaentua coordinates

(P.,P ) where the forward light-cone momentum P is the sum of its

energy and its logitudinal momentum P while the backward
z

light-cone momentum P is the difference E - P . In the

collision of one hadron with v nucleons, the initial light-cone

momenta of these v+1 hadrons are

(P1+, m
2/P1+) and (m2'/P±_,P±_) for i -2,...,i/+2 .

Collisions between the baryons will lead to the sharing of their

momenta, but there is otherwise no quantum number flow from one

baryon to another. After collision, the ith target baryons in the

set {2,...,v+1) gain a momentum Q in the forward light-cone
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direction but lose a momentum Q. in the backward light-cone

direction. The resultant momenta are

(m2/P£_+ Q1+,Pim- Q£) for i-2,...,v+l {5.1)

and the momentum of the incident baryon is

v+1 „ v+1

I I
i-2 i-2

2) It is assumed that the momentum transfer obeys a probability

distribution given by

dQ dQ
Probability = — 5 (5.3)

<"l / P 2 +
+ <*!*> <mVPi-+ <*l->

where the mass term comes from the lower limits of momentum

transfer while the dQ/Q type of probability distribution comes

from the Feynman parametrization of the momentum distribution of

the wee-partons.

3) For nucleus-nucleus collisions, the above procedure is

similarly generalized. That is, in each binary collision of the

projectile baryon with momentum (Pu.tPu ) a n d • target baryon

with momentum (P ,P ), there is an exchange of momentum Q and

Q to result in the momentum (P.- Q,,PK + Q ) for the projectile

baryon and the momentum (P + Q ,P - Q ) for the target nucleon.

The only restriction is that Q and Q_ must be greater than zero

so that the dominant component of the momentum P, - 0 of the
0+ +

projectile baryon and P - Q_ of the target baryon will always

decrease in their magnitudes after collision. The probability

distribution of the exchange momentum is given by Eq. (5.3).

4) After the .baryons complete their collisions, each excited

baryon is then studied to obtain the spectrum of the produced

particles. It is assumed that the decay of a final baryon with a

momentum (p1+>
p, ) *s similar to the decay of a q-q . ysten with a

massless quark traveling in the forward light-cone direction with

a light-cone momentum P. and an anti-quark traveling to the

backward light-cone direction with momentum P, . A previous Lund

model for nucleon-nucleon collisions can be used for that purpose.
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The Lund model for nucleus-nucleus collisions has been

proposed only recently; It will be tested with the new data to

examine the validity of the model.

5.2 THE DUAL-PARTON MODEL

The dynamics in the interaction of hadrons in a nucleus is

described as proceeding in a different way in the dual-parton

model developed by Capella, Tran Thanh Van, and their
29

collaborators . For the collision of one hadron against another

hadron, the dual-parton model contains the following assumptions:

1). Each hadron is considered to consist of two elementary

constituents. In the case of a meson, the constituents are a

quark and an anti-quark; in the case of a baryon, the constituents

are a. quark and a di-quark. One infers the forms of the momentum

distribution of these constituents inside the hadrons from other

empirical considerations such as the dual resonance model.

Specifically, the momentum distribution of the valence quark £ ,

and the di-quark f are assumed to be
99

and f^fxj . x1-3 .

It is worth noting that the constituent partons here are not the

same as the partons in the deep-inelastic scattering processes.

They are "dual partons" which are assumed to contain features of

the non-perturbative QCD.

2). In a collision of these two hadrons, these constituents

fragment into the detected particles according to certain assumed

empirical fragmentation functions. For example, the fragmentation

functions for the valence quarks , and the di-quark to fragment

into n axe respectively

xD(v*n+) -0.5 (l+x)F(x)

and xD(qq-*if) - 0.675 (1-x)2 ,
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where

F(x) - [ 1.3(l-x)2+0.05 ] / (1-0.5x)

The resultant momentum distribution of the detected particle is

just a folding of the momentum distribution of the constituents

and the momentum distribution of the fragments coming from the

constituents.

Upon choosing the structure functions and the fragmentation

functions to fit experimental hadron-hadron data, the model is

then used to study hadron-nucleus, baryon-nucleus, and

nucleus-nucleus collisions with additional assumptions about the

sea quark. For example, in the collision of a baryon with a

nucleus, the collision is assumed to proceed in the following way,

as shown in Figure 9 below:

Fig. 9 Quark dynamics in the dual pax ton model.

It is assumed that the di-quark system of the incident baryon

proceeds forward and develops a chain with a valence quark of the

last struck nucleon (Chain 4 in Figure 9 ), while its valence

quark develops a chain with the di-quark system of the first

struck nucleon. The valence quarks of the target nucleons develop

chains with the sea-quarks of the projectile nucleons. (Chains 2
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and 3 in Figure 9). There are therefore two types of chains:

those not involving sea quarks and those involving sea-quarks. In

a collision of a baryon with n target nucleons, there are two

chains not involving sea-quarks and 2n-2 chains involving sea

quarks. Each chain leads to independent productions of particles.

The momentum distribution of the sea-quark is assumed to be

given by a distribution of a form which goes as 1/x as

x -> 0 :
, , , ,2 2, 2.-1/2
fs(x) - (x + fi / p ) ' .

The sea quarks fragment into hadrons according to a prescribed

fragmentation function. For example, the fragmentation function

for a sea quark to go into a IT is assumed to be of the form

XD(S-»JT ) - F(x) ,

where F(x) has been given previously in the expression for

)

With the introduction of the sea quark, the momentum

distribution of the produced particles can be obtained by a

convolution. While the dual-parton model has been applied to some

(light nucleus)-(light nucleus) collj

with the new heavy-ion data from CERN.

29
(light nucleus)-(light nucleus) collisions, it will be tested

5.3 THE MULTI-CHAIN MODEL

A different multiple-collision model, the multi-chain model
30

was proposed by Kinoshita, Minaka, and Sumiyoshi . In this model

for a baryon-nucleus collision, incident baryons make collisions

with many nucleons in the target nucleus. Each collision leads to

the formation of a chain which later evolves into produced

particles. The leading cluster degrades its momentum as the

collision process proceeds. How the leading cluster loses energy

is taken to be an unknown and parametrized function P(x) to be

determined by experiment. A convenient parametrization of the

probability function P(x) is taken to be

P(x) - axa+1
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where x is the light-cone variable of the leading cluster. Other

methods of partitioning the light-cone momentum have also been

attempted. The momentum degradation of the leading cluster is

assumed to be sequential so that the momentum distribution after n

collisions is the folding of the momentum distribution after n-1

collisions and the probability function P(x). After each

collision, each chain also acquires a momentum fraction, and it

decays into hadrons, depending on a fragmentation function G

which is a function of the light-cone momentum of the chain. For

example, for charged secondary particles, the fragmentation

function was assumed to have the form:

G(z,x) - (1- z)P (1-xf

where z is the light-cone variable of the detected hadron relative

to the chain and x is the light-cone variable of the detected

hadron relative to the target nucleon.

5.4 Other Variations of the Multiple-Collision Model

Besides these models, there are many variations of the

multiple-collision model which differ in the way the energy and

the momentum of the particles are partitioned and the sources of

particle production. In the approach taken by the present
31

author , nucleons of one nucleus form leading clusters as they

pass through and make successive collisions with nucleone in the

other nucleus. The baryon clusters degrade their energy and

momentum. It is assumed that an approximate description, subject

to modifications, is that the leading clusters degrade energy and

produce particles approximately as if they were in free space.

Each collision is a source of produced particles. The energy loss

in each collision leads to particle production as in free space,

except that these secondary particles emerge only after the

nucleus-nucleus collision has been completed. Consequently, the

produced non-leading particles do not make collision with the

projectile or the target nucleons. Results obtained with such a
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model give a reasonable description of stopping power when a

proton passes through a nucleus . However, further tests and

modifications of the simple model may be necessary to confront the

new heavy-ion data that are emerging.
32

A similar approach has also been taken by Ludlam and his

collaborators, which results in the HIJET computer program. It is

assumed in a similar way that the leading clusters in

nucleus-nucleus collisions make successive collisions with

nucleons of the other nucleus. In each collision, the energy loss

and the spectrum of produced particles are calculated with the

ISAJET program which has been written to reproduce the

nucleon-nucleon collision data. While the leading clusters can

continue on to make more collisions as they pass through the other

nucleus, the produced particles emerge only after the nuclei are

far apart and do not participate in secondary collisions. The

HIJET program has been used as an event generator to aid the

design of experimental detectors and has also been used to compare

with preliminary experimental data.
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VI. RELATIVISTIC HEAVY-ION COLLISIONS AND QUARK-GLUON PLASMA

From the experimental data in nucleon-nucleon collisions, we

know that an inelastic nucleon-nucleon collision is accompanied by

a large loss of the baryon energy which is released in the form of

produced particles in the central rapidity region. In

nucleus-nucleus collisions, the number of nucleon-nucleon

collisions can be very large. For example, in the head-on

collision of a uranium nucleus on another uranium nucleus, the
27

number of inelastic baryon collisions is about 800. The

multiple collision models we discussed in the last section

indicate that the effects of the many collisions are rougly

additive. Lorentz contraction also makes the collisions to occur

in a very small spatial region and in a small temporal extension.

In consequence, when the incident energy is appropriate (at about

a few GeV per nucleon in the CM. system), the baryons in a

nucleus may make so many collisions that the leading baryon

clusters may be effectively stopped in the CM. system. The

stopping of the baryons gives rise to baryon matter of very high

density and may lead to a transition from the confined baryon

matter to the unconfined quark-gluon plasma with a large net
33 34

baryon number density ' . In the other extreme, at very high

energies, the slowed-down baryons after the collision still have

enough momentum to proceed forward. The energy lost by the

baryons is released in the form of produced particles in the

central rapidity region. As first suggested by Bjorken , the

energy density there may be high enough to form a quark-gluon

plasma with a small baryon content.

We shall first discuss the latter case when the incident

energy is so high that the baryons are not effectively stopped in

the center-of-mass system. We can infer the energy density from
35

the rapidity density dN/dy of the produced particles . For

simplicity, we consider the head-on collision of two equal nuclei

in the center-of-mass frame. There is a substantial Lorentz

contraction in the logitudinal direction so that one can neglect
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the longitudinal thickness of the nuclei in that frame. At a

proper time t_ of about 1 fm/c after the two nuclei collide with

each other, the baryons will be separated by a distance of about 2

fm and the hadrons will be produced in the form of free particles.

The longitudinal coordinate of a produced particle is related to

its rapidity by

z - tQ tanh y . (6.1)

The energy AE contained in the region of thickness Az between the

two nuclei is

AE - mT cosh 7 -g- %- Lz , (6.2)

where m is the transverse mass («0.4 GeV) and (BL, cosh y) is the

energy of the produced particle. Using Eq. (6.1), the energy

density averaged over the overlapping area A of the colliding

nuclei is

AE d N ^ T „ -.^
' " < • * • " * t0 - u- < « v * i

3/2 '

The proper energy density is defined in the frame in which the

medium is at rest. The proper energy density of the matter at y -

0 (corresponding to the point z - 0) is therefore given by

m

In nucleus-nucleus collisions, experimental results and a. simple
27

multiple-collision model calculation suggest that the effect of

multiple collisions on the rapidity density dN/dy is accumulative
4/3 238

and goes approximately as A ' . For the head-on collision of U
238

on U at a center-of-mass energy of 30 GeV per nucleon, the
27

energy density in the central rapidity region has been estimated
3

to be of the order of 5 GeV/fm .

We can compare this energy density with the energy density of

matter in the quark-gluon plasma phase as predicted by the
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lattice-gauge theory . In the lattice-gauge theory calculations,

there are the gauge fields and the fermion fields to be specified

at the lattice sites. The calculations are much simplified in the

pure gauge field theory with no dynamical quarks. It is found

that the deconfinement transition in SU(2) and SU(3) pure gauge
o y o o

theories are respectively second and first order . For the

SU(3) pure gauge theory, the deconfinement transition temperature
19 3 40

is 200-230 MeV J and the latent heat is 1.89 GeV/fm . In

lattice gauge calculations with dynamical quarks, the effective

action is complex and the usual Monte Carlo method, which depends

on a positive-definite probability measure, becomes inapplicable.

Various methods have been proposed but major numerical
42

difficulties remain. Although there has been much progress,

reliable numerical results are not yet available. If the quark

mass m is heavy, work done with the 1/m expansion (the hopping

parameter expansion), show that a first-order deconfinement
42

transition persists and that the energy density of the
quark-gluon plasma is of the same order as the Stefan-Boltzmann

43
energy density of a free quark-gluon plasma . The latter

quantity is

e ^=- [ 2x8 +-^-x2x2x2x3 ] TU (6.5)

where the first contribution inside the square bracket comes from

the 8 gluons and the second contribution comes from the quarks and

antiquarks with two favors, two spins and three color degrees of

freedom. Thus, if the transition temperature is 200 MeV, the

energy density of the pure quark-gluon plasma is of the order of
3

2.5 GeV/fm . However, the masses of the dynamical quarks in a

full QCD calculation are not large. Results from the hopping

parameter expansion can be only a qualitative estimate for the

full QCD dynamics. Nevertheless, the estimated energy density

achievable in high-energy heavy-ion collisions is about the same

as the estimated energy density of the quark-gluon plasma at the

transition temperature. High-energy heavy-ion collision may
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provide a tool to meet one of the requirements for quark-gluon

plasma production.

We turn now to discuss the possibility of using high-energy

heavy-ion collisions to produce a quark-gluon plasma with a high
33 34

baryon number content ' . We can examine the dynamics of the

baryons in the center-of-mass system. The baryons of one nucleus

lose a large fraction of their logitudinal kinetic energy in their

collisions with the baryons of the other nucleus. The kinetic

energy of the baryons may be degraded so much that they are

essentially stopped in the center-of-mass system. It is possible

to make an estimate of the degree of stopping in such a case with

the multiple-collision model. The slowing-down of a nucleon in its

passage through another nucleus can be considered as arising from

a series of successive collisions, each collision resulting in a

loss of the momentum fraction x as if it would occur in free
31

space . With such a model, we show in Fig. 10, a typical

JJ 5
-2 0

z(fm)

Fig. 10 Space-time dynamics of colliding rows of baryons

at a laboratory energy of 15 GeV per nucleon.

space-time dynamics of the baryons in the collision of a tube of 4

nucleons (solid lines) with another tube of four nucleons (dashed

lines) in the center-of-mass system for the incident laboratory
34

energy of 15 GeV per nucleon . After the collisions have
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finished, the baryons have small velocities and the baryon density

is large. The spatial density is about one order of magnitude

larger than the nuclear matter density at equilibrium. The

inclusion of mutual repulsion for baryon matter at high density

would reduce the maximum density achieved. Nevertheless, there is

a compression of the nuclear matter due to the slowing-down of the

baryons. Such a compression may produce baryon matter of high

density exceeding the baryon density for a phase transition from

the confined baryon matter to the unconfined quark-gluon plasma

with a high baryon number content.

With the experimental facilities capable of accelerating

heavy ions to very high energies coming online, many proposals

have been put forth to search for the state of a quark-gluon

plasma (see reference 1 for the latest reviews of this subject).

It is generally recognized that there is no unique single signal

which allows an unequivocal identification of the quark-gluon

plasma phase. What can be achieved'may be an accumulative set of

evidences which taken together may hopefully indicate the

presence of the quark-gluon plasma phase.

One type of experiment suggests the examination of the

equation of state of the quark-gluon plasma by studying the

temperature and energy density relationship. As temperature can

be measured by the average transverse momentum and the energy

density measured by the rapidity density dN/dy at the rapidity

plateau, a correlation of p_ and dN/dy may reveal the peculiarity

of a phase transition. Specifically, there should be a large

range of the energy density over which there is a very small

change of the equilibrium temperature. If there is no change of

the temperature, the transition is a first order transition. If

there is a small change in equilibrium temperature, then the

transition is a second order transition.

Another suggested signal is the use of strangeness production

to infer whether the quark-gluon plasma phase has been reached.

With the formation of a quark-gluon plasma, a chemical and thermal
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equilibrium will allow the presence of substantial content of the

strangeness. This is because the critical temperature and the

mass of the strange quark are comparable. In contrast, hadronic

matter consists mainly of pion gas and has little strangeness

content. Another useful property is that after the quark-gluon

plasma phase has been reached and hadronization has taken place,

the strangeness content cannot be eliminated except by

annihilation with another anti-s.tange quark which occurs only

rarely. To measure the strangeness content, it is best to detect

anti-hyperons and the more favorable case is in a baryon-rich

quark-gluon plasma. The use of a K/JT ratio is not a good

signature as this ratio is fixed by the entropy content and not so

much by the chemical and thermal equilibrium in the quark-gluon

plasma phase.

Leptons and photons interact only weakly with hadrons. It

has been suggested that one uses di-lepton pairs and direct

photons as a probe of the quark and antiquark density and the

temperature in the quark-gluon plasma phase. When quarks or

quarks and antiquark interact to produce these particles, their

reaction rates depend on the quark density and the quark

temperature. Lepton pairs from the quark-gluon plasma phase should

be dominant in the lower mass region between 300 and 500 MeV and

could be a very sensitive measure of the temperature reached in

the plasma phase.

It has also been suggested that one may use pion

interferometry to extract the temperature parameter, effective

source lifetime and transverse size. Other signals involve the

use of meson and baryon momentum distributions and fluctuations

to detect the hydrodynaniical expansion.
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VII DISCUSSIONS

Previous experimental Investigations of high energy heavy-ion

collisions used only cosmic ray particles as the source of

projectiles. Much qualitative information has been obtained from
44

these studies. It is only recently that we are able to

accelerate heavy-ions to many tens of GeV per nucleon at

Brookhaven and at CERN. Future plans call for the possible

construction of a relativistic heavy-ion collider capable of

accelerating nuclei to an energy of 100 GeV per nucleon in the

center-of mass system. A new field of physics has been opened up

for quantitative investigation.

There are roughly two different but related aspects of high

energy heavy-Ion physics. On the one hand, it provides a special

arena to examine the relativistic hadron dynamics and the process

of particle production. On the other hand, it can be used as a

tool for the possible production of matter with high energy

density or high baryon number content in which the constituent

quarks are not confined.

Nucleus-nucleus collisions differ from nucleon-nucleon

collisions in many respects. There is now the new degree of

freedom in the presence of other participating nucleons following

a single nucleon-nucleon collision. One elementary nucleon-nucleon

collision may not have finished before another elementary

collision begins. The presence of many nucleons participating in

a chain of collisions gives rise to shadowing effects and

interference of the elementary particle production processes. How

one can describe the mechanics of such a relativistic many-body

problem in terms of simple, basic physical principles constitutes

a major challenge of high-energy heavy-ion physics. The

phenomenological models available so far serve to abstract the

important aspects of the physics Involved. They serve useful

purposes but many problems remain. For example, the break-up

probability in the Lund model Is given by a function f(z) which is

obtained by requiring it to reproduce the empirical multiplicity
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distribution and the symmetry of breaking the string from the left

and from the right. It may be useful to work out the break-up

probability for a string with a Schwinger-type model having

rapidly moving boundaries. Likewise, the exchange of momenta

between two colliding baryons in the Lund model for heavy-ions

follows an assumed probability distribution. It is desirable to

work out whether the dynamics of model strings or vortex lines

indeed follows space-time motion of the prescribed type.

Aside from the question of the dynamics of the collision

processes, high energy heavy-ion collisions may provide the tool

to produce a quark-gluon plasma because of the high energy density

that can be achieved. The high energy density is expected because

of the accumulative effect of many collisions occurring in a small

spatial region in a small temporal extent. Future experimental

investigations include the search and the identification of the

quark-gluon plasma. If it would be detected, nore experimental

investigations would be needed to examine its properties. The

study of the quark-gluon plasma constitutes another major

challenge of high-energy heavy-ion physics.

As of now, experimental information froa the few experiments

at Brookhaven with 0 ions at 15 GeV per nucleon and at CERN with

0 ions at 60 GeV and 200 GeV per nucleon indicate that a large

number of particles are produced carrying away a large fraction of

the incident energy. For example, in the collision of 0 on Au

at a laboratory energy of 200 GeV per nucleon, a maximum total

multiplicity of 300 has been observed. The rapidity density is

high and suggests that an energy density of the order of 2-3
3 45

GeV/fm has been achieved. For a collision of two nuclei with

mass numbers A and B, the energy density goes as AB/(A +B ).

There will be a substantial increase in the energy density when

the projectile mass is increased. Future use of heavier

projectiles will facilitate the production of the quark-gluon

plasma, if there is indeed a phase transition from a hadron matter

to a quark-gluon plasma.
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