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Recently the existance of the finite action pseudoparticle solutions for
d6E/ER/70004-224 .
the classical Yang-Mills theory attracted a lot of attention due to its rami-

fications to the quark confinement and violation of parity and time reversal

WHAT DOES THE EUCLILEAN PSEUDOPARTICLE DO IN MINKOWSKI SPACE?* L)

invariance as well as the possibility of the existance of Axion. Furthermore

the pathology of the present formulation of quantum field theory manifested by

the non-uniqueness of the gauge conditions employed so far as pointed out by

(2)

Gribov indicates the need for more fundamental understanding of the Yang-

Ilmun Ju . : : 3)
Fostitite of THeoreticalls clente Mills theories and its classical solutions. Much work has been done by many

University of Oregon

Eugene, Oregon 97403 authors to find the classical solutions in the framework of many different gauge é

groups in Euclidean space simply because functional formulation of quantum
field theory is based on the Euclidian functional integrals. However it may be

most interesting to find the solutions in Minkowski space that render finite
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action, finite non-zero topological charge. Several solutions exist in the

(4)

Self dual d ticl i —Mi i
- e Ris R Lot e ia i onn oo the telasalead I TpngeMiTLe (Eie 1 quation literature. However, all the Minkowski space solutions known so far lead to

with finite action have been constructed in Minkcwski space. It is shown that the vanishingltopological charges. | The purpose of this paper is to present

the topological structures apparent in Euclidea sz % - ;
12 8 PP nEEpEcesaresnoRl 00 EERpXesCt infinite number of Minkowski space solutions which are regular everywhere and

in Minkowski space. Topolcgical charges become fractional leading to the unquan- give finite non-zero actions and topological charges: The method is in the

tized axial charge violati in th i i i 3 < ¥ . e . ; 3
BESNSO G SiztccessfnvolvinsREctnions analytic continuation of the finite Euclidean space pseudoparticle solutions

)//) prescribed by changing all the fourth component of four vectors to be imaginary,
i.e.,

o e
Al X%y = AL (X, iXs)
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A:m)(i,xa) = LA(: (X, &Ko)
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where bu 1is an arbitrary four vector in the solution. The Minkowski space
solutions obtained this way are in the most cases imagina~y and singular. For
example, the topological charge density for the pseudooar:icle solution due to

Belavin et al is

4
T (rixt et
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in Minkowski space, which is singular at Xe=2X -‘-1+)\; .

Once of the objections for the complex solution is that, in general, isotopic

spin and Hamiltonian are complex. However, if the Minxowski spzce solution is

self dual, i.e.,

(a7
FML' = i* Uy

(3)
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energv momentum tensor is identically zero, which is maniest from the form of

where

it written as,
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Thus the self dual solutions in either Minxowski or Fuclidean space must be
closely related to the proparties of Yang-¥ills vacuum, while the other finite

energy so_utions in Minkcws<i space correszond to the particles in the theorv.

II. FINITE TOPOLOGICAL CHARGE SCLUTIONS TN MINKOWSKI SPACE

Most of the self dual solutions ir Euzlidean space when they were analv-
tically continued to Minkowski space becoms singular, thus resulting in the
diverging actions and topological charges. However, we find that following
Minkowski space solution derived from the following ¢ leads to the regular

(4)

solution.

(5)
a

13- \ . '
g MATI



L S

where

¢§I/\M+)\M

(X—\m—,«@\w\)1 (x- bm{—kawal ]

Om=(0,0,0,8w) , Owi=+Bn

)

b = (o(MI)D(Mz)O(ma)o(m)) b;=;(:: +o(:4 ‘

The finite action gauge field analytically continued from Eq. (5) is(s)
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where
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for every m.
a(M) .
Therefore /& is regular for arbitrary space time points in Minkowski
space and integer N.
An interesting feature is that topological charge given by Eq. (6) in
Euclidean space is 2N, i.e., we have to combine two pseudoparticles at the
same space but separated by time only in order to produce the regularity of

the solutions (7).(6)

III. ACTION AND TOPOLOGICAi CHARGE FOR A MINKOWSXI SPACE SOLUTION

The action integrals though finite are not known for arbitrary N. However,
we present the result of the topoleogical charge calculation for N = 2 in Eq. (7).
For the self dual solution in Minkowski space the following relation holds as -

in Euclidean Space.

q-& 5

8\1‘ - (10)
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N .
For simplicity, if we put %, = a, b1 = b10 = 0, the action density is given by



. complex self dual solutions is fiaite.
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2. 8'L . Furtharmore, the existance of classicel pseudopartic’e ‘solution in SU(N)
o

(12) Yang-Mills field theory withk fermion implies the violation of axial charge given

T A= x4 ibaxE- satxty 430K a8 A0E N Car
Y3 = - B0 = aNaw)
— 448 0NCX6 - 384 00X + B4 0K -

, 5
B=$ 0da)* 4 48X +a020a) Y A =2\

(13) (16)

X1 = \'1— )(c).

In order to evaluate the action integral analytically we change the variables

Thus these ccmplex solutions are similar to the complex pctential in the classical

quzntum mechanics which absocb elactric charge. The fractional topological charge

such that sheuld not be a surprise since-the mapping cefined by 8 is not from S3 to 83,
) 7
: Do but to the iamannian manifolc'(') where g, iz the SU(2) grcup matrix that appears
\DL QO i
ar {‘\)(c _ l ! dh_) Atﬁ'\ : when we rewrite Eq. (5) in Minkowski space, i.e.,
¢ J)_x ~po -0
) .
: 1) A = 2.‘&' ';4 AR R
S - /b\ n A TJa Um
to=Vixe , t-=¥rX : A
where E

Then for N = 2, topological charge and action integral turr out to be finite (17)

{see Appendix for detailed calculations], In conclusion, we see that tke solutioas (5) violate axial charge in real

C‘N 0 85 ‘ tinme, while taey are responsible for the tunmeling of vacuum in imaginary time.
~ - . .
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Notice that for the corresponding Euclidean space solution Ci = 2.

As was expected, the topological characters of Euclidean spaze solutions are

no longer present and become fractional. However, the action implied by these
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Notice that CP contains many peculiar complex spa:ze time translations.
However, this is not a fundamental feature becaus2 one can obtain exactly
same gauge fields starting .from
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expanding fou ctor s uared (x - bm - am) in Buclidian space first

and treat B“‘ as a real number rather than the fourth component
of a four vector when we analytically contirue it, while we treat bm as

a four vector both in Euclidian and Minkowski space as Alfaro et al in
Reference (4).
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In the case of Alfaro et al in Reference (4) this combination resulted
in the vanishing topological charge density, thus zero topological charge
automatically. This is due to the fact the meron charge density is
confined at the singularities only. .

The above solution is translation invarient, thus
also solution.



APPENDIX. EVALUATION OF THE INTEGRAL

I. Procedure to follow.

Step 1. After angle 1ntegrat10n and contour integration of {&H
t= 1),

Step 2. Use the expansion

ez 0 ()

defined in Eq. (14), let

to obtain the integral of the forms
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variable

(A-1)

(A-2)

(A-3)

Steg 3. TFor the integral of the form Eq. (A-~a), use following formula
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wkere use has teen made of the well known formula,
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Step 4. For the integral of the form Eq. (A-3), the change of variable
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Themn we need

TID =V = 1.77245 385
T(3) = 2. 6789385347
ri3)= 1. 354179394

II. An exangle,
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I= -0.00518242,
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