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Antiproton production in 11.7 A-GeV/c Au+Au collisions over a wide transverse-mass
coverage was studied in the AGS-E866. The inverse slope parameter increases rapidly as a
function of centrality. Antiproton yields in Si+A and Au+Au collisions are consistent with
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the scaling with the 2/3 power of the number of participant nucleons. Transverse-mass
spectra are similar to those of protons from peripheral to central Au+Au collisions.

1. Introduction

Antiproton (5) production in heavy ion collisions reflects subtle interplay between initial
production and absorption by nucleons. Because the AGS energies (10 — 20 A - GeV/c)
are close to the p production threshold, 7 may be sensitive to cooperative processes such
as QGP [1] and hadronic multi-step processes [2]. On the other hand, 7 has been proposed
as a probe of baryon density due to large NN annihilation cross sections [3]. Cascade
models [4-6] predict the maximum baryon density reaches about 10 times the normal
nucleus density in central Au+Au collisions, where the strong p absorption is expected.
In this paper, we show systematic studies of  production from p+A to Au+Au collisions.

2. Analysis in AGS-E866 Experiment

The AGS-E866 experiment is aimed at studies of particle production in 10—12 A-GeV/e
.Au+Au collisions as a function of centrality. The experimental setup is described else-
where [7,8]. In this analysis, data taken in 1994 in the Forward Spectrometer are used.
Centrality is defined with the zero-degree calorimeter (ZCAL). The kinematic coverage for
Pis 1.0 <y <2.2and 0 < my—m, < 1.2 [GeV/c?], where y, m;, and m, denote rapidity,
transverse mass, and p mass, respectively. About 800 p candidates were extracted out of
about 15 million minimum-bias collisions. :

3. Results

Fig. 1 shows m; spectra in minimum-bias events. Kinematic reflections of the spectra in
each rapidity are consistent within statistical uncertainties. E886 [9] and E878 [10] results
at p; ~ 0 agree with our data. Fig. 2 shows m, spectra in 1.0 < y < 2.2 in centrality
windows of 0 — 8 %, 8 — 23 %, 23 — 38 %, and 38 — 77 % (zero corresponds to most
central). Inverse slope parameters increase rapidly as a function of centrality from 0.18 to
0.28 GeV/c?. E864 [11] and E878 [10] data at p; =~ 0 agree with our data except for in the
most centrality window, where the E864 point is 4 times larger than the E878 point, and
the exponential extrapolation of our data comes between them. It is an open question
whether this is due to acceptance difference of the p decaying from A. The acceptance in
our spectrometer is estimated to be 42 % including the branching ratio of 64 %.

Fig. 3 shows comparison of dN/dy among p+A [12], Si+Al and Si+Au data [13] at
14.6 A-GeV/c in yyy — 0.6 < y < yyn and Au+Au data at 11.7 A-GeV/c in |y — ynn| <
0.6 as a function of the number of participants (Npr:). The Npare was calculated with

FRITIOF 1.7 [14]. A beam energy correction factor of 0.47 is applied to p+A and Si+A
3

data. Si+A and Au+Au data are consistent with the N;‘{,t scaling.

These data are compared with RQMD (solid line) and the first collision model (dashed
line). RQMD calculations are from Ref. [15] for p+A and were done with version 2.3
for Si+A and 2.1 for Au+Au. In RQMD, initial p production is enhanced by multi-step
processes and free NN annihilation cross sections are used. The first collision model gives

P yields as dN/dy = dN/dy,,, - N¢, where dN/dy,p is dN/dy in p+p collisions, and N f;
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Figure 1. Transverse-mass spectra in mini- Figure 2. Transverse-mass spectra in 4
mum bias events. See text for details. centrality windows. See text for details.

is the number of binary collisions between unstruck nucleons No absorption is assumed.

Both models reproduce p+A data, and the scaling of N3 part from Si+A to Au+Au data.
In Fig. 4, m; spectra are compared with those of protons. For all centrality windows,

their shapes appear similar, but more data are needed for a quantitative evaluation.

4. Conclusions and Outlook

E866 measured p production in Au+Au collisions at 11.7 A-GeV/c in wide transverse

mass coverage. The dN/dy from Si+A to Au+Au collisions scales with N2,fft Both
RQMD and the first collision model reproduce the global system dependence of P yields.
However, by construction, the latter cannot reproduce the rapid development of the in-
verse slope parameter with centrality in Au+Au collisions. This observation implies that
it is important to investigate m; spectra to explore p production mechanisms. The m;
spectra of P are similar to those of the proton from peripheral to central Au+Au events,
and this will be investigated in more detail with a larger data sample in 1995, as well as
the data in E866’s large angle spectrometer, Henry Higgins.
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Figure 3. The dN/dy in p+A, Si+A and
Au+Au collisions as a function of Npare. See

Figure 4. Comparison of m; spectra be-
tween 7 (scaled by 4000) and the proton

text for details.
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