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Abstract

Optimal response-surface construction is being investigated as part of Sandia discretionary
(LDRD) research into Analytic Nondeterministic Methods. The goal is to achieve an adequate
representation of system behavior over the relevant parameter space of a problem with a mini-
mum of computational and user effort. This is important in global optimization and in estima-
tion of system probabilistic response, which are both made more viable by replacing large
complex computer models with fast-running accurate and noiseless approximations. A Finite
Element / Lattice Sampling (FE/LS) methodology for constructing progressively refined finite
element response surfaces that reuse previous generations of samples is described here. Simi-
lar finite element implementations can be extended to N-dimensional problems and/or random
fields and applied to other types of structured sampling paradigms, such as classical experi-
mental design and Gauss, Lobatto, and Patterson sampling. Here the FE/LS model is applied
in a “decoupled” Monte Carlo analysis of two sets of probability quantification test problems.
The analytic test problems, spanning a large range of probabilities and very demanding fail-
ure-region geometries, constitute a good testbed for comparing the performance of various
nondeterministic analysis methods. In results here, FE/LS decoupled Monte Carlo analysis
required orders of magnitude less computer time than direct Monte Carlo analysis, with no
appreciable loss of accuracy. Thus, when arriving at probabilities or distributions by Monte
Carlo, it appears to be more efficient to expend computer-model function evaluations on build-
ing a FE/LS response surface than to expend them in direct Monte Carlo sampling.
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1 Introduction

Optimal response-surface construction is being investigated as part of a Laboratory-
Directed Research and Development (LDRD) project in Analytic Nondeterministic Methods.
The goal is to achieve an adequate representation of system behavior over the relevant param-
eter space of a problem with a minimum of computational and user effort. This is important in
global optimization and in estimation of system probabilistic response, which are both made
more viable by replacing large complex computer models of system behavior by fast-running
accurate approximations.

Here we report on “progressive Lattice Sampling” in the uncertainty parameter space
as a basis for generating successive finite element response surfaces that are increasingly
effective in matching actual response functions. Lattice Sampling is only the first of a number
of structured sampling arrangements intended for investigation, but already the promise of
finite element response surfaces based on structured sampling is evident as will be demon-
strated here. Indications are that such response surfaces can be very profitably used in global
optimization and nondeterministic analysis as efficient replacements for the full computa-
tional models they get their samples from.

One of the strengths of structured global sampling is the ability to prescribe or control
the locations of points in the parameter space at which to sample the governing response func-
tion (usually represented by a complex finite element model) so as to optimize the global
“coverage” of the parameter space when no a priori knowledge of the function exists. Succes-
sive rounds or levels of sampling can be added for progressive global refinement of the
response surface, hopefully making optimal use of previous samples as each new set of sam-
ples is added. Structured sampling is innately parallel at each new level and is usually straight-
forwardly extendable to arbitrary dimensions. With respect to other more global
representations such as neural network or wavelet formulations, for a given number of sam-
ples, a piecewise-continuous low-order finite element representation usually allows more
localized conformance to actual function topology. Furthermore, this representation is con-
ceptually and mathematically simpler, having easily expressible analytic partial derivatives of
any order and mixing, which becomes a great advantage in later rounds of analysis during
local optimization or adaptive probability estimation. Finally, the representations are unam-
biguous, having no external free parameters or subjective structural choices as in neural net-
works and wavelets.

The methodology for constructing piecewise-continuous finite element response sur-
faces from 2-D Lattice Sampling is presented in Chapter 2 and three supporting Appendices.
Building blocks of the methodology can be easily adapted to N-dimensional problems and
other sampling schemes. In Chapter 3, progressive FE/LS response surfaces are used in a
“decoupled” Monte Carlo procedure to calculate failure probabilities for two sets of very
stringent test problems. The efficiencies of decoupled Monte Carlo with FE/LS response sur-
faces are compared against direct Monte Carlo, and the results indicate that decoupled Monte
Carlo is much more efficient. Chapter 4 summarizes the important findings from this work and
suggests directions for future research.




2 Finite Element Response Surfaces based on Progressive
Global Lattice Sampling

2.1 2-D Formulation

The methodology for constructing globally continuous, piecewise-smooth finite ele-
ment response surfaces from 2-D Lattice Sampling is presented here.

2.1.1 Finite Element / Lattice Sampling Approximation “Levels”

Figure 2.1 shows unit squares representing an appropriately mapped 2-D parameter
space where the mapped parameters both vary between 0 and 1, inclusive. Various discretiza-
tions of the parameter space into finite elements are shown. Each discretization level is associ-
ated with an increasing number of node or sample points where a test is to be run or a
functional evaluation (FEV) of a model is to be performed. The number and location of sam-
ple points determine the number and character of finite elements covering the parameter
space. Section 2.1.2 and Appendices B and C describe the various finite element types and
their structuring into the continuous, piecewise-smooth response surface approximations
described and labeled here as Finite Element / Lattice Sampling (FE/LS) “Levels”.

Level 1 @ A bilinear global approximation function is set up based on four sample points (FE-
Vs of the analytic function) at the four corners of the domain.

Level 2 ® One sample point is added to the center of the parameter space, which is then subdi-
vided into four linear triangles as shown, the associated global response-surface
representation being comprised of four linear triangular finite elements supported
by the five sample points.

Level 3 ¥ Four sample points are added and the global response surface is reconstituted as
one Lagrangian nine-node biquadratic quadrilateral finite element.

Level 4 m Four more sample points are added for a total of 13, and the global response surface
is rediscretized into one Lagrangian 9-node biquadratic quadrilateral finite element
and four linear-to-quadratic transition triangles at the four corners of the domain.

Level 5 A Twelve sample points are added and the global response surface is subdivided into
four Lagrangian biquadratic elements supported by a rectangular grid of 25 points.

Level 6 O Sixteen sample points are added for a total of 41, and the global response surface is
subdivided into four Lagrangian biquadratic quads., four quadratic triangles, and
four linear-to-quadratic transition triangles at the four corners of the domain.

The levels are built by adding new sample points to the sample points of the previous
levels so that progressive global refinement of the parameter space occurs with a minimum of
new samples. Of course, other “Lattice” type schemes are possible, including classical experi-
mental design, which is also presently being investigated. One of the nice features of Lattice-
type schemes is that they are conceptually simple and seem to be straightforwardly extendable
to arbitrary numbers of dimensions. Other advantages of the approach are elaborated in [1].
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Figure 2.1 2-D Lattice Sampling Levels and associated discretization of the parameter space.
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2.1.2 Interpolation Methodology

A FORTRANT77 research code (INTERP1C) was written in this work for generating
FE/LS response surfaces corresponding to Levels 1 - 6 and for interpolating off of the
response surfaces. Each Level requires the exact values of the “target” function at the associ-
ated node points shown in Figure 2.1. These will be referred to as “nodal values”. For Level 1
only the exact values at the four corners of the domain must be determined and input to
INTERPIC (along with zero values for the other global nodes), whereas for the biquadratic
square of Level 3 the nodal values at points numbered 1 - 9 in Figure 2.2 must be calculated,
etc. Though the target functions posed in this work are analytic functions, the methodology
also applies when the target function is unknown and can only be sampled through experi-
ments or computer runs that would be conducted at the appropriate parameter combinations.
The coordinates of the 41 nodes in Figure 2.2 are listed in Table 3.
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Figure 2.2 Global node numbering scheme for FE/LS response surface Levels 1 - 6.




Table 3 Global coordinates of sampling points in 2-D unit square parameter space

Node number | P1 coordinate | P2 coordinate
1 1.0 1.0
2 0.0 1.0
3 0.0 0.0
4 1.0 0.0
5 0.5 0.5
6 1.0 0.5
7 0.5 1.0
8 0.0 0.5
9 0.5 0.0
10 0.75 0.75
11 0.25 0.75
12 0.25 0.25
13 0.75 0.25
14 1.0 0.75
15 0.75 1.0
16 0.25 1.0
17 0.0 0.75
18 0.0 0.25
19 0.25 0.0
20 0.75 0.0
21 1.0 0.25
22 0.75 0.5
23 0.5 0.75
24 0.25 0.5
25 0.5 0.25
26 0.875 0.875
27 0.625 0.875




Table 3 Global coordinates of sampling points in 2-D unit square parameter space

Node number | P1 coordinate | P2 coordinate
28 0.375 0.875
29 0.125 0.875
30 0.125 0.625
31 0.125 0.375
32 0.125 0.125
33 0.375 0.125
34 0.625 0.125
35 0.875 0.125
36 0.875 0.375
37 0.875 0.625
38 0.625 0.625
39 0.375 0.625
40 0.375 0.375
41 0.625 0.375

With the exact values of the target function known at the appropriate nodal locations
specific to a given Level, INTERP1C calculates the interpolated value of the response for any
point P on the (p1, p2) coordinate plane (where both coordinates range from O to 1). The ori-
gin of the coordinates is on the bottom-left corer of the unit square as shown in Figure 2.2.

First, the global (pl, p2) coordinates are transformed using relations in Appendix A to
similarly oriented (pI* p2*) or to diagonally oriented! (x,y) coordinates depending on the
approximation Level involved. For Levels 1, 3, and 5, the transformation is into (pl*, p2%*)
coordinates, and for Levels 2, 4, and 6, the transformation is into (x,y) coordinates. Figure 2.2
shows the axes of the transformed coordinate systems. The origins of both systems are at the
center of the parameter space, and both are scaled at 1/2 the original scale. Taking the (pI*,
p2¥*) coordinates for example, the top right edge of the parameter square is at (1,1), and the
bottom left edge is at (-1,-1).

The next step is to determine which finite element contains the point P for the approxi-
mation Level under consideration. For Levels 2, 4, and 6, the diagonal orientation of the (x,y)
coordinates is the most convenient orientation for making this determination. The logic charts
in Appendix B describe the selection algorithm.

1 j.e., rotated clockwise by 45 degrees (6 = - 45 degrees in the coordinate transforms described in Appendix A)
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Once the “containing” finite element is identified, a coordinate transformation is made
from global (pI* p2*) or (x,y) coordinates of P to local coordinates intrinsic to the finite ele-
ment. The intrinsic coordinate systems for the various types of finite elements used in this
work (see Section 2.1.1) are described in Appendix C. For triangular finite elements the trans-
form relations are also presented in Appendix C. For quadrilateral finite elements the trans-
form relations in Appendix A are used where: rotational offsets of local finite-element
coordinate systems relative to the applicable (pI* p2*) or (xy) global coordinate system are
zero; translational offsets are as depicted in Figures B.1 and B.2 of Appendix B; and the local
scaling of intrinsic coordinates is such that they range from -1 to 1 over the element.

Once the intrinsic coordinates of the point P within the finite element are determined, a
mapping of global nodal values to corresponding local nodes of the finite element takes place
and these values are combined according to relations listed in Appendix C to determine the
interpolated value of the target function at P. The relations are based on standard finite ele-
ment theory as described in Appendix C, where local finite element node numbering conven-
tions and applicable finite element basis functions are also catalogued.

2.2 Application to Benchmark Test Functions 1 and 2

2.2.1 Test Function 1 (multimodal) and Successive FE/LS
Approximations

In the context of reliability or failure probability problems, a multimodal function of
the random or uncertain variables might arise, for example, in an application involving rela-
tive times of failure of system components that either catalyze or retard potentially cata-
strophic events in a nuclear power plant. Figure 2.3 shows various representations of an
analytic multimodal surface defined by the equation

response(pl, p2) = [O.Sr + O.3Ssin(2.41r:;-§-):|[1.Ssin(1.36)] EQ1
. 2 2 p2
on the domain 0< p1, p2<1,where r = /J(pl) +(p2)", 6 = atan p1)

Figure 2.3 shows a plot of the analytic function along with representations correspond-
ing to the six Levels of parameter space resolution depicted in Figure 2.1. The plots are drawn
from point-to-point linear interpolation off of a 21 x 21 grid of samples evaluated with the var-
jous finite element approximations. Calculating a response distribution from this response
function and probability distributions for the variables pI and p2 cannot be efficiently accom-
plished with reliability-based techniques because of the multimodality of the function. How-
ever, it makes a good test problem for decoupled and direct Monte Carlo sampling, as
demonstrated in Chapter 3. After about Level 5 the finite element approximations appear to
match the topology of the exact surface very well. Thus, the “convergence rate” vs. number of
analytic function evaluations would appear to be fairly high even for this highly varying sur-
face. A quantitative assessment of convergence rate is made in Chapt. 3. In using the response
surface in nondeterministic analysis or global optimization, it would seem to make sense to
switch from further global refinement to more localized refinement after about Level 6 so that
probabilities or local optima could be more efficiently converged to with any further sampling.

11




response

response

12

response

—
=)

o=

‘\
SE G

A

R

>

-_h:'?:‘i

i

.
SRR

il

I~
X ‘= E‘.“—‘\
ST

Level 4

response

responss

R
R
"’11;‘0, \
i
!Ilg}f

o

Y

exact (target) function

response

Level 2

R ]
RN
X \\0"4’![/’ ]
R
OO
AN
R
(N
D!
"”0""';"0
l'. Iz’ 5
1 0

Level 5

responsé

X
\
N

Ay,

Level 6

)

A
"
Ve —.

Y
o
N

3
=
.

it
Y Al
SARS
™ o

/
iy

Figure 2.3 Various Lattice Sampling / Finite Element approximation levels, Fcn. 1.




2.2.2 Test Function 2 (monotonic) and Successive FE/LS Approximations

Function 2 is a lower octant of a sphere of radius 1.5 with its center one radius above
the origin of the pI-p2 random-variable coordinate system on which our problem is posed.
Figure 2.4 shows various representations of the function corresponding to the six levels of
parameter space resolution in the Finite Element / Lattice Sampling (FE/LS) scheme
(described in [1]), as well as a representation corresponding to the analytic function itself:

response(pl, p2) = 1.5- (1.5)2-r2 onthe domain 0< pl, p2<1 (EQ2)

where r = (p1 )2 +( p2)2 . The plots are drawn from point-to-point linear interpolation off
of a 21 x 21 grid of samples evaluated with the analytic function or various finite element
approximations. A radius of 1.5, which is slightly longer than a diagonal of the pI-p2 unit
square parameter space, was chosen so that the function rises quickly in the further reaches of
the parameter space but retains a reasonable slope. Function 2 is representative of many realis-
tic applications in reliability and failure probability assessment where system response is
increasingly amplified as the governing parameters increase, such as might occur for structural
failure with respect to increasing wind velocity. By Level 3 (nine sample points) the FE/LS rep-
resentation of the function appears very close. Certainly, the Level 5 representation based on
25 sample points is essentially indistinguishable from the exact function.

2.2.3 Observations

For both Functions the Level 5 approximations based on 25 samples appear to approxi-
mate the exact analytic surfaces very well. Therefore, running any nondeterministic analysis
method off of the Level 5 response surfaces would seem to yield essentially the same results
as running the method off the exact Functions themselves. In fact, when a complex finite ele-
ment model is used as the “exact” function, running derivative-based optimization and reli-
ability methods off the model might actually be worse than running off an appropriate FE/LS
representation because of stochastic numerical noise associated with large mechanics simula-
tions (see - e.g., [2]). This is because numerical derivatives formed with the computational
model are generally associated with smaller perturbations of the independent variable(s) than
FE/LS representations are, and are therefore more sensitive to perturbations (noise) in the
dependent variable.

In the next chapter we will assess the accuracy of the finite element response surfaces
in Figure 2.3 and Figure 2.4 with respect to various levels of failure probability calculated
from them.
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3 Performance of Finite Element / Lattice Sampling
Response Surfaces on Benchmark Nondeterministic
- Problems

Here we examine the effectiveness of progressively refined Finite Element / Lattice
Sampling (FE/LS) response surfaces in the context of Monte Carlo probability estimation.
“Decoupled” Latin Hypercube[5] Monte Carlo sampling uses FE/LS approximations, whereas
“direct” Monte Carlo sampling uses the actual function itself. For all problems tested here,
decoupled Monte Carlo analysis uses computer model function evaluations more efficiently
(generally orders of magnitude more efficiently) than direct Monte Carlo analysis does.

3.1 Description of Joint Probability Density Function

The joint probability density function (JPDF) used in the following study is depicted in
Figure 3.1. It is a truncated 2-D standard-normal JPDF of independent normally distributed
uncertain parameters pI and p2 with means 0.5 and truncation limits O and 1. The standard
deviations ¢ are set such that truncation of the individual distributions occurs at +3¢ —i.e.
o =0.5/3- so that the effect of truncation is relatively small.

In Monte Carlo (MC) probability quantification, the prediction of physical response of
deterministic (nonstochastic) systems can be decoupled from probabilistic Monte Carlo sam-
pling via intermediate “surrogate” models, such as the FE/LS global response-surface models
in Figure 2.2, that often run orders of magnitude faster than full computational physics mod-
els. Such an approach is here coined a “decoupled” Monte Carlo approach because the Monte
Carlo analysis is decoupled from the running of the full computer model through use of the
surrogate model. Because of the numerical noise associated with complex physics simulations
(see - e.g., [3] and [4]), surrogate models can also be much more effective in reliability-based
approaches to nondeterministic analysis if they meet certain differentiability (smoothness) cri-
teria that can make the optimization process in these approaches more affordable.

Figure 3.2 shows conver, %ence behavior for means and standard deviations for pI and
p2 populations ranging from 10“ to 106 samples as generated by the LHS[5] code. The means
of both parameters appear to converge to their terminal values within about 100 samples,
while the standard deviations stabilize within 1000 samples. (We found that double precision
had to be used in our SUN SPARCstation10 LHS computations in order to establish conver-
gence, as the single-precision results showed a suspicious dlvergent character for population
sizes 10° and greater.) The population sizes used here extend to 10® because it was found that
many of the probabilities in the following converged much more slowly than the mean and
standard deviations. Presently the convergence rates of moments and probabilities are being
explored in connection with automated convergence assessment, incremental sampling, and
adaptive termination of Monte Carlo sampling.

3.2 Failure Probability Calculation Method

In the following, failure probabilities are calculated by evaluating a particular exact or
approximate response surface shown in Figure 2.3 and Figure 2.4 at all (p1, p2) parameter sets

15
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in a given population of Latin Hypercube samples. The resulting response values are then exam-
ined to determine the number of responses in the population at or above a particular threshold
value. This number is then divided by the total number of samples in the population to arrive at
a failure probability for the given response surface, threshold level, and population size.

3.3 Benchmark Problems

Probabilities are calculated for the following benchmark problems by direct and “decou-
pled” Latin Hypercube Monte Carlo Sampling according to the JPDF defined above. In the fol-
lowing the shaded regions of the parameter space signify parameter combinations where
response exceeds the applicable threshold level. This threshold can be viewed as a failure
threshold above which the system response (say that the response metric is shear stress) indi-
cates potential failure of the system. The shaded regions, therefore, denote “failure regions” in
the parameter space.

The test functions and response thresholds prescribed here are particularly “good”
because they test a large and diverse set of attributes of both Monte Carlo sampling and Lattice
sampling. The following benchmark problems encompass a large range of probabilities, on the
orders 1 to 107*. Thus, a large portion of the parameter space is being investigated in this regard.

17




3.3.1 Function 1, Threshold = 0.2

The shaded regions below signify the parameter space “failure regions” for various repre-
sentations of Function 1 and a threshold value of 0.2.

Exact Function cut by
threshold plane of -
response = 0.2

response

Exact failure
(shaded).

1
0 9.5
p1

Level 4 Level 5 Level 6
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The 0.2 threshold generates a failure region with very high-order geometry that standard
FORM][6] and SORM][7] reliability-type methods (which can be applied to ascertain probability
at this threshold level) cannot approximate very effectively. The Finite Element / Lattice Sam-
pling (FE/LS) methodology requires at least 13 function evaluations (Level 4) before the
approximation begins to resemble the actual failure region.

The results of direct and decoupled LHS Monte Carlo evaluation of probabilities are plot-
ted in Figure 3.3 and listed in Table 1. The abscissa values 1 - 7 in the data represent the various
levels of FE/LS response surface approximations, with the Level 7 representation being the
exact function itself.

A very prominent “adjustment” in the convergence behavior depicted by Figure 3.3
occurs in going from Levels 3 to 4 at all population sizes. This adjustment corresponds to the
markedly smaller shaded areas in Levels 2 and 3 vs. the other Levels. Level 1, though also hav-
ing a grossly different configuration from the exact region, is fairly close in overall area, and the
distribution of the area benefits coincidentally from the circular symmetry of the JPDF. A gen-
eral (nonaxisymmetric) distribution combined with the Level 1 approximation would certainly
not yield such close values to the exact. The large undulation in the Lattice Sampling conver-
gence behavior is representative of the oscillatory convergence behavior normally exhibited by
sampling methods. One thousand LHS samples appear to be enough for convergence of the
exact result (Level 7), though results at some of the lower levels of approximation take an order
of magnitude more samples to converge. This is a repeated result throughout much of this study:
the lower the approximation Level, the more samples it usually takes for convergence.

For this test problem convergence of the progressive Lattice Sampling scheme appears to
occur by Level 5 (25 samples) for all LHS populations.
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Figure 3.3 Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice
sampling for a threshold of 0.2.

Number of Latin Hypercube Monte Carlo Samples
107 103 10* 10° 108

1 0.97000 0.97600 0.98000 0.97936 0.97899

'g 2 0.96000 0.95500 0.95580 0.95602 0.95608

§ 3 0.95000 0.94600 0.94190 0.94093 0.94171

% 4 0.99000 0.98300 0.98110 0.98091 0.98112

'?:5 S 0.98000 0.98600 0.98440 0.98461 0.98445

g 6 0.98000 0.98600 0.98380 0.98383 0.98388
-]

7 (exact) 0.98000 0.98600 0.98460 0.98448 0.98439

Table 1 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples of
the exact function (Level 7) and successive FE/LS Levels (Func. 1, Threshold = 0.2).
(These values are plotted above in Figure 3.3.)
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3.3.2 Function 1, Threshold = 0.5

The shaded regions below signify the parameter space “failure regions” for various repre-
sentations of Function 1 and a threshold exceedance value of 0.5.
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This benchmark problem has two separate failure regions, one of which is a semicircular-
like failure “island” of high-order geometry. Because of the disjoint regions and complexity of
the geometry, reliability-type methods are not practical for assessing probability at the 0.5
threshold level. The FE/LS methodology requires about 25 FEVs (Level 5) before the approxi-
mate failure region begins to adequately resemble the exact one.

Figure 3.4 shows the convergence behavior for the 0.5 threshold. Table 2 lists the data. A
trend of oscillatory convergence is observed, with the Level 6 results based on 41 FEVs being
essentially converged to the probabilities from the exact function. The FE/LS method takes
more samples to satisfactorily handle the complexity and multiplicity of the failure regions for
this case versus the simple single region for the 0.2 threshold. For each of the global response
surfaces (Levels 1 - 6) the LHS sampling converges in about 10,000 samples, demonstrating
slight oscillatory convergence to that point. It may be remarked that the number of LHS samples
required before convergence is established is generally an order or magnitude greater than for
the 0.2 threshold. This is probably partially a result of the complexity and multiple-connected-
ness of the failure regions and of the fact that the total probability has decreased from an order
of 1.0 for the 0.2 threshold to the order of 0.1 for this threshold.
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Figure 3.4 Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice
sampling for a threshold of 0.5.

Number of Latin Hypercube Monte Carlo Samples

107 103 10* 10° 10%°

C 1 0.70000 0.71700 0.71070 0.71179 10.71374
2 2 0.45000 0.45000 0.44290 0.44439 0.44574
£ 3 0.46000 0.47200 0.47910 0.47671 0.47708
% 4 0.53000 0.47600 0.49570 0.49278 0.49371
% 5 0.46000 0.42400 0.46790 0.46721 0.46592
g 6 0.45000 0.42400 0.44850 0.44715 0.44587
-l

7 (exact) || 0.44000 0.42900 0.45090 0.45058 0.44921

Table 2 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples
of exact function (Level 7) and successive FE/LS Levels (Function 1, Threshold =
0.5). (These values are plotted above in Figure 3.4.)
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3.3.3 Function 1, Threshold = 1.0

The shaded regions below signify the parameter space “failure regions” for various repre-

sentations of Function 1 and a threshold exceedance value of 1.0.
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The 1.0 threshold yields a failure region that is much more accommodating to reliability
methods than the 0.2 and 0.5 thresholds do. The boundaries between ‘failure’ and ‘no failure’
would seemingly be adequately approximated as linear (FORM) or quadratic (SORM) curves.
The FE/LS approximations at Level 4 (13 FEVs) and higher appear to do a good job of repro-
ducing the exact failure region. This is verified in the convergence behavior plot Figure 3.5.
Table 3 lists the corresponding data. Though the failure region is much simpler to resolve than
for the 0.2 and 0.5 thresholds, 10,000 LHS samples are still required before veritable conver-
gence occurs at all Levels of approximation. This is presumably because, though the failure
region is easier to resolve in this case, the probability level drops to the order of 0.01. Again
Monte Carlo convergence appears somewhat slower at the lower Levels of approximation than
at the higher Levels.
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Figure 3.5 Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice
sampling for a threshold of 1.0.

Number of Latin Hypercube Monte Carlo Samples

10 103 104 10° 106

c 1 9.0000e-02 | 6.1000e-02 | 6.9300e-02 | 6.9950e-02 | 7.0624e-02
% 2 4.0000e-02 | 4.9000e-02 | 4.7900e-02 | 4.9560e-02 | 4.9359¢-02
£ 3 3.0000e-02 | 1.6000e-02 | 1.4000e-03 | 1.4210e-02 | 1.3946e-02
: % 4 2.0000e-02 | 1.2000e-02 | 9.3000e-03 | 8.2900e-03 | 8.1160e-03
§ 5 2.0000e-02 | 1.2000e-02 | 8.2000e-03 | 7.5800e-03 | 7.3930e-03
g’ 6 2.0000e-02 | 1.2000e-02 | 8.1000e-03 | 7.3900e-03 | 7.2140e-03
-l

7 (exact) | 2.0000e-02 | 1.2000e-02 | 8.7000e-03 | 7.7600e-03 | 7.5600e-03

Table 3  Probability of failure for various numbers of Latin Hypercube Monte Carlo samples
of exact function (Level 7) and successive FE/LS Levels (Function 1, Threshold =
1.0). (These values are plotted above in Figure 3.5.)
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3.3.4 Function 1, Threshold = 1.5

The shaded regions below signify the parameter space “failure regions” for various repre-

seritations of Function 1 and a threshold exceedance value of 1.5.

response

Y TR
3]

Level 1

2]

Level 4

Exact

Function cut

by threshold plane
of response = 1.5

Exact failure
(shaded)

0 o i i i 1

0 05
p1

Level 2

PSS R
0 05
pl

Level 5

95 ) — 1
p1

L

05
p1

Level 3

B
pt

Level 6

27




The 1.5 threshold in Figure 3.6 also yields a failure region that reliability methods have
an even chance of doing well on. Though the 1.5 threshold creates a failure region that would
seem to be approximated adequately with 13 FEVs at Level 4, the convergence plot of Figure
3.6 reveals that, for the low probability of failure associated with this region, even the Level 6
representation with 41 FEVs does not appear to be quite adequate at some MC populations.
Though the triangular failure region is seemingly very easy to resolve, even very small changes
in the approximation can affect the number of LHS samples falling inside the region, and since
the total number of samples falling in the region is relatively small (probability is on the order of
0.0001 for this problem), a small difference in the number of samples falling inside it can have a
large relative effect. Again the effect is particularly accute at the lower levels of approximation
where small inaccuracies in the size of the region (see Figure 3.6) contribute to relatively large
percentage changes in its size and, therefore, in the number of samples falling within its bound-
aries. Also, the convergence of Monte Carlo sampling at a given Level of approximation is not
as fast for this threshold as for the other thresholds. The results using the exact function (Level
7) do not seem to be converged even with 10° samples, though some of the other Levels look
converged at this number of samples. The reason for the slow Monte Carlo convergence is, of
course, the very low probabilities involved.

To be effectively resolved, problems like this one will require a transition from global
FE/LS refinement to more local methods like might be found in adaptive finite element mesh-
ing. Algorithms for global and local refinement and their integration into efficient and versatile
hybrid decoupled Monte Carlo algorithms are presently being devised and tested in associated
LDRD research.
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Figure 3.6 Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice

sampling for a threshold of 1.5.

Number of Latin Hypercube Monte Carlo Samples

10 103 104 10° 106

1 0.0000 0.0000 1.0000e-03 | 5.1000e-04 | 5.3700e-04

-g 2 0.0000 0.0000 1.0000e-03 | 5.5000e-04 | 5.4400e-04

E 3 0.0000 0.0000° 1.0000e-04 | 1.0000e-04 | 1.0000e-04

% 4 0.0000 0.0000 1.0000e-04 | 1.6000e-04 | 1.5600e-04

-{(3 5 0.0000 0.0000 1.0000e-04 | 2.2000e-04 | 1.9400e-04

g 6 0.0000 0.0000 1.0000e-04 | 2.1000e-04 | 2.2800e-04
-

7 (exact) || 0.0000 0.0000 2.0000e-04 | 2.3000e-04 | 2.5200e-04

Table 4 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples
of exact function (Level 7) and successive FE/LS Levels (Function 1, Threshold =
1.5). (These values are plotted above in Figure 3.6.)
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3.3.5 Function 2, Threshold = 0.05

The shaded regions below signify the parameter space “failure regions” for various repre-
sentations of Function 2 and a threshold exceedance value of 0.05.

Exact Function cut by
threshold plane of
response = 0.05

f
:f‘;’f’;
'r e ——
”"';'r'i‘{:'ﬂ” e
@ '"n{&’; SETIT
1] uunl
5
o} R .
Exact failure region
[ 9
(shaded) =
=
==
1 3 1 Yo —
9-9,:.‘ O.QE.‘_; iy ] v mcicars = x :
. - | o . s ot . " s .
0.8 fa=n 0.8 [umemgea . e T I 2
0.7;1 0.7E e
O.GE . 08 :
;osg' - - ‘ao.sg e T e =
0.4 s w 0.4‘ P . - ' i - o s
°"E' : “‘,‘iﬂ °3"  TR 4 i
o2 02 frairad : e o e
or Zs I o et
(<] 0.5 1 L] 0.5 1 1
p1 p1
Level 1 Level 2
1 1 1
o.s} o o.gg A A s o.gE s
o [y 05 [prEi e Aok R cofprees
07 ray 07 e C e e 07 Pt -
oSk Eia i 05: 0.5 pand
{osfRs Sos preres
I - = 0.45:;
= 3 =
025_ ¢ = b 025_ “.
uf G i | e
OO- BT ‘.na;.;wm R R ‘iﬂ!l?1 Oo» ',..lo\-szr' LT R AP I:-I_

pi pt

Level 4 Level 5 Level 6

30




-—

probability

Figure 3.7 Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice

sampling for a threshold of 0.05.

Number of Latin Hypercube Monte Carlo Samples

10° 10° 10 10° 106

1 1.0000 1.0000 1.0000 0.99998 0.99996

-% 2 1.0000 1.0000 0.99960 0.99981 0.99979

E 3 0.97000 0.97410 0.97410 0.97368 0.97377

% 4 0.98000 0.98560 0.98560 0.98393 0.98374

if—, 5 0.98000 0.98360 0.98360 0.98267 0.98244

g 6 0.98000 0.98350 0.98350 0.98261 0.98235
1

7 (exact) || 0.98000 0.98100 0.98360 0.98261 0.98235

Table 5 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples
of exact function (Level 7) and successive FE/LS Levels (Function 2, Threshold =

0.05). (These values are plotted above in Figure 3.7.)
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3.3.6 Function 2, Threshold = 0.2

The shaded regions below signify the parameter space “failure regions” for various repre-
sentations of Function 2 and a threshold exceedance value of 0.2.
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Figure 3.8 Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice
sampling for a threshold of 0.2.

Number of Latin Hypercube Monte Carlo Samples

10? 10° 104 10° 108

1 0.99000 0.98500 0.98730 0.98607 0.98547

-.% 2 0.65000 0.64600 0.63580 0.64053 0.64095

£ 3 0.42000 0.44880 0.44880 0.44685 0.44943

§ 4 0.42000 0.45110 0.45110 0.44944 0.45194

3<5 5 0.41000 0.44160 0.44160 0.44005 0.44238

g 6 0.42000 0.44800 0.44800 0.44522 0.44780
ol |

7 (exact) | 0.42000 0.44900 0.44720 0.44477 0.44737

Table 6 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples
of exact function (Level 7) and successive FE/LS Levels (Function 2, Threshold =
0.2). (These values are plotted above in Figure 3.8.)
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3.3.7 Function 2, Threshold = 0.4

sentations of Function 2 and a threshold exceedance value of 0.4.
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Figure 3.9 Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice
sampling for a threshold of 0.4.

Number of Latin Hypercube Monte Carlo Samples
10 10 10* 10° 10%
1 0.64000 0.63000 0.62410 0.62586 0.62698
u% 2 0.14000 0.16700 0.17040 0.17331 0.17228
,§< 3 4.0000e-02 4.5800e-02 4.5800e-02 4.5630e-02 4.5461e-02
%—_ 4 4.0000e-02 3.9400e-02 3.9400e-02 3.9120e-02 3.8427e-02
':(5 5 4.0000e-02 3.6400e-02 3.6400e-02 3.5960e-02 3.5287e-02
g 6 4.0000e-02 3.5600e-02 3.5600e-02 3.5660e-02 3.5011e-02
.|
7 (exact) || 4.0000e-02 3.9000e-02 3.6600e-02 3.6350e-02 3.5670e-02

Table 7 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples
of exact function (Level 7) and successive FE/LS Levels (Function 2, Threshold =
0.4). (These values are plotted above in Figure 3.9.)
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3.3.8 Function 2, Threshold = 0.6

The shaded regions below signify the parameter space “failure regions” for various repre-
sentations of Function 2 and a threshold exceedance value of 0.6.
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Figure 3.10 Cohvergence behavior for LHS Monte Carlo sampling and Progressive Lattice

sampling for a threshold of 0.6.

Number of Latin Hypercube Monte Carlo Samples

10 10° 10* 10° 10°

1 1.0000e-01 | 8.2000e-02 | 9.0300e-02 | 9.1060e-02 | 9.1197¢-02

-% 2 4.0000e-02 | 2.9000e-02 | 2.3300e-02 | 2.3660e-02 | 2.3120e-02

£ 3 1.0000e-02 | 2.6000e-03 | 2.6000e-03 | 2.1800e-03 | 2.1990e-03

% 4 1.0000e-02 | 4.0000e-03 | 4.0000e-03 | 3.2000e-03 | 3.1050e-03

55 5 0.0000 1.8000e-03 | 1.8000e-03 | 1.3200e-03 | 1.2800e-03

g 6 0.0000 1.7000e-03 | 1.7000e-03 | 1.2800e-03 | 1.2360e-03
-

7 (exact) || 0.0000 1.0000e-03 | 1.7000e-03 | 1.2100e-03 | 1.1850e-03

Table 8 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples
of exact function (Level 7) and successive FE/LS Levels (Function 2, Threshold =

0.6). (These values are plotted above in Figure 3.10.)
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As the figures presented in Sections 3.3.4 - 3.3.8 verify, the failure boundaries for all
threshold levels are circular arcs (recall that Function 2 is a portion of a sphere). Level 3 (nine
FEVs of the FE/LS methodology) appears to capture these arcs well. The Level 4 approxima-
tions (13 FEVs) appear in all cases to actually be worse than the Level 3 approximations, with
the Level 5 (25 FEVs) and Level 6 (41 FEVs) approximations appearing nearly exact to the eye.

In terms of probabilities calculated at each of the threshold levels, the convergence plots
Figure 3.7 - Figure 3.10 show that Monte Carlo results generally stabilize by Level 3 (nine
FEVs). The most notable exception occurs for the 0.05 threshold in Figure 3.7. Counterintu-
itively, though the Level 4 (13 FEVs) approximation shown in Section 3.3.5 appears much
worse than the Level 3 (nine FEVs) approximation for this threshold, the Level 4 approximation
yields a much more accurate probability result from Monte Carlo sampling. This can be
explained from the circular-normal nature of the JPDF being sampled and the better resolution
in the Level 4 approximation of the portion of the non-failure region nearest the center of the
distribution, which is most important to resolve since this region is sampled more than the
extremeties of the non-failure region. Thus, in these matters it is important to consider both the
accuracy of the approximate response surface and the spatial importance of the accuracy as
weighted by the spatial density in the JPDF. Another notable exception occurs for a threshold of
0.6 at the lowest number of samples (100) where substantial corrections occur through Level 5.
Though corrections are perceptible through Level 5 at the higher population sizes, the correc-
tions are not as significant as at lower population sizes, in keeping with the trend already noted
for Function 1.

Generally the results for Function 2 are essentially converged for all Levels at even the
lowest population size of 100 samples. At populations of 10* to 10° samples no perceptible dif-
ferences in results exist.
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8.4 Efficiency Comparison of Decoupled and Direct MC Sampling

Toward a valid comparison of the convergence rates of direct and decoupled LHS Monte
Carlo approaches, the following reasoning was used to establish a basis for comparison. Over
the convergence plots Figures 3.3 - 3.10, a population size of 10,000 samples in all cases gives
essentially the “exact” probabilities obtained with 1,000,000 samples. Therefore, 10% is taken as
the convergence limit of population size for these problems. Assuming that each sample takes 1
second of CPU time (which is actually about 2 orders of magnitude longer than we experienced
running the FE/LS INTERP code on these 2-random-variable problems), we arrive at a total
execution time of 2.78 hours. Let us also assume that we have a large finite element model that
takes an average of 2.78 CPU hours for each function evaluation in our problem. Therefore, to
achieve a Level 1 decoupled Monte Carlo (10,000 sample) estimation of failure probability, we
add the time required for the 4 FEVs in Level 1 to an equivalent 1 FEV of CPU time required to
sample the Level 1 response surface 10,000 times via the INTERP code. Thus, the total equiva-
lent CPU time for the analysis is 4 + 1 = 5 FEVs. We can then compare the results of 5 FEVs
used in this manner to the results of using 5 FEVs in a direct Monte Carlo evaluation of proba-
bility. Analogously, a Level 6 analysis requires 41 + 1 = 42 FEVs, which we can compare
against direct Monte Carlo evaluation with 42 samples.

Now, if the finite element model only takes an average of one CPU minute to run, then
167 of these can be run in the time it takes to run 10,000 one-CPU-second samples of the
INTERP code. Thus, a Level 1 decoupled FE/LS Monte Carlo analysis requires 4 FEVs + the
equivalent of 167 FEVSs to sample INTERP 10,000 times, for a total equivalent of 4 + 167 = 171
FEVs. Thus, we should seek to compare the results of 171 direct Monte Carlo FEVs against 4
FEVs to set up Level 1 + 10,000 MC samples of the Level 1 response surface. By analogy, a
Level 6 analysis implies the equivalent of 41 + 167 = 208 direct MC samples.

We see that for decoupled Monte Carlo analysis at a given FE/LS approximation Level,
the equivalent number of direct MC samples decreases as the CPU time of the involved model
increases -e.g., from 171 to 5 and from 208 to 42- when model FEVs increase from 1 CPU
minute to 2.78 CPU hr per evaluation. Therefore, everything else being equal, relative to direct
Monte Carlo analysis the marginal efficiency of the Finite Element / Lattice Sampling decou-
pled Monte Carlo (FELSDMC) approach increases as the size of the finite element model
increases, which is a very favorable indicator for the FELSDMC method.

The absolute efficiencies of the direct and decoupled LHS Monte Carlo approaches can
be compared for the parameters of the present problems by examining Figures 3.11 - 3.14 (cor-
responding to the different thresholds applied to Function 1) and Figures 3.15 - 3.18 (corre-
sponding to the different thresholds applied to Function 2). The abscissa in the plots are mapped
in Table 9 to equivalent numbers of FEVs. The circles on the plots mark data generated by the
FELSDMC method. The triangles on the plots mark data generated by direct Monte Carlo sam-
pling where it is assumed that the model takes 60 times as long to run as the response surface
approximation does. On the plots X marks the data generated by direct Monte Carlo sampling
with a model assumed to take even 60 times longer still. In all cases (for all functions and
threshold or probability levels), the FELSDMC method converges fastest toward the ° ‘exact”
result obtained from 10,000 samples of the analytic function. The next fastest convergence rate
occurs for direct MC sampling where FEVs are assumed to take one CPU minute (relative to
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Equivalent Number of FEVs
DMCFELS direct LHS DMCFELS direct LHS
w/10% 1-sec. | (2.78 hr. w/10% 1-sec. | (1min. CPU
MC samples | CPU model) MC samples model)
1 5 5 S 171
2 6 6 6 172
o 3 10 10 10 176
S
® 4 14 14 14 180
5 26 26 26 192
6 42 42 42 208

Table 9 Mapping of abscissa in Figures 3.11 - 3.18 to equivalent numbers of function
evaluations.

one CPU second assumed per run of the INTERP code). Despite the slower convergence the
equivalent computational costs shown in Table 9 are from 5 to 43 times the cost of the decou-
pled Monte Carlo approach. The slowest convergence occurs under the assumption that FEVs
take 2.78 CPU hours each, in which case the direct Monte Carlo equivalent costs shown in the
table are from 2% to 25% more than decoupled MC even though convergence is much slower.
The data also suggests that the convergence advantages of the FELSDMC method become more
pronounced as the magnitude of the probability being resolved decreases. This is to be expected
for the smooth, non-stochastic, low-order functions tested here.
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Figure 3.11 Comparison of various instances of direct and decoupled Monte Carlo Latin

Hypercube Sampling

for a threshold of 0.2, Function 1.
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Hypercube Sampling for a threshold of 0.5, Function 1.
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Figure 3.13 Comparison of various instances of direct and decoupled Monte Carlo Latin
Hypercube Sampling for a threshold of 1.0, Function 1.
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Figure 3.14 Comparison of various instances of direct and decoupled Monte Carlo Latin
Hypercube Sampling for a threshold of 1.5, Function 1.
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Figure 3.15 Comparison of various instances of direct and decoupled Monte Carlo Latin
Hypercube Sampling for a threshold of 0.05, Function 2. :
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Figure 3.16 Comparison of various instances of direct and decoupled Monte Carlo Latin
Hypercube Sampling for a threshold of 0.2, Function 2.
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Figure 3.17 Comparison of various instances of direct and decoupled Monte Carlo Latin
Hypercube Sampling for a threshold of 0.4, Function 2.
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Figure 3.18 Comparison of various instances of direct and decoupled Monte Carlo Latin
Hypercube Sampling for a threshold of 0.6, Function 2.

44




3.5 Conclusions

 The results in this report indicate that geometry convergence in the Finite Element / Lat-
tice Sampling scheme (i.e., convergence of the FE/LS response surface to the topology of Func-
tions 1 and 2) occurs with up to 5 orders of magnitude (but more typically from 1 to 3 orders of
magnitude) less samples than it takes for LHS Monte Carlo sampling to converge to a stable
probability estimate. In all cases the Level 6 approximations based on 41 samples approximated
the exact analytic surfaces and corresponding mapped failure regions very well. In many cases
only nine samples in the form of the Level 3 approximation were needed. In the usual case
where it takes orders of magnitude more CPU time to run a simulation with the phenomenolog-
ical model than to run the FE/LS response-surface code INTERP, the decoupled Monte Carlo
FE/LS approach can require orders of magnitude less computer time overall than direct Monte
Carlo analysis, with no appreciable loss of accuracy. Therefore, according to the many and var-
ied tests applied here, it is more efficient to expend computer-model function evaluations on the
building of the FE/LS response surface than to expend them in a direct Monte Carlo evaluation.
Furthermore, the efficiency of the FELSDMC approach relative to the direct MC approach
increases as the size of the computer model increases, and the convergence advantages of the
FELSDMC method seem to become more pronounced as the magnitude of the probability being
resolved decreases. Both of these trends are very favorable indicators for the FELSDMC
method.
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4 Summary, Discussion, and Open Research Issues

The concept of building piecewise-continuous finite element response surfaces based
on structured sampling was introduced. Preliminary investigation suggests that finite element
implementations similar to the ones described here can be extended to N-dimensional prob-
lems and applied to other types of sampling paradigms yet to be explored in a FE
response-surface context (such as classical experimental design). Additionally, the finite ele-
ment representation of response surfaces allows for the construction of “random fields” that
represent the uncertainty in the response surface itself due to multiple responses at a given set
of parameters. This may occur, for example, when the same experiment is run several times
under the same set of controlled parameters, with slightly different results each time due to
uncontrollable factors or instrumentation and measurement uncertainties. Analogously, many
different model responses can result for one set of controlled parameters if Monte Carlo anal-
ysis is used to sample the effects of modeling and numerical uncertainties in the underlying
model.

Finite Element response surfaces based on Lattice Sampling (one particular type of
structured sampling) were found to be very effective in association with decoupled Monte
Carlo analysis for probability estimation. Two very different test functions were tried, repre-
senting a large range of probabilities (from 10 to order 1) and very demanding failure region
geometries, so a large portion of the parameter space was investigated in this regard. However,
the robustness of the FELSDMC method in the presence of non-normal random variables was
not investigated.

Since a property of Lattice Sampling is uniform global coverage of the parameter
space, it is not expected that a degradation in performance will occur for non-normal joint
probability density functions. On the contrary, it may be that Lattice Sampling places samples
too uniformly over the domain. Since in most cases, and particularly with normal JPDFs,
Monte Carlo samples of the FE/LS response surface will occur more frequently in the middle
of the parameter space and less at the edges, it makes sense that the sampling method should
in most cases resolve the response surface better near the center and less well near the edges.
Other structured sampling methods based in numerical quadrature, such as Patterson[7],
Gauss, and Lobatto point location [8], tend to cover the center of the parameter space better
than the edges. Thus, these could ultimately be superior to Lattice Sampling for global
response surfaces. However, of all of these only Lattice Sampling has a fractal property1 that
allows straightforward and easy sub-grid refinement for local adaptivity in later rounds of
local optimization and nondeterministic analysis.

A related research issue of fundamental importance is that of when to switch from the
global phase of such problems to the local phase where local adaptive sampling is used to

! Atany stage in the subdivision of the parameter space into finite elements, a given region encompassed within
a finite element or group of finite elements can by isolated for further sampling and resolution by repeated halv-
ing of triangular finite elements and treating square elements or subelements like Level 1 or 4, whichever applies,
and then proceeding to subdivide by progressing through the Levels displayed in Figure 2.1 until sufficient
refinement of the area of interest has occurred (to do this, INTERPIC can be called recursively).
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accelerate convergence to local optima or to a probability result. Given a target or budget
number of samples (FEVs with a computer model or experiments to run), how should they be
divided between the global and local phases of the problem such that the optimal (most accu-
rate or global) result is obtained? Establishment of “rules of thumb” for optimal ratios of glo-
bal to local FEVs will take much investigation and is expected to be very problem dependent.
Additionally, the best options for local adaptive sampling are at this point unclear. The fractal
character of Lattice Sampling is uSeful for multigrid adaptivity by subgrid refinement, but this
type of adaptivity can be somewhat inefficient because of the requirement to incrementally
add a matrix of sample points, rather than just one new sample point at a time. These issues
will be explored in the future under the same LDRD that funded this work.

Of what was established in this work, the geometry convergence in the Finite Element /
Lattice Sampling scheme (i.e. convergence of the FE/LS response surface to the topology of
Functions 1 and 2) occurs orders of magnitude faster than it takes for LHS Monte Carlo sam-
pling to converge to a stable probability estimate. Though convergence with successive FE/LS
Levels is relatively fast, non-monotonic convergence is observed, which is a generally
observed trend in the convergence of numerical systems. In the usual case where it takes
orders of magnitude more CPU time to run a simulation with the phenomenological model
than to run a FE/LS response-surface code, the decoupled Monte Carlo FE/LS approach
requires orders of magnitude less computer time overall than direct Monte Carlo analysis,
with no appreciable loss of accuracy. Therefore, the many and varied tests applied here sug-
gest that it is more efficient to expend computer-model FEVs on the building of the FE/LS
response surface than to expend them in a direct Monte Carlo evaluation. Furthermore, the
efficiency of the decoupled approach relative to the direct MC approach increases as the size
of the computer model increases, and the convergence advantages seem to become more pro-
nounced as the magnitude of the probability being resolved decreases. Both of these trends are
very favorable indicators for the proposed FELSDMC method.

Finally, it would be instructive to substitute neural network and classical experimen-
tal-design response surfaces in the foregoing analyses to assess their efficiency and effective-
ness versus FE/LS response surfaces, and also to compare the efficiency of non-Monte Carlo
“reliability” approaches such as AMV (advanced mean value) and AMV+ [9]. Indeed, much
of this work is currently being pursued by others under the same LDRD that funded this work.

47




REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

(71

(8]

[9]

Romero, V.J., “Efficient Propagation of Uncertainty and Probabilistic Behavior through
Engineering Models via Decoupled Monte Carlo with Finite Element Response Surfac-
es Built from Structured Sampling,” in preparation for submission to International Jour-
nal for Numerical Methods in Engineering

Romero, V.., “Noise and Bias vs. Model Resolution in Complex Physics Simulations
and a Simple Response Surface Approach for Making Numerical Optimization More
Affordable,” submitted to Computer Modeling and Simulation in Engineering

Eldred, M.S., Outka, Bohnhoff, W.J., Witkowski, W.P., Romero, V.J., Ponslet, E.J., and
Chen, K.S., “Optimization of Complex Mechanics Simulations with Object-Oriented
Software Design,” in Computer Modeling and Simulation in Engineering, Vol. 1 No. 3,
August, 1996, pp. 323-352.

Iman, R.L., and Shortencarier, M.J., “A FORTRAN77 Program and User’s Guide for
the Generation of Latin Hypercube and Random Samples to Use with Computer Mod-
els,” Sandia National Laboratories report SAND83-2365 (RG), printed March 1984.

Wu, Y.-T., Millwater, H.R., and Cruse, T.A., “An Advanced Probabilistic Structural
Analysis Method for Implicit Performance Functions”, ATAA Journal J 17624, pp. 1-
34.

Whu, Y.-T., and Wirsching, P. H., “New Algorithm for Structural Reliability Estimation”,
ASCE Journal of Engineering Mechanics (Sept. 1987), vol. 113, no. 9, pp. 1319-1336.

Patterson, T.N.L., “The Optimum Addition of Points to Quadrature Formulae,” Math
Comp. 22, 1968, pp. 847-856.

Patterson, T.N.L., “On some Optimally and Lobatto based Quadrature Formulae,”
Math Comp. 22, 1968, pp. 877-881.

Fossom, A.F., and Munson, D.E., “Probabilistic Creep Analysis of Underground Struc-
tures in Salt,” J. Engineering Mechanics, Vol. 122, No. 3, March 1996, pp. 209-217.

Other Bibliography

Akin, 1.E, Application and Implementation of Finite Element Methods, Academic Press, 1982

Bent, R.J., and Sethares, G.C., FORTRAN[77] with Problem Solving: A Structured Ap-

proach, Wadsworth, Inc., Belmont, CA., 1981.

Brebbia, C.A., Telles, J.C.F., and Wrobel, L.C., Boundary Element Techniques - Theory and

48

Applications in Engineering, Springer-Verlag, 1984.




Ferziger, J. H., Numerical Methods for Engineering Application, John Wiley & Sons, 1981.
Hughes, T.J.R., The Finite Element Method, Prentice-Hall, 1987.

Strang, G., Linear Algebra and Its Applications, 2nd. Edition, Harcourt Brace Jovanovich,
1980.

TECPLOT User’s Manual, Version 7, Amtec Engineering, Inc., Bellevue, Washington, 1996.
Zienkiewicz, O.C., The Finite Element Method, 3rd Edition., McGraw-Hill, 1977.

49




APPENDIX A: 2-D Rectalmear Coordinate Transform
Relations

Here a procedure is described to obtain the coordinates of a Point P in one coordinate
system given its coordinates in another system and the displacement, rotation, and scaling
relationships between the two systems. Referring to the Figure A.1, rectangular coordinate
System #1 has its origin at Point O and the right-handed orthogonal unit vector i J basis
shown. The coordinates of P in this coordinate system are (xp yp). Rectangular coordinate
System #2 has its origin at Point O, and the right-handed orthogonal unit vector & - basis
shown. The coordinates of P in this system are ( p1 p).

It is assumed that the origin of the translated coordipate system is known —i.e., that the
(x.y) coordinates of Point O, are known. Then thg vector V2P locating Point P from coordi-
nate System #2 can be obtained by subtracting V1-2 from V1-p, where both are written in
terms of x and y components. We have

Coordinate System 2

fi

Coordinate
System 1 —____ |

0,
Figure A.1 Important quantities in locating Point P from two different coordinate systems.
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- - -
Vi-p=Vi-2+Va_p EQA.1

wherefrom

- = - R ' N
V2—P=V1—P-V1-2=(xp—x02)z+(yp—y02)]. EQA2
Alternatively in terms of System 2 quantities,

> A
Vo_p=SEp E+SMpf} EQA.3

where S is the scale factor for mapping physical distance between the two coordinate systems.
The measure of physical distance in both coordinate systems is posed in terms of scalar fac-
tors x,y and & multiplying standard units of length, such as inches and centimeters, respec-
tively. “This line is 1 inch long or 2.54 centimeters long.” In the first case the length standard
is inches, and there is 1.0 of them. In the second case the length standard is centimeters, and
there are 2.54 of them. In mapping physical distances from one system of measure to another,
the scale factor § compensates for the difference in the physical lengths of the standards of
measure in the two systems:

(# of System 1 units) X (phys. length of Sys. 1 units) = (# of Sys. 2 units) X (phys. length of Sys. 2 units)EQ A.4

or, after rearranging,

phys. length of System 2 units
phys. length of System 1 units

# of System 1 units = # of System 2 units x EQAS

The above ratio is the scale factor S under our conventions. If the standard unit of distance in
System 2 is Z times the standard unit of distance in System 1, then the scale factor for map-
ping System 2 length multipliers § and 1 into System 1 multipliers x and y is § = Z.

Now we address the different rotational orientations in the two coordinate frames.
Without loss of generality we consider the case where System 2 is rotated counterclockwise
relative to System 1 through the angle 8 as shown in the figure. Noting that the basis vectors
are unit vectors, the projection of & along the x coordinate-direction is simply the cosine of
the rotation angle 8, and the projection along y is the sine of the angle. We have:

ie é = cos® = x-component of f‘; EQA.6

and Je & = sin® = y-component of E EQA7
whence

% = cosOi + sin6J. EQAS
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Analogously, we get

fi = —sin 07 + cosH]. EQAY9

Substituting EQ A.8 and EQ A.9 into EQ A.3 and equating to EQ A.2 yields a system
of two simultaneous equations. Solving these together yields the final tranform relations
between sets of coordinates in the two systems:

1 | :
& = §[(xp - x02)0036 +(¥p —yoz)sme] EQA.10

1 :
Mp = gl (x,-20,)sin0 + (¥, - y0,)cos6]. EQA.I

Various specializations of these are used in the program INTERP1C and are programmed in
more efficient reduced forms where possible.
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APPENDIX B: Selection of “Containing” Finite Element

As mentioned in Section 2.1.2, a selection algorithm in INTERP1C determines, for a
specified Finite Element / Lattice Sampling response surface Level, which finite element con-
tains the Point P where the interpolated value of the target function is desired. Figures B.2 and

B.1 show the naming conventions and intrinsic coordinate systems (see Appendix C) of the
various finite elements in Levels 1 - 6. Figures B.3 and B.4 show the flowchart logic used to
determine which finite element contains P and the corresponding finite element subroutine to
call for the particular element type. The logic for Levels 2, 4, and 6 is based on the 45-degree
diagonally rotated global (x,y) coordinates shown in Figure 2.2. The logic for Levels 1, 3, and
5 is based on the unrotated global (pI*p2*) coordinates shown in Figure 2.2. Flowchart logic
is not shown for Levels 1 and 3, where the entire parameter space is contained within one

. &‘\\F jnz . Pt T54.
1
TG/.:Q} Q\.\ Q2 // \ \.\
9{) 271
// 7 \\
/7 AN
® B8 < o B7 <
\\ & //
AN /7 \ /
AN Ve AN Ve
/
® Q3 ® B11< SO I
7 \ / AN
/ \ 7/ AN

9’ z’\ Q4

T7 \./
N _/

\ /7
\N /7
B9< °
/7 N\

/ AN

2:\4/ ®

&b\‘\

Figure B.1 Naming conventions and intrinsic coordmate systems of the various finite ele-

ments in Lattice Sampling Level 6.
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Figure B.2 Naming conventions and intrinsic coordinate systems of the various finite ele-
ments in Lattice Sampling Levels 1 - 5.
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finite element, and the global (pI*p2*) coordinates are identical to the local (§, n) intrinsic coordi-
nates of the quad elements.
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linear triangle L1 }——3» call tlinear
linear triangle 1.2 > call tlinear
linear triangle L3 > call tlinear
linear triangle L4 - call tlinear
LEVEL 4
transition triangle T1 ——»{ call ttransition
transition triangle T2|—=  call ttransition
transition triangle T3 ——»  call ttransition
transition triangle T4 —={  call ttransition
biquadratic quad B2 —{  call biquadratic
LEVEL 5
biquadratic quad B3 |—= call biquadratic
biquadratic quad B4 —— call biquadratic
biquadratic quad B5 ——= call biquadratic
biquadratic quad B6 |——= call biquadratic

Figure B.3 Flowchart for “containing” element selection in INTERP1C for Levels 2, 4, 5.
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START LEVEL 6

transition triangle T5S{——~  call ttransition

quadratic triangle Q11— call tquadrat

quadratic triangle Q2 ——» call tquadrat

biquadratic quad B7 ——  call biquadratic

transition triangle T6——{  call ttransition

—— > call ttransition

transition triangle T7

quadratic triangle Q3 ——» call tquadrat

quadratic triangle Q4 ——p» call tquadrat

biquadratic quad B9 ——»{ call biquadratic

transition triangle T§—  call ttransition

biquadratic quad B8 |—»t  call biquadratic

biquadratic quad B10—  call biquadratic

biquadratic quad B11 —  call biquadratic

Figure B.4 Flowchart of the “containing” element selection logic in INTERP1C for Level 6.
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APPENDIX C: Finite Element Formulations

As mentioned in Section 2.1.2, this appendix contains information regarding the intrin-
sic coordinate systems, local node numbering conventions, coordinate transform relations, and
basis functions of the various types of finite elements used in Levels 1 - 6 of the Finite Ele-
ment / Lattice Sampling methodology.

Triangular Elements

Intrinsic Coordinates and Transform Relations

The material presented here draws from the most convenient aspects of the develop-
ments in Brebbia er al.! and Zienkiewicz? for triangular finite elements.

The figure below shows a generic rectangular u-v coordinate system and a generic tri-
angle with arbitrarily located vertices numbered in counterclockwise order. The coordinates of
the vertices are shown, as those of a Point P lying within the triangle. A right-handed local 11-
M2 coordinate system intrinsic to triangular finite elements of all types is also shown. The ori-
gin of the intrinsic coordinate system is at Vertex 3. Mneumonically, the 11 coordinate points
at Vertex 1 and the N2 coordinate points at Vertex 2.

It is desired to determine the intrinsic (n1,n2) coordinates of P given the global (u,v)
coordinates of the three vertices and internal point P. The following coefficients are first com-
puted.

(up, vp)

(u3, v3)

u (u1, vy)

1 Brebbia, C.A., Telles, J.C.F., and Wrobel, L.C., Boundary Element Techniques - Theory and Applica-
tions in Engineering, Springer-Verlag, 1984.
2 Zienkiewicz, O.C., The Finite Element Method, 3rd Edition., McGraw-Hill, 1977.




ay = UyU3—UsU,
Gy = U3V —U Vs
by = vy-v3
b, = vy3-v,
€, = Uz—1U,
Cy = Uy~ U3
For programming purposes, these coefficients can be written in the general form

al = ujvk—ukvj

bi = vj—vk

C, = Up—Uj

with the following cyclic permutations of the indices for the specific cases.

i j k
1 2 3
2 | 3 1

EQ3
EQ4

EQ5

EQ6

EQ7

EQ8

EQ9
EQ 10

EQ11

The intrinsic coordinates of Point P can then be found from its original (upvp) coordi-

nates in the global frame by

nl E—lz(a1+b1u+clv)

n2 = ﬁ(a2+b2u +C,0)

where 2A is twice the area of the triangle. By the rule of determinants>,

2A = bjcy,—byey.

EQ12

EQ 13

EQ 14

The following equation yields the dependent parameter 13, which is a convenient third

variable that can be used in the triangular finite element shape functions presented next.

n3=1-n1-1n2

3. Strang, G., Linear Algebra and Its Applications, 2nd. Edition, Harcourt Brace Jovanovich, 1980.

EQ 15
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-Note that 1=1 at Vertex 1, and 11 =0 at the other two vertices, and analogously for
the other two triangular shape-function parameters N2 and 3. Also, at any point on or
inside. the triangle, the three parameters sum to unity (by definition, ¢f. EQ 12).

Linear Triangles

Linear Triangle finite elements have a node at each vertex as shown, and appear in FE/
LS Level 2 only. The values of the target function at each node point, ¢;, are presumed

1

n2,
2 3

known, wherefrom the interpolated value at the point P within the triangle is determined as

3
o(u,v) = Y ;N;(u,v), EQ 16

i=1

and the Linear Triangle finite element basis or “shape” functions N; are given by

N, =1l EQ17
N, =n2 EQ18
N; = n3. EQ19

These shape functions, and those defined subsequently for other types of finite ele-
ments, act as weighting functions that weight the contributions of the various nodal values ¢;
according to the proximity of the nodes to the point P, closer nodes having a stronger contri-
bution than further ones. Sets of finite element shape functions have the properties that they
sum to 1.0 at any point on or within the element, and each has a value of zero at every node
except the node it is numbered after and associated with (for which the nodal value is unity).
Thus, when the point P lies on a node, the only contribution to the interpolated value at P
comes from the node that P lies on, and the interpolated value is identically the nodal value
there.
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Letting the point P assume arbitrary global coordinates (1,v), it can be shown by substi-
tuting EQs 3-8, 12-15, and 17-19 into EQ 16 and factoring, that the form of the interpolation
function ¢(u,v) is C; + C,u + C5v, a complete bilinear polynomial in the global coordi-
nates (where the C; are constants).

Quadratic-to-Linear Transition Triangles

Transition Triangles appearing in FE/LS Levels 4 and 5 have four nodes at which the
value of the target function must be calculated. The vertices of the triangular element are num-
bered in the same manner as for the linear triangle, with the fourth node being midway
between Vertices 2 and 3. These elements transition from quadratic behavior of the response

1
nl
o "2 .

2 4 3

surface along the edge defined by Nodes 2 and 3 to linear variation over the other two edges of
the element. The interpolated value at the point P within the triangle is determined as the
superposition of nodal values and finite element basis functions as in EQ 16, where the partic-
ular basis functions for this element are

N, =mn EQ20
N, = ny(1-2n3) EQ21
N; = n3(1-2n,) EQ22
N; = 4n,n;. EQ23

These shape functions were derived from the procedure outlined in Akin* for enriching shape
functions to produce transition and other special finite elements.

Quadratic Triangles

Quadratic Triangles have six nodes and appear in Level 6 only. The vertices are labeled
in the same manner as for linear triangles, and the mid-side nodes are labeled in similar coun-

4 Akin, J.E, Application and Implementation of Finite Element Methods, Academic Press, 1982.
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terclockwise fashion as shown. Note that Node #4 is on a different edge (i.e., between differ-
ent pairs of vertices) for this triangle versus the linear-to-quadratic transition triangle.

1

2 K
The interpolated value at the point P within the triangle is determined as the superposi-

tion of nodal values and finite element basis functions as in EQ 16, where the particular basis
functions for this element are:

N, =n,2n,-1) EQ24
N, =n,(2n,-1) EQ25
N; = n3(2n;-1) EQ26
N, = 4nn, EQ27
Ns = 4nym, EQ28
N, = 4nm;. EQ29

It can be shown that2 the fgrrn of the interpolation function ¢(u,v) is
C;+Cou+Cyv+Chuv+Csu”+Cgv”, a complete biquadratic polynomial in the global
coordinates.

Square Elements

Intrinsic Coordinates

The intrinsic coordinates for the types of rectangular finite elements used in this work
are orthogonal right-handed &-1 systems with origin at the center of the elements as shown in
the following figures. The coordinate systems are oriented along vertical and horizontal direc-
tions, as are the respective sides of the square elements. The coordinates range from -1 to 1 in
each direction. The methodology for transforming the coordinates of some point P within the
element from global to local (£,n) coordinates is described in Appendix A.

62



1-D Lagrange Polynomials

The shape functions for our 2-D square finite elements can be written as products of 1-
D Lagrange polynomials. The general formulas for these over a domain ranging from -1to 1
are, in terms of the generic length coordinate y measured positive to the right from the mid-
point of the domain,

.-l 0 +1
LINEAR: ¢ i ¢
a b
1,(y) = 1—;—7 EQ30
1,y = 1-i2'—7 EQ31
__”Y
.-l 0 +1
QUADRATIC: | : %
a b
q,Y) = 7(7 D) EQ 32
2
qp(y) = 1-v EQ 33
q.(Y) = Y(Y+ Y@+l EQ 34

Linear Square

Linear Square finite elements have a node at each corner and appear in Level 1 only.
Nodes are numbered to reflect the product-rule model in Hughes (illustrated in the following
figure) for writing 2-D quadratic element shape functions as products of 1-D Lagrange poly-
nomials in each coordinate direction®. Taking Node 1, the lower-left node in the square ele-
ment as an example, its shape function is the product of Lagrange polynomials associated
with the lower and left nodes of the 1-D elements in the figure. Similar considerations yield
shape functions 2, 3, and 4, respectively, at the lower-right, upper-left, and upper-right nodes
of the element. The resulting shape functions are

N,En) = 1,(8)1,(M) (=a-Hamy4) EQ35

NLEM) = 1,(E),(Mm) EQ 36

5. Hughes, T.J.R., The Finite Element Method, Prentice-Hall, 1987.
6 The product-rule analogy works for arbitrary-dimensional finite elements, which would be used in
representing response-surfaces for N-dimensional optimization and nondeterministic problems.
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N3@En) = L,(§)(m)
N4 EM) = 1,(8)(m)

EQ37

EQ38

As usual, the interpolated value at a point within the element is determined by the
superposition of nodal values and these finite element basis functions in analogy with EQ 16.
It can be shown that the form of the resulting interpolation function ¢(z,v) 1is
C,+Cyu +C;v + C,uv, a complete bilinear polynomial in the global coordinates.

(Illustration of Hughes’ product rule analogy for generation of 2-D shape functions from

1-D Lagrange polynomials in each coordinate direction.)

Biquadratic Square

Biquadratic Squares have nine regularly spaced nodes as shown in the figure below,
and appear in Finite Element / Lattice Sampling Levels 3, 4, 5, and 6. Nodes are numbered for
the product rule with quadratic Lagrange polynomials. The resulting shape functions are

N, Em) = q,(8)g,(M)
N,(En) = g5(8)g,(n)
N3En = ¢.(8g,(M)
N,EM) = g,(8)gp(M)
NEM = g,(8)gp(M)
NeEm) = q.(8)gp(m)
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EQ 39
EQ 40
EQ 41
EQ 42
EQ 43

EQ44



N,Emn) = q,(8)q.(M) EQ 45
NgEm) = g4(8)g (M) | EQ 46

Again, the interpolated value at a point within the element is determined by the super-
position of nodal values and these finite element basis functions in analogy with EQ 16. It can
be shown that the form of the resulting interpolation function ¢(u,v) is
C,+Cu+Cv+Chuv+ Csu2 + C’6v2 +Cu"v+ C8uv2 + C’guzv , a complete biqua-
dratic polynomial in the global coordinates with several auxiliary higher-order degrees of
freedom.
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