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CAN MODEL UPDATING TELL THE TRUTH?

Francois M. Hemez
Engineering Sciences & Applications, ESA-EA
M/S P946, Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract

This paper discusses to which extent updating
methods may be able to correct finite element mod-
els in such a way that the test structure is better
simulated. After having unified some of the most
popular modal residues used as the basis for opti-
mization algorithms, the relationship between modal
residues and model correlation is investigated. This
theoretical approach leads to an error estimator that
may be implemented to provide an @ priori upper
bound of a model’s predictive quality relative to test
data. These estimates however assume that a full
measurement set is available. Finally, an application
example is presented that illustrates the effectiveness
of the estimator proposed when less measurement
points than degrees of freedom are available.

Introduction

Finite element updating methods are commonly
used for attempting to improve the predictive qual-
ity of dynamic models. Modal parameters such as
frequencies, mode shapes and damping ratios are
identified from test data and provide the baseline
behavior to be reproduced by the updated model.
Starting from a cost function, many optimization al-
gorithms may be used for solving the updating prob-
lem and, in general, solutions are obtained but the
question often remains whether these solutions {ruly
represent the system being analyzed.

This work attempts to address this issue by
investigating a priort error estimators for the pre-
dictive quality of a finite element model relative to
test data [1]. We will restrict our discussion to the
case where modal residues are used as basis for the
optimization. Such residues are defined here as vec-
tors of dimensions equal to the number of unknowns

(that is, the size of the finite element mass and stiff-
ness matrices). Furthermore, residues may define
a distribution of error. Using residual vectors is
particularly interesting for attempting to locate the
areas of modeling error in the mesh. The second
fundamental assumption required here is that exper-
imental and numerical models have the same size
(that is, number of measurements = number of un-
knowns of the finite element problem). In other
words, it is assumed that every degree of freedom
of the model is measured or that model reduction is
applied in order to condense out any non-measured
degree of freedom. Such a highly unrealistic as-
sumption is necessary for establishing results that
follow. Clearly, reduced—order experimental mod-
els (less measurement points or less identified modes
than the total number of degrees of freedom of the
model) transform the updating problem into a non-
linear problem. Therefore, results presented below
are to be understood as a best—case scenario, nev-
ertheless useful for establishing first—order a priori
estimations of the quality of a computational model.

After having summarized and unified some of
the most popular residues used for model updating,
error estimators are proposed for measuring the pre-
dictive quality of a model relative to test data. These
estimators are developed for eigenvalues and mode
shapes. Finally, an application example is presented
and the issue of incomplete instrumentation is briefly
addressed by illustrating the influence of removing
sensor measurements on the frequency error estima-
tor.

Theory of Model Updating

The starting point of any test-analysis correla-
tion is the dynamic equation of equilibrium. When
a Finite Element Model (FEM) is used, the vibration
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equation can be written as:

KI{®;} = o [M]{2;} (1)

where [K| and [M] represent the FEM-based stiff-
ness and mass matrices, respectively, and w; and
{®;} denote the jth cyclic frequency and associated
eigenvector. In the following, a linear, conservative
model is assumed because the mathematical repre-
sentation of damping is still a matter of research to a
great extent. In the general case of forced vibration,
the equation of equilibrium can be obtained in the
frequency domain as:

(K] - «f[M]){u} = {f} (2)

where {f} represents the input force at frequency
ws and {u} denotes the corresponding output dis-
placements. In the case where the input force is
an impulse at one of the model’s degrees of free-
dom, equation (2) models the Frequency Response
Functions (FRF) of the problem.

To represent the different formulations for FEM
updating, we now introduce the identified responses
in equations (1) and (2). Measured (or identified)
quantities are referred to using the subscript ( );4:
for example, w;y denotes a particular identified fre-
quency of interest, not to be confused with its nu-
merical counterpart w;. However, since the compu-
tational model derives from a mathematical ideal-
ization of the structure, it usually presents discrep-
ancies compared to the real test article: material
and geometrical properties are known to specified
manufacturing tolerances, joints are assumed linear,
dissipative effects are neglected, etc. Clearly, the
equilibrium can only be achieved by introducing ei-
ther out—of-balance forces or secondary admissible
displacement fields. Each one of these two options
is summarized and the residues they naturally lead
to are presented below.

(a) Force Residuals
Substituting w;y and {q:'id} in equation (1)
introduces force residuals since the equilibrium can
be satisfied only if:

(K] - «iqM]) {29} = {Rg} ()

Residual forces {RF} appearing in the right-hand
side of equation (3) are nonzero as long as the FEM

is not a perfect representation of the identified dy-
namics (“’id; {‘I’id})- Physically, they represent
out-of-balance forces that must be applied in order
to enforce the equilibrium. Note that a similar defi-
pition may be obtained from equation (2), in which
case force residuals {RF} are defined as:

(K] — wiM]) {ujq} = {f} = {Rg} (4

As mentioned previously, it is assumed in this
work that the experimental and numerical models
have matching dimensions. Otherwise, products
such as [K] {q)id} in equation (3) could not be car-
ried out. This unrealistic assumption is necessary for
establishing the mathematical results presented be-
low but the reader should not forget that, in reality,
incomplete measurements can only deteriorate these
results since the problem becomes highly nonlinear.

(b) Displacement Residuals

Due to conditioning issues, it might be better
to define residues that are consistent with displace-
ment units instead of force units: various authors
have shown that displacement-based residues are
less sensitive to ill-conditioning of the stiffness ma-
trix as well as more robust with respect to measure-
ment errors [2]. If so chosen, the displacement field
associated to out—of-balance forces {RF} may be
obtained by solving the following static problem:

[K]{Rp} = {Rg} (5)

It can be easily verified that this definition is equiv-
alent to allowing a secondary admissible displace-
ment field that compensates for the previous out—of—
balance forces. Then, the equilibrium is described
by the equation below:

K] ({®iq} - {BRp}) = wigM]{®;q} (6)

(c) _Error in Constitutive Law

Another popular formulation of the updating
problem involves a displacement-based residue de-
fined as:

{Recr} = {2} - (¥} (7



This approach is known as Error in Constitutive Law
(ECL) and is well documented in the literature [3].
Modeling errors in the FEM are indicated by large
components of {RECL}' This allows in theory a
precise localization of adjustments brought to the
model. Hence the residue for ECL is completely
determined by the knowledge of the admissible dis-
placement field {¥}.

The ECL defines the admissible displacement
field {¥} as the solution of an inverse iteration step,
that is:

K]{¥} = iy M]{®;4} (8)

Actually, it is trivial to verify that equation (6) may
be obtained by substituting equation (7) into equa-
tion (8). Therefore, residues (5) and (7) are equal as
long as the stiffness matrix is nonsingular, leading

to:
K] {RgcL} = {Rg} (9)

In the case of a singular matrix [K] (which accounts
for a free—floating structure), the only difference be-
tween these two residuals is a rigid body motion,
which should have no impact on the updating since
rigid body modes carry no strain energy.

(d) Error in Inertia Law

Finally, a fourth category of residue is consid-
ered. Proceeding as before, a residual vector that
characterizes the Error in Inertia Law (EIL) may be
defined as:

{RErL} = {2ia)} - (¥}

where the admissible displacement field { ¥} is, this
time, obtained by:

(10)

wig M]{¥} = [K]{®4} (11)

Numerically, the only difference between equations
(8) and (11) is that the mass matrix is inverted in
equation (11) instead of the stiffness matrix previ-
ously. Publications have presented the EIL as a
generalization of the ECL and it has been observed
that the EIL may be better at localizing modeling
errors which affect the mass matrix [3]. Using the
same procedure as before, residues associated with

the EIL can be shown to be obtained from the force
residues as:

~wigM{Rgr} = {Rp}  (12)

Of course, a practical implementation of these
residues for model updating would have to address
the spatial incompleteness issue: identified vectors
would require modal expansion, or the FEM ma-
trices would have to be reduced to the size of the
experimental model. Then, differences may appear
between them depending on the numerical imple-
mentation and equations (5), (9) and (12) may not
hold anymore. However, these results are useful in
the ideal case (i.e., full measurement set) because
they illustrate relationships between the residues. In
the following, only the force residue defined in equa-
tions (3-4) is considered since others may be ob-
tained from { RF} as shown in equations (5), (9)
and (12).

(e) Formulation of the Updating

After one of the above residue has been cho-
sen, the formulation of model updating is a con-
strained optimization problem where a given norm
of the residue is minimized given a set of con-
straints:

min ||R|| with C >0
i IRl (p) 2

(13)

Constraints can be chosen for enforcing the physi-
cal nature of the solution, for example, by requiring
that the updated physical variables stay within ac-
ceptable range. In equation (13), vector {p} repre-
sents the optimization variables, that is, most usu-
ally, geometrical and material parameters. When
modal expansion is considered, identified vectors
are expanded to match the size of the FEM and
expansions {®:} constitute additional optimization
variables. The problem is then formulated as:

min | [[R(p; &,)l| (14)

X2

where modal residual vectors are defined as:

(®) = (@) - aie) { 31} 19




The same formulation would apply to FRF data or
even static deflection data, starting with equation
(4). An example is the Sensitivity—based Element
By Element (SB-EBE) updating method that may
also account for the coupling between modal ex-
pansion and parameter correction [4], [5] and may
be generalized to identify damping models [6].

In the following, test-analysis correlation mea-
sures are summarized and relationships between
these measures and residues {RF} are sought af-
ter in an attempt to establish useful a priori error
indicators.

Test Analysis Correlation

For the purpose of test-analysis correlation, we
will consider the following three indicators:

e Frequency difference;
e Modal Assurance Criterion (MAC); and
e Mode Shape Difference (MSD).

This choice is motivated by the simplicity of these
measures and by their popularity in the structural
dynamics community. Frequency difference con-
sists of simply correlating an identified frequency
with a numerical frequency: (wid - wj) and the
MAC measures the spatial correlation between two
vectors relative to the mass matrix:

(®54: ).,

(%35 ®id) p (B35 ®5)m

where (u;v), = {u}? [M]{v} for any two vec-
tors {u} and {v}.

Since the MAC is known to be a quite forgiv-
ing correlation indicator, it should in practice only
be used for modal pairing. Thus, whenever fre-
quency and mode shape differences are considered
in the following, it is assumed that they involve
modes that have already been paired (with a MAC
value greater than 80%, typically).

MAC; = (16)

Instead of using the MAC for correlating mode
shapes, a better practice is to rely on a mode shape
difference, here defined as:

| 214 — ;|
[ @14]]

Mode shape differences are to be used with caution
since they require test and analysis vectors to receive

MSD; = (17)

the same normalization but they are otherwise more
meaningful of the correlation between two modes
compared to the MAC. The question addressed in
the remainder is to know whether frequency and
mode shape differences may be bounded by residues
used to measure the degree of correlation during the
updating. The basic mathematical tools used for es-
tablishing these results are exposed in the following
Section.

Math Tools Used

Results presented below have been obtained
by starting from the definition (3) of force residues
and by combining the following three mathematical
tools:

e Spectral Decomposition Theorem;
o Cauchy-Schwartz inequality; and
o Triangular inequality.

For completeness, these tools are enounced briefly
below. In addition, the norm considered here is the
Frobenius (or Euclidean) norm || ||, defined as:

lull; = fu} {u} = Y u(e)?

i=1...N

(18)

for a vector quantity of length N and:

1Al

Trace ([A]T [A])

= D> > AGs)

j=1l..Mi=1...N

(19)

for a N X M matrix. Note that, in a finite dimen-
sional space, all norms are equivalent. Therefore,
results presented below can be generalized to any
choice of norm. The Euclidean norm is used here
for the only reason that it simplifies greatly deriva-
tions.

Spectral decomposition expresses the factor-
ization of self-adjoint operators over a N—dimensional
basis. Its application to symmetric, positive definite
stiffness and mass matrices provides the following
decomposition:

(K] =[®]" [ [#]7", M]=[8]"[&]
(20)
where [®] represents the mode shape matrix where
vector {®;} is stored in the j—th column, and [£2]




is a diagonal matrix storing cyclic frequencies w;.
Furthermore, if all modes are available, the mode
shape matrix is orthogonal which may be written
as:

[®]" [M][#8] = [1d] (21)

As a result, any power of the dynamic stiffness ma-
trix may be decomposed on the same mode shape
basis according to:

(K] - wiqM])" =

(22)
[M]* [8] ([Q] - wiyq[1d])” [®]" [M]*
where p and ¢ are integer numbers such that |p| = 1
andg=1if p=1and ¢ =0 if p = —1. Equation
(22) is used for proving the estimations below with
eitherp=1orp=—1.
The other math equations used in the demon-
strations are the Cauchy—Schwartz inequality:

ABl, < [l (B, (23)
and the triangular inequality:
|A+Bll, < [[Al,+1Bll,  (24)

which can easily be established for any N X N ma-
trices [A] and [B].

Spectral Decomposition
of Residues

First of all, we want to investigate the relation-
ship between the objective function being minimized
and the metrics used for correlation. Starting from
equation (3) and using equation (22) with p = 1,
it is easy to verify that the inverse mass—weighted
norm of modal residues is expressed as a combina-
tion of the MACs and frequency differences such
as:

{Re}"IM]”* {Rg} _
(®id ®id)
D (2538 (wiy - «f)" MAC;

j=1...N

(25)

Clearly, equation (25) shows that minimizing modal
residues leads to a FEM that reproduces the iden-
tified data since having w; = wjq or MAC; =0

is a necessary condition for having ”RFH = 0.
However, its practical use is limited by the fact
that the entire modal spectrum must be available
(7 =1---N) for equation (25) to be implemented.
Extracting all the frequency content of a FEM is
most impractical and computationally expensive, es-
pecially when dealing with large models. It is of far
greater interest to isolate one specific frequency or
mode shape difference and to relate it to the norm
of modal residues, as seen below.

Error Estimation
for Frequencies

To propose error bounds which could be used
for estimating the a priori quality of a model com-
pared to test data, we start, once more, from defini-
tion (3) and decompose the dynamic stiffness matrix
using equation (22) and p = 1. Then, keeping in
mind that |®]|, = 1 since [®] is an orthogonal
matrix, the following result is straightforward:

Theorem 1:

|||l211;||||2 < max wizd—wzl (26)

j=1--N J
Equation (26) states that the worse possible fre-
quency error is an upper bound of the norm of
the residual vector. Furthermore, since only the
Cauchy-Schwartz inequality is used for establishing
this result, the upper bound is generally the smallest
possible.

2

A similar, yet more useful, result may be ob-
tained when expressing the mode shape vector as
a function of {RF} in equation (3). Then, the in-
verse of the dynamic stiffness matrix is decomposed
using equation (22) and p = —1 to lead:

Theorem 2:

R,
|| ®idll,

This result shows that the degree of correlation of
a model (measured here with the frequency dif-
ference) is controlled by the norm of the residual
vector, divided by the norm of the identified mode
shape. In other words, @ priori measures of the
model’s quality relative to test data may be obtained
without having to extract the model’s eigenpairs.

nin [wig - «f| < (27)

J=




Error Estimation
for Mode Shapes

This Section generalizes previous results to
mode shape differences. Again, the first result is
obtained using the spectral decomposition of the dy-
namic stiffness matrix (equation (22) with p = 1)
while the second one is obtained by factoring the
inverse dynamic stiffness matrix (equation (22) and
p=-1).

Theorem 3:

I]RFHZ

|I{’id||2

+MSD; max |wi — wjzl
j=1.«N

< |w?y — Wt
—|“’1d “’k| (28)

Theorem 4:

|RE],
®:4ll,

minj=1...N |“’i — wﬂ

2 2
|why = k| +

MSD;, < (29)

This last result shows how to control the correla-
tion of mode shapes without having to extract them
explicitly from the FEM matrices. However, this
estimator is useful only to the extent where the dis-
tribution of analytical eigenvalues is known in the
frequency range of interest.

Impact of Incomplete
Instrumentation

Since correlation estimators can not be ob-
tained easily when some of the model’s degrees
of freedom are not measured, an example is pre-
sented here that illustrates how results deteriorate
with incomplete measurements. The test article is a
steel plate used in the automotive industry. The dis-
cretization counts 1,845 nodes and 5,535 degrees of
freedom. A total of 1,356 volume elements with dif-
ferent geometries (hexahedra, pentahedra and tetra-
hedra) are used for modeling the structure. The test
structure is instrumented at 15 nodal points evenly
distributed on the upper surface of the plate, pro-
viding a total of 30 acceleration measurements. The
first four mode shapes are paired and results of the
correlation are presented in Table 1.

Clearly, the correlation is excellent for the low-
est frequency modes, with MAC values (not in-
cluded in Table 1) over 90%. Hence, this example
provides a perfect illustration since our correlation
estimator has been obtained as an upper bound that
can only increase as the test-analysis correlation be-
comes worse.

Table 1. Test Analysis Correlation.
Test Model Relative
Frequency Frequency Error
1,311.2 Hz 1,334.8 Hz 1.8 %
2,421.9 Hz 2,421.2 Hz 0.0 %
2,968.9 Hz 2,972.6 Hz 0.1 %
3,4149 Hz 3,471.1 Hz 1.6 %

To illustrate the influence of incomplete instru-
mentation, finite element mode shapes have been
substituted to test mode shapes (since the correla-
tion between the two sets is excellent) to estimate
the error estimator of eigenvalues. Starting with a
full measurement set, nodes have been eliminated
one by one to generate an increasing number on
non-measured degrees of freedom. Hence, modal
expansion is used for re—constructing the full vec-
tors based on measurements available [4]. Table 2
shows the initial quality of the model, when all de-
grees of freedom are assumed measured (no modal
expansion required).

Table 2. Initial Model Quality.

Difference Estimator
|°"i2d - w? (Upper Bound)
24.65 x10° 429 x10°
1.34 x10° 6.39 x10°
8.68 x10° 5.39 x10°
152.78 x10° 4.88 x10°

Units in Table 2 are sec.” 2.

It can be seen in Table 2 that eigenvalue dif-
ferences for modes 1, 3 and 4 are larger than the
error estimators. Also, the model is much better
at predicting mode number 2 where the eigenvalue
difference is smaller than the upper bound, which
is consistent with the excellent figure for mode 2



in Table 1. This means that model updating may
improve the representation of modes 1, 3 and 4 but
it is unlikely to improve that of the second mode.

Finally, Figure 1 depicts the influence of in-
complete instrumentation. As nodal points are re-
moved from the measurement set, modal expansion
is implemented to interpolate the missing informa-
tion, which tends to increase the value of the upper
bound. This is shown in Figure 1 where error esti-
mators increase for all four modes as the number of
measurements is being reduced.

Conclusion

Error estimators are presented that, combined
with test data modal parameters, evaluate the qual-
ity of a model relative to measurements available.
Results reported here apply to the full measure-
ment case and are obtained using the decomposi-
tion of mass and stiffness matrices on their basis of
eigenvectors. Hence, these estimators provide up-
per bounds for the error committed when the model
is used for predicting a particular mode. As such,
they are useful for estimating if model updating may
improve the representation of a given measured dy-
namics. Moreover, they are computationally effi-
cient (less expensive than an eigenpair extraction).
This theory is however restricted to the full measure-
ment case and taking into account non-measured
degrees of freedom is currently being further inves-
tigated.
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