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ABSTRACT

Many geologic situations of interest to oil and gas
exploration, and to enhanced recover methods, occur in
media whose conductivity is too large to permit the use
of pulsed GPRs because of severe dispersion. A
continuous-wave radar is not affected by dispersion, and
can use the round-trip phase, rather than time, to give
an estimate of range. In this paper a range-to-target
algorithms is developed for targets which exhibit a
crude hyperbolic phase response. This new algorithm
minimizes a difference function over both a 2n7-phase
interval and a wavelength interval to provide the range.
Only crude initial estimates of the electrical parameters
of the host media are required to initiate the algorithm.
The furnished range may be the distance to some point
within the target rather than to a point. upon the
illuminated surface because the target is three-
dimensional and its electrical parameters can take on
any value. This error can be reduced by a sufficiently
high operating frequency. Examples are given for a
vanety of targets, media, range and operating frequency
using simulated data.
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THE ALGORITHM

Several assumptions are required for the development of
the algorithm, namely: (1) The media between the radar
and the target is homogeneous and isotropic; (2) The
transmitting and receiving antennas of the GPR are
oriented and sufficiently separated to reduce crosstalk to
a negligible value; (3) Measurements are made at
traverse intervals that do not exceed one-tenth of the
separation distance between antennas; (4) The
maximum radius of curvature of the target is much less

, than the minimum range.

-Traverse Geometry

Suppose that the radar is translated in uniform
increments along the line separating its antennas, and
approaches, illuminates, and passes-by a discrete target
as shown in Figure 1. The slant range is given by:

R,,=A¢,/4n

meters. (1)
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R,; is the propagation form of the slant ra asurey 9
from the midpoint of the antenna separat &Z’I
traverse position z; ; 4 is the wavelength in th

media, and ¢ is the measured roundtrip phase. The
minimum phase is denoted by ¢, , and the minimum
radial range is denoted by p, given by:

Po =g, 1 4n

There are several difficulties with using Equations 1 and
2. In practice the phase is measured modulo 27, and the
number of 2xn-increments is unknown. Also, there is a
phase shift upon reflection which is included in the
phase measurement. Additionally, the wavelength is
unknown, and a final problem is that the two unknowns,
Aand ¢; , multiply each other!

meters. (2)

The geometric form of the slant range from the
midpoint of the antenna separation can also be written

from Figure 1:
2 2
R, = ,/po +Z;

The geometric slant range is an approximation to one-
half the sum of R1 and R2 shown in Figure 1. An
examination of the error in a recent report (Caffey,1997)
shows that the maximum error is less than 1% if the
antenna separation divided by p; is less than 1/4.

meters. (3)

The propagation and geometric forms of the slant range
are the basis for the algorithm. The relation between
phase and traverse distance is shown to be hyperbolic
by equating the two forms of slant range and using the
definition of p, :

2 2
¢z _
=2 2 1.
% Po
This is the standard from of an hyperbola which is

centered at g = 0 with foci at p,v1+167% /A2

perpendicular to the traverse line.

@)

Difference Functioriﬂ

The key idea in the algorithm consists of minimizing the
magmtude of the difference between the squares of R, ;
and R,,; , namely:

* Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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Dif Ftn = I(z,? + [Aj¢o Jar P )— (,11.¢,. / 47:)2| G

where i = 0, 1,2...; and the 4; are trial values of
wavelength, j=1,2,...jma . Ati=0,2=0, ¢ = ¢, and
the Dif Ftn is zero.

Both ¢ and ¢; are now augmented with trial values so
that adjustments can be introduced:

O, =¢,+y, +2Nn ; i=012... 6)

where:

N = the phase adjustment index which allows trial
restorations of the 2n-increments which may have been
removed; N=0,1,...Npar ;

and
¥, = trial values of reflection phase, k= 1,2,...kpg .

Replacing the ¢ with @&, in Equation (5), the Dif Ftn
becomes:

167722 + 229, — 6, X0 + 6, + 20, +47N) ()

The @&, like the ¢, , must always be 2 0 to prohibit the
computation of a negative range. The sum (¢ + W)
may span the range 0-to-2x each for N. Accordingly, -¢;
< ¥ < (2r-¢p); that is, negative values of ¥, are
permitted. The range of y; is searched with a uniform
increment Ay which is a free choice.

If the mean difference function over the (¢; , z; ) is
minimized over the indicial set {jk} for each N,
including the point ¢; = ¢, the global minimum should
provide the range-to-target which is most consistent
with the data. This process is called the difference
method.

Another method is based on the fact that Equation (7)
can be set to zero and solved directly for y4:

(4mz )’
Y, =
=0

The y; obtained for each (i, j, N) are averaged over the
(i - 1) data points to obtain an average trial value. This
average ¥; is used with A; to obtain 2 minimum of the
mean difference function as before. This process is
called the direct method because trial values of y; are
‘directly’ obtained, and it is preferred because the
“tiresome difficulty of making guesses for Ay is avoided.

—(@, +¢, +4nN), iz0. @)

Wavelength Estimates

Trial values of wavelength, the 4; , must be supplied
based on estimates of the lower and upper limits of
relative dielectric constant and conductivity of the host
media. It is assumed that the relative magnetic
permeability is unity. The wavelength limits are
computed via the real part of the propagation factor of
the host media. The lower limit, A,,;, , is computed from
(& Omax » and A, is computed from (&, O)pin. The
wavelength interval is searched with a uniform

increment Ad=(4__ —A . ) j.._ where ju is a
free choice.

Range Constraints

A minimum and maximum range exists for each choice

of N. Thg radial distance, in terms of the search

variables, is written as:

A;®, A,@ +y, +22N)
an 4n ’

PijxN = )

and

pmin,N =N/1min/2’ pmax,N =(N+l)lmax/2

These extremes provide overlapping range-intervals for
successive choices of N as shown below.

N —Prmin—_ —Pmax—_
0 0 0.5Amax
1 0.5\ min Amax
2 Amin 1.5Amax
3 1.5Amin 2.0

An Effect of Limited Precision

A problem arises from the limited precision of the phase
measurement itself. The several values of ¢ near the
apex of the hyperbola often have the same value. If the
number of such values is odd, the middle value is
chosen as ¢y ; if the number is even, the mean value of
the two z; in the center is inserted as zp and a ¢, is
likewise inserted. In either case the z; are recalculated
so that only z,=0.

Computer Code

The code for the algorithm, over 600 non-commented
source statements, is a double-precision Fortran
program. Input data are checked, and intermediate
results are examined to ensure that they are within the
constraints imposed by wavelength, y<limits, and range.
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Psi-Break

The code proceeds by finding a minimum value of
Equation (8 ) for increasing values of N. There is both a
range and a minimum Dif Ftn for each N, and the
problem is to know which range to accept because the
global minimum Dif Ftn may not occur at the correct
range as shown in this partial output listing:

Wave- Minimum

length, Mean Range, Vi,
N meters _DifFtn . meters degrees
0 102 220 316 -453
1 10.1  .143E-02 9.38 403
2 8.1 .151E-03 1215 913
3 7.1  .116E-03 1401 723
4 6.6 .101E-03 15.11 -60.3

The minimum Dif Ftn just decreases with increasing N
in this listing. The correct solution becomes evident as
an effect of the range constraint. In Equation (9), as N
increases, the 4; decrease with possible increases in ¥4
permitted by Om... Eventually, the range constraint
breaks the increase of y; —values as shown above
beginning with N = 3. The value of N at which the
decrease begins is termed the “Psi-break”, and a correct
range has not been observed at a Psi-break or greater N.
Hence the solutions for N = 3,4 are discarded, and the
Dif Ftn for N = 2 is about one-tenth the value for N = 1.
This identifies the range as 12.2 meters.

EXAMPLES

Three examples are given below which demonstrate the
algorithm in two increasingly conductive soils and also
in a crosswell mode. The transmitter is a magnetic
dipole whose moment is along the positive X-axis of a
Cartesian coordinate system. The receiver is an electric
dipole, centered on the positive Z-axis, and 1.5m above
the transmitter in the first two examples. A spherical
target is centered on the Y-axis, and the antenna-pair is
translated upwards along the Z-axis from beneath the
XY-plane. The back-scattered fields are computed from
the Debye potentials given by March(1953).

Moderate Soil Example

The Boulder Creek granite formation near Raymond,
Colorado, has been extensively measured in situ at
frequencies up to 25SMHz (Grubb et al., 1976). At
7.6MHz the parameters are & = 9 and 0 = 1.6mS/m
which provide a wavelength of 12.88m. A 1m OD
spherical target is centered 2 wavelengths, or 25.76m,
away. The target & is the same as the host media, but
two conductivities are used: 4-times the host value and
1/4™ of the host value. The traverses extend £7.65m in
0.15m increments, and provide maximum phases of
328° and 127° centered on ¢ = 266.4° and 64.8°

respectively. The two range estimates, using just ¢, and
the three points as ¢, is approached, are identical:
25.8m * 0.05m which is 4cm beyond the target center.

Conductive Soil Example

This is a set of 3 examples to show the effect of
increasing frequency upon the determination of range
with a 2m OD target centered at 13m. The host
conductivity is 13mS/m, and the target conductivity is
6.5mS/m. An & = 6 is used for both host and target.
Frequencies of 0.65, 2.6, and 10.4MHz are used so that
the illuminated surface is at minimum distance, in host
wavelengths, of 0.35, 0.72, and 1.6 respectively.
Figure 2 is a plot of the data from the 0.65MHz traverse.
The traverse extends £10m on each side of @, and the
phase values for all frequencies are within 64.4° of ¢,.
The results are shown below.

Frequency,

MHz Range, meters N
0.65 13.95£0.10 0
2.60 13.23+£0.05 1

10.40 12.13 £0.03 2

All three range estimates are within the target, but move
from the rear toward the front with increasing
frequency.  However, operating at 2.5MHz and
10.4MHz requires a power increase of 11dB and 47dB
respectively compared to 0.65MHz.

Crosswell Example

If the antennas are horizontally separated, and one is
vertically traversed past the other, the hyperbolic phase
response is still obtained. In this example the antennas
are placed 31.4m apart in the Boulder Creek media at
10.2MHz for which the conductivity is 1.75mS/m and &,
is about 8.2. Because the path is now one-way, the
algorithm is modified by replacing the factor of 4n by
2r in Equation (1) et seq. There is no reflection phase,
so the y; are set to zero. The computed range is 31.4m
+ 0.2m which is in excellent agreement with the
separation distance.
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