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Abstract

The effects of fluid flow on the solidification morphology of pure materials and solute
microsegregation patterns of binary alloys are studied using a computational methodol-
ogy based on a front tracking/finite difference method. A general single-field formulation
is presented for the full coupling of phase change, fluid flow, heat and solute transport.
This formulation accounts for interfacial rejection/absorption of latent heat and solute,
interfacial anisotropies, discontinuities in material properties between the liquid and solid
phases, shrinkage/expansion upon solidification and motion and deformation of the solid.
Numerical results are presented for the two-dimensional dendritic solidification of pure suc-
cinonitrile and the solidification of globulitic grains of a Plutonium-Gallium alloy. For both
problems, comparisons are made between solidification without fluid flow and solidification
within a shear flow. ’ | ‘



Introduction

Nearly all materials of engineering interest have, at some point, solidified from a liquid
state. The exact nature of the solidification process determines the microstructure and
thus the physical properties of the solid material. In most solidification situations some
degree of fluid motion exists, whether by buoyant natural convection or forced convection
due to electromagnetic stirring or some mechanical motion. Fluid motjon may also be in-
duced by the shrinkage or expansion of the solid upon solidification. In Czochralski crystal
growth, solidification occurs at the end of a rotating rod as it is pulled from a crucible con-
taining the melt. In rheocasting, a semi-solid charge of slurry is injected into a die where it
deforms to the internal die shape before complete solidification. Convection in weld pools
is driven by buoyancy, Lorentz and capillary forces. From these few examples it is clear
that an understanding of how the fluid motion affects the dynamics of the solidification
process and the resulting microstructure is crucial to many manufacturing technologies.

A variety of numerical methods have been successful in capturing the essential features
of microscale solidification dynamics and morphologies of both pure materials and al-
loys. Some recent examples include finite element based [1-3], phase-field [4-8] and front-
tracking [9, 10] methods. However, until recently these methods have only been applied to
the problem without fluid convection. A notable extension of the phase-field method to
include convection has just recently been developed by Diepers, Beckermann and Stein-
bach [11]. They used this method for direct simulations of microstructure formation in
solidifying alloys. A front-tracking method for phase change problems including convection
has also recently been developed for calculations of boiling flows [12]. As will be described
below, this front-tracking method can be directly applied to the solidification of pure ma-
terials. With the addition of a solute transport equation the method can be extended to
alloy solidification. The goal of this article is to describe the extension and generalization
of the front tracking method to include solute transport and to apply the method to direct
simulations of solidification microstructures in both pure materials and alloys with and
without fluid convection. The formulation accounts for interfacial rejection/absorption of
latent heat and solute, interfacial anisotropies, discontinuities in material properties be-
tween the liquid and solid phases and shrinkage/expansion upon solidification. In addition
the method allows for arbitrarily complex deformations of the solid-liquid interface, topol-
ogy changes and solid body motion and deformation.

The mathematical formulation and a brief description of the numerical method are pre-
sented in the next section. The subsequent section then presents numerical results for the
two-dimensional dendritic solidification of pure succinonitrile and the solidification of glob-
ulitic grains of a Plutonium-Gallium alloy. Comparisons are made for the growth dynamics
of the pure material and solute microsegregation in the binary alloy in a shear flow and
also with no flow.

Mathematical Formulation

We write a single set of conservation equations for the transport of mass, momentum,
energy and species for the entire domain including the solid and liquid phases. The phase
boundary is treated as an imbedded interface by adding to these conservation laws the
appropriate source terms for surface tension, interphase mass transfer, jumps in material
properties and rejection/absorption of latent heat and solute. These source terms are in
the form of delta functions localized at the interface and are selected in such a way as to



satisfy the correct jump conditions across the phase boundary. The formulation presented
here follows closely that of Juric and Tryggvason [12] for boiling flows except here we in-
clude the equation for solute transport.

We begin by specifying the material properties which are considered to be constant but
not generally equal for each phase. As a consequence, the bulk phases are incompressible
but we allow for volume expansion or shrinkage at the phase interface due to the density
change upon solidification. Equations for the material property fields can be written for the
entire domain using an indicator function, I(x, t), which has the value 1 in the solid phase
and 0 in the liquid phase. I is similar to the phase-field variable in the phase field method,
however here, as will be shown below, we determine I from the known position of the
tracked interface rather than use it to determine the position of the interface. The values
of the material property fields at every location are given by b(x,t) = b, + (bs — b,) I(x,t),
where the subscripts S and L refer to the solid and liquid phases respectively. b stands for
density, p, viscosity, p, specific heat, ¢, thermal conductivity, k or diffusivity, D. Since I
is constant except in a local region near the interface, we can express the gradient of I as
a local surface integral

VI:/m)n(S(x—x,—)ds, (1)

where n is the unit normal to the interface, defined to point into the solid phase and x; =
x(s, t) is a parameterization of the phase interface, I'(t). é (x — x;) is a three-dimensional
delta function that is non-zero only where x = x;. Taking the divergence of Eq. (1) results
in

2 - . — .
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Thus we find I(x,t) by solving the above Poisson equation where the right hand side is
a function only of the known interface position at time ¢. The interface is advected in a
Lagrangian fashion by integrating (dx;/dt) - n = V, = V.- n. V is the interface velocity
vector and V,, its normal component. We assume that the tangential components of the
interface velocity, V', and material velocity, u, at the interface are equal, i.e. no slip at the
interface.

With the aid of Eq. (1) and the definition of p, the conservation of mass for the entire
domain can be expressed as

dp _ '
V-pu———é-t— V.-Vp= l“(t)(ps—pL)V,,é(x x,)ds.. (3)

The momentum equation, in conservative form, is

Opu

¥ T3 +V-puu=-VP—-pg+V- r+/ yknd (x — x,)ds, 4)

where P is the pressure, g is the gravitational force, 7 is the surface tension coefficient
(assumed constant in this equation), & is twice the mean interface curvature and 7 is the
deviatoric stress tensor for a Newtonian fluid 7 = u (Vu + VuT) . Note that we use this
same constitutive relation for both the solid and liquid and make the assumption that the
~ solid is a very viscous liquid. In this way we obtain a crude constitutive material model
for the solid which allows solid motion and deformation.




_The thermal energy equation with an interfacial source term to account for liberation or
absorption of latent heat, L, is

OpcT
ot

+V-pucl = —V-q+/m)r'n[L+(cL ~ ¢5) Toat) 6 (% — x;) ds (5)

where we have neglected the viscous dissipation. We assume that the constitutive relation
for the heat flux, q = —kVT, holds throughout the entire domain. T is the temperature
and 7 is the interfacial mass flux, m = p, (V—u,) - n=ps(V—ug)-n.

The single-field solute transport equation is

apC

F+V-pul=V. pDVC’+/ (1-kymCé(x—x)ds, (6)

where € and D are defined by the simple transformation for the solute concentration,
C, (2] and diffusivity, D,

% =y [ (Cs/k,kDs), in the solid,
(C’ D) B { (C.,D,), in the liquid . (7)

The integral on the right hand side of Eq. (6) accounts for rejection or absorption of
solute at the interface due to the difference in miscibility of the alloy components in the
liquid and solid. C; = €(x;) is the value of the transformed concentration at the interface.
Note that the transformed concentration is continuous at the interface which makes C;
more easy to calculate numerically. In using this transformation the partition coefficient,
k = Cs(x;)/C.(x;), is assumed to be constant which, for dilute mixtures, is usually a rea-
sonable assumption. Since the interface is explicitly tracked and thus I is known we can
regain the original concentration field from C = C+ (kC C') I(x).

It is important to recognize that away from the interface the single field formulation, Eqs.
(3), (4), (5) and (6), reduces to the customary mass, momentum, thermal energy and so-
lute equations for each of the bulk phases while integration of these equations across the
interface reveals that the formulation naturally incorporates the correct mass, momentum,
energy and solute balances across the interface. We have made the assumptions that the
interface is thin and massless, the energy contribution due to interface stretching is negli-
~gible and the temperatures of the solid and liquid at the interface are equal. In addition
we have neglected secondary driving forces such as Dufour or Soret effects.

To complete our formulation, a form of the Gibbs-Thomson condition for the interface
temperature, T; = T'(x;), must be satisfied at the phase boundary. Here we use

' ~ 'y(n)Tsam(l 1), m ’
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where m is the slope of the liquidus line, y(n) and ¢(n) are the anisotropic surface tension -

and kinetic mobility, respectively. In Eq. (8) we have neglected the effect of unequal spe-
cific heats between phases and ignored the pressure dependence of the melting temperature.

In two-dimensions, the transport equations along with the interface temperature condition,
Eq. (8) are solved using the front tracking/finite difference method described in detail by
Juric and Tryggvason [12]. Briefly, these equations are solved iteratively for the correct
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Figure 1: Comparison of dendritic growth of a pure material (a) with no fluid flow and (b)
with fluid flow. ‘

interface velocity, V},, that will satisfy the interface temperature condition, Eq. (8). For the
spatial discretization, we use the MAC method of Harlow and Welch [13] with a staggered
grid. A first order, phase change projection algorithm, similar to that of Chorin’s [14], is
used for the time integration. In explicit front tracking, the phase interface is represented
discretely by Lagrangian markers connected to form a front which lies within and moves
through the stationary Eulerian grid. As the front moves and deforms, interface points are
added, deleted and reconnected as necessary throughout the calculation. Thus the interface
can exhibit arbitrarily complex interface deformations and topology changes. Information
from the integral source terms in Egs. (2)-(6) are passed between the moving Lagrangian
interface and the stationary Eulerian mesh using Peskin’s [15] Immersed Boundary Tech-
nique. With this technique, the sharp interface is approximated by a smooth distribution
function that is used to distribute the sources at the interface over mesh points nearest the
interface. Thus the front is given a finite thickness on the order of the mesh size to provide
stability and smoothness with no numerical diffusion since this thickness remains constant
for all time.

Computational Examples

We simulated the dendritic growth of a pure material with properties approximately cor-
responding to that of succinonitrile [16]. The simulations were performed in a 2D, hor-
izontally periodic box of dimensions 11.1 x 11.1 pm with an undercooling of -16 K and
a 300 x 300 grid resolution. The solid, attached to the bottom wall, grows upward from
an initially perturbed interface. Four-fold anisotropic surface tension provides preferred
growth in the horizontal and vertical directions initially. However, rotation of the solid
during the calculation can locally change these preferred growth directions. Figure (1a)
shows the growth of dendrites into a quiescent liquid. For the situation with flow, Fig.
(1b), the density of the solid is no longer equal to the liquid but is roughly 5% greater
which results in shrinkage upon solidification and, as can be seen in Fig. (3), a resulting
inflow of liquid from the top of the domain. The solid phase was modeled as a liquid of
100 times greater viscosity than the liquid phase. We assumed that the Prandt]l number of
the material is 1 and also ignored gravity. At the start of the calculation in Fig. (1b) the
bottom boundary was given a constant velocity of 41 cm/s. This resulted in a translation
of the solid to the right and induces a shear flow within the liquid. At 0.83 us the velocity
of the bottom boundary was increased to 411 cm/s.

Comparison of Figs. (1a) and (1b) shows that the fluid convection dramatically alters the
growth morphology. The presence of flow results in a fuller sidebranch structure and sup-
presses the emergence of distinct primary dendrite arms. The time evolution of the solid
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Figure 2: Comparison of the time evolution of (a) the solid fraction and (b) length of the
longest dendrite with time for the cases with flow and without flow in Fig. (1).

Figure 3: Pressure (left) and velocity (right) fields for the dendritic solidification with fiow
in Fig. (1b). '

fraction and length of the longest dendrite arm are plotted in Fig. (2). As can be seen in
‘Fig. (2a), the shear flow causes the solid to form and fill the domain more rapidly. At 1
ps, 25% more solid has formed due to the presence of fluid convection. The dendrite tip
velocities in the case with flow, inferred from Fig. (2b), are initially greater than the case
without flow. However at later times and throughout most of the rest of the calculation,
the tip velocities are roughly equal with and without the presence of liquid motion. These
gross effects can be attributed to the influence of convection on the thermal envelope of
the growing solid. Convection transports cooler liquid into the interstices of the dendritic
structure thereby increasing the temperature gradients at the solid/liquid interface which
in turn results in larger interfacial growth velocities. Fluid forces also act to bend and
deform the dendrites. Figure (3) shows the pressure and velocity fields for Fig. (1). Since
the solid is modeled as a viscous liquid the isotropic pressure shows areas where the solid is
in tension (light) or compression (dark). Note that the dendrite tips exhibit high pressures
due to surface tension.

We next simulated the solidification of globulitic grains of Plutonium alloyed with 1 wt%
Gallium [17]. At this concentration, the partition coefficient is 1.37 with a liquidus line
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Figure 4: Solidification of grains of Plutonium - 1 wt% Gallium at (a) ¢ = 0s and (b)
t = 0.375s.

slope of 37 K/wt%. The liquid diffusion coefficient is 100 times larger than the solid ¢
phase. The calculation in Fig. (4) begins with six randomly spaced and sized grains of
solid € in a quiescent liquid initially at the melting point of 950 K. We assume that the
temperature is spatially uniform and decreases from the melting point at a constant rate
of 15 K/min. After 0.375 s the solid grains have grown to fill about 63 % of the 150 x
150 pm domain. The color scale shows Gallium concentration in wt% with darker colors
indicating higher concentrations. Evident is the coring of the grains with a high Gallium
concentration at their centers, decreasing toward the edges. Figure (5) shows the same
calculation with an imposed shear flow. Although this calculation is still at an early time,
the effect of the flow is to pull the Gallium depleted boundary layers away from the grains.
This together with the motion and rotation of the grains within the liquid will result in a
very different final concentration distribution.

Conclusions

We have described a general formulation and method for the direct numerical simulation
of solidification microstructures and microsegregation. The method was applied to 2D
solidification of pure succinonitrile and a Plutonium-Gallium alloy both with and without
the presence of fluid convection. Fluid flow was seen to have an important influence on
the morphology and growth dynamics of succinonitrile and the concentration distribution
of Gallium.
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Figure 5: The same calculation as in Fig. (4) with an imposed shear flow. Gallium
concentration is plotted on the left and fluid velocities on the right.
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