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Abstract

The present paper addresses the question: “What are the general classes of uncertainty and error
© sources in complex, computational simulations?” This is the first step of a two step process to
develop a general methodology for quantitatively estimating the global modeling and simulation
uncertainty in computational modeling and simulation. The second step is to develop a general
mathematical procedure for representing, combining and propagating all of the individual sources
through the simulation. We develop a comprehensive view of the general phases of modeling and
simulation. The phases proposed are: conceptual modeling of the physical system, mathematical
modeling of the system, discretization of the mathematical model, computer programming of the
discrete model, numerical solution of the model, and interpretation of the results. This new view is
built upon combining phases recognized in the disciplines of operations research and numerical
solution methods for partial differential equations. The characteristics and activities of each of these
phases is discussed in general, but examples are given for the fields of computational fluid
dynamics and heat transfer. We argue that a clear distinction should be made between uncertainty
and error that can arise in each of these phases. We believe that the present definitions for
uncertainty and error are inadequate and. therefore, we propose comprehensive definitions for
these terms. Specific classes of uncertainty and error sources are then defined that can occur in
each phase of modeling and simulation. The numerical sources of error considered apply
regardless of whether the discretization procedure is based on finite elements, finite volumes, or
finite differences. To better explain the broad types of sources of uncertainty and error, and the
utility of our categorization, we discuss a coupled-physics example simulation. We then discuss
how the methodological ideas developed can be applied in the modeling and simulation of a
weapon in an abnormal environment. Specifically, we consider the conceptual problem of a
damaged weapon in an aircraft crash and fuel fire environment.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or.any agency thereof.



1. Introduction

During the last several years there has been an increasing level of attention to critically
assessing the accuracy and credibility of computational simulations. Although the fields of fluid
dynamics, heat transfer, and structural mechanics do have same level of interest in this topic, the
general trend is a welcomed one. It shows that computational simulation is maturing from a
research activity to a useful tool that impacts the design of engineered systems of all types. The
primary method of assessing the accuracy of simulations has been to compare computational

predictions with experimental data. This is known as the process of validation of computational
simulations. One of the difficulties of experimental validations, however, is the continually
increasing cost and time required to conduct these experiments. With the rapidly decreasing cost of
computer power, there is great economic and competitive pressure to conduct simulations with
fewer comparisons with experiments. Terminology such as “virtual prototyping” and “virtual
testing” are now being used to describe the numerical simulation of “testing” of new hardware and
even entire systems. An additional difficulty with experimental validation is that certain types of
validation experiments can not be physically or safely conducted. Various examples are: matching
the aerothermodynamic environment of an atmospheric reentry vehicle in a wind tunnel; structural
failure of the containment vessel of a nuclear power plant; failure of a bridge or dam during an
earthquake; and exposure of a nuclear weapon to an accident environment such as an aircraft fuel
fire. Physical events such as these cannot be conducted with full fidelity for the purpose of
validation, thus assessing the accuracy of simulations for these events is crucial.

The issues, methodologies and terminology for assessing the accuracy of complex simulations
are being discussed and debated in the literature in a very wide variety of engineering disciplines
[1-9]. These topics are closely related to code verification and validation (V&V). It is our view that
all of these topics, at a high level, can be considered as part of the field of uncertainty estimation.
Uncertainty estimation has its roots in probability theory and statistics and has primary application
in areas such as quality control in manufacturing process, estimation of experimental uncertainty,
and probabilistic risk assessment of large systems. Many of the same mathematical tools of
uncertainty estimation can be used to represent different types of uncertainty in modeling and
computational simulation.

Uncertainty due to different sources in computational simulations are also now being addressed
by a number of researchers [10-15]. Examples include; numerical solution error estimation in finite
element simulations, use of Richardson’s extrapolation method for estimating grid convergence
errors, uncertainty due to different turbulence models in computational fluid dynamics, and Monte
Carlo estimation of structural response due to stochastic uncertainty in material properties. All of
these are examples of different types of contributors to uncertainty in various computational
simulations. Some of these can be categorized as modeling uncertainties and others as numerical
solution errors. The computational simulation literature has done little to categorize the different
types of sources of uncertainty and error. Indeed, there is little discussion, much less agreement,
as to what is included in uncertainty, and how that is related to error.

We believe the estimation of total modeling and simulation uncertainty can be divided into two
parts. First is the identification of all the possible types or classes of sources of uncertainty and
error. Second is a general mathematical procedure for combining, integrating and propagating
individual sources of uncertainty and error through the entire modeling and simulation process. At
present, neither of these steps has been developed in any general sense. The field that has probably
made the most progress on both of these steps deals with the thermal-hydraulic analyses for safety

_2.



of nuclear power plants. For example, many failure scenarios and event tree analyses for these type
systems have been constructed, along with probabilistic assessment of events and their
consequences. We believe, however, there are three short comings to this previous work. First,
there has not been clear delineation of the classes of sources of uncertainty, or a distinction
between uncertainty and error in the modeling and simulation. Second, very little effort has been
devoted to the impact on total system uncertainty due to uncertainty in the model itself, also
referred to as model form uncertainty. However, recent work by Draper [16] and Lasky [17]
suggests an increasing focus on this issue. Third, the vast majority of this work is based on
statistical, or probabilistic, mathematical representations of uncertainty. The primary emphasis has
been on uncertainty distributions in input parameters, initial conditions, and boundary conditions.
We believe, however, that non-probabilistic mathematical representations may be more appropriate -
when the uncertainty derives from lack of knowledge or errors, such as numerical solution errors.

The present paper deals with the first part of the estimation of total modeling and simulation
uncertainty; identification of all possible classes of sources of uncertainty and error. We begin by
developing a new structure of the general phases of modeling and simulation. The phases proposed
are: conceptual modeling of the physical system, mathematical modeling of the system,
discretization of the mathematical model, computer programming of the discrete model, numerical
solution of the model, and interpretation of the results. This new view is built upon combining
phases recognized in the disciplines of operations research and the numerical solution of partial
differential equations. Characteristics and activities of each of these phases is discussed with regard
to a variety of disciplines in computational mechanics and thermal sciences.

Building on this structure, we argue that a clear distinction should be made between uncertainty
~ and error that can arise in each of these phases. We believe that the existing distinctions between
uncertainty and error are inadequate and, as a result, we propose comprehensive definitions for
these terms. Specific classes of uncertainty and error sources are then defined that can occur in
each phase of modeling and simulation. The present discussion generally shows how uncertainties
and errors in one phase might propagate to subsequent phases, but this paper does not address the
technical issues involving propagation of uncertainty and error. The numerical sources of error
considered apply regardless of whether the discretization procedure is based on finite elements,
finite volumes, or finite differences. We also propose a term, modeling and simulation dubiety, to
represent the level of doubt in the total simulation caused by both uncertainty and error. To better
explain the broad types of sources of uncertainty and error, and the utility of our categorization, we
discuss a coupled-physics example simulation. We discuss how the methodological ideas
developed can be applied in the modeling and simulation of a weapon in an abnormal environment.
We consider the conceptual problem of a damaged weapon in an aircraft crash and fuel fire
environment. This example considers the widest possible range of a fully coupled thermal-material
response simulation with regard to detonation safety of the weapon.

2. Modeling and Simulation

Before we review the literature, we will define what we mean by modeling and simulation. We
will use broad definitions for these terms because the issues we address in this paper will cover a
wide range of computational mechanics, thermal sciences, and physics. We use the definition of
model given by Neelamkavil [18]: “A model is a simplified representation of a system (or process
or theory) intended to enhance our ability to understand, predict, and possibly control the behavior
of the system.” By modeling we mean the construction or improvement of a model. Different

-3-




types of models will be defined in later sections. We also use Neelamkavil’s definition of
simulation [18]: “A simulation is the process of imitating (appearance, effect) important aspects of
the behavior of the system.” In other words, simulation is the exercise of a model. Here we are
specifically interested in the exercise of computer models, i. e., computer codes built from
mathematical models. '

2.1 Review of the Literature

In attempting to identify all possible classes of sources of uncertainty and error we spent
significant time reviewing a broad range of literature in modeling and simulation. Modeling and
simulation is conducted in essentially every technical discipline. The operations research
community, because it deals with the widest range of system types and processes, has developed
many of the general principles and procedures for modeling and simulation. Researchers in these
fields have made significant progress defining and categorizing the various phases of modeling and
simulation [19-22]. The areas of emphasis in OR include problem entity definition, conceptual
model definition, data and information quality, and how simulation results are intended to aid in
decision making. From an engineering perspective, however, many feel this work is extraneous
because it does not deal with solving partial differential equations. We have found the OR research
very helpful in providing a constructive philosophical approach for identifying uncertainty sources
and errors and some of the basic terminology. In addition. the OR literature has developed the
fundamental principles for verification, validation, and accreditation for modeling and simulation,
although we do not discuss this topic in depth.

In 1979, the Society for Computer Simulation Technical Committee on Model Credibility
developed a diagram identifying the primary phases and activities of modeling and simulation [23]
(Fig. 1). The diagram shows that analysis is used to construct a conceptual model of reality.
Programming converts the conceptual model into a computerized model. Then computer simulation
is used to predict reality. Also shown in the diagram are the activities of model qualification, model
verification, and model validation. Although simple and direct, the diagram clearly shows the
relationship of two key phases of modeling and simulation to each other, and to reality, 1. e., the
system or process being considered. When complex engineering systems or physical processes are
considered, the diagram ignores some major activities, specifically the solution of the partial

differential equations describing the system.

Through the 1980’s Sargent {24, 25] made some improvements to this view of modeling and
simulation, but no fundamental changes to the ideas in Fig. 1 were made. His major contributions
were primarily in the areas of procedures for verification and validation of models and simulations.
Nance [26] and Balci [27] also made a significant expansion to the phases of modeling and
simulation. Fig. 2 shows their concept of the life cycle of a simulation study. Major phases added
to the earlier description were System and Objectives Definition, Communicative Models, and
Simulation Results. Communicative Models were described as “a model representation which can
be communicated to other humans, can be judged or compared against the system and the study
objective by more than one human” [26]. These three additions helped clarify important phases in
modeling and simulation.

As can be seen from Figs. 1 and 2, the emphasis in these descriptions is in assessing the
credibility of the model and simulation, and in its improvement. The primary methods to
accomplish this are verification, validation, qualification and testing of nearly all phases of the
process. The emphasis in the present work is on estimation of total modeling and simulation
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uncertainty with limited experimental data. With this emphasis, Figs. 1 and 2 lack two key
features. First, the inability to clearly identify where sources of uncertainty and error might
originate. Second, the notion of propagation of different types of uncertainties and errors through
the modeling and simulation process. '

In the computational fluid dynamics literature Mehta [7] appears to be the only one to have
incorporated some of the OR concepts of modeling and simulation. Figure 3 shows Mehta’s
diagram for the phases of modeling and simulation. As can be seen, it has features similar to Figs.
1 and 2, but now the emphasis is on sources of uncertainty and total modeling and simulation
uncertainty. Although specific types of sources of uncertainty are not identified in Fig. 3, Mehta
does describe several sources. He lists general uncertainties in the fluid dynamics models and in
the computational analysis.

A large number of other investigators have investigated sources of uncertainty and error, but
they have not made direct associations to the various phases of the modeling and simulation
process. Several of these investigators will be referred to in Section 3: Sources of Uncertainty and
Error. '

2.2 Phases of Modeling and Simulation

Figure 4 shows our representation of the phases of modeling and simulation appropriate to
systems or processes analyzed by the numerical solution of PDE’s. The initial phase is called the
definition of the physical system. This phase also includes the specification of the requirements or
objectives of the modeling and simulation, as described by Nance [26) and Balci [27]. The
physical system can be either an existing system or process, or a proposed system or process, for
example a proposed design. The physical system could be as simple as laminar flow through a
pipe, or it could be as complex as fire spread through an aircraft cabin.

Conceptual Modeling The conceptual model phase determines what scenarios of physical
events, or sequence of events, will be considered and what types of coupling of different physical
processes will be considered. These determinations are based on the requirements determined in
the first phase. During this phase, no mathematical equations are written, but the fundamental
assumptions of the events and physics are made. Only conceptual issues are considered, with
heavy emphasis on determining all possible factors that could possibly affect the requirements set
for the modeling and simulation. An additional important feature of this phase is that all possible
physics-couplings are listed that may influence the results, even if it is considered unlikely that they
will be considered later on in the analysis. This is critical because if a possible physics coupling is
not considered in this phase, it can not be resurrected later in the process. This feature is similar to
the fault-tree structure in probabilistic risk assessment of high consequence systems, such as in
nuclear reactor safety analyses. Even if a certain sequence of events is considered extremely
remote, it should still be included as a possible event sequence in the fault-tree. Whether or not the
event sequence will eventually be analyzed is not a factor in including it in the conceptual modeling
phase.

Mathematical Modeling The next phase is the mathematical modeling phase. During this phase
the precise mathematical. i. e., analytical. statement of the problem, or series of event-tree-driven
problems, to be solved is developed. Any complex mathematical model of a problem, or physical
system, is actually composed of many mathematical submodels. The complexity of the models
depends on the physical complexity of each phenomena being considered, the number of physical
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phenomena considered, and the level of coupling of different types of physics. The mathematical
model formulated in this phase is considered to be the complete specification of all of the partial
differential equations for all elements of the system. For example, if the problem being addressed
is a fluids-structure interaction, then all of the coupled fluid-structures PDE’s must be specified,
along with any material property changes either the fluid or structure might undergo because of
their interaction. The integral form of the equations could also be considered, but this type
formulation will not be addressed in the present discussion. Along with the PDE statement of the
mathematical model, all of the appropriate initial and boundary values, and the required auxiliary,
or closure, models must be specified for the physical events considered.

~ Our emphasis on comprehensiveness in the mathematical model should not be confused with a
model’s attempt to represent physical complexity. The predictive power of a model depends on its
correct identification of the dominant controlling factors and their influence, not upon its
completeness. A model of limited, but known, applicability is generally more useful than a more
complete model. This dictum of engineering seems to be forgotten in modern times because of
rapidly increasing computing power. The clear tendency, seen in all fields of engineering, is to use
more complex models and then “beat it to death” with the computer. Examples are abundant, but
just to mention a few: use of Navier-Stokes equations to compute the lift on a streamlined body at
low angle of attack; use of time iterative Navier-Stokes equations to compute attached supersonic
flow over a vehicle; and use of finite elements to compute stresses in thin shells.

An additional point concerning incompleteness of models should be made. Any mathematical
model, regardless of its physical level of detail, is by definition a simplification of reality. Any
real-world system, or even individual physical processes, contain phenomena that are not
represented in the model. Statements such as “full physics simulations” can only be considered as
marketing jargon. Our point was succinctly stated by George Box [28]: “All models are wrong,
some are useful.”

Discretization of the Model The next phase is the conversion of the PDE form of the
mathematical model into a discrete, or numerical. model. This phase takes into account the
conversion of the mathematics from a calculus problem to an arithmetic problem. In the
discretization phase, all of the spatial and temporal differencing methods, discretization of the
boundary conditions, discretization of the geometric boundaries, and grid generation methods are
specified in analytical form. In other words, algorithms and methods are prescribed in
mathematically discrete form, but the spatial and temporal step sizes are not specified. This step
focuses on the conversion from continuum mathematics to discrete mathematics, not on numerical
solution issues. We strongly believe that the continuum mathematical model and the discrete model
should be separately represented in the phases of modeling and simulation [29]. This phase deals
with questions such as consistency of the discrete equations with the PDE’s, mathematical
singularities, and differences in zones of influence between the continuum and discrete systems.

Programming of the Discrete Model The next phase, which is common to all computer
modeling, is the computer programming phase. This phase converts the algorithms and solution
procedures defined in the previous phase into a computer program. This phase has probably
achieved the highest level of maturity because of many years of programming development and
software quality assurance efforts [30, 31]. These efforts have made a significant impact in areas
such as commercial graphics, mathematics, and accounting software. telephone circuit switching
software, and flight control systems. Little impact, however, has been made in corporate and
university developed software developed for computational fluid dynamics, solid dynamics, and
heat transfer simulations.
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Numerical Solution of the Discrete Mode] The next phase is the numerical solution of the

programmed computer model. In this phase, individual numerical solutions are obtained. This
phase should be thought of as the most specific of all phases of modeling and simulation. In this
phase there are no quantities left arithmetically undefined or continuous. For example, grid
spacing is uniquely defined, all parameters such as Reynolds number and chemical reaction rate
constants are specified, and time and space exist only at points. If multiple computational solutions
are required for the analysis, as is commonly the case, then the numerical solution would not be
unique, but would mean many solutions. Consider, for example, a conduction heat transfer
analysis where the thermal conductivity is specified by some probability distribution. Then
hundreds or thousands of Monte Carlo solutions may be required to address the question posed in
the definition of the problem.

Interpretation of Results The final phase concerns the interpretation of computational results.
This phase involves determining the methods for presentation of computed results into a form that
is usable by a human. This phase can also be described as the construction of continuous functions
based on the discrete solutions obtained in the previous phase. Here the continuum mathematics
formulated in the mathematical modeling phase is approximately reconstructed. This phase is
specifically called out because of the sophistication of the software that is being developed to
comprehend modern complex simulations. This area includes graphical visualization of results,
animation of results, use of sound for improved interpretation, and the analysts *“going into the
solution space” using virtual reality. Some may argue that this phase is simply “post-processing”
of the computational data. We believe, however, this description does not do justice to the rapidly
growing importance of this area. In addition, by referring to this phase as interpretation of results,
we are able to include types of errors that are not simply due to the modeling and simulation of the
~ system, but to the conclusions drawn from the simulation results. These topics will be discussed in
the next section.

3. Sources of Uncertainty and Error

We will now discuss the types of uncertainties and errors that are associated with each phase of
" modeling and simulation. As one might suspect, developing the definition for each of the phases
was not done independently from developing the ideas for types of uncertainties and errors.
Essentially all of the individual sources of uncertainty and error described below have been pointed
out by researchers in the past. Some, like computer round-off error, are very well understood.
even to the point that most computational analysts do not make note of it. Others are poorly
understood or characterized; for example, should a deficiency be treated as an uncertainty or an
error. In the sections that follow we first develop comprehensive definitions for uncertainty and
error that are appropriate for modeling and simulation. Second, we describe a hypothetical
modeling and simulation sample problem which will be used as an example during the description
of uncertainties and errors. Third, we describe a general framework for classes, or types, of
uncertainties and errors for each phase of modeling and simulation. In addition, we use the
example problem to give specific examples for each class of uncertainties and errors. We strongly
believe that a more comprehensive taxonomy for uncertainties and errors must be developed in
order to mathematically estimate total simulation uncertainty for complex systems.



3.1 Definitions of Uncertainty and Error

As we attempted to identify general types of uncertainty and error, we found ourselves asking
more and more fundamental questions as to what is the distinction between uncertainty and error.
Although the meaning of these terms seems to be intuitive, upon careful thought it is found their
meaning is not precise, or very context specific. We observed that the majority of text books and
research papers do not define what they mean by uncertainty and error. Only a few authors
carefully define uncertainty and error, but their definitions are in the restricted context of their
subject. The most developed definition or understanding of uncertainty is in regard to experimental
measurements. Although this is helpful, we require definitions that apply to the much broader topic
of modeling and simulation.

We define uncertainty as a potential deficiency in any phase or activity of the modeling
process that is due to lack of knowledge. The first feature which our definition stresses is
“potential”, meaning that the deficiency may or may not occur. In other words, there may be no
deficiency, say in the prediction of some event, even though there is a lack of knowledge. Whether
the deficiency occurs or not is most commonly represented by some type probability distribution of
occurrence. The second key feature of uncertainty is that its fundamental cause is incomplete
information. Following Klir [32], incomplete information can be caused by vagueness,
nonspecificity, or dissonance. By vagueness we mean lack of precise definition, unclearness and
indistinctness. Nonspecificity refers to the variety of alternatives in a given situation that are left
unspecified. Dissonance refers to the disagreement resulting from the attempt to classify an element
of a given set into two or more disjoint subsets of interest. Since the cause of uncertainty is partial
knowledge, increasing the knowledge base can reduce the uncertainty. When uncertainty is
reduced by an action, such as observing, performing an experiment, or receiving a message, that
action is a source of information. The amount of information obtained by the action is measured by
the resulting reduction in uncertainty. This concept of information is called “uncertainty-based
information.” Examples of this are: improving the accuracy of prediction of heat flux in a steel bar
by improving the knowledge of the thermal conductivity of the bar in the predictive model;
improving the prediction of the convective heat transfer rate in turbulent flow by improving the
turbulence model; and improving the prediction accuracy for melting of structure in a open-pool
fuel fire by improved knowledge of the atmospheric winds.

We define error as a recognizable deficiency in any phase or activity of modeling and
simulation that is not due to lack of knowledge. Our definition stresses the feature that the
deficiency is identifiable or knowable upon examination, that is, the deficiency is not determined
by lack of knowledge. By this we mean that there is an agreed-upon approach which is considered
to be more accurate. If divergence from the correct or more accurate approach is pointed out, the
divergence is either corrected or allowed to remain. This implies a segregation of error types; error
can be either intentional or unintentional. Examples of intentional errors are: finite precision
arithmetic in a computer; physical approximations made to simplify the modeling of a physical
process; a specified level of iterative convergence of a numerical scheme; conversion of the
governing PDE’s into discrete equations. When the analyst introduces these intentional errors into
the modeling or simulation process, there is typically some idea of the magnitude of the error
introduced. Unintentional errors are blunders, or mistakes. That is, the analyst intended to do one
thing in the modeling and simulation. but, for example, due to human error, did another. There are
no straightforward means to estimate or bound the contribution of unintentional errors. Sometimes
the unintentional error is capable of being discovered by the person who committed it; e.g., a
double check of coding reveals that two digits have been reversed. Sometimes blunders are due to
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inadequate human interactions, and can only be resolved by communication. For example, one
person misunderstood the required input format for a code written by another person. In this case,
a rigorous review process by both individuals should uncover the error.

3.2 Description of the Example Probleni

Consider the coupled thermal-material analysis of a weapon in an open-pool fuel fire
environment. Assume that the weapon may be damaged, but the level of damage is unknown. This
example would be characteristic of a weapon carried by an aircraft, that crashed during take-off or
landing. Assume that the type of weapon is known, but no other information about the weapon
before the accident is known. The weapon contains high explosive that is normally a solid and it
has an integrated electrical-mechanical arming, fusing, and firing system. And finally, assume that
the purpose of this analysis is to compute a probabilistic estimate of whether the high explosive

~ will detonate. Stated somewhat differently, compute the probabilistic risk assessment of the

detonation safety of the weapon in this crash and burn scenario.

The purpose of our example is to point out the myriad of factors and possibilities that enter into
a complex, real world, engineering simulation. We will only list aspects of this example in our
discussion of uncertainties and errors in the conceptual modeling and mathematical modeling
phases. These phases require the resolution of many specific probabilistic issues. Although we
make no computations here, the magnitude of the computing effort required should become clear.

3.3 Conceptual Modeling Uncertainties

From the description of the conceptual modeling phase given in Section 2, we believe that the
dominant “deficiency” is uncertainty, as opposed to “‘error”. Deficiencies can occur in any of the
phases of modeling and simulation, but the credibility of each phase is primarily limited either by
uncertainties or errors. Conceptual modeling uncertainties arise in the formulation of the analysis of
the event, or process, and in the lack of knowledge of the event. Figure 5 shows the two types of
uncertainties associated with conceptual modeling; scenario abstraction and lack of system
knowledge. By scenario abstraction we mean the determination of all possible physical events, or
sequence of events, that may affect the goals of the analysis. For relatively simple systems, such as
fluid flow not interacting with any structures or materials, scenario abstraction can be straight
forward. For complex engineered systems exposed to a variety of interacting factors, scenario
abstraction is a mammoth undertaking. The best example we can give for how this should be done
for complex systems is the probabilistic safety assessment of nuclear power plants. As the many-
branched event tree is constructed for complex scenarios, the probability of occurrence of certain
events becomes extremely low. Typically little analysis effort is expended on these extraordinarily
rare possibilities. If one is dealing with very high consequence systems, however, these extremely
improbable scenarios must be examined. Not including or recognizing these branches of the event
tree can cause substantial loss in the credibility of the modeling and simulation.

The second class of uncertainty listed, lack of system knowledge, refers to uncertainties that
are primarily due to limited information about the system. This class clearly affects and interacts
with the scenario abstraction effort, but here we stress lack of information for a branch of the tree
rather than the possible existence of the branch. Two important examples for this class of
uncertainty should be mentioned. First is the lack of knowledge of the initial state of key elements
of the system. If it is a complex engineered system then knowledge of the factors. such as the
following. becomes important: was the system incorrectly manufactured or assembled. how well
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was the system maintained, and was the system damaged in the past and not recorded. Second, is
lack of knowledge of future conditions impacting the system. Examples of these are atmospheric
environmental conditions and human interaction with the system during the event. These are
examples where it is not possible to reduce lack of knowledge, and reduce the uncertainty, by
improved sampling of past events. However, the uncertainty can sometimes be reduced by certain
action taken with respect to the system that limits or further defines the state of key elements of the
system. Often these are policy or procedural decisions.

For the example problem of a weapon in a fire we list a number of scenario abstraction and lack
of system knowledge sources of uncertainty. Rather than attempt to list all of the possibilities, we
just give an indication of the types of uncertainties that should be be considered in this phase.

« Lack of information concerning the weapon before the accident

¢ Manufacturing variability of components and the complete system

¢ Manufacturing, assembly, and handling errors affecting the system

« Maintenance of the weapon and components that effect the state of the weapon before the crash

« Structural damage due to the crash before the start of the fire ,

» Structural and electrical damage to the arming, fusing and firing system before the start of the fire

« Detonation sensitivity of the explosive affected by age

« Number of weapons carried on-board the aircraft that affect individual weapons

* Adjacent weapon detonating

« Uncertainty in damaged geometry

« Uncertainty in impact area characteristics (e. g., water, trees, city)

« Uncertainty in material properties of components and subsystems

« Fuel source and quantity

» Wind speed, temperature and other environmental conditions

« Fire intensity and duration

« Uncertainty in emissivity of surfaces before and during the fire

« Atmospheric electrical source of energy to the arming, fusing and firing system (e.g.,lightning)

« Undesirable effects of accident response teams to the accident (e.g., additional damage)

« Unintended effects of accident response teams to the accident (e.g., introduction of foams or
electrical power to the crash site)

« Accident response hampered by unsafe state of the weapons

« Inadequate use of expert opinion in scenario abstraction (e.g., insufficient diversity)

3.4 Mathematical Modeling Uncertainties

Mathematical modeling contains both uncertainties and errors, but we believe that uncertainties
are typically more important than errors in this phase. (Note that for the remainder of the paper
when we refer to “errors” we will only be referring to intentional errors, unless otherwise stated.)
Uncertainties and errors that occur in this phase arise from three mathematical sources (Fig. 5): the
continuum equations for conservation equations of mass, momentum, and energy; all of the
auxiliary equations which supplement the conservation equation; and all of the initial and boundary
conditions required to solve the PDE’s. The predominant uncertainties that occur in mathematical
modeling are those due to limited knowledge of the actual physics involved, or inadequate
knowledge to represent elements in known physics. The primary errors are due to mathematically
representing the physics in more simplified form that is appropriate for the results required from
the modeling and simulation. Both of these together are sometimes referred to as “model form
errors” or “‘model structural errors™.
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Examples of uncertainties that occur in the conservation equations are: limited knowledge of the
physics of multiphase flow, limited knowledge of turbulent reacting flow, and uncertainty if a
boundary layer will be laminar or turbulent. Auxiliary physical equations in the mathematical model
are equations, such as, expressions for thermal conductivity, turbulence models, and chemical
reaction equations. Examples of uncertainties in these models are poorly known probability
distributions of material properties due to manufacturing variability and unreliable turbulence
models. It may be argued that accuracy turbulence models should be considered as errors instead
of uncertainties. This is based on the argument that the accuracy of turbulence models could be
ordered, e. g., algebraic models, two equation models, and Reynolds stress models. In a general
sense, this ordering could be accepted, but for individual flow fields there is no guarantee that any
one model will be better than any other model. Examples of uncertainties in initial and boundary
conditions are: inaccurately known initial temperature distribution in a solid, imprecisely known
geometry of materials because of manufacturing and assembly variances, and poorly known wind
conditions in a pool fire.

Errors in mathematical modeling can also be identified. Some examples are; assumption that a
flow field can be modeled as a two-dimensional flow when three-dimensional effects are
important, assumption of a steady flow when the flow is actually unsteady, assumption of
continuum fluid mechanics when non-continuum effects are important, and the assumption of a
rigid boundary when the boundary in flexible. It is observed that all of these examples are of the
character that physical modeling approximations were made to simplify the mathematical model and
the subsequent solution.

For the example problem of a weapon in a fire we list a number of mathematical modeling
uncertainties and errors:

¢ Use of 2D models for 3D problems

* Use of steady state models for non-steady state solutions

» Poorly known fluid dynamic turbulence models coupled with combusting flow

« Uncertainty in coupled mechanics - interaction of structural and thermal and possibly electrical

« Uncertain thermodynamic and transport properties of all materials

« Inaccurate probability distributions of the geometry of components because of small sample sizes

» Use of different submodels - crack propagation, joints, thermal conductivity

» Possibility of missed interactions at low levels of details, especially in damaged node

« Errors in coupled solution procedures; ex: structural, thermal, structural, thermal interact via
forces

« Inadequate temporal coupling between thermal and structural mechanics coupling

» Use of transport, thermodynamic, and material properties outside the range of validity

« Ignoring electrical resistance heating in components due to unexpected activation of a power
supply

« Insufficient level of spatial and temporal modeling for physics involved

« Inaccurately known thermal contact resistances due to both manufacturing, assembly, and crash
damage

« Incomplete modeling of interaction of non-linearities (e. g., turbulence and combustion)

» Inaccurate interpolation of transport, thermodynamic, and material properties

» Inappropriate statistical models to represent non-deterministic phenomena




3.5 Discretization Errors

The discretization phase converts the continuum model of the physics into a discrete
mathematics problem. Since this is fundamentally a mathematics approximations topic, errors and
not uncertainties are the dominate issue in this phase. Some may question why this conversion
process should be separated from the solution process. We argue that this conversion process is
the root cause of more difficulties in the numerical solution of PDE’s than is generally realized. Our
view is based on the increasing difficulty of the nonlinear features of PDE’s being numerically
solved. Taking a historical perspective, early numerical methods and solutions were developed for -
linear PDE’s, such as simple heat conduction, Stokes flow, and linear structural dynamics.
Modermn numerical solutions have attacked nonlinearities such as high Reynolds number laminar
flow and shock waves and, in hindsight, these have proven more difficult than anticipated.
Additional nonlinear physics such as turbulent flow, combustion, multiphase flow, phase changes
of gases, liquids and solids, fracture dynamics, and chaotic phenomena are also being attacked,
most with limited success. When strongly nonlinear features are coupled, the mathematical
underpinnings become very thin and the successes become few. Recent investigators [33-35] have
clearly shown that the numerical solution of nonlinear ordinary and partial differential equations
can be quite different from exact analytical solutions even when using well established methods
well within the numerical stability limits of the methods. Yee et al [36] have referred to this
phenomena as the “dynamics of numerics” as opposed to the “numerics of dynamics.” It is
becoming increasingly clear that the mathematical features of strongly nonlinear and chaotic
systems can be fundamentally different between the continuous and discrete form, regardless of the
grid size [37, 38]. Oberkampf and Blottner [29] have pointed out that the zones of influence ‘
between the continuum and numerical counterparts are commonly different, even in the limit as the
mesh size approaches zero. - '

As shown in Fig. 5, we identify three sources of discretization error; discretization of the
conservation laws, the boundary conditions, and the initial conditions. The types of errors we are
pointing out here are typically very difficult to isolate. One method of identifying these type errors
is to analytically prove whether the finite difference method is consistent, that is, does the finite
difference method approach the continuum equations as the step size approaches zero. For simple
differencing methods, this is quite straightforward. For complex differencing methods such as
essentially non-oscillatory (ENO) schemes and second order, multidimensional, upwind schemes,
the determination of consistency of the algorithms for a wide range of flow conditions and
geometries is difficult. Related issues dealt with in this phase: are the conservation laws satisfied
for finite grid sizes, does the numerical damping approach zero as the mesh size approaches zero,
and do aliasing errors exist for zero mesh size. Discretization of PDE’s are also involved in the
conversion of von Neumann and Robin’s, i. e., derivative, boundary conditions to difference
conditions. We include the conversion of continuum initial conditions to discrete initial conditions,
not because there are derivatives involved, but because spatial singularities may be part of the initial
conditions. An example of this is the decay of vortex whose initial condition is given as a
singularity. Our point is also valid, indeed much more common, when singularities or
discontinuities are specified as boundary conditions. Some may argue that these discontinuities and
boundary singularities do not actually occur in nature, so the issue of accuracy of representation of
these is superfluous. This misses the point completely. If these nonlinear features exist in the
mathematical model of the physics, the issue is whether the discrete model represents them
accurately; not whether they exist in nature. In other words, it is the difference between verification
(solving the problem right) and validation (solving the right problem).

-12-
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" 3.6 Programming Errors

The credibility of the programming phase is most influenced by unintentional errors, i.e.,
mistakes. In Fig. 5 we have categorized these mistakes into two types; input and programming
errors. We will only briefly discuss these type errors because this topic is thoroughly covered in
many software quality assurance texts [30, 31].

Computational researchers and analysts experienced only with model problems, even large
scale model problems, typically do not appreciate the concern with input errors. They feel itis
simply a matter of carelessness that can easily be remedied by quality assurance practices. This,
however, is not the case with very large codes, particularly coupled multi-physics codes, that
heavily rely on sophisticated computer aided design/solid modeling codes for input. The
complexity of the input data and the resulting room for error with these type codes, is
extraordinary. This has been recognized for some time in the nuclear reactor safety thermal-
hydraulic analysis field. Formal, structured, and rigorous procedures have been developed to
ensure the input data accurately reflects the intended input.

The capturing and elimination of programming errors, although not generating much
excitement with computational researchers, remains a major cost factor in producing highly verified
software. Even with the maturity of the software quality assurance methods. the difficulty of
assessing software quality is becoming more difficult because of massively parallel computers. The
complexity of optimizing compilers for these machines, the complexity of message passing, and
memory sharing is, in our opinion, increasing faster than the capability of software quality
assessment tools. As a case in point, debugging computer codes on massively parallel computers is
moving toward becoming a non-deterministic process. That is, the code does not execute the same
from one run to another because of other jobs executing on the MP machine. It is still a
fundamental theorem of programming that the correctness of a computer code cannot be proven.
except for trivial codes. Credibility can only be built by structured coding practices and continued
testing, i. e., verification that the coding correctly represents the discrete model.

3.7 Numerical Solution Errors

Numerical solution errors have been investigated longer and in more depth, than any of the
errors associated with the numerical solution of PDE’s. Indeed, they have been investigated since
the beginning of numerical solutions; Richardson in 1910 [39]. These deficiencies in the solution
of the discrete equations are properly called errors because they are approximations to the solutions
of the original PDE’s. As shown in Fig. 5, we categorize these errors into four categories: spatial
grid convergence, time step convergence, iterative convergence, and computer round-off. Of these,
perhaps the only one that needs explanation is iterative convergence. By this we mean the finite
accuracy to which nonlinear algebraic, or transcendental, discrete equations are solved. Iterative
convergence error normally occurs in two different phases of the numerical solution. First is the
iterative convergence that must be achieved within a time step. Examples are: intra-time step
iteration to solve the unsteady heat conduction equation when the thermal conductivity depends on
temperature; intra-time step iteration to determine the liquid-solid boundary in a melting or
solidification problem; and the iterative solution for nonlinear analytic expressions for transport or
thermodynamic properties. On finite volume schemes, for example. conservation of mass,
momentum, and energy can be violated with inadequate iterative convergence at each time step.
The second type iterative convergence addresses the accuracy of global iterative convergence of an
elliptic PDE. Tolerance specifications must be given for the convergence accuracy of each iterative
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procedure used in a code.

Although we categorize four sources of solution error, it should be noted that they are of two
types. The first type is due to the finite discretized solution of the PDE's; spatial grid convergence
and time step size convergence are of this type. The second type is due to the approximate solution
of the discrete equations, that is, what errors are made in the solution to the given discrete
equations. Iterative convergence and round-off error are of this type and they account for the
difference between the exact solution to the discrete equations and the computer solution obtained.

All texts dealing with the numerical solution of PDE’s address the topic of estimating the
magnitude of the spatial grid convergence error. Some of these deal with the errors associated with
temporal convergence, iterative convergence, and round-off error. Even though grid convergence
error is fairly well understood, it is our view that it is commonly the largest contributor to error in
numerical simulations. The reason for this paradox is simple: cost. The grid size used for a
numerical solution is usually at the limit of computer time or budgetary constraints; sometimes the
grid used is simply considered “good enough” for the simulation at hand. If modeling and
simulation is to achieve the level of credibility it is capable of, the lack of careful attention to grid
convergence must be corrected.

3.8 Results Interpretation Errors

Figure 5 gives our categorization of types of results interpretation errors: post processor input
errors, programming errors, data misrepresentation errors, and data interpretation errors. Post
processor input errors and programming errors are the same type of unintentional errors, i.€.
mistakes, as pointed out earlier under programming errors. Data misrepresentation errors and data
interpretation errors, however, should be considered as intentional errors. By data
misrepresentation errors we mean inaccurate or inappropriate construction of continuous functions
from the discrete solution in the post-processor. Examples of these are; oscillations of the
continuous function in between discrete solution points due to the use of a high order polynomial
function in the post-processor; extrapolation of solution variables outside the discrete solution
domain of independent variables; and inappropriate interpolation of the discrete solution between
multiblock grids. We believe that these should be called intentional errors based on the question:
“What is the mathematically correct reconstruction of the continuum functions from the PDE’s
using the discrete solution points?” When viewed from this perspective, one becomes concerned
about the issue because this is not the perspective taken in modern visualization packages. The
view of these general purpose packages is that there is no connection between the two.
Reconstruction is done based on speed, convenience, and robustness of the package.

By data interpretation errors we mean errors made by the interpreter, i. e., the user, based on
observation of the results. In other words, an error made by the user in interpreting the results. By
this we do not refer to errors in decision made by the user based on the results, such as incorrect
design choices or inappropriate policy decisions based on the data. An example of this type of error
is the conclusion that a predicted solution is chaotic when it is not (and vice versa).

3.9 Modeling and Simulation Dubiety
The last issue to address in this paper is a final recommendation on terminology. We have

defined and pointed out a large number of uncertainties and errors that occur in different phases of
modeling and simulation. The distinction between an uncertainty and an error is, we believe.
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crucial for correct representation and propagation, and for possible reduction or elimination in
modeling and simulation. This distinction, however, is not useful when the effect of all of the
uncertainties and errors are combined into a measure of total simulation result. We propose the
term dubiety to mean the total level of doubt or variability in the simulation caused by all sources
of uncertainty and error in the simulation.

The quantification of dubiety, since it is a mixture of uncertainty and error, should have the
following three features. First, it will present a plausible interval consistent with the available
information, in which the predicted value is believed to lie. It will include the characteristic of lack
of knowledge which is normally represented as probability distributions. Probability distributions
are used to describe uncertainty in code input parameters, and multiple solutions from the
simulation also generate probability distributions. As the number of solutions is increased, or when
techniques such as Latin Hypercube is used, the confidence in the probability distributions will
improve. Second, dubiety will also include the effects of intentional errors, i. e., mathematical
approximations, as measured by the exact solutions to PDE’s. Use of high quality experimental
data for code validation and the use of specialized exact analytical solutions for code verification
will build confidence in the numerical solutions. Sensitivity-uncertainty studies with input and
numerical parameters will produce some indication of total simulation credibility. This type error
will produce an error with some similarities to precision, or random. errors in experimental
uncertainty. Third, dubiety can detect unintentional errors, i. €., mistakes, only when independent
information is used for comparisons. For example, comparisons with other independent numerical
solutions, by verification testing, and by experimental validation data. Strategies for detecting
unintentional errors will be analogous to those for detecting bias errors in experimental data.

4. Summary and Conclusions

We have presented a framework for the phases of modeling and simulation in which the
physical system, or proposed system, is described by partial differential equations. We have
carefully defined the meaning of, and distinguished between, uncertainty and error. These
comprehensive definitions are required to categorize the broad range of deficiencies that can exist in
modeling and simulation. Using these definitions, we defined a taxonomy for classes of sources of
uncertainty and error that are appropriate to each of the phases identified in modeling and
simulation. Our framework applies regardless of whether the discretization procedure is based on
finite elements, finite volumes, or finite differences.

With this structure we believe more comprehensive procedures should be developed for
representing, combining, and propagating individual sources of uncertainty and error through the
entire modeling and simulation process. We believe the present work shows that the traditional
probabilistic representations and propagation procedures will not be sufficient to account for error
sources. Non-probabilistic mathematical representations, such as possibility theory, fuzzy sets,
and Dempster-Shafer theory, may be more appropriate for error sources and specialized types of
uncertainty. Although the advantages of these representations are speculative, it is hoped that
statisticians and information theorists will become interested in applying these to modeling and
simulation. From the heat transfer and fluid dynamics analysts view point, most of these
approaches will appear alien. We believe, however, these new type approaches may be needed to
more confidently assess the dubiety of modeling and simulation for complex engineered systems.
For the prediction of high consequence events, particularly those that have little or no experimental
data, these methods may prove to be critical.

-15-




References

1. American Nuclear Society: Guidelines for the Verification and Validation of Scientific and
Engineering Computer Programs for the Nuclear Industry, . 1987.
2. Bradley, R.G. CFD Validation Philosophy. in AGARD Symposium Validation of

 Computational Fluid Dynamics. 1988. Lisbon, Portugal: North Atlantic Treaty Organization.

3. International Standard ISO 9000-3: Quality Management and Quality Assurance Standards
- Part 3: Guidelines for the application of 1SO 9001 to the development, supply and maintenance
of software, . 1991.

4. Blottner, F.G., Accurate Navier-Stokes Results for the Hypersonic Flow Over a Spherical
Nosetip. Journal of Spacecraft and Rockets, 1990. 27(2): p. 113-122.

5. Mehta, U.B., Some Aspects of Uncertainty in Computational Fluid Dynamzcs Results.
Journal of Fluids Engineering, 1991. 113: p. 538-543.

6. Oberkampf, W.L. A Proposed Framework for Computational Fluid Dynamics Code
Calibration/Validation. in 18th AIAA Aerospace Ground Testing Conference. 1994. Colorado
Springs, CO: American Institute of Aeronautics and Astronautics.

7. Mehta, U.B., Guide to Credible Computer Simulations of Fluid Flows. Journal of
Propulsion and Power, 1996. 12(5): p. 940-948.

8. Roache, P.J., Need for Control of Numerical Accuracy. Journal of Spacecraft and
Rockets, 1990. 27(2): p. 98-102. :

9. Roache, P.J., Quantification of Uncertainty in Computational Fluid Dynamics, . 1997.

10. Strouboulis, T. and J.T. Oden, A Posteriori Error Estimation of Finite Element
Approximations in Fluid Mechanics. Computational Methods in Applied Mechanics and
Engineering, 1990. 78: p. 201-242.

11.Celik, I. and W.-M. Zhang. Application of Richardson Extrapolation to Some Simple
Turbulent Flow Calculations. in The Fluids Engineering Conference. 1993. Washington, DC:

‘The Fluids Engineering Division, ASME.

12. Babuska, I., T. Strouboulis, and C.S. Upadhyay, A Model Study of the Quality of a
Posteriori Error Estimators for Linear Elliptic Problems: Error Estimation in the Interior of
Patchwise Uniform Grid of Triangles. Computational Methods in Applied Mechanics and
Mechanical Engineering, 1994. 114: p. 307-378.

13. Ferziger, J.H. and M. Peric', Further Discussion of Numerical Error in CFD.
International Journal for Numerical Methods in Fluids, 1996. 23: p. 1263-1274.

14. Mehta, U.B. Guide to Credible Computational Fluid Dynamics Simulations. in 26th
AIAA Fluid Dynamics Conference. 1995. San Diego, CA: AIAA.

15. Roache, P.J. Verification of Codes and Calculations. in 26th AIAA Fluid Dynamics

* Conference. 1995. San Diego, CA: AIAA.

16. Draper, D., Assessment and Propagation of Model Uncertainty. Journal R. Statistics Soc.
B, 1995. 57(1): p. 45-97.

17. Lasky, K.B., Model Uncertainty: Theory and Practical Implications. IEEE Transactions
on Systems. Man and Cybernetics-Part A: Systems and Humans, 1996. 26(3).

18. Neelamkavil, F., Computer Simulation and Modelling. st ed. 1987, New York: John
Wiley & Sons.

19. Zeigler, B.P., Multifacetted Modelling and Discrete Event Simulation. 1st ed. 1984,
Orlando: Academic Press. ,

20. Zeigler, B.P., Theory of Modelling and Simulation. st ed. 1976, New York: John Wiley
& Sons.

21.Morgan, M.G. and M. Henrion, UNCERTAINTY A gmde to Dealing with Uncertainty

-16 -



in Quantitative Risk and Policy Analysis. 1st ed. 1990, New York: Cambridge University Press.
22.Bossel, H., Modeling and Simulation. 1st ed. 1994, Wellesley, MA: A. K. Peters, Ltd.

23. Schlesinger, D.S. and e.a. Dr. Roy E. Crosbie, Terminology for Model Credibility.
Simulation, 1979. 32(3): p. 103-104.

24. Sargent, R.G., Simulation Model Validation, in Simulation and Model-Based
Methodologies: An Integrative View, T .1. Oren, B.P. Zeigler, and M.S. Elzas, Editors. 1984,
Springer-Verlag Berlin Heidelberg: Syracuse. p. 537-553.

25. Sargent, R.G. An Expository on Verification and Validation of Simulation Models. in

1985 Winter Simulation Conference. 1985. Sacramento, California.

26.Nance, R.E., Model Representation in Discrete Event Simulation: The Conical
Methodology, . 1981, Virginia Polytechnic Inst. and State University.

27.Balci, O. Guidelines for Successful Simulation Studies. in Proceedings of the 1990
Winter Simulation Conf. 1990.

28.Box, G.E.P., Sampling and Bayes' Inference in Scientific Modeling and Robustess.
Journal Statist. Soc. A, 1980. 143(A): p. 383-430.

29. Oberkampf, W.L. and F.G. Blottner, Issues in Computational Fluid Dynamics Code
Verification and Validation, . 1997, Sandia National Laboratories.

30. Lewis, R.O., Independent Verification and Validation. 1st ed. 1992, New York: John
Wiley & Sons, Inc.

31.Knepell, P.L. and D.C. Arangno, Simulation Validation A Confidence Assessment. 1st

‘ed. 1993, Washington: IEEE Computer Society Press.

32.Klir, G.J. and T.A. Folger, F. uzzy Sets, Uncertainty, and Informanon Ist ed. 1988,
Englewood Cliffs, NJ: Prentice Hall.

33. Yee, H.C., P.K. Sweby, and D.F. Griffiths, Dynamical Approach Study of Spurious
Steady-State Numerical Solutions of Nonlinear Differential Equations I. The Dynamics of Time
Discretization and its Implications for Algroithm Development in Computational Fluid Dynamics.
Journal of Computational Physics, 1991: p. 249-310.

34.Yee, H.C. and P.K. Sweby, Nonlinear Dynamics & Numerical Uncertainties in CFD, .
1996, NASA/Ames Research Center: Moffett Field, CA.

35.Yee, H.C,, et al. On Spurious Behavior of CFD Simulations. in 13th AIAA
Computational Fluid Dynamics Conference. 1997. Snowmass, CO: AIAA.

36. Yee, H.C. and P.K. Sweby, Dynamical Approach Study of Spurious Steady-State
Numerical Solutions of Nonlinear Differential Equations II. Global Asymptotic Behawor of Time
Discretizations. Computational Fluid Dynamics, 1995. 4: p. 219-283.

37. Yee, H.C. and P.K. Sweby, Global Asymptotic Behavior of Iterative Impllicit Schemes.
International Journal of Bifurcation and Chaos, 1994. 4(6): p. 1579-1611.

38. Yee, H.C. and P.K. Sweby, Some Aspects of Numerical Uncertainties in in Time-
Marching to Steady-State Numerical Solutions. 27th AIAA Fluid Dynamics Conference, 1996: p.
47. '

39. Richardson, L.F., The Approximate Arithemetical Solution by Finite Differences of
Physical Problems Involving Differential Equations, with an Application to the Stresses in a
Masonry Dam. Transaction of the Royal Society of London. 1910. Series A, Vol 210: p.

- 307-357.

-17 -




Model
Qualificanon

A Analysis
]
Com CONCEPTUAL
Model “omputer MODEL
Validation Simulation .

Model

Verfication

COMPUTERIZED
MODEL

FISMKE_ 1

Eﬁﬁ\\i View of Moclalwg~
ANA SIN\\A\A»'LILON <~?(e,orv\ Qa§ 23>



COMMUNICATED
PROBLEM

Formulated Problem
Verification

Problem
Formulation

!
FORMULATED
PROBLEM

Feasibility Assessment

Investigation of
of Simulation

Solution Techniques
DECISION MAKERS

g~ =

PROPOSED SOLUTION
TECHNIQUE
(Simulation)

Acceptability of
Simulation Results

INTEGRATED
DECISION
SUPPORT

System

tem System and Objectves
Investigation

Definition Verificadon

B

SYSTEM AND
OBJECTIVES
DEFINITION ! *~.. Model Formulation

Model
Qualification

; CONCEPTUAL
Redefinition MODEL

'
?
.

Presentation of
Simulation Results

Y Model

Communicative .
‘ -‘chrcscmalion

Mode! V&V

Presentation Verification

.
]
+
]
]

| COMMUNICATIVE
MODEL(S)

SIMULATION Model Data
RESULTS Validation VYalidaton

Mode! V&V

14

PROGRAMMED
MODEL

Programmed / :. Programming

Experiment
Design Verification

EXPERIMENTAL 7.-*" Design of Experiments

MODEL

Fqsu\ee 2
\/tE\N o N\DJE\N\\S ANA Simu latioN
rerm Nance(Red 20) and Bale, (&4.27>




SIMULATION |
OBJECTIVES
[ SR o
) S g
com%eggyl\ji & SENSITIVITIES
SIMULATION ?
MODEL

/@MULATIONSJ\

VERIFICATION VALIDATION |
» Equivalence + Problem
e Accuracy e Model

(UNCERTAINTY) |

FIS\JRE, 3

\View o-@ M‘DAE\\NS) ANo} S-IMM,AWL,MN
 Lrom Mehta (Kef ’7>



ZQJ.J. WWig ﬁuzq
N \.\uﬂoz |,WQ WMW{&& Tmmobod&
AV Sanb_

)




?o_u\ﬁt\sz\m.v wzi p;mwoz Ni
20T Nuzi \/#Z_(nfv\mozj FO  STOINOS

G 33 nol -
}JO-punoy Jsindwo) uonejesdiaju| eleq
Bulwwe.bo. aouabianuoQ annesa)| uonejuasaidaisi|y eleq
. d - - >
induj 9ouabianuo) jesodwa] Bujwwesboid

aouabianuo) |eneds 1nduj 10s$89014-1S0d

S104.3

Puiwweiboid Sl10113 uonn|og s10.143 uoljejaidiay]
[edLBWINN S}Insay

suol}ipuo) |eniu] pue Alepunog

$,01 JO UoNEzI}8I9sIQ

abpajmouy walsAg Jo yoe

d

$,04 Jo uoljezija.asiqg suone|ay [ealsAud Aelixny | et

S,4dd J0 uoljezija1asi|g suoljenb3 uoijeAlasuo?)

uoljoelISqy OLIeUddS

Saljulelaoun

S04/
3] Saljuienadun Buljapoyy [enidasuon

uolezijalosig buljapoyy |eanewsayiep




kT

'Report Number (14)_SAxp --97 ~ 2607 ¢
CovF - 786/0-—

Publ. Date (11) /772 /o :
Sponsor Code (18) JoE/0F | poc /mA ) XF
UC Category (19) _/4¢~ Do 5 S UC~- 705 ) DOE/EQ

DOE



