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With the increased use of public key cryptography, faster modular multiplication has become an
important cryptographic issue. Almost all public key cryptography, including most elliptic
curve systems, use modular multiplication. Modular multiplication, particularly for the large
public key modulii, is very slow. Increasing the speed of modular multiplication is almost
synonymous with increasing the speed of public key cryptography.

There are two parts to modular multiplication: multiplication and modular reduction. Though
there are fast methods for multiplying and fast methods for doing modular reduction, they do
not mix well. Most fast techniques require integers to be in a special form. These special forms
are not related and converting from one form to another is more costly than using the standard
techniques. To this date it has been better to use the fast modular reduction technique coupled
with standard multiplication. Standard modular reduction is much more costly than standard
multiplication. Fast modular reduction (Montgomery’s method) reduces the reduction cost to
approximately that of a standard multiply.

Of the fast multiplication techniques, the redundant number system technique (RNS) is one of
the most popular. It is simple, converting a large convolution (multiply) into many smaller
independent ones. Not only do redundant number systems increase speed, but the independent
parts allow for parallelization. As stated earlier, the main drawback is the costly conversion.
The cost of converting the integers between every multiply and modular reduction far
outweighs the savings. If RNS is to be used at all for modular multiplication, integers must
remain in RNS form.

Unfortunately Montgomery’s method does not seem possible in RNS form. The reduction
formula includes both reduction and division by a given constant. RNS form implies working
modulo another constant. Depending on the relationship between these two constants;
reduction OR division may be possible, but not both. This paper describes a new technique
using ideas from both Montgomery’s method and RNS. It avoids the formula problem and
allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the
entire process to be parallelized.

Redundant Number Systems and Fast Reduction Formula

The following is a very brief explanation of RNS and the fast reduction formula, the basis for
Montgomery reduction.

RNS: Redundant number systems are based on the Chinese remainder theorem. In this paper
a redundant number system (RNS) refers to the modulii in the system: {q,,9,,...,4,}

with GCD(q.,q;)=1 for all i#j. Working in the RNS implies working mod Q where Q is
u
the product of all the components in the RNS: Q = Hq,- . Aninteger X in RNS form is

i=1
written as the following. Let x; = Xmodgq; (0<x; <g;). Then:
X~[x,x0 %]

Operations in the RNS are done component-wise, independent of the other components.
For example, to compute XY+Z, simply compute x;y; +2;modg; for each of the q; in
the RNS. Operations done in the RNS mirror operations done mod Q, so any operations
done mod Q can be done in RNS form (in the example above XY+Z is computed mod

Q). Notice that if the results, intermediate as well as final, are greater than zero and less
than Q, the RNS results will equal the integer results.
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There are many techniques to reconstruct the RNS number. A new method, the RNS
interweaving process, is described in this paper. It differs from other techniques in that
XmodN can be computed without ever leaving the RNS/mod N world.

Fast Reduction Formula: This formula reduces integers Z modulo M, where Z<4M2, A
value R (the reduction R-value) for which division and modular reduction are easy is
chosen. “Easy’ reduction and division replace the ‘hard’ reduction (mod M). The only
restrictions on the R-value is that it must be relatively prime to M and R>4M. Letting
M = -M" mod R, the reduction formula (RF) acting on an integer Z<4M2 is:

RF(D) - Z+M(224 mod R)

The results of this formula have two important properties when compared to M:
RF(Z)= ZR™ mod M
<2M

Notice that a copy of R was added to the reduced results. To compensate for this,
integers are usually stored with a copy of R. In other words, instead of storing Z mod
M, ZR mod M is stored. This way when two numbers are multiplied and reduced, one
copy of R remains, leaving it in the same form:

RF(XR*YR)=XYR mod M.

Problem

A problem occurs when trying to combine these two techniques. Working in an RNS implies
working mod Q. The reduction formula mod Q looks like:

(2+M(2M mod R))R" mod Q

This formula contains both a reduction by R and an inverse of R. If GCD(R,Q)=1 the inverse
exists but reduction by R is costly. If GCD(R,Q)#1 then inverse of R does not exist. This seems
to imply that this formula is not possible in an RNS.

Fortunately there is a way around the problem: Use a variable redundant number system. In a
variable RNS the components change as the algorithm progresses. Initially all of R is in the
RNS, making the modular reduction portion of the formula fast. R is gradually removed from
the system, making the inverse of R exist.

This solution introduces another problem. Some of the components of the redundant number
system are lost as the algorithm progresses. The resulting RNS is large enough to hold the
reduced integer but too small to do another modular multiply. So before the next modular
multiplication, lost parts of the RNS must be rebuilt. In other words: Given Z in an RNS, find Z
mod N where N is some other integer not necessarily in the RNS. As mentioned earlier this is
costly. The conventional way to do this is to compute Z from the RNS, then reduce it mod N.

Fortunately there is also a better way do this. The following technique avoids the conversion to
a full integer. Instead, it interweaves the independent values of the RNS together to generate
dependent values modulo the RNS components. All operations in the interweaving process are
modulo the RNS components. These values are then used in a mod N formula to compute the
integer modulo N. This process can also be used to implement standard Montgomery
multiplication/reduction in a RNS by interweaving the results and computing Z modulo the
power of two in R. However the interweaving process would have to be done at each step of
the algorithm. This is probably too many times to make it an efficient modular multiplication
algorithm. As it is used at between modular multiplies, the RNS-interweaving process will be
described first.
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RNS-Interweaving Process

The RNS-interweaving process extracts partial data from the RNS. Given an integer X in an
RNS, the interweaving process computes X mod N, where N may not be a part of the RNS. The
process avoids any multiple precision arithmetic (assuming the RNS and N are single precision),
working only modulo the components of the RNS and N. Instead of computing the whole
number, the integer is woven together inside the RNS. The actual integer is computed from a
formula on the woven RNS values. This formula is completely in the ring of integers and equals
the integer reduced mod Q (the product of the RNS modulii). There is no need to compute the
full integer, although the full integer can be easily computed from the woven RNS values.

Concept
The interweaving process starts with a very simple observation. Let {q:,q2 } be a RNS with

Q=4,9, and an integer X<Q represented in Q: X ~ [x,,le If X=x+X,9,,thenX, = [-‘;—(-J <q,.
1

Using the remaining congruence, Xz can be solved for:
x, +X,9, = x, modg,
X, =(x,-x)77 modg,
Since X2<q; this formula determines X; uniquely. Now that X; is known, X can be written in
terms of results mod qi and qz X =X, +¢, ((x2 -X )q,' ' mod qz). The RNS-interweaving
process extends this idea out for more than two modulii.

Extension

The first step in the RNS-interweaving process is to break down the integer into dependent
components. The full integer, or the integer modulo another integer, is constructed from these
parts. The full integer (0s(X=X;)<Q) can be reconstructed from one element of the RNS (say x1)

and the quotient X, = I.f_xl.l X, =x,+q,X,. Since X is less than Q, X, must be less than Q/q.

So X2 can be uniquely represented in the RNS with q; removed. Likewise, X can be
reconstructed with one element of its representation (say x;) and the quotient X, = l_%—J . Using
the same arguments, X3 must be less than Q/qiqy so it can be represented uniquely in the RNS

with q1 and g2 removed. If there are u-components in the RNS, the final quotient X, =|_%&‘:'—J

u-4
will be less than qu. The following lemma shows that these quotient values can be represented

by smaller and smaller RNS and shows what the representation of the quotient values are.
Lemma: Let Q; be an RNS with {qi,qi,,l,...,qu} and X; be an integer represented in Q;:
X ~[%i0%is1000 %0 ] Then X; =x;; +X,,,q; implies that X;,; <Q;,, and
X = (x,-'j -X; ’,-)q'f' modg; for j=i+1,i+2,...,u. This implies that Xis is uniquely
represented in the RNS Q1 by X;,, ~ [x,-“’,-ﬂ FE 7RSO PLILN: 2901 ’u] where

Xy, = ("i,j - xi,i)q:l mod q;.
Proof: (1) Xi represented in Q; implies that Xi<Qi. So
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Xii+Xingi <Qi
X < 2 .
9i
Xin <Qin
2 Xi+1<Qi+1 implies that Xi+1 can be uniquely represented in the Qis1 RNS. Since
x“ +Xi+1‘fi = X,« = x,-'i mod qj forj=i+l, i+2,...,u:

xi" +Xi+lqi Ex"’j modql

Xingi =x;;-x;,; modg;
Xi+] E(xw --xu)qi_l modq]

. _ -1
So X ~[xx'+l,i+|txi+l,i+21"'lxi+l,u] with Xisl,j =(xi,j ‘xu)‘ii modg;.

Algorithm

The reconstruction formula uses the x;;-values only. The other values in the process are only
needed to go to the next step and can be overwritten. The algorithm is as follows:

1. Begi.n With Xl ~[xl’] ,xllz ,"',xl'u] in the RNS Ql ~ {ql’qZ""’qu } .
2. Fori=23,...,u compute X; in it's RNS form:
a. Forj=i+1,i+2,...,u compute x;;
X = (xi—l,j = Xi-Li-1 )q.-ll mod g,
3. RESULTS: x;; fori=1,2,...,u

Formula
Since X; =x;;+4;X},,, the process can be backed up, giving the following equation for X:

X =2, +41 (%22 + 420 G2 (Va1 +Gur (X))
Notice that the formula above is a simple equality (no modular reductions) with only integer
addition and multiplication as operands. This means that finding X mod N does not require
anything but mod N and mod q; operations. If N and {q;} are all single precision then
computing X mod N can be done in single precision, even if X is a multiple precision integer.

Example: Q~{1999, 107, 71,31}; X~[306,86,13,22]. Compute X mod 2, 5, and 97

INVERSES: 1999-1: 22 mod 107, 13 mod 71, 29 mod 31
107-::  2mod 71, 20 mod 31
711 7 mod 31.

mod 1999 mod 107 mod 71 mod 31

X1 306={92,22,27) 86 13 2
X2 b0 | (86-92)22=82 | (13-22)13=25 | (22-27)29=10
X b . ,. | (2511)2=28 | (10-20)20=17
% b G

B R0 RN

T X=306+1999(82+107(28+71(16))
X=0+1(0+1(0+1(0)))=0 mod 2
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X=1+4(2+2(3+1(1)))=1 mod 5
X=15+59(82+10(28+71(16)))=3 mod 97

M-RNS

Basic Idea:

This technique solves the problem of RNS/reduction formula incompatibility by going around
it. Make the RNS components vary as the algorithm progresses. This way the reduction R-
value can start out as part of the RNS (making reduction by R easy) and later be removed (so
inverses of R exist). Overflow will not occur as the size of the number shrinks along with the

RNS as the algorithm progresses.

Before describing the technique, the reduction formula should be recalled in its modular form.
Let Z be the integer being reduced, M the modulus, R the reduction formula value,
M =-M"mod R and Q the remaining portion of the RNS:

(z+M(ZM mod R))R" modQ.

This modular redundant number system consists of a set of relatively prime integers, some in
R, the rest in Q. As the algorithm progresses components in R will gradually be lost. In the
following (over) simplified version, R and Q consist of just one component. Let X and Y be the
two integers to be multiplied. The algorithm does modular multiplication in the following three
steps:

1. Multiply in the RNS: Z=[XY mod R, XY mod Q].

2. Compute T=ZMmodR.
3. Finish the reduction formula: (Z+MT)R-! mod Q (note that the results will be
congruent to ZR! mod M).
As mentioned before, R and Q consist of many relatively prime components. Step (1) is done
first for each element the RNS. Steps (2) and (3) are repeated for each component of R. If
u u+v

R= l—lq,- and Q= H q; , then at iteration i the reduction in step (2) is done modulo g;:

i=1

i=u+l
t; =z;Mmodg,
With this part known, the rest of the formula can be computed in all the remaining components
except qi. So for j=i+1,i+2,...,u,u+l,...,utv:
z]‘ = Zj +M/t1)qu mod q]
The resulting number (if converted back to a standard integer at this point) is equal to:
_ i
Z+M[ZM mod [ ] q,-)

j=1
i
H‘h‘
j=1
u+v

If X, Y<2M, R>4M and Q>2M, the result will be less than Hq i In words this means that the
j=i+l

formula can be computed iteratively without overflow. These results will be proved after the

algorithm is explained.
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Components:
M: The modulus

u
R: R~ {q,,qz,---,qu} and R= Hq,- » the product of relatively prime modulii, all
i=1

relatively prime to M and greater than 4M (this bound allows input of integers
up to 4M? in size to be reduced to less than 2M). :

u+v

Q Q~ {qu“,qwz,-.-,quw} and Q= Hq,- , another product of relatively prime

i=u+1

modulii, also relatively prime to R and greater than 2M (this bound allows the
RNS consisting only of Q to store the end result).

M:M= —-(M'l)mod R, found with the GCD algorithm;

RNS form:
M ~ [, 7y, ,7,] (since these values are only needed modulo the R components);
M ~[m1'm21"'lmu'mu+lf"'lmu+v

RNS form and multiplied by R mod M (0<X,Y<2M):
X~ [xl'xZI""xu'qu""Ixu+v]

Y~[yl'yzl"'lyu'yu+ll"'lyu+v]

Algorithm
Multiply in the full RNS: XY = Z, ~[z,,; = x;y; mod (]i]',:m"ml“u .
Fori=1,2,...,u
Compute f; = z;_, ;Mmodg,
For j=i+1, i+2, ..., u+v, compute z; =9 '(z,-_,,j +Mt,~)mod q;
)
At the end of step i, the RNS consists of {§;,1,q:.2/**/9usqus1,**+qusv} - Atstepu,

= ZR'mod M, and Z,<2M. The final results are only represented by the Q portion of
y rep Y p

the RNS. Full representation is needed to multiply again. See the 'RNS-Interweaving
Process’ earlier in this paper.

Inequalities and Size

In the following discussion on inequalities and size, the reconstructed integer Z (uniquely
determined by the Chinese remainder theorem) is used instead of the RNS version of Z. This
greatly simplifies the proofs.

Size
The intermediate and final results, Z;, are computed in two steps:
1. Compute ¢; = z,-_,l,-Mmodq,-.
2. Compute Z; = (Z,~_l + Mti)q,-" in the remaining RNS.
There are no size concerns in the first step, but there are two overflow concerns in the second

step. First, does Z; overflow and second, does (Zi.1+Mt;) overflow. To insure that Z; does not
overflow, Z; must be less than the remaining RNS:
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u
Z, <0[1g,-
J=i+l
There is a little more leeway in the size of (Z.1+Mt;). Even though the value modulo qi is not
actually computed, it is predetermined to be zero. Thus (Zi1+Mt;) will not overflow as long as
the it is less than the preceding RNS:

Z_, +Mi< Qqu .
J=i

The following lemmas show that intermediate values will not overflow, and that the final value
is less than 2M.

u u
Lemma: In the algorithm above, Z; <M{l+ quJ <Q qu ,and Z, <2M.

j=i+l j=isl

Proof: First we know that

M(“ ﬁ‘h‘) <‘§'[“ f[‘b‘] =Qﬁ‘h ‘%(ﬁ‘h ‘1]

j=i+l j=i+l j=i+l j=i+l

<Q[T4

jitl

u
So all that's left is to show is Z; <M(1+ qu] .

j=i+l
By induction.
u
1 Zy=XY<4M? <MR<M1+]]4;|-
j=1
2. Assume this holds for i=1,2,...,k-1. Then

Zy = 4" (Zier + M(Z;Fimod q)) < q;‘[M(ﬁqj + 1] +M(gy - 1)) = M{ ]’[ g+ 1]

J=k

So Zk <M( nq]+l].

j=k+1

u
3. Therefore Z; < M( H q;+ IJ holds for i=1,2,...,u. In particular, for i=u,

j=i+l

Z, <M(1+1)=2M.
u
Lemma: Intermediate values, Z, | + Mt,< QH q; fori=12,...,u
j=i

Proof: From above we know that Z;_, < M(l+ Hq]) . So
j=i
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Z_, +My <M(l+nqlJ+M(q, -1)= M(q,+nq]]

=t

<%Q[%-+H%J QH% qu{H%-lJ
J=i j=i+l
<Q[ 4

fei

CONGRUENCE
The following lemma shows that the final results satisfy: Z, = ZR"'mod M.

RN
!
Lemma: Z; = Z(qu} modM, and Z, = ZR"' ' mod M.
j=1
Proof: By induction.

-1
0
1 zo=zaz(['[qj] mod M.
=

2. Assume this holds for i=1,2,...,k-1. Then
Z =q;‘(zk 1+ M(Z,. |ﬁm°d‘h))
=i (Zior + MMZ,., - wMgy)

(
=qk](zk 1t ‘lk‘h - Zk 1"”qu)

k-1
E[Z qu] ]q;‘ mod M
j=1

z[ﬁq,)" mod M

j=1

-1
3. Therefore this holds for i=1,2,...,u. And fori=u: Z, = nq}) =ZR ' mod M.
j=i

Choice of the RNS Components:

One of the main concerns for efficiency is choice of the RNS modulii. Fast modular reduction in
the system and simplification of the operations in the reduction formula are the major concerns.
Keeping the modulii single precision is probably a good idea. The largest size modulus for a 32-
bit processor is 32,400 bits (use prime powers less than or equal to 216), which is large enough for
most current uses.

Another choice is modulii of the form 21 are good choices. Modular reduction simplifies to
mask, shift and add (since 2" =1mod(2" -1)) and components can be chosen such that the

inverses of subsequent elements in the RNS have very low density. This simplifies
multiplication by these inverses to a few number of shifts and adds.
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Low Density Inverses for 2"-1 mod 2"-1

In an RNS with modulii of the form 2~-1, low density inverses for subsequent RNS components
should improve the performance of the algorithm. If m’ is the inverse of m mod n, then the
inverse of 2m-1 mod 21 is (see [1]):

(2- 1)'1 = mfz"”’ mod(2" -1).
k=0

So a (2™1)! mod 2~1 has a density of m’. Choosing m-values for which m” modulo the
previously chosen n-values gives inverses with low density.

Let {4,,92//9uso} be the RNS, with g; =2" -1. For efficiency the inverse of gy mod g; should

have low density for all j<i. If m;; = an' modn; then the inverse for g mod g; is given by the

following (see reference [1]):
m; ;i1
q;' = z 2" modyg;.
k=0
Finding an efficient RNS set reduces to: find a set of pair-wise relatively prime
integers {n;,n;,++,M,,,}such that the inverse of n; mod n; (for all j<i) is less
than a small bound. Care should be taken in choosing this bound. Too

small a bound will restrict the choices for the RNS too greatly while too
large a bound will slow down the multiplication by inverses.
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