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Abstract. One important application of mobile robots is searching a geographical
region to locate the origin of a specific sensibie phenomenon. Mapping mine fields,
extraterrestrial and undersea exploration, the location of chemical and biological
weapons, and the location of explosive devices are just a few potential applications.
Teams of “robotic bloodhounds” have a simple common goal; to converge on the
location of the source phenomenon, confirm its intensity, and to remain aggregated
around it until directed to take some other action. In cases where human intervention
through teleoperation is not possible, the robot team must be deployed in a territory
without supervision, requiring an autonomous decentralized coordination strategy. This
paper presents the alpha-beta coordination strategy, a family of collective search
algorithms that are based on dynamic partitioning of the robotic team into two
complementary social roles according to a sensor-based status measure. Robots in the
alpha role are risk-takers, motivated to improve their status by exploring new regions —h
of the search space. Robots in the beta role are motivated to improve but are (.D
conservative, and tend to remain aggregated and stationary until the alpha robots have @
identified better regions of the search space. Roles are determined dynamically by each m
member of the team based on the status of the individual robot relative to the current
state of the collective. Partitioning the robot team into alpha and beta roles results in a D
balance between exploration and exploitation, and can yield collective energy savings 01
and improved resistance to sensor noise and defectors. Alpha robots waste energy '\)
exploring new territory, and are more sensitive to the effects of ambient noise and to (D
defectors reporting inflated status. Beta robots conserve energy by moving in a direct
path to regions of confirmed high status. Beta robots also resist the effects of noise and
defectors by averaging status data, but must rely on alpha robots to improve their (:)
performance. Alpha-beta teaming is a reactive strategy that requires directed _h
communication of instantaneous sensor data among team members, but does not rely Q
on a domain model. Alpha-beta coordination is a new and ongoing research effort. We
present the basic concepts behind the alpha-beta strategy and exhibit preliminary
simulation data that illustrate the collective search modes in an idealized search domain.
' Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under Contract DE-AC04-
94AL85000.
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This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, ot
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




1 Introduction and Motivation

Many challenging new applications in robotics involve distributed search and sensing
by a robotic team. Mapping mine fields, extraterrestrial and undersea exploration,
exploring volcanoes, the location of chemical and biological weapons, and the location
of explosive devices are just a few. This paper presents initial but ongoing research
into the issues of collective and emergent behaviors in teams of mobile robots tasked
with locating specific sensory phenomena. Our motivation for this line of inquiry is
the engineering and eventual deployment of large numbers of inexpensive, expendable
sensory robots in hazardous or hostile environments, with a particular emphasis on
sensing concentrations of hazardous chemicals in terrestrial environments. The problem
suite of interest involves the most demanding of sensing environments; rough terrain
with obstacles, non-stationary and dilute chemical concentrations, deliberate
interference by hostile robots, and limited opportunities for human interaction with the
robots through teleoperation [Klarer 1998]. Because human intervention is not always
possible in these environments, decentralized coordination schemes which feature
collective decision-making by individual autonomous robots are the most promising
avenues of research. Overcoming the limitations of crude but inexpensive chemical
sensors by using distributed signal processing algorithms that utilize shared data from a
large number of agents is another important concept to be investigated. An important
issue not generally addressed in robotics research is deliberate and subtle interference
with the goals of the robotic team by imposter robots.

Geographical search problems that use robotic teams can be divided into three broad
classes: source identification, source mapping, and source localization {Goldsmith and
Robinett 1998a]. Robots performing source identification must answer the question
“Does region R contain phenomenon X”? A simple yes or no is an adequate answer,
and the task can in principle be accomplished by a robot team without actually
localizing the target phenomenon. Source mapping requires the robot team to perform
an exhaustive search of an area and to localize all phenomena within the region. Source
localization problems require precise localization of a target source within a given
region. In the simplest form of the source localization problem, a single sensible
source is present somewhere within the search space. The search space is divided into
two regions based on the quality of sensor data available in the region. The insensate
region is characterized by a low signal-to-noise ratio. Robots roaming in this region
are without information to guide their search activities, and effective search requires
multi-agent coordination mechanisms that involve explicit collaboration [Cao,
Fukunaga, Kahng, and Meng 1993]. Some coordination strategies for organized
collaborative search in zero-information environments are discussed in [Spires &
Goldsmith 1998]. The sensate region contains the source and is characterized by a
signal-to-noise ratio significantly greater than unity. Robots operating in the sensate
region have usable but noisy sensory information to guide their search.

Designing a mobile robot team to search a sensate region for a specific target
phenomenon involves numerous engineering tradeoffs among robot attributes and
environmental variables. For example, battery-driven robots have a finite energy store
and can only search a finite area before running down. Success at finding a target source




with finite energy resources depends on other characteristics of the robot such as sensor
accuracy and noise and efficiency of the locomotive subsystem, as well as properties of
the collective such as the number of robots in the team, the use of shared information
to reduce redundant search, and the team coordination strategy used to ensure a coherent
search process.

2 Alpha-beta Coordination

This paper is concerned with solving the source localization problem using a
decentralized coordination strategy we call alpha-beta coordination. The alpha-beta
coordination strategy is a family of collective search algorithms that allow teams of
communicating agents’ to implicitly coordinate their search activities through a
division of labor based on self-selected roles and social status. In an alpha-beta team, an
agent plays one of two complementary roles. Agents in the alpha role are motivated to
improve their status by exploring new regions of the search space. Agents in the beta
role are also motivated to improve, but are conservative and tend to remain aggregated
and stationary until the alpha agents have clearly identified better regions of the search
space. An agent selects its current role dynamically based on its current status value
relative to the current status values of the other team members. Status is determined by
some function of the agent’s sensor readings, and is generally a measurement of source
intensity at the agent’s current location. An agent’s decision cycle comprises three
sequential decision rules: (1) selection of the current role based on the evaluation of the
current status data; (2) selection of a specific subset of the current data; and (3)
computation of the next heading using the selected data. Variations of these decision
rules produce different versions of alpha and beta behaviors that lead to different global
properties.

Partitioning the robot team into alpha and beta roles produces a balance between
exploration and exploitation. Alpha agents waste energy exploring low-status regions
of the search space, but communicate valuable state information to team members that
prevents costly reexploration of low-status regions. Alpha agents by nature seek to
emulate and ultimately surpass the highest-performing team members and are therefore
more sensitive to the effects of transient noise and are more susceptible to the influence
defectors’ reporting false status values. Beta agents use energy wisely by resisting
transient influences and moving in a direct path to high-status regions of the search
space identified by alpha agents. Beta agents resist noise and defectors by selective re-
sampling and averaging of status data, but must rely on alpha robots to improve their
performance. Consequently, beta agents can be mislead by noise and defectors under
some circumstances through second order effects if many of the the alpha agents are
mislead.

Alpha-beta coordination relies on the following assumptions:

Y

We will use the term agent hereafter to signify the generality of the alpha-beta concept
and to stress that we have not yet implemented the technique on actual robotic vehicles.
Defectors may inadvertently misrepresent their status because of flaws, or may be
impostors that deliberately attempt to mislead the loyal team members. These kind of
effects can be characterized as Byzantine failures [Lamport, Shastak, and Pease 1982].




1. Team members have a reliable communications mechanism.
2. The team is positioned in the (noisy) sensate region surrounding a target source.
3. The terminal goal of the team is to converge on the source target.

4. A higher status value implies a higher probability that the source is located near the
corresponding coordinates.

Alpha-beta agents are eusocial [Mcfarland 1994] in nature; agents must cooperate to
succeed. Agents always broadcast their most current sensor data as a normative
behavior. An agent’s model of the environment is based solely on their current local
sensory data and the current shared data obtained from the other members of the team.
Individual agents have no sensor memory and consequently cannot locate a source
alone. As such, the alpha-beta strategy is a reactive collective search strategy rather
than a collaborative strategy. Agents are implicitly cooperative, and do use explicit
forms of collaboration. The alpha-beta strategy is a behavior-based control strategy
closely related to the approach of Mataric [1994]. Alpha-beta teams behave in a manner
similar to that of of simple insect societies [Kube and Zhang 1993]. Alpha-beta agents
search without centralized leadership or hierarchical coordination. The primary
collective mode of an alpha-beta team is to aggregate in a region of high-intensity,
without any other objectives. Alpha-beta teams are robust to single-point fail-stop
failures in team members; agents simply use the latest data transmitted by other team
members without regard to the identity of the sender. Alpha-beta coordination requires
a minimum of knowledge about the search environment. Agents have no prior
assumptions about the nature of the intensity surface, its spatial coherence, gradient
field, or any other analytical information. As such, the alpha-beta strategy is intended
to be as general-purpose and as assumption-free as possible. In formulating the alpha-
beta strategy, we have carefully constructed the problem context and agent capabilities
to focus the research in a particular direction, namely away from traditional symbolic
Al approaches, away from traditional control-theoretic approaches, and towards the
behavior-based/emergent behavior approach.

3 Alpha Beta Coordination Algorithms
A full mathematical treatment of alpha-beta coordination is in progress [Goldsmith &
Robinett 1998b] but is beyond the scope of this paper. The current state-space
formulation comprises a system of non-linear, time-varying difference equations of
order N, where N is the instantaneous number of agents. The issues of primary
importance are stability, energy efficiency, convergence, and steady-state localization
error.

A simple social metaphor provides an intuitively satisfying if imprecise description
of the basis for alpha-beta coordination algorithms. The cohesion of an alpha-beta
society is based on 2 common normative goal: each agent is motivated to improve its




social status by associating with other agents of higher status. Social status is
determined by a scalar function of the shared sensor data communicated by other agents.
The only assumption underlying alpha-beta algorithms is that the status function
orders points in the search space according to the probability that a source is located at
the point. On each decision cycle, each agent broadcasts it current social status as a
scalar value, sj, along with a location vector, v, to all other agents, and receives their

status values in return. An agent attempts to improve its standing through emulation
by moving to a region occupied by agents reporting superior status. This simple goal
pressures agents to: (1) aggregate into groups; and (2) to aggregate in the region of
highest known status. To determine its next destination, each agent first computes the
common ordered set V={v;} according to the linear ordering (<) of agents provided by
the status readings S={s;}*. The agent uses S to partition its fellow agents into two

castes. The alpha caste is the set Ag of all agent positions corresponding to agents
that have a social standing superior to agent ap: Ap = {vilsk > so}. The beta caste Bo
is the set of all agent positions corresponding to agents with lower social standing than
agent ap: Bo = {vilsk > so}. The beta set Bg includes agents of equal status because an

agent always seeks to improve its current status. There are a variety of approaches to
using the alpha and beta sets to generate the agent’s next heading. The vectors in the
set Ao can be used to influence the agent to move towards its members, creating a
social pressure to improve called alpha-pull. The vectors in the set Bo can be used to
influence the agent to move away from its members, creating a second social pressure
to improve called beta-push. Either set or V itself can be used in a variety of ways to
provide pressure to aggregate. Alpha-pull and beta push are heuristic in nature and do
not necessarily lead to average improvement in arbitrary environments. Designing and
testing different decision rules based on the data vectors in V, Ay, and Bo, or subsets

thereof, is the means for investigating the different global behaviors of alpha-beta
teams.

A special case of importance is when V=A=Bi. In this case every agent has
identical status, corresponding to the zero-information (maximum information entropy)
state previously mentioned. When a zero-information state is detected, the team can
disperse to broaden the search area by using beta-push (all members are in the beta sets
of all other members) to compute a trajectory that leads the agents on the outer edges
of the cohort region away from the team’s centroid. As the density of the team
decreases, more agents are free to move away from the centroid, eventually resulting in
a dispersed team. A minimum limit on team density prevents the ultimate loss of
teamn coherence. If the team members cannot find the sensate region, they must resort
to a collaborative search mode as mentioned previously.

If V=g, the agent is alone. For the purposes of this research, agents that lose
contact with the team remain immobilized. This “hug a tree” philosophy saves energy

* The unordered set of of readings can be used to compute the obvious non-uniform gradient
estimates. We have investigated gradient search algorithms and use them as a baseline for
comparison of alpha-beta performance. Some forms of alpha-beta algorithms currently
under investigation use gradient estimates for alpha decisions.
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but may not lead to a reunion with the team and to eventual arrival at the target source.
A variety of possible solo behaviors will be investigated later, including random
search, gradient search, and using the last known heading to determine the agent’s
trajectory.

The general form of the alpha-beta update rule uses a linear combination of the
vector data in V:

vik+1) = vi(k) + a(k)[v(k) - vi(k)] ON

where a is a weighting vector derived from the application of some scalar function to
the current status measurements S corresponding to the vectors in v. The nature of the
function applied to S and the specific subset of vectors selected from V determine the
group behavior exhibited by this version of alpha-beta teaming.

The alpha set A contains a distinguished subset of elements: the agent or agents
with the highest status value. An agent with the highest status in the cohort has no
alpha caste; A=g. These agents are the g-alpha agents and cannot experience alpha-
pull. The choice of a decision rule for a g-alpha agent is limited two possibilities:

1. Don’t move.
2. Move away from the team along a vector derived from the B-vectors (beta-push).

In the first option, the ¢g-alpha’ identifies the location of highest known status and acts
as a stationary beacon for the rest of the team. This is a conservative strategy that
saves energy and ensures that the agent remains at the top of the heap, but does not
immediately explore the region around the highest intensity reading. The second option
uses some form of beta-push to move the ¢-alpha away from the team. This is a risky
strategy because the status of the g-alpha may decrease, but it provides more
information to the team and can possibly shorten convergence time.

The beta set By also contains a distinguished subset of elements: the agent or agents
with the Jowest status value. These g-beta agents represent the social floor of the
team, and always use some form of alpha-pull to improve their status.

The remaining members of the cohort have non-empty alpha and beta sets. Such an
agent can experience the effects of both alpha-pull and beta-push. There are many
possible decision rules for determining the next heading based on the partition { Ay,
Bo}. In general, an agent must decide whether to be radical or conservative in its
attempt to improve its status. The approach taken here is to provide three classes of
behavior. For an agent team with N agents the update rules are:

1. The g-alpha agents use the conservative decision mode and remain immobile:
vitk+1) = vi(k).

2. The m agents in V with the highest status values self-select alpha behavior and use

* Although there may be more than one g-alpha , we use the singular hereafter.




the following update rule: vi(k+1) = vi(k) + u[v*(k) - vi(k)], where v*(k) is the
location of a g-alpha agent, selected at random, and u is a factor that provides pressure
to move beyond the alpha agent along a line passing through the points v*(k) and
vi(k). Note that u > 1.0 must hold for improvement.

3. The remaining N-m agents in V self-select beta behavior and use the following
update rule: vi(k+1) = vj(k) + a(k)[v(k) - vi(k)], where v(k) are all members of A;, and

a(k) is the corresponding vector with elements a; = s;/D, and
D=2, s k=I,N @

Under this regime, self-selected alpha agents attempt to exceed the performance of the
stationary g-alpha agent by attempting to overrun it. Self-selected beta agents compute
a weighted average of the alpha vectors based on normalized status values and move
towards the resultant. A conservative beta agent seeks to improve its status to the
average status of its corresponding alpha set by moving to the point of the center-of-
mass of the alpha set. This “safety in numbers” approach provides a tendency to
aggregate in the most current region of highest known performance, but averages many
alpha status positions to reduce noise and the influence of outliers. This behavior
provides the beta population with some inertia, but still retains the tendency to
improve the status of the population on average.

The important parameters in this regime are u, the “overrun factor” that determines
the amount by which an alpha will attempt to move beyond a g-alpha agent, and the
alpha ratio, defined as m/N, that determines the proportion of alpha agents exploring
the search space.

Figure 1: A team of 50 agents start in the upper right and locate a source at the center of the
figure. The source intensity drops to zero and agents disperse to the right to locate another
source. The source reappears in the lower center and agents once again converge upon it.
Green traces are beta agents, blue traces are alphas, and red traces are by g-alpha agents.




Figure 2: A team of 50 agents start in the upper right and eventually locate a source at the
lower left. The annular region around the source results from alpha agents continuously
searching around the source. The search trajectory is typical of an alpha-beta agent team.
Blue traces are made by the alpha agents. Green traces are made by the beta cohort. The
current g-alpha is visible in red at the source.

4 Simulations and Results
The alpha-beta coordination strategy was simulated in an ideal 2-D world using ideal
agents. The world is free of obstacles, ambient noise and convection currents that make
the source intensity field non-stationary and time-varying. Ideal agents are point-masses
with no area, so crowding is not an issue. This provides a best-case baseline against
which various forms of stand-off behaviors can be evaluated later on. Ideal agents have
noise-free sensors, and movement on each step is bounded.

The target source was a radial emitter with exponential decay factor b and a uniform
random noise component w:

Z(t)=w + exp-(r*b) 3)

where r is the radial distance from the origin. The metric of interest for this study is the
mean-squared distance from the target, a measure of the team’s convergence error.

For each simulation run, alpha-beta agents are initially positioned with the same
distribution in the x-y plane. A control group comprising agents with identical
starting points but with knowledge of the source location provide a baseline for
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Figure 3. Mean-squared error vs. step for u=2.0 and (1) 8=0.1 (red); (2) B=0.2(blue); (3)
8=0.4(yel); (4)8=0.5(tan); (6) B8=0.6(grey);(7)8=0.8(violet); (8)B=1.0(lt. blue).
Convergence is for B=0.5. Notice the dinimishing returns for 8>0.5.
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Figure 4: Mean-squared error vs. step for 8=0.5 and: (1) u=2.0(red); (2) u=3.0 (tan); (3)
u=4.0(blue);(4) v=8.0(yel);(5) u=10.0(grey).

learning curve for the team. Figures 1 and 2 show typical traces of alpha-beta agents.
The simulation results confirm that the team can find a source under ideal conditions.




The alpha ratio is critical to effective search. A critical mass of alpha agents is needed
to influence the beta agents to follow the alpba trajectory. A ratio of not less than 0.2
is needed for reliable search given a u value of 2.0. Figure 3 shows the larning curves
for various alpha-beta ratrios. Convergence rate is somewhat sensitive to the alpha u
parameter as expected, favoring greater values of u at the expense of increased steady-
state mean squared error. Very large values of u slow the convergence rate and lead to
larger stready-state errors.

5 Related Work

The emergence of global behavior from local interactions among autonomous agents
has been studied extensively. Investigations of collective behavior in robots are
considerably more rarefied, and studies involving collective search are rarer still. The
foraging problem [Arkin & Hobbs 1993, Goss & Deneubourg 1992, Mataric 1994,
Steels 1990], in which robots collect obejcts scattered in the environment, is a
canonical problem related to the source location problem.

The alpha-beta strategy falls squarely in the behavior-based control camp [Brooks
1991, Brooks 1986, Mataric 1992]. Mataric (1994;1995) describes group behaviors in
terms of combinations of basis behaviors invoked by sensor inputs. Flocking, a
commonplace group behavior, comprises the primitive basis behaviors of safe-
wandering, homing, aggregation, and dispersion. Following and aggregation make up
surrounding, and herding is composed of surrounding and flocking. Flocking, homing,
following, aggregation, and dispersion are all behaviors that arise under alpha-beta
coordination, but are not accomplished by compositions of explicitly programmed
basis behaviors. Different behaviors are obtained in alpha-beta coordination through
variations on the update equation (1). Social entropy, a measure of the behavioral
diversity in a robot team based on information entropy, has been presented in [Balch
1997]. This is a potential metric for alpha-beta regimes and we will investigate its
application in future research.

6 Discussion and Future Work

We have demonstrated the concept of dynamic social partitioning as a means to provide
collective benefits to an agent team searching for source targets. Initial simulations
confirm the ability of the team to find a source and stabilize the steady-state mean-
squared error.

Our future research will focus on further investigations of alternative forms of alpha-
beta algorithms inspired by molecular dynamics and statistical mechanics. We intend to
investigate new forms of interaction rules that are based on non-linear functions of the
entire measurement set rather than on partitions of the measurements. We will also
investigate dynamic adjustment of the alpha u parameter and the alpha/beta ratio
through reinforcement learning techniques under the alpha-beta regime presented in this
paper. Simulations involving more realistic environments containing obstacles,
convection effects on chemical plumes, and more detailed models of robotic vehicles
will be conducted on parallel processors for large numbers of agents if required.
Ultimately, we will attempt to implement alpha-beta strategy on actual robotic




vehicles.
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