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Abstract

Adding recurrent connections to unsupervised neural
networks used for clustering creates a temporal neural
network which clusters a sequence of inputs as they ap-
pear over time. The model presented combines the Jordan
architecture [6] with the unsupervised learning technique
Adaptive Resonance Theory, Fuzzy ART [4]. The combina-
tion yields a neural network capable of quickly clustering
sequential pattern sequences as the sequences are gener-
ated. The applicability of the architecture is illustrated
through a facility monitoring problem.

1. Introduction

Traditional neural network clustering techniques, such
as adaptive resonance theory, use similarity metrics to dis-
cover form in spatial patterns. These techniques discover
important features in patterns which create the basis of the
clusters formed. From the clusters one then can make gen-
eralizations or abstractions about the complete data set. An
often neglected feature in a data set is the temporal nature
of the data. Patterns sometimes occur in a sequence and if
the sequence of the patterns is important, it should also be
used in clustering.

Two common techniques exist for coding temporal in-
formation in feed-forward neural networks: a sliding win-
dow and recurrent connections. Sliding windows give
more external input information to the network in the form
of past patterns. For example, a window size of five would
present the present pattern as well as the patterns of the
past four time-steps to the network as input. This type of
temporal information allows the network to find local de-
pendencies in the pattern sequence. Recurrent connections
in a neural network occur when a node receives connec-
tions from nodes in proceeding layers or from nodes in the
same layer. The type of information encoded in these con-
nections depends on the origin of the connection. Recur-
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rent connections allow the network to discover long-range
dependencies in the pattern sequence.

The encoding of temporal information requires many
trade-offs including accuracy versus storage and process-
ing speed. Increasing a sliding window’s size allows more
accuracy in its temporal information, providing an exact
pattern. However, that accuracy requires additional stor-
age and longer processing. In contrast, the processing and
storage required for recurrent connections remains con-
stant, independent of the amount of temporal information
encoded. But with recurrent connections, the accuracy of
the temporal information degrades as the amount of tem-
poral information increases.

While both sliding windows and recurrent connections
are common in supervised neural networks, only sliding
windows have been widely used in unsupervised neural
networks used in clustering. Instead, hierarchical meth-
ods have been developed which use two or more layers
of existing techniques. One example is Time-Delay ART
developed by Hagiwara [5]. In Time-Delay ART, the net-
work has a three layer architecture in which the first two
layers are a traditional ART2 [3] network. Nodes in the
second layer are then fully-connected to nodes in the third
layer. The connections from the second to third layer create
the temporal nature of the network by using time-delays.
The template selected for each individual pattern is held
at the second layer until the entire sequence of patterns
is presented by increasing the time-delay of each selected
template when a new pattern is classified. Therefore, the
template selected after the first pattern is presented will
have the highest time-delay after the complete sequence
of patterns is presented. After the entire sequence is pre-
sented the final output of the network is determined based
on the templates selected and their final time-delays.

However, Time-Delay ART can not be used with all
applications. One restriction of Time-Delay ART is that a
pattern can not occur twice in the sequence without inter-
fering with the similarity metric. Examples of when one
would need to cluster a sequence of patterns with the same
pattern occurring more than once include distinguishing




between words, such as read and reread, or learning peo-
ples sequence of movements around a room when the per-
son can visit the same location more than once, such as the
AMISS problem described below. In addition, the com-
plete pattern must be presented before the sequence can
be clustered. Applications involving actions which need
to be initiated in real-time need to classify sequences as
they are created. For example, security applications which
learn to differentiate harmful activities from normal ones,
need to begin security actions as soon as possible when a
harmful activity is recognized. Otherwise, the damage to
the system may already be detrimental.

Incorporating both types recurrent connections and a
sliding window in clustering techniques allows for the
clustering of sequential sequences of patterns with more
flexibility. Using a small window size and then using the
recurrent connections to further increase the amount of
temporal information allows the user more flexibility with
respect to the amount of temporal information, accuracy,
processing speed, and storage needed. These additions
also allow generalization for different pattern lengths and
compositions as well as for the clustering of the pattern
sequence at each time step as the length of the pattern
increases over time.

2. AMISS

An example of the need for temporal clustering is
the Adaptive Multi-sensor Integrated Security System
(AMISS), being developed at Los Alamos National Labo-
ratory. AMISS is a system designed to provide automated
security assistance for nuclear facilities [1] [2]. The sys-
tem may be used at nuclear facilities where the security
measures are deficient. An example would be countries
where, due to poor wages, both guards and scientists may
be bribed or blackmailed into illegally removing nuclear
material and giving it to unauthorized individuals. In addi-
tion, mistakes made by workers which lead to safety con-
cerns or security breaches, such as leaving nuclear sources
unattended, could be detected by the system. Discover-
ing security breaches becomes increasingly difficult when
the individuals removing nuclear material are authorized
to handle the material, but should not be allowed to use the
material for unauthorized uses on their own or give it to
unauthorized individuals.

AMISS is different from the usual concept of a secu-
rity system which is built from systems that only control
access to secure areas and then activate intrusion alarms
if violated. The AMISS system will operate in facilities
that have significant ongoing activity, within which threat-
ening activities must be identified and an alarm signaled.
In many cases this threatening activity will not have been
specified beforehand.

At the level of most interest to the project will be the

comparison of the actual pattern of activity in theroom both
to an authorization database and learned normal activities
that the specific individual might perform in the room.
In this sense the system is used as an anomaly detector,
as it looks for sufficient deviation from the usual activity
pattern. Anomalies found by the system can create alarms
which may range from heightening the awareness of the
guards to watch specific areas more closely or calling for
immediate action.

2.1. Data

Multiple sensors and sensor types are used to local-
ize motion in the room. Personnel tracking will be done
by video camera, motion detection arrays, active radio-
location systems, and active badge systems. Personnel
recognition and verification will be done by a variety of
biometric methods including face, fingerprint, gait, voice,
and irisrecognition systems. The information from the var-
ious sensor systems will be stored in a database and then
combined to provide an enhanced estimate of personnel
locations and activities as well as those of the radioactive
sources.

Determining locations of authorized individuals and nu-
clear sources by sensor fusion and tracking is performed
at several different levels. First, all sensors for one sensor
type may be combined to give a single reading, a "smart"
sensor, using triangulation, tracking, neural networks, and
other low-level reasoning algorithms. The highest level
reading for each sensor type, is then given to a higher
level sensor fusion system. This system combines the data
from the many sensor types to give the possible locations
in rectangular co-ordinates and the certainty factor asso-
ciated with each location for each individual. Certainty
factors range from 0.0 to 1.0, with 0.0 indicating the low-
est probability. An output from the sensor fusion system
contains only locations with a non-zero certainty factor
and may contain single or multiple such locations. Each
individual in the room has an output file generated at fixed
time intervals, such as a single file every two seconds.

2.2. Problem Restrictions

Several issues must be addressed in order to solve the
problem of learning activities. The normal activities of a
person in a room are most easily found by observation, as
no rules governing activities in a secure area are available.
This implies that the proposed system must learn normal
activities only from existing data. In addition, for enhanced
security, the system should not have a fixed set of abnormal
activities to be detected. Instead the system should learn
normal activities and recognize when ongoing activities
deviate from normal.



In addition to the current position of the individual in
the room, past positions, the order the past positions were
visited, and the length of time spent at each position are
also important. Also, because little is known about the
number of previous positions needed to classify activities,
both long and short-term dependencies should be used in
classification.

The person’s activity should be classified as normal or
not at each time step, not after the entire activity has oc-
curred. A system which classifies an activity as threatening
after the individual has left the secure area is of limited use.
Therefore, the proposed system should determine threat-
ening activities as soon as they occur, and the system must
thus allow the length of the path to continually grow.

Creating an unsupervised neural network with temporal
information incorporates methods to meet all of the de-
scribed restrictions. Unsupervised clustering techniques
encode a data set by learning the sets important features
without a priori information. Both learning and recall are
quick allowing anomalies to be detected while dangerous
activities are occurring.

3. Hybrid Architecture

To demonstrate the effects of adding recurrent connec-
tions to unsupervised neural networks, two specific ar-
chitectures and learning rules will be combined: Fuzzy
ART [4] and the Jordan architecture [6]. Fuzzy ART is
a specific implementation of Adaptive Resonance Theory
allowing the use of analogue numbers, while the Jordan
architecture is a placement of recurrent connections.

3.1. Adaptive Resonance Theory

Several unsupervised implementations of Adaptive
Resonance Theory have been developed by Carpenter and
Grossberg including Fuzzy ART [4]. Implementations of
Fuzzy ART allow the encoding of spatial information in
the form of analogue numbers.

Fuzzy ART networks consist of two fully connected
layers, F1 and F2. The Fl layer is the input layer. At
this layer, a single input pattern of analogue numbers is
presented. Each value in the input pattern is tested against
a threshold value; values above the threshold are sent to the
F2 layer without change and those not above the threshold
are sent to the F2 layer as the value zero. At the F2 layer,
the input pattern is tested against each existing template
using the equation
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where w; is the binary weight vector of template 7, z is the
input pattern, # > 0 is the choice parameter, and || is the

norm operator (|z| = Z;:l x;). The N function function
returns the minimum value at each position. Figure 1
shows result of using the N function with a template and a
pattern,
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Figure 1. N function in Fuzzy ART

After T; is calculated for each template, the template,
¢, which has the highest matching value is then used in the
equation
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where 0 < p < 1 is a parameter called vigilance. If equa-
tion 2 is satisfied, the pattern is incorporated into template
1 using the equation

WP = e ne) + (L= @)

where 7 is the learning rate. If the template does not suf-
ficiently match, the template is rejected for incorporating
the pattern and the template remains unchanged. Then all
other templates are again checked using equation 1. The
process is repeated until a sufficient match is found or all
existing templates are exhausted. If no match is found,
a new template is formed comprised of the input pattern.
After training is complete, if a pattern does match an exist-
ing template, the match is found quickly as few templates
will need to be examined.

Fuzzy ART has many desirable features. First, the num-
ber of clusters used does not need to be specified in ad-
vance. Instead, a maximum number of clusters is specified
and the algorithm may then use from one to the specified
maximum. Having a larger maximum number of clusters
specified than needed does not effect processing time, as
clusters which have not encoded a template are not used in
comparisons. In addition, when training is turned off, if a
pattern does not adequately match any of the existing clus-
ters, a warning will be given, instead of giving the closest
matching template. Also, the within-cluster variance and
between-cluster variance is controlled by a single parame-
ter, vigilance. Finally, Carpenter and Grossberg prove that
stable clusters are created by the algorithm [4].

One side effect in Fuzzy ART occurs if a pattern and
template have non-zero values at the same position and
the pattern contains all of the minimum values. In this
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case, the pattern will always be accepted by the cluster
regardless of the differences in the values. When training
is on, processing the data set with more than one iteration
will allow patterns to separate into stable clusters, but when
training is turned off, the network will not give a warning
saying the pattern was not accepted by the cluster. To
alleviate this problem, the patterns can be normalized. One
method of normalizing patterns is complement coding. In
this technique, each input and its complement is presented
to the F1 layer. When complement coding is used, stable
clusters occur after only one presentation of the patterns
and the above problems are alleviated [4].

3.2. Recurrent Jordan Architecture

The Jordan architecture [6], in Figure 2, is an archi-
tecture for encoding temporal information using recurrent
connections. The architecture contains two sets of re-
current connections: from the output units to the context
units and from the context units back to themselves. The
weights on the recurrent connections from the output units
to the context units have a fixed value of 1.0. The self-
connections are trainable. The context units, C, also have
some memory. Their updating rule is

Ci(t + 1) = aCi(t) + Oi(t) “)

where O are the output units, « is the strength of the self
connections, and ¢ is the time step. If O; is fixed, then C;
decays, gradually forgetting previous values. Values of «
close to 1.0 allow a longer memory, but loss of detail in
memory. In addition, as meaning is usually assigned to
output units, the meaning of the recurrent connections can

be extracted.
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Figure 2. Architecture for Jordan recurrent
networks

3.3 Temporal Fuzzy ART

The combination of Fuzzy ART with the recurrent con-
nections of the Jordan architecture along with a sliding
window creates a neural network capable of clustering a
sequence of patterns based on spatial information as well
as temporal information. Using the two forms of tempo-
ral information allows the network to discover important
short-term and long-term dependencies. ;

The hybrid architecture, shown in Figure 3, still con-
tains two layers, F1 and F2. But, the F1 layer can now
be divided into two sections, external inputs and context
units. The external inputs receive their information from
an external source, while the context units derive their val-
ues from within the network, from the F2 layer and from
themselves. Only the way the values are derived for the
sections differs. Thresholding at the F1 layer, and compar-
ison and creation of new templates at the F2 layer remain
the same as Fuzzy ART.

The nodes in the F2 layer of Fuzzy ART do not give a
single output, instead the template of a single node is mod-
ified and the activated node can be inferred. The user may
then decide what information is useful according to the ap-
plication. This may be the reporting of what F2 node was
chosen for each pattern, the total number of clusters cre-
ated, or the templates for the stable clusters which emerge
after training. However, for the hybrid architecture cre-
ated, each node in the F2 layer must report a single output
value after each pattern is clustered. The values chosen
were 1.0 if the pattern adequately matched the template
and 0.0 otherwise. Therefore, a single F2 node outputs
the value 1.0 when training is turned on and the remaining
nodes output the value 0.0. When training is turned off, all
F2 nodes may output the value 0.0 if no F2 node is found
to adequately match the pattern.

F2 Layer

5\1?\\:

Cg\ Context Units ) C External Inputs
F1 Layer

Figure 3. Architecture for Temporal Fuzzy
ART

Using the update rule of the Jordan Architecture, the
memory of the context units, C;, may grow quite large if
the same output node is repeatedly chosen. To simplify
processing, the outputs of the context units are normalized
by having context node ¢ output a value of 1.0 if C; is



greater than the average value of all context nodes and a
0.0 otherwise.

In addition, in preliminary work, the weights of the self-
connections of the context units are held at a constant value
0f 0.75. This allows for a modest decay of the memory of
the context units.

4. Discussion
4.1. An Example

Tests of the network show that sequences of patterns
can be successfully learned by Temporal Fuzzy ART. Tem-
plates for a pattern sequence encode detailed information
for the most recent n patterns it represents, where n is
the window size, and less detailed information about other
patterns in the sequence.

Figure 4 shows the templates created by Temporal
Fuzzy ART when the sequence of patterns in Figure 5
are presented. To create the templates, the vigilance of the
network was set to 0.99, the weights of the self-connections
were 0.75, the window size was two, and the maximum
number of output nodes was four. Each template encodes
values for two external inputs, due to the window size be-
ing two, and values for the context units. The number
of context units is always equal to the maximum number
of output nodes. For simplification, complement coding
is not used in this example, however the same principles
apply.

Template 1 was created after the first pattern was pre-
sented. External input 1 for template 1 has exactly one
value greater that zero, which has encoded the position in
pattern 1. External input 2 and the context units contain
all zeros indicating that no previous patterns have been
presented.

Template 2 encodes the sequence of the first two pat-
terns. External input 1 again has a single value greater than
zero encoding the position in pattern 2. In this template,
external input 2 also has a single position greater that zero,
which has encoded the position of pattern 1. The context
nodes have a value of 1.0 in the first position and 0.0 in the
remaining positions. This indicates that output node 1 (or
template 1) has previously been used in the sequence. As
previously mentioned, template 1 has encoded the position
of pattern 1 and the knowledge that no previous patterns
were presented. Therefore, the position of the first pattern
is encoded in template 2 in two positions, external input 2
and the context units, but the context units provide addi-
tional information that no other patterns were previously
encoded.

Finally, template 3 is the template after all three patterns
are presented. Again the external inputs encode the present
position, pattern 3, and the last known position, pattern
2. However, pattern 1 is no longer explicitly represented.

Instead, the context units, now containing the value 1.0 for
the first two context units, are encoding the information,
by indicating the first two templates have been used by
the current sequence, which in turn represent pattern 1 and
that pattern 1 was the first pattern in the sequence. While
the same information might be encoded by increasing the
window size to four, which would allow all three patterns to
be explicitly represented as well as an open input indicating
no previous pattern was presented, the processing time
would be increased by the need to perform comparisons
on an additional 18 positions (9 for each pattern). From this
example, one can see how recent information is explicitly
encoded in each template and past information is encoded
with less detail in the context units.

4.2. Applications of Fuzzy Temporal ART

Using Temporal Fuzzy ART, a physical security system
for monitoring individual’s actions may be built, such as
that for the AMISS project. Using a person’s position
at regular time intervals as input, the network can learn
how a person normally moves about a room constituting
the individual’s normal behavior. The network can learn
both the sequence of locations and the duration spent at
locations.

Using the learned sequences as the individual’s normal
behavior, training can be turned off. Then subsequent be-
haviors can be identified as being similar to the learned
behavior when the behavior clusters into an existing tem-
plate or sufficiently deviating from all learned behavior
when no template matches. By adjusting the vigilance
parameter the room can be made as secure as deemed nec-
essary.

Additional applications for Temporal Fuzzy ART are
in the field of computer security. Instead of trying to
determine all security holes on a computer, a system can
be built which monitors what normal usage of the system
looks like through different features such as system load
over time or the order applications are used. Then when
deviations, such as many consecutive uses of send-mail
occur, a warning could be issued. Used as in the AMISS
project, Temporal Fuzzy ART can learn normal computer
system usage, then identify deviations.

4.3. Conclusions

While temporal information has been previously used
in clustering algorithms, Temporal Fuzzy ART’s recurrent
connections and sliding windows allows use of both long
and short-term interaction in clustering. Temporal Fuzzy
ART also allows the user to optimize processing time, stor-
age, and accuracy for their own application. In addition,
the complete sequence does not need to be presented before
the existing sequence is clustered. Therefore, applications



TEMPLATE 1 TEMPLATE 2 TEMPLATE 3
e N N R
0.0{ 0.0{ 0.0 0.0{ 0.0] 0.0 0.0 0.9/ 0.0
External Input 1 0.0{ 0.0{ 0.0 0.0| 0.7{ 0.0 0.0{ 0.0{ 0.0
0.0] 0.8] 0.0 0.0{ 0.0y 0.0 0.0{ 0.0 0.0
0.0} 0.0| 0.0 0.0] 0.0| 0.0 0.01 0.04 0.0
External Input 2 0.0 0.0( 0.0 0.0{ 0.0 0.0 0.0/ 0.7} 0.0
0.0] 0.0{ 0.0 0.0(0.8] 0.0 0.0 0.0 0.0
Context Units 0.0 0.0{ 0.0] 0.0 1.0{ 0.0} 0.0 0.0 1.0( 1.0§ 0.0 0.0
o R\ U L/

Figure 4. Template created by Temporal Fuzzy ART

Pattern 1 Pattern 2 Pattern 3

0.0] 0.0 0.0 0.010.0]0.0 0.0] 0.9| 0.0
0.0} 0.0] 0.0 0.0{0.7{0.0 0.0] 0.0{ 0.0
0.0] 0.8] 0.0 0.0/ 0.010.0 0.0] 0.0 0.0

Figure 5. Sequence of patterns presented to Temporal Fuzzy ART

which need to make decisions as soon as certain patterns

occur, such as security systems, can use Temporal Fuzzy
ART.
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