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Bicriterih Network Design Problems
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Abstract

We study a general class of bicriteria network design problems A generic problem in thls' '
class is as follows: Given an undirected graph and two minimization objectives (under different
cost functions), with a budget specified on the first, find a jsubgraph from a given subgraph-class
that minimizes the second objective subject to the budget on the first. We consider three different
criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we
present the first polynomial-time approximation algorithms for a large class of bicriteria network:
design problems for the above mentioned criteria. The following general types of results are
presented. , '

First, we develop a framework for bicriteria problems and their approximations. Second, -
when the two criteria are the same we present a “black box” parametric search technique. This
black box takes in as input an (approximation) algorithm for the unicriterion situation and gen-
erates an approximation algorithm for the bicriteria case with only a constant factor loss in the
performance guarantee. Third, when the two criteria are the diameter and the total edge costs we
use a cluster-based approach to devise a approximation algorithms — the solutions output violate
both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we
provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic
‘programming. We show how these pseudopolynomial-time algorithms can be converted to fully
polynomial-time approximation schemes using a scaling technique. :
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1 Motivation

With the information superhighway fast becoming a reality, the problem of designing networks ca-
pable of accommodating multimedia (both audio and video) traffic in a multicast (simultaneous
transmission of data to multiple destinations) environment has come to assume paramount impor-
tance [Ch91, FW+85, KJ83, KP+92A, KP+93]. As discussed in Kompella, Pasquale and Polyzos
[KP+92A], one of the popular solutions to multicast routing involves tree construction. Two opti-
mization criteria — (1) the minimum worst-case transmission delay and (2) the minimum total cost
— are typically sought to be minimized in the construction of these trees. Network design problems
where even one cost measure must be minimized, are often NP-hard. (See Section A2 on Network
Design in [GJ79].) But, in real-life applications, it is often the case that the network to be built is
required to minimize multiple cost measures simultaneously, with different cost functions for each
measure. For example, as pointed out in [KP+92A], in the problem of finding good multicast trees,
each edge has associated with it two edge costs: the construction cost and the delay cost. The con-
struction cost is typically a measure of the amount of buffer space or channel bandwidth used and the
delay cost is a combination of the propagation, transmission and queuing delays.

Such multi-criteria network design problems, with separate cost functions for each optimization
criterion, also occur naturally in Information Retrieval [BK90] and VLSI designs (see [ZP+94] and
the references therein). With the advent of deep micron VLSI designs, the feature size has shrunk to
sizes of 0.5 microns and less. As a result, the interconnect resistance, being proportional to the square
of the scaling factor, has increased significantly. An increase in interconnect resistance has led to an
increase in interconnect delays thus making them a dominant factor in the timing analysis of VLSI
circuits. Therefore VLSI circuit designers aim at finding minimum cost (spanning or Steiner) trees
given delay bound constraints on source-sink connections.

The above applications set the stage for the formal definition of multicriteria network design prob-
lems. We explain this concept by giving a formal definition of a bicriteria network design problem.
A generic bicriteria network design problem, (A, B, S), is defined by identifying two minimization
objectives, - A and B, - from a set of possible objectives, and specifying a membership requirement
in a class of subgraphs, - S. The problem specifies a budget value on the first objective, A, under one
cost function, and seeks to find a network having minimum possible value for the second objective,
B, under another cost function, such that this network is within the budget on the first objective. The
solution network must belong to the subgraph-class S. For example, the problem of finding low-cost
and low-transmission-delay multimedia networks [KP+92A, KP+93] can be modeled as the (Diam-
eter, Total cost, Spanning tree)-bicriteria problem: given an undirected graph G = (V, E) with two
weight functions c and d, for each edge e € E modeling construction and delay costs respectively,
and a bound D (on the total delay), find a minimum c-cost spanning tree such that the diameter of the
tree under the d-costs is at most D. It is easy to see that the notion of bicriteria optimization problems
can be easily extended to the more general multicriteria optimization problems. In this paper, we will
be mainly concerned with bicriteria network design problems.




In the pas't,‘ the problem of minimizing two cost measures was often dealt with by attempting to |
minimize some combination of the two, thus converting it into a unicriterion problem. This approach
fails when the two criteria are very disparate. We have chosen, instead, to model bicriteria problems
as that of minimizing one criterion subject to a budget on the other. We argue that this approach is
both general as well as robust It is more general because it subsumes the case where one wishes to
minimize some functional combination of the two criteria. It is more robust because the quality of
~ approximation is independent of which of the two criteria we impose the budget on. We elaborate on
this more in Sections 5.1 and 5.2. ‘ ’

The organization of the rest of the paper is as follows: Section 3 summarizes the results obtained
in this paper; Section 2 discusses related research work; Section 4 contains the hardness results; |
Section 5.1 shows that the two alternative ways of formulating a given bicriteria problem are indeed
equivalent; Section 5.2 demonstrates the generality of the bicriteria approach; Section 6 details the

‘parametric search technique; Section 7 presents the approximation algorithm for diameter constrained . "

Steiner trees; Section 8 contains the results on treewidth-bounded graphs; Section 9 contains some
" concluding remarks and open problems.

2 Previous Work
2.1 General Graphs

The area of unicriterion optimization problems for network deéign is vast and well-explored (See ‘
[Ho95, CK95] and the references therein.). Ravi et al. [RM+93] studied the degree-bounded mini-
mum cost spanning tree problem and provided an approximation algorithm with performance guar-
antee (O(log n) O(logn)). o .
The (Degree Diameter, Spannmg tree) problem was studled by Ravi [Ra94] in the context of
finding good broadcast networks. There he provides an approximation algorlthm for the (Degree,
- Diameter, Spanning tree) problem with performance guarantee (O(log? n), O(log n))°.
The (Dlameter Total cost, Spanning tree) entry in Table 1 corresponds to the diameter-constrained .
minimum spanmng tree problem introduced earlier. It is known that this problem is NP-hard everi
_in the special case where the two cost functions are identical [HL+89] Awerbuch, Baratz and Peleg
[AB+90] gave an approximation algorithm with (O(1), O(1)) performance guarantee for this prob-
lem - i.e. the problem of finding a spanning tree that has simultaneously small diameter (i.e., shallow)
* and small total cost (i.e., light),'both under the same cost function. Khuller, Raghavachari and Youngb
[KR+93] studied an extension called Light, approximate Shortest-path Trees (LAST) and gave an |
approximation algorithm with (O(1), O(1)) performance guarantee. Kadaba and Jaffe [KJ83], Kom-
pella et al. [KP+92A], and Zhu et al. [ZP+94] considered the (Diameter, Total cost, Steiner tree) ‘
problem with two edge costs and presente’d‘heuristics Without any guarantees. It is easy to con-

The result in Rav1 [Ra94] is actually somewhat stronger - given a budget D, on the degree he finds a tree whose total '
cost is at most O(log n) times the optimal and whose degree is at most O(D logn + log® n). :



_struct examples to show that the solutions produced by these heuristics in [ZP+94, KP+92A], can
be arbitrarily bad with respect to an optimal solution. A closely related problem is that of finding
a diameter-constrained shortest path between two pre-specified vertices s and ¢, or (Diameter, To-
tal cost, s-t path). This problem, termed the multi-objective shortest path problem (MOSP) in the
literature, is NP-complete and Warburton [Wa87] presented the first fully polynomial approxima-
tion scheme (FPAS) for it. Hassin [Ha92] provided a strongly polynomial FPAS for the problem
which improved the running time of Warburton [Wa87]. This result was further improved by Phillips
[Ph+93].

The (Total cost, Total cost, Spanning tree)-bicriteria problem has been recently studied by Ganley
et al. [GG+95]. They consider a more general problem with more than two weight functions. They
also gave approximation algorithms for the restricted case when each weight function obeys triangle
inequality. However, their algorithm does not have a bounded performance guarantee with respect to

each objective.

2.2 Treewidth-Bounded Graphs

Many NP-hard problems have exact solutions when attention is restricted to the class of treewidth-
bounded graphs and much work has been done in this area (see [AC+93, AL+91, BL+87] and the
references therein). Independently, Bern, Lawler and Wong [BL+87] introduced the notion of de-
corﬂposable graphs. Later, it was shown [AC+93] that the class of decomposable graphs and the
class of treewidth-bounded graphs are equivalent. Bicriteria network design problems restricted to
treewidth-bounded graphs have been previously studied in [AL+91, Bo88].

3 Our Contributions

In this paper, we study the complexity and approximability of a number of bicriteria network design
problems. The three objectives we consider are: (i) total cost, (ii) diameter and (iii) degree of the
network. These reflect the price of synthesizing the network, the maximum delay between two points
in the network and the reliability of the network, respectively. The Total cost objective is the sum of
the costs of all the edges in the subgraph. The Diameter objective is the maximum distance between
any pair of nodes in the subgraph. The Degree objective denotes the maximum over all nodes in the
Subgraph, of the degree of the node. The class of subgraphs we consider in this paper are mainly
Steiner trees (and hence Spanning trees as a special case); although several of our results extend to
more general connected subgraphs such as generalized Steiner trees. '

As mentioned in [GJ79], most of the problems considered in this paper, are NP-hard for arbi-
trary instances even when we wish to find optimum solutions with respect to a single criterion. Given
the hardness of finding optimal solutions, we concentrate on devising approximation algorithms with
worst case performance guarantees; Recall that an approximation algorithm for a minimization prob-
lem IT provides a performance guarantee of p if for every instance I of II, the solution value




returned by the approximation algorithm is within a factor p of the optimal value for I. Here, we ex-
tend this notion to apply to bicriteria optimization problems. An (a, B)-approximation algorithm for
an (A, B, S)-bicriteria problem is defined as a polynomial-timé algorithm that produces a solution
in which the first objective (A) value, is at most « times the budget, and the second objective (B)

value, is at most 3 times the minimum for any solution that is within the budget on A. The solution
produced must belong to the subgraph-class S. Analogous definitions can be given when A and/or
B are maximization obJectrves ’

3.1 General Graphs

Table 1 contains the performance guarantees of our approximation algorlthms for finding spanmng
trées, S, under different palrs of minimization objectives, A and B. For each problem cataloged in |
the table, two drfferent costs are specified on the edges of the undirected graph: the first objective is
computed using the first cost function and the second objective, using the second cost function. The
rows are indexed by the budgeted objective. For example the entry in row A, column B, denotes
the performance guarantee for the problem of minimizing objective B with a budget on the objective '
A.. All the results in Table 1 extend to finding Steiner trees with at most a constant factor worsening
in the performance ratios. For the diagonal entries in the table the extension to Steiner trees follows
from Theorem 6.3. ALGORITHM DCST of Section 7 in conjunction with ALGORITHM BICRITERIA- -
EQUIVALENCE of Section 5.1 yields the (Diameter, Total cost, Steiner tree) and (Total cost, Diameter,
Steiner tree) entries. The other nondiagonal entries can also be extended to Steiner trees and these
extensions will appear in the journal versions of [RM+93, Ra%94]. Our results for arbitrary graphs can
‘be divided into three general categories.

Cost Measures " Degree L Diameter Total Cost |
Degree | - (O(logn),O(log n))" (O(log® n), O(log n))[Ra%4] | (O(logn), O(log n))[RM+93]
Diameter (O(log n), O(log® n))[Ra%4] (I+71+2)" (O(log n), Olog n))*
Total Cost | (O(log n), O(log n))[RM+93] (O(logn), O(log n))* 1+,1+ %)*

Table 1. Performance Guarantees for finding spanhihg trees in an arbitrary graph on n nodes. Asterisks indicate
results obtained in this paper. v > Ois a fixed accuracy parameter.

‘ First, as mentioned before, there are two natural alternative ways of formulating general bicri-
' teria problems: (i) where we 'impose the budget on the first objective and seek to minimize the
second and (ii) where we impose the budget on the second objective and seek to minimize the ﬁrst
We show that an (a, 3)-approximation algorithm for one of these formulations naturally leads to a
(8, )-approx1mat10n algorithm for the other. Thus our definition of a bicriteria approximation is
| independent of the choice of the criterion that is budgeted in the formulation. This makes it a robustv
definition and allows us to fill in the entries for the problems (B, A S) by transformmg the results
for the corresponding problems (A, B, S).
"Second, the d1agonal entries in the table follow as a corollary of a general result (Theorem 6.3)
Wthh is proved using a parametric search algorithm. The entry for (Degree, Degree, Spanning tree)



follows by combining Theorem 6.3 with the O(log n)-approximation algorithm for the degree prob-
lem in [RM+93]. In [RM+93] they actually provide an O(log n)-approximation algorithm for the
weighted degree problem. The weighted degree of a subgraph is defined as the maximum over all
nodes of the sum of the costs of the edges incident on the node in the subgraph. Hence we actually get
an (O(log n), O(log n))-approximation algorithm for the (Weighted degree, Weighted degree, Span-
ning tree)-bicriteria problem. Similarly, the entry for (Diameter, Diameter, Spanning tree) follows
by combining Theorem 6.3 with the known exact algorithms for minimum diameter spaﬁning trees
[CG82]; while the result for (Total cost, Total cost, Spanning tree) follows by combining Theorem
6.3 with an exact algorithm to compute a minimum spanning tree [CLR]. '
Finally, we present a cluster based approximation algorithm and a solution based decomposition
technique for devising approximation algorithms for problems when the two objectives are different.
Our techniques yield (O(log n), O(log n))-approximation algorithms for the (Diameter, Total cost,
Steiner tree) and the (Degree, Total cost, Steiner tree) problems’. ‘

3.2 Treewidth-Bounded Graphs

We also study the bicriteria problems mentioned above for the class of treewidth-bounded graphs.
Examples of treewidth-bounded graphs include trees, series-parallel graphs, k-outerplanar graphs,
chordal graphs with cliques of size at most &, bounded-bandwidth graphs etc. We use a dynamic
programming technique to show that for the class of treewidth-bounded graphs, there are either ‘
polynomial-time or pseudopolynomial-time algorithms (when the problem is NP-complete) for sev-
eral of the bicriteria network design problems studied here. A polynomial time approximation
scheme (PTAS) for problem II is a family of algorithms .A such that, given an instance I of II, for
all € > 0, there is a polynomial time algorithm A € A that returns a solution which is within a factor
(1 + €) of the optimal value for I. A polynomial time approximation scheme in which the running
time grows as a polynomial function of e is called a fully polynomial time approximation scheme. .
Here we show how to convert these pseudopolynomial-time algorithms for problems restricted to
treewidth-bounded graphs into fully polynomial-time approximation schemes using a general scaling
technique. Stated in our notation, we obtain polynomial time approximation algorithms with perfor-
mance of (1,1 + €), for all € > 0. The results for treewidth-bounded graphs are summarized in Table
2. As before, the rows are indexed by the budgeted objective. All algorithmic results in Table 2 also
extend to Steiner trees in a straightforward way. '

Our results for treewidth-bounded graphs have an interesting application in the context of find-
ing optimum broadcast schemes. Kortsarz and Peleg [KP92] gave O(logn)-approximation algo-
rithms for the minimum broadcast time problem for series-parallel graphs. ‘Combin‘ing our results for
the (Degree, Diameter, Spanning tree) for treewidth-bounded graphs with the techniques in [Ra%4],
we obtain an'O(—lﬂg”—)-approximatibn algorithm for the minimum broadcast time problem for

A _ loglogn )
treewidth-bounded graphs (series-parallel graphs have a treewidth of 2), improving and generalizing

"The result for (Degree, Total cost, Steiner tree) can also be obtained as a corollary of the results in [RM+9‘3V].




the result in [KP92]. Note that the best known result for this problem for general graphs is by Ravi

[Ra94] who provides an approximation algorithm performance guarantee (O(log?n), O(log n)).

Cost Measures Degree Diameter Total Cost

Degree :
o polynomial-time | polynomial-time | polynomial-time
Diameter (weakly NP-hard) | (weakly NP-hard)
polynomial-time (1,1+¢) (1,1 +¢)
Total Cost : (weakly NP-hard) | (weakly NP-hard)
polynomial-time (1,1+¢€) - (1,146

Table 2. Bicriteria spanning tree results for treewidth-bounded graphs.

4 Hardness results

The preblem of finding a minimum degree spanning tree is strongly N'P-hard [GJ79]. This im-

plies that all spanning tree bicriteria problems, where one of the criteria is degree, are also strongly
NP-hard. In contrast, it is well known that the minimum diameter spanning tree problem and the
minimum cost spanning tree problems have polynomlal time algonthms (see’ [CLR] and the refer-

ences therein).

The (Dlameter Total Cost, Spanning tree)-bicriteria problem is strongly NP-hard even in the .‘

case where both cost functions are identical [HL+89]. Here we give the details of the reduction to
show that (Diameter, Total Cost, Spanning tree) is weakly NP-hard even for series—parallel graphs
(i.e. graphs with treewidth at most 2). Similar reductions can be given to show that (Diameter,
Diameter, Spanning tree) and (Total cost, Total cost, Spanning tree) are also weakly NP-hard for
series-parallel graphs

‘We first recall the definition of the PARTITION problem [GJ79] As an instance of the PAR-

TITION problem we are given a set T = {t1,t2,---,t,} of positive integers and the question is
‘whether there exists a subset X C A such that Z t; = z tj z t5)/ 2
: ti€X t;eT-X  t€T

Theorem 4.1 (Diameter, Total cost, Spanning tree) is NP-hard for series-parallel graphs. |

Proof: Reduction from the PARTITION problem. Given an instance T' = {'tl, g, tn} of the
PARTITION problem, we construct a series parallel graph G with n + 1 vertices, v1,vg, - vn+1

and 2n edges We attach a pair of parallel edges, e and e , between v; and v;11, 1 < @ < n. We o

now specify the two cost functions f and g on the edges of this graph; c(e}) = t;, c(e?) = 0,d(e}) =

0,d(e 2) = t, 1 < i< mn Let Z t; = 2H. Now it is easy to show that G has a spanning tree
;€T

' of d-diameter at most H and total c-cost at most H if and only if there is a solutlon to the original

instance T' of the PARTITION problem.
0




We now show that the (Diameter, Total-cost, Steiner treé) problem is hard to approximate within
a logarithmic factor. An approximation algorithm provided in Section 7. There is however a gap
between the results of Theorems 4.3 and 7.7. Our non-approximability result is obtained by an
approximation preserving reduction from the MIN SET COVER. An instance (T', X) of the MIN
SET COVER problem consists of a universe T = {t1,2,...,t} and a collection of subsets X =
{X1,X2,...,Xm}, Xi C T, each set X; having an associated cost c;. The problem is to find a
minimum cost collection of the subsets whose union is 7T'.

Fact 4.2 Recently [AS97, RS97] have indepéndently shown the following non-approximability
result: , | ‘

It is N P-hard to find an approximate solution to the MIN SET COVER problem, with a uni-
verse of size k, with performance guarantee better than Q(Ink).

Corollary 4.3 There is an approximation preserving reduction from MIN SET COVER prob-
lem to the (Diameter, Total Cost, Steiner tree) problem. Thus:

Unless P = NP, given an instance of the (Diameter, Total Cost, Steiner tree) problem
with % sites, there is no polynomial-time approximation algorithm that outputs a Steiner
tree of diameter at most the bound D, and cost at most R times that of the minimum cost
diameter-D Steiner tree, for R < Ink.

Proof: We give an approximation preserving reduction from the MIN SET COVER problem to the
(Diameter, Total Cost, Steiner tree) problem. Given an instance (7', X) of the MIN SET COVER
problem where T = {t1,t2,...,tx} and X = {X1,Xs,...,Xm}, X; C T, where the cost of
the set X; is ¢;, we construct an instance G of the (Diameter, Total Cost, Steiner tree) problem as
follows. The graph G has a node t; for each element ¢; of T8 a node z; for each set X;, and an
extra “enforcer-node” n. For each set X;, we attach an edge between nodes n and z; of c-cost ¢;, and
d-cost 1. For each element ¢; and set X; such that t; € X; we attach an edge (¢;, z;) of c-cost, 0, and
d-cost, 1. In addition to these edges, we add a path P made of two edges of c-cost, 0, and d-cost, 1,t0
the enforcer node n (see Figure 1). The path P is added to ensure that all the nodes ¢; are connected
to n using a path of d-cost at most 2. All other edges in the graph are assigned infinite ¢ and d-costs.
The nodes ¢; along with n and the two nodes of P are specified to be the terminals for the Steiner
tree problem instance. We claim that G has a c-cost Steiner tree of diameter at most 4 and cost C if
and only if the original instance (7', X') has a solution of cost C.

Note that any Steiner tree of diameter at most 4 must contain a path from ¢; to n, for all 7, that
uses an edge (2;,n) for some X; such that ¢; € X;. Hence any Steiner tree of diameter at most 4
provides a feasible solution of equivalent c-cost to the original Set cover instance. The proof now '
follows from Theorem 4.2. '
O

8There is a mild abuse of notation here but it should not lead to any confusion.




Figure 1: Figure illustrating the reduction from the MIN SET COVER problem to (Dlameter Total
cost Steiner tree) problem The instance of MIN SET COVER s (T', X) where T' = {t1, to,...,t7},

X = {:111,.”122,:173,1124} Here z; = {tl,tg,t;;}, Io = {t3,t4,t5}, z3 = {ts} and z4 = {ts,t7} The
_cost on the edges shown in the figure denotes the c-cost of the edges. All these edges have d-cost
= 1. : ~

5 Bicriteria Formulations: Properties

~In Sectron 1, we claimed that our formulation for bicriteria problems is robust and general. In th1s
sectron we justify these claims. '

5.1 Equivalence of Bicriteria Formulations: Robustness -

In this section, we show that our formulation for bicriteria problems is robust and general.

LetG be a graph with two (integral)9 cost functions, ¢ and d (typically edge costs or node costs).
Let A (B) be a minimization obJectrve computed using cost function ¢ (d). Let the budget bound on
the c-cost!® (d-cost) of a solution subgraph be denoted by c (D).

There are two natural ways to formulate a bicriteria problem: (i) (A, B, S) find a subgraph inS
‘whose A-objective value (under the c-cost) is at most C and which has minimum B-objective value
(under the d-cost), (ii) (B, A, S) - finda subgraph in S whose B-objective value (under the d-cost)
is at most D and which has minimum A-objective value (under the c-cost). S

Note that bicriteria problems are generally hard, when the two criteria are hostile with respect
- to each other - the minimization of one criterion conflicts with the minimization of the other. A

°In case of ratlonal cost functions, our algorithms can be extended with a small additive loss in the performance guar-
antee. ‘

1%We use the term “cost under ¢” or “c-cost” in this section to mean the value of the objective function computed using
- ¢, and not to mean the total of all the ¢ costs in the network



good example of hostile objectives are the degree and the total edge cost of a spanning tree in an
unweighted graph [RM+93]. Two minimization criteria are formally defined to be hostile whenever
the minimum value of one objective is monotonically nondecreasing as the budget (bound) on the
value of the other objective is decreased.

Let A — APPROX(G,C) be any (a, 3)-approximation algorithm for (A, B, S) on graph G
with budget C under the c-cost. We now show that there is a transformation which produces a (B, a)-
approximation algorithm for (B, A, S). The transformation uses binary search on the range of values
of the c-cost with an application of the given approximation algorithm, A — APPROX, at each
step of this search. Let the minimum c-cost of a D-bounded subgraph in S be OPT,. Let Cp; be an
upper bound on the c-cost of any D-bounded subgraph in S. Note that Cp; is at most some polynorriial
~ in n times the maximum c-cost (of an edge or a node). Hence log(Cp;) is at most a polynomial in
terms of the input specification. Let Heu, (Heug) denote the c-cost (d-cost) of the subgraph output
by ALGORITHM BICRITERIA-EQUIVALENCE given below. -

ALGORITHM BICRITERIA-EQUIVALENCE:

e Input: G - graph, D - budget on criterion B under the d-cost, A — APPROX - an (, ﬁ)
approximation algorithm for (A, B, S). .
e 1. Let Cp; be an upper bound on the c-cost of any D-bounded subgraph in S.
2. Do binary search and find a " in [0, Cp;] such that
(a) A — APPROX(G,(’) returns a subgraph with d-cost greater than 3D, and
(b) A — APPROX(G,C' + 1) returns a subgraph with d-cost at most 5D.
3. If the binary search in Step 2 fails to find a valid C’ then output “NO SOLUTION” else
output A — APPROX(G,C' +1).

e Output: A subgraph from S such that its c-cost is at most « times that of the minimum
c-cost D-bounded subgraph and its d-cost is at most 3D. '

Claim 5.1 If G contains a D-bounded subgraphin S then ALGORITHM BICRITERIA-EQUIVALENCE

outputs a subgraph from S whose c-cost is at most o times that of the minimum c-cost D-
bounded subgraph and whose d-cost is at most 8D. '

Proof: Since A and B are hostile criteria it follows that the binary search in Step 2 is well defined.
Assume that S contains a D-bounded subgraph. Then, since A — APPROX(G, Cp;) returns a sub-
graph with d-cost at most 8D, it is clear that ALGORITHM BICRITERIA-EQUIVALENCE outputs a
subgraph in this case. As a consequence of Step 2a and the performance guarantee of the approxima-
tion algorithm A — APPROX, we get that C'+1 < OPT.,. By Step 2b we have that Heug < 0D
and Heu, < a(C' +1) < aOPT,. Thus ALGORITHM BICRITERIA-EQUIVALENCE outputs a sub-
graph from S whose c-cost is at most o times that of the minimum c-cost D-bounded subgraph and
whose d-cost is at most GD. '
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‘Note however that in general the resulting (3, a)-approximation algorithm is, not strongly poly-
nomial since it depends on the range of the c-costs. But it is a polynomial-time algorithm since its
running time is linearly dependent on log Cy; the largest c-cost. The above discussion leads to the

~ following theorem.

‘Theoremks.z Any ‘(a, $3)-approximation algorithm for (A, B, S) can be transformed in poly
nomial time into a (B, a)-approximation algorithm for (B, A, S).

5.2 Comparing with other functional combinations: Generality

Our formulation is more general because it subsumes the case where one wishes to minimize some
 functional combination of the two criteria. We briefly comment on this next. For the purposes of
illustration let A and B be two objective functions and let us say that we wish to minimize the sum

of the two objectlves A and B. Call this an (A + B, S) problem. Let A — APPROX(G,C) be
Cany (a, 3)-approximation algorithm for (A, B, S) on graph G with budget C under the c-cost. We
show that Ve > 0, there is a polynomial time (1 + €) max{e, B}-approximation algorithm for the
(A +B, S) problem. The transformation uses simple linear search in steps of (1 + €) over the range
of values of the c-cost with an épplication of the given approximation algorithm, A — APPROX,

~ at each step of this search. Let the optimum value for the (A + B, S) problem on a graph G be |

OPTrq = (Ve + Vy), where V and Vy denote respectively the contribution of the two costs ¢
and d for A and B. Let Heu,(C) (Heuq(C )) denote the c-cost (d-cost) of the subgraph output
by A — APPROX(G C). Finally, let Heu,,4(C) denote the value computed by ALGORITHM
CONVERT. ‘ ‘

ALGORITHM CONVERT:

e Inpuf G - graph, an € > 0, A — APPROX - an (o, §)- approx1mat10n algorlthm for (A,
B,S).
ol Let Cp; be an upper bound on the ¢-cost of any subgraph in S.
2. Let R = [logy.q) Chil
3. Forj=0to Rdo
(@ My=(1+¢)
(b) Let Heu.(M;), Heugq(M; ) denote the c-cost and the d-cost of solutlon obtained by
A- APPROX(G, M;). , :

4. Retum the minimum overall0 < j < R, of F; = H euc(M )+ H eud(M ).

o Output: A subgraph from S such that the sum of its c-cost and its d-costs is at most (‘1 +
-¢) max{a, B} OPTc1q). : : ‘

Theorem 5.3 Let A — APPROX(G,C) be any (o, 8)-approximation algorithm for (A; B, S)
on graph G with budget C under the c-cost. Then, for all ¢ > 0, there is a polynomial time
(1 + €) max{o, B}-approximation algorithm for the (A + B, S) problem.
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Proof Sketch: Consider the iteration of the binary search in which the bound on the c-cost is R such
that V, < R < (1 + €)V,. Notice that such a bound is considered as a result of discretization of the
interval [0, Cy;]. Then as a consequence of the performance guarantee of the approximation algorithm
A — APPROX, we get that

Heuc(R) < aR < (1 +¢€)aV..

By Step 4, the performance guarantee of the algorithm A — APPROX, and the hostility of A and
B, we have that Heuy(R) < V. Thus Heuc1q(R) < (1+€)aVe+pVa < (1+e€) max{a, B}(Ve+
V,). Since ALGORITHM CONVERT outputs a subgraph from S the sum of whose c-cost and d-cost
is minimized, we have that '

c'éf%i? | (Heuc(C') + Heuy(C')) < (1 + €) max{a, B}(OPT,1q).
s“hi

A similar argument shows that an (o, 3)-approximation algorittm A — APPROX(G,C), for
a (A, B, S) problem can be used to find devise a polynomial time (1 + €)?a3 approximation algo-
rithm for the (A x B, S) problem. A similar argument can also be given for other basic functional

combinations. We make two additional remarks.

1. Algorithms for solving (f(A, B), S) problems can not in general guarantee any bounded per-
formance ratios for solving the (A, B, S) problem. For example, a solution for the (Total Cost
+ Total Cost , Spanning Tree) problem or the (Total Cost/Total Cost , Spanning‘Tree) problem’
can not be directly used to find a good («, 3)-approximation algorithm for the (Total Cost,
Total Cost, Spanning Tree)-bicriteria problem.

2. The use of approximation algorithms for (A, B, S)-bicriteria problems, to solve (f(A, B), S)
problems (f denotes a function combination of the objectives) does not always yield the best
possible solutions. For example problems such as (Total Cost + Total Cost , Spanning Tree)
and (Total Cost/Total Cost , Spanning Tree) [Ch77, Me83] can be solved exactly in polynomial
time by direct methods but can only be solved approximately using any algorithm for the (Total
Cost, Total Cost , Spanning Tree)-bicriteria problem.!! |

6 Parametric Search

In this section, we present approximation algorithms for a broad class of bicriteria problems where
both the objectives in the problem are of the same type (e.g., both are total edge costs of some network
computed using two different costs on edges, or both are diameters of some network calculated using
two different costs etc. ). '

" This is true since the (Total Cost, Total Cost, Spanning Tree)-bicriteria problem is NP-complete and therefore unless
P = NP cannot be solved in polynomial time. :

1




As before, let G be a graph with two (integral) cost functions, cand d. Let C denote the budget
on criteria A. We assume that the ¢ and d cost functions are of the same kind; i.e., they are both‘

costs on edges or, costs on nodes. Let UVW(G, f) be any p-appr0x1mat10n algorithm that on input
G produces a solution subgraph in S minimizing criterion A, under the smgle cost function f. In
a mild abuse of notation, we also let UVW (G, f) denote the (f-)cost of the subgraph output by
_ UVW(G , f) when running on input G under cost function f. We use the following additional nota-
tion in the description of the algorithm and the proof of its performance guarantee. Given constants a '
and b and two cost functions f and g, defined on edges (nodes) of a graph, a f 4+ bg denotes the com-
posite function that assigns a cost af(€) + bg(e) to each edge (node) in the graph. Let h(’D) denote‘
the cost of the subgraph, returned by UVW (G, (D e+ d) (under the (( )c+ d)-cost function). Let
the minimum d-cost of a C-bounded subgraph in S be OPTy. Let Heu, (Heug) denote the c-cost -
(d-cost) of the subgraph output by ALGORITHM PARAMETRIC-SEARCH given below. .
. Lety > 0 be a fixed accuracy parameter. In what follows, we devise a ((1 + ), (1 + }7)‘)-
approximation algorithm for (A, A, S), under the two cost functions ¢ and d. The algorithm consists
of performing a binary search with an application of the given approximation algorithm, UVW,at
each step of this search. ' : ‘ |

ALGORITHM PARAMETRIC SEARCH

- e Input: G - gtaph C - budget on criteria A under the c-cost, UVW - a p- approximation‘
algorithm that produces a solution subgraph in S minimizing criterion A under a smgle
cost function, +y - an accuracy parameter.

e 1. Let Dy; be an upper bound on the d-cost of any C-bounded subgraph in S.
2. Do binary search and find a D' in [0, YDy;] such that
(8 UVW(G, (Z-)c + d) returns a subgraph such that MD—') > (1+1)p, and
' (b) UVW(G (D'“)c + d) returns a subgraph such that %ETT)) <4+
3. If the binary search in Step 2 fails to find a valid C' then output “NO SOLUTION” else
output UVW(G, (Z#)c + d).

e Qutput: A subgraph from S such that its d cost is at most (1+ /)p times that ofthe mintmum ‘
d-cost C-bounded subgraph and its c-cost is at most (1 + )oC.

Claim 6.1 The binary search in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Proof: vSince‘( UVW(G, f)) is the same as UVW(G i) we get that —-l L UVW(G ( ) et
d) =UVW(G, (§)c+ d) Hence J—Z is a monotone nonincreasing functlon of D. Thus the b1-
nary search in Step 2 of ALGORITHM PARAMETRIC SEARCH is well-defined. :
g

Claim 6.2 If G cdntai»ns a C-bounded subgraph in S then ALGORITHM PARAMETRI.C.-SEARCH ,
~ outputs a subgraph from S whose d-cost is at most (1+ 1)p times that of the minimum d-cost
C-bounded subgraph and whose c-cost is at most (1 + ) oC.
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Proof: By claim 6.1 we have that the binary search in Step 2 of ALGORITHM PARAMETRIC-
SEARCH is well-defined. . :

Assume that S contains a C-bounded subgraph. Then, since UVW(G, (7%bi)c + d) returns
a subgraph with cost at most (1 + ) pDp;, under the ((3’—1-)5“)6 + d)-cost function, it is clear that
ALGORITHM PARAMETRIC-SEARCH outputs a subgraph in this case.

As a consequence of Step 2a and the performance guarantee of the approximation algorithm
UVW, we get that o

D +1< OI;Td.

By Step 2b we have that the subgraph output by ALGORITHM‘ PARAMETRIC-SEARCH has the fol-
lowing bounds on the c-costs and the d-costs.

' 1
Heug <h(D'+1) <p(l+7)(D'+1) <(1+ ;)pOPTd

)L 4)p(D' +1) = (1+7)pC.

Heu, < ( YWD +1) < (

C

D +1 D+1

Thus ALGORITHM PARAMETRIC-SEARCH outputs a subgraph from S whose d-cost is at most
(1+ %) p times that of the minimum d-cost C-bounded subgraph and whose c-cost is at most (1-+)oC.
g ' ,
Note however that the resulting ((1+7)p, (1+ %) p)-appfoximation algorithm for (A, A, S) may
not be strongly polynomial since it depends on the range of the d-costs. But it is a polynomial-time
algorithm since its running time is linearly dependent on ldg Dy;. Note that Dy; is at most some
polynomial in n times the maximum d-cost (of an edge or a node). Hence log(Dy;) is at most a
polynomial in terms of the input specification. |

The above discussion leads to the following theorem.

Theorem 6.3 Any p-approximation algorithm that produces a solution subgraph in S mini-
mizing criterion A can be transformed into a ((1++)p, (1+ %)p)-approximation algorithm for
(A,A,S). '

The above theorem can be generalized from the bicriteria case to the multicriteria case (with
appropriate worsening of the performance guarantees) where all the objectives are of the same type
but with different cost functions.

7 Diameter-Constrained Trees

In this section, we describe ALGORITHM DCST, our (O(log n), O(log n))-approximation algorithm
for (Diameter, Total cost, Steiner tree) or the diameter-bounded minimum Steiner tree problem. Note
that (Diameter, Total cost, Steiner tree) includes (Diameter, Total cost, Spanning tree) as a special
case. We first state the problem formally: given an undirected graph G = (V, E), with two cost
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functions ¢ and d defined on the set of edges, diameter bound D and terminal set K C V, the
(Diameter, Total cost, Steiner tree) problem is to find a tree of minimum c-cost connecting the set of
terminals in K with diameter at tost D under the d-cost. o

The technique underlying ALGORITHM DCST is very general and has wide applicability. Hence
we first give a brief synopsis of it. The basic algorithm works in (log n) phases (iterations). Initially
the solution consists of the empty set. During each phase of the algorithm we execute a subroutine
Q to choose a subgraph to add to the solution. The subgraph chosen in each iteration is required
to possess two desirable properties. First, it must not increase the budget value of the solution by
more than D: second, the solution cost with respect to B must be no more than OPT,, where OPT,
denotes the minimum c-cost of a D bounded subgraph in S. Since the number of iterations of the
 algorithm is O(log n) we get a (log n, log n)-approximation algorithm. The basic technique is fairly
straightforward. The non-trivial part is to devise the right subroutine 2 to'be executed in each phase.
) must be chosen so as to be able to prove the required performance guarantee of the solution. We
use the solution based decomposition technique [Ra94, RM+93] in the analysis of our algorithm. The
" basic idea (behind the solution based decomposition technique) is to use the existence of an optimal
_ solution to prove that the subroutine 0 finds the desired subgraph in each phase. ' .

We now present the Sp€C1ﬁCS of ALGORITHM DCST. The algorithm maintains a set of connected
subgraphs or clusters each with its own distinguished vertex or center. Initially each terminal is in a
cluster by itself. In each phase, clusters are merged in pairs by adding paths between their centers.

- Since the number of clusters comes down by a factor of 2 each phase, the algorithm terminates in
[og, | K] phases with one cluster. It outputs a spanning tree of the final cluster as the solution.
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ALGORITHM DIAMETER-CONSTRAINED-STEINER-TREE (DCST):

e Input: G = (V,E) - graph with two edge cost functions, ¢ and d, D - a bound on the
diameter under the d-cost, K C V - set of terminals, € - an accuracy parameter.

e 1. Initialize the set of clusters C; to contain | K| singleton sets one for each terminal in K.
For each cluster in C, define the single node in the cluster to be the center for the cluster.
Initialize the phase count 4 := 1. :

2. Repeat until there remains a single cluster in C;

that k; = |K]). :

(b) Construct a complete graph G; as follows: The node set V; of G; is {v
v is the center of a cluster in C}. Let path Py, be a (1 + €)-approximation to the mini-
mum c-cost diameter D-bounded path between centers v, and vy in G. Between every
pair of nodes v; and vy in V;, include an edge (vg,vy) in G of weight equal to the
c-cost of Pyy.

(c) Find a minimum-weight matching of largest cardinality in G;.

(d) For each edge e = (vz,vy) in the matching, merge clusters C,; and Cy, for which v, |
and v, were centers respectively, by adding path Py to form a new cluster Cyy. The
node (edge) set of the cluster Cyy is defined to be the union of the node (edge) sets of
Cz, Cy and the nodes (edges) in Pyy. One of v, and vy, is (arbitrarily) chosen to be the
center vzy of cluster Cy and Cyy is added to the cluster set C;1 1 for the next phase.

(e) i:=1+1.

3. Let C’, with center v’ be the single cluster left after Step 2. Output a shortest path tree of
C’ rooted at v’ using the d-cost.

e Output: A Steiner tree connecting the set of terminals in K with diameter at most
2[logy n] D under the d-cost and of total c-cost at most (1 + €)[log, n] times that of the
minimum c-cost diameter D-bounded Steiner tree.

We make a few points about ALGORITHM DCST:

1. The clusters formed in Step 2d need not be disjoint.

2. All steps, except Step 2b, in algorithm DCST can be easily seen to have running times indepen-
dent of the weights. We employ Hassin’s strongly polynomial FPAS for Step 2b [Ha92]. Has-

(a) Let the set of clusters C; = {C;...,Cy,} at the beginning of the 7’th phase (observe |

sin’s approximation algorithm for the D-bounded minimum c-cost path runs in time O (| E|(*%- nl log )) :

Thus ALGORITHM DCST is a strongly polynomial time algorithm.

3. Instead of finding an exact minimum cost matching in Step 2c, we could find an approximate
minimum cost matching [GW95]. This would reduce the running time of the algorlthm at the
cost of introducing a factor of 2 to the performance guarantee.

We now state some observations that lead to a proof of the performance guarantee of ALGO-
RITHM DCST. Assume, in what follows, that G contains a diameter D-bounded Steiner tree. We
also refer to each iteration of Step 2 as a phase.
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Claim 7.1 Algofithm DCST terminates in [log, | K] phases.’ "

Proof: Let k; denote the number of clusters in phase i. Note that ki1 = [ %L'I since we pair up the -v
 clusters (using a matéhing in Step 2d). Hence we are left with one cluster after phase [log, | K] and
~ algorithm DCST terminates. -
o ‘ » ‘

The next claim points out as clusters get merged, the nodes within each cluster are not too far away v
(with respect to d-distance) from the center of the cluster. This intuitively holds for the following
important reasons. First, during each phase, the graph G; has as its vertices, the centers of the clusters
" in that iteration. As a result, we merge the clusters by joining their centers in Step 2d. Seéond, in
Step 2d, for each paif of clusters C; and Cy, that are merged, we select one of their centers, vz O vy
as the center vy, for the merged cluster Czy. This allows us to inductively maintain two properties:
(i) the required distance of the nodes in a cluster to their centers in an iteration 4 is D and (ii) the
center of a cluster at any given iteration is a‘terminal‘ node. '

Claim 7.2 Let C € C; be any cluster in phase 7 of algorithm DCST. Let v be the centerof C.
Then any node v in C is reachable from v by a diameter-iD path in C under the d-cost. B

Proof: Note that the existence of a diameter D-bounded Steiner tree implies that all paths added in -
~ Step 2d have diameter at most D under d-cost. The proof now follows in a straightforwafd fashion
* by induction on 7. ' ‘ '

0 ,

Lemma 7.3 Algorithm DCST outputs a Steiner tree with dlameter at most 2[log2 | K |] D
~under the d-cost. :

Proof: The proof follows from Claims 7.1 and 7.2.
0 . ’ ‘ ; o

This completes the proof of performance guarantee with respect to the d-cost. We now proceed
to prove the p'ér'formance guarantee with respect to the c-costs. We first recall the following pairing

' lemma.

| Claim 7. 4 [RM+93] Let T be an edge-weighted tree with an even number of marked nodes.
Then there is a pairing (v1,wy), - . ., (v, wi) of the marked nodes such that the vi = w; paths
in T are edge-disjoint. |

Claim 7.5 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPT" |
- denote its c-cost. The weight of the Iargest cardinality minimum- welght matchmg found in
Step 2d in each phase i of algorithm DCST is at most (1 + e) OPT,. '
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Proof: Consider phase ¢ of algorithm DCST. Note that since the centers at stage ¢ are a subset of the
nodes in the first iteration, the centers v; are terminal nodes. Thus they belong to OPT'. Mark those
vertices in O PT that correspond to the matched vertices, v1,vo,..., Uy i po of G; in Step 2¢. Then
by Clqim 7.4 there exists a pairing of the marked vertices, say (v1,v2),..., (1)2L CTRTLY ),and a
set of edge-disjoint paths in OPT between these pairs. Since these paths are edge-disjoint their total
c-cost is at most O PT,. Further these paths have diameter at most D under the d-cost. Hence the sum
of the weights of the edges (v1,v2),..., ('u2 IRt Vg ks J) in G; , which forms a perfect matching
on the set of matched vertices, is at most (1 + €) - OPT,. But in Step 2¢ of ALGORITHM DCST,
a minimum weight perfect matching in the graph G; was found. Hence the weight of the matching
found in Step 2d in phase i of ALGORITHM DCST is at most (1 + €) - OPT..

0 ‘

Lemma 7.6 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPT
denote its c-cost. ALGORITHM DCST outputs a Steiner tree with total c-cost at most (1 +
e)[log, |K[| - OPT.. | |

Proof: From Claim 7.5 we have that the c-cost of the set of paths added in Step 2d of any phase is
at most (1 +¢€) - OPT,. By Claim 7.1 there are a total of [log, | K] phases and hence the Steiner tree
output by ALGORITHM DCST has total c-cost at most (1 + €)[log, |K|] - OPT.
0 o A

From Lemmas 7.3 and 7.6 we have the following theorem.

Theorem 7.7 There is a strongly polynomial-time algorithm that, given an undirected graph
G = (V, E), with two cost functions ¢ and d defined on the set of edges, diameter bound D,
terminal set K C V and a fixed € > 0, constructs a Steiner tree of G of diameter at most
2[log, |K|1D under the d-costs and of total c-cost at most (1 + ¢)[log, |K|] times that of the
minimum-c-cost of any Steiner tree with diameter at most D under d. ‘

'8 Treewidth-Bounded Graphs

In this section we consider the class of treewidth-bounded graphs and give algorithms with improved
time bounds and performance guarantees for several bicriteria problems mentioned earlier. We do
this in two steps. First we develop pseudopolynomial-time algorithms based on dynamic program-
ming. We then present a general method for deriving fully pol“ynomial-time' approximation schemes
(FPAS) from the pseudopolynomial-time algorithms. We also demonstrate an application of the
above results to the minimum broadcast time problem. ‘

A class of treewidth-bounded graphs can be specified using a ﬁnite number of primitive graphs
and a finite collection of binary composition rules. We use this characterization for proving our
results. A class of treewidth-bounded graphs I" is inductively defined as follows [BL+87].
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1. The number of primitive graphs in I' is finite.

2. Each graph in T has an ordered set of special nodes called terminals. The number of terminals
" ineach graph is bounded by a constant, say k. '

3 There is a finite collection of binary composition rules that operate only at terminals, either
by identifying two terminals or adding an edge between terminals. A composition rule also
determines the terminals of the resulting graph, which must be a subset of the terminals of the
two graphs being composed. ‘

8.1 Exact Algorlthms

Theorem 8.1 Every problem in Table 2 can be solved exactly in O((n - C)O(l)) -time for any
- class of treewidth bounded graphs with no more than k terminals, for fixed k and a budget
C on the first objectsve g

The above theorem states that there exist pseudopolynom1al -time algor1thms for all the blcrlterra '
problems from Table 2 when restricted to the class of treewidth-bounded graphs. The basic idea is to
employ a dynamic programming strategy. In fact, this dynamic programming strategy (in conjunction
with Theorem 5.2) yields polynomial-time (not just pseudopolynomial-time) algorithms whenever
one of the criteria is the degree. We illustrate this strategy by presenting in some detail the algorithm
for the diameter-bounded minimum cost spanning tree problem.

Theorem 8.2 For any class of treewidth-bounded graphs with no more than k terminals,
' there is an O(n - k4. DO(Y)-time algorithm for solving the diameter D-bounded minimum
c-cost spanning tree problem. ' '

Proof: Let d be the cost function on the‘edges for the first objective (diameter) and c, the cost
function for the second objective (total cost). Let I' be any class of decomposable graphs. Let the

‘ vrnaximum number of terminals associated with any graph GG in T be k. Following [BL+87], it is

* assumed that a given graph G is accompanied by a parse tree specifying how G is constructed using
 the rules and that the size of the parse tree is linear in the number of nodes.

Let m be a partition of the terminals of G. For every terminal 7 let d; be a number in {1, 2 .,D}.
For every pair of terminals ¢ and j in the same block of the partition 7 let d;; be a number in -
{1,2,...,D}. Corresponding to every partition 7, set {d;} and set {d;;} we associate a cost for
G defined as follows: - ‘

| Co‘st’fdi}’ { di}} = Minimum total cost under the ¢ function of any forest containing
a tree for each block of =, such that the terminal nodes
occurrmg in each tree are exactly the members of the correspondmg
block of 7, no pair of trees is connected, every vertex in G
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appears in exactly one tree, d; is an upper bound on the maximum
distance (under the d-function) from 7 to any vertex in the same
tree and d;; is an upper bound the distance (under the d-function) -
between terminals ¢ and § in their tree.

For the above defined cost, if there is no forest satisfying the required conditions the value of Cost is
defined to be oo. "

- Note that the number of cost values associated with any graph in I" is O(k* - ‘Do(kz)). We now
show how the cost values can be computed in a bottom-up manner given the parse tree for G. To
begin with, since T is fixed, the number of primitive graphs is finite. For a primitive graph, each cost
value can be computed in constant time, since the number of forests to be examined is fixed. Now
consider computing the cost values for a graph G constructed from subgraphs G; and G, where the
cost values for G; and G have already been computed. Notice that any forest realizing a particular
cost value for G decomposes into two forests, one for G; and one for G2 with some cost values.
Since we have maintained the best cost values for all possibilities for G; and G5, we can reconstruct
for each partition of the terminals of G the forest that has minimum cost value among all the forests
for this partition obeying the diameter constraints. We can do this in time independent of the sizes of
G1 and G, because they interact only at the terminals to form G, and we have maintained all relevant
information. : ‘

Hence we can generate all possible cost values for G' by considering combinations of all relevant
pairs of cost values for G; and G2. This takes time O(k*) per combination for a total time of
O(k%*+1 . DO Ag in [BL+87], we assume that the size of the given parse tree for G is O(n).
Thus the dynamic programming algorithm takes time O(n - k24 . Do(kq)). This completes the
proof. ' ‘ '

0

8.2 Fully Polynomial-Time Approximation Schemes

The pseudopolynomial-time algorithms described in the previous section can be used to design fully
polynomial-time approximation schemes (FPAS) for these same problems for the class of treewidth-
bounded graphs. We illustrate our ideas once again by devising an FPAS for the (Diameter, Total
cost, Spanning tree)-bicriteria problem for the class of treewidth-bounded graphs. The basic tech-
nique underlying our algorithm, ALGORITHM FPAS-DCST, is approximate Binary search using
rounding and scaling - a method similar to that used by Hassin [Ha92] and Warburton [Wa87].

As in the previous subsection, let G be a treewidth-bounded graph with two (integral) edge-
cost functions ¢ and d. Let D be a bound on the diameter under the d-cost. Let € be an accuracy
parameter. Without loss of generality we assume that % is an integer. We also assume that there exists
a D-bounded spannihg tree in G. Let OPT be any minimum c-cost diameter D-bounded spanning
tree and let OPT, denote its c-cost. Let TCSTonTW (G, ¢,d,C) be a pseudopol‘ynomial time
algorithm for the (Total cost, Diameter, Spanning tree) problem on treewidth-bounded graphs; i.e.,
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; Proof: If OPT, < ) then since

- OPT,. > M1 + €) then since

TCSTonTW outputs a minimum diameter spanning tree of G with total cost at most C (under the
c-costs). Let the running time of TCSTonT'W be p(n C) for some polynom1a1 p. For carrying out
our approximate binary search we need a testing procedure PROCEDURE TEST(V) which we detail

below:

PROCEDURE TI:ZST()\):

K Input: G - treewidth bounded graph, D - bound on the diameter under the d-cost, A -
- testing parameter, TCSTonTW - a pseudopolynomial time algorithm for the (Total cost,
Diameter, Spanning tree) problem on treewidth-bounded graphs, € - an accuracy parameter.

el. Let LT(%'—ITJ denote the cost function obtained by setting the cost of edge e to

I—)\e/(n 1)J

2. If there exists a C in [0, 21] such that TCSTonTW G sl 4, C) produces a
- spanning tree with dlameter at most D under the d-cost then output L())W otherwise output
HIGH.

o Output: HIGH/LOW.

' We now pfove ‘that PROCEDURE TEST()\) has the properties we need to doa binary search. ‘

Clalm 8.3 If OPT, < ) then PROCEDURE TEST()\) outputs LOW And if OPTc > A(l + e)
then PROCEDURE TEST(\) outputs HIGH.

, Ce - Ce OPT, n'—vlsv’
2 LAe/(n‘-l)JS 2 Ae/(n—ngAe/(n—;)S K

. ecOPT e€OPT

therefore PROCEDURE TEST(\) outputs LOW.
Let T, be the c-cost of any diameter D bounded spannmg tree. Then we have T. > OPT If

Ce T, - OPT, ’1').>‘n‘—1

ZLAe/n—l) g(Ae/(n~1)_1)2AG/(U—l)—(n_l)_)\e/(n—l) _(”— e

therefore PROCEDURE TEST(A) outputs HIGH.
0 ' :

Clalm 8.4 The runmng time of PROCEDURE TEST()\) is O( (n, i ))

Proof: PROCEDURE TEST()) invokes TCSTonTW only 2= L times. And each time the budget
C is bounded by % -E—, hence the running time of PROCEDURE TEST()\) is O(2p(n, 2)).
We are ready to describe ALGORITHM FPAS-DCST - which uses PROCEDURE TEST()) to do

an approximate binary search.

- 20



ALGORITHM FPAS-DCST:

e Input: G - treewidth-bounded graph, D - bound on the diameter under the d-cost,
TCSTonTW - a pseudopolynomial time algorithm for the (Total cost, Diameter, Span-
ning tree) problem on treewidth-bounded graphs, € - an accuracy parameter.

e 1. Let Cjp; be an upper bound on the c-cost of any D-bounded spanmng tree: Let LB = 0
- and UB = Cy;.
2. While UB > 2LB do
(@) LetA=(LB+UB)/2.
(b) If PROCEDURE TEST() returns HIGH then set LB = A else set UB = A(1 +¢).
3. Run TCSTonTW(G, | rpt5=yy), 4, C) for all C in [0,2(2F 2=1)] and among all the
trees with diameter at most D under the d-cost output the tree with the lowest c-cost.

e Qutput: A spanning tree with diameter at most D under the d-cost and with c-cost at most
(1 + ¢€) times that of the minimum c-cost D-bounded spanning tree.

Lemma 8.5 If G contains a D-bounded spanning tree then ALGORITHM FPAS-DCST outputs
a spanning tree with diameter at most D under the d-cost and with c-cost at most (1 +
€)OPT,.

Proof: It follows easily from Claim 8.3 that the loop in Step 2 of ALGORITHM FPAS-DCST
executes O(log Cp;) times before exiting with LB < OPT, < UB < 2LB.
Since
Ce , Ce OPT, n—1
— | < < <
2 lLBe/(n— 1)J Z LBe/(n—1) — LBe/(n—1) — €

ecOPT eEOPT

we get that Step 3 of ALGORITHM FPAS-DCST deﬁmtely outputs a spanning tree. Let Heu be the
tree output. Then we have that

Heuc= Y ce<LBe/(n—-1) Y ﬁ———)-<LBe/ > LLBe/ )J+1).’

ecHeu, e€cHeu, ecHeu,

But since Step 3 of ALGORITHM FPAS-DCST outputs the spanning tree with minimum c-cost we
~ have that
C Ce Ce ]
D e e D DI b e B
echon, LBe/(n—1)" = &L, "LBe/(n—1)
Therefore

Ce

Heue SLBe/(n=1) 3 |7z

J+eLB< Y ¢, +€OPT, < (1+ €)OPT..
ecOPT )

ecOPT

This proves the claim.
O

Lemma 8.6 The running time of ALGORITHM FPAS-DCST is O(%p(n, 2)log Chy).
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Proof: From Claim 8.4 we see that Step 2 of ALGORITHM FPAS-DCST takes time O(%p(n,&’—:—) log Chi)

while Step 3 takes time O(22p(n, 22)). Hence the running time of ALGORITHM FPAS-DCST is
O(%p(n, %) log Chz)
|
Lemmas 8.6 and 8 5 yleld

Theorem 8.7 For the class of treewidth-bounded graphs, there is an FPAS for the (Dlame- |
ter, Total cost, Spanning tree)-bicriteria problem with performance guarantee (1,1 + e).

v As mentloned before, similar theorems hold for the other problems i in Table 2 and all these results
extend dlrectly to Stemer trees.

8. 3 Near-Optimal Broadcast Schemes

The polynomial-time algorithm for the (Degree, Diameter, Spanmng tree)—b1cr1ter1a problem for -
treewidth-bounded graphs can be used in conjunction with the ideas presented in [Ra%4] to obtain

' neair—oyptimalv broadcast schemes' for the class of treewidth-bounded graphs. As mentioned earlier,

these results generalize and improve the results of Kortsarz and Peleg [KP92].
~ Given an unweighted graph G and a root 7, 2 broadcast scheme is a method for commumcatmg :

a message from r to all the nodes of G. We consider a telephone model in which the’ messages are

transmitted synchronously and at each time step, any node can either transmit or receive a message
from at most one of i its neighbors. The minimum broadcast time problem is to compute a scheme that
completes in the minimum number of time steps. Let OPT: (G) denote the minimum broadcast time

“from root r and let OPT(G ) = Maz,ccOPT,(G) denote the minimum broadcast time for the graph

from any root. The problem of computmg OPT,(G) - the minimum rooted broadcast time problem
- and that of computing OPT(G) - the minimum broadcast time problem are both NP-complete for
general graphs [GJ79]. It is easy to see that any approximation algorithm for the minimum rooted
broadcast time problem automatically yields an approx1mat10n algorithm for the minimum broadcast
time problem with the same performance guarantee. We refer the readers to [Ra94] for more details

" on this problem. Combining our approximation algori’dlm for ( Diameter, Total cost, Spanning tree)-

bicriteria problem with performancé guarantee (1,1 + €) for the class of treewidth bounded graphs
with the observations in [Ra94] yields the following theorem. ‘

Theorem 8.8 Forany class of treewidth-bounded graphs there is a polynomial-time O(=82-)-

. . S loglogn
approximation algorithm for the minimum rooted broadcast time problem and the minimum .

broadcast time problem.

9 Concluding’ Remarks

- We have obtained the first polynomial-time approximation algorithms for a large class of bicriteria

network design problems The objective function we considered were (i) degree, (11) diameter and
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(iii) total cost. The connectivity requirements considered were spanning trees, Steiner trees and (in
several cases) generalized Steiner trees. Our results were based on the following three ideas:

1. A binary search method to convert an («, 3)-approximation algorithm for (A, B, S)-bicriteria
problems to a (3, )-approximation algorithm for (B, A, S)-bicriteria problems.

2. A parametric search technique to devise approximation algorithms for (A,A.,S)-bicriteria prob-
lems. We note that Theorem 6.3 is very general. Given any p-approximation algorithm for min-
imizing the objective A in the subgraph-class S, Theorem 6.3 allows us to produce a (2p, 2p)-
approximation algorithm for the (A, A, S)-bicriteria problem.

3. A cluster based approach for devising approximation algorithms for certain categories of (A,B,S)-

bicriteria problems.

We also devised pseudopolynomial time algorithms and fully polynomial time approximation
schemes for a number of bicriteria network design problems for the class of treewidth-bounded

graphs.

Subsequent work

During the time when this paper was under review, important progress has been made in improving
some of the results in this paper. Recently, Ravi and Goemans [RG95] have devised a (1,1 + ¢€)
approximation scheme for the (Total Cost, Total Cost, Spanning tree) problem. Their approach does
not seem to extend to devising approximation algorithms for more general subgraphs considered
here. In [KP97], Kortsarz and Peleg consider the (Diameter, Total Cost, Steiner trée) problem. They
provide polynomial time approximation algorithms for this problem with performance guarantees
(2,0(log n)) for constant diameter bound D and (2 + 2¢,n¢) for any fixed 0 < € < 1 for general
diameter bounds. Improving the performance guarantees for one or more of the problems considered

here remains an interesting direction for future research.
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