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Abstract—The starting points of this paper are two size-op-
timal solutions: (i) one for implementing arbitrary Boolean
Junctions (Horne & Hush, 1994); and (ii) another one for
implementing certain sub-classes of Boolean functions
(Red’kin, 1970). Because VLSI implementations do not
cope well with highly interconnected nets—the area of a
chip grows with the cube of the fan-in (Hammerstrom,
1988)—this paper will analyse the influence of limited fan-
in on the size optimality for the two solutions mentioned.
First, we will extend a result from Horne & Hush (1994)
valid for fan-in A=2 to arbitrary fan-in. Second, we will
prove that size-optimal solutions are obtained for small
constant fan-in for both constructions, while relative mini-
mum size solutions can be obtained for fan-ins strictly
lower that linear. These results are in agreement with simi-
lar ones proving that for small constant fan-ins (A=6...9)
there exist VLSI-optimal (i.e., minimising AT2) solutions
(Beiu, 1997a), while there are similar small constants re-
lating to our capacity of processing information (Miller
1956).

Keywords—neural networks, fan-in, threshold circuits,
Boolean functions/circuits, circuit complexity, VLSI com-
plexity.

1. Introduction

In this paper we shall consider feedforward neural net-
works (NNs) made of linear threshold gates (TGs), or per-
ceptrons. A TG is computing a Boolean function (BF):

f:{0,1}" > {0, 1},

where an input vector is Z, = (2., ..., Z,)> and:
F@Z) = sgn(Xis Wiz, +6),

On leave of absence from the “Politehnica” University of Bucharest,
Computer Science Department, Spl. Independentei 313, RO-77206
Bucharest, Roménia.

On leave of absence from the Polish Academy of Sciences, Institute
of Fundamental Technological Research, Swietokrzyska 21, 00-049
Warsaw, Poland.

with the synaptic weights w, €eR, thresholds 6 €R, and
sgn the sign function. The cost functions commonly asso-
ciated are depth (i.e., number of edges on the longest input-
to-output path, or number of layers) and size (i.e., number
of neurons). However, the area of the connections counts,
and the area of one neuron can be related to its associated
weights, thus “comparing the number of nodes is inade-
quate for comparing the complexity of NNs as the nodes
themselves could implement quite complex functions” (Wil-
liamson, 1990). That is why several authors (Abu-Mostafa,
1988; Hammerstrom, 1988; Phatak & Koren, 1994) have
taken into account the total number-of-connections, or the
total number-of-bits needed to represent the weights and the
thresholds (Bruck & Goodmann, 1988), or the sum of all
the weights and the thresholds (Beiu et al., 1994). The sum
of all the weights and the thresholds (also applied for de-
fining the minimum-integer TG realisation of a BF) has
been recently used—under the name of “tofal weight mag-
nitude”—in the context of computational learning theory
for improving on several standard VC-theory bounds (Bar-
tlett, 1996). A similar definition of ‘complexity’ X w,-2 has
also been advocated (Zhang & Miihlenbein, 1993). Such
approximations can easily be related to assumptions on how
the area of a chip scales with the weights and the
thresholds (Beiu, 1996b, 1997a):

o for digital implementation, the area scales with the cu-
mulative storage of weights and thresholds (as the bits
for representing those weights and thresholds have to
be stored);

o for analog implementations (e.g., using resistors or ca-
pacitors) the same type of scaling is valid (although it
is possible to come up with implementations having
binary encoding of the parameters—for which the
area would scale with the cumulative log-scale size of
the parameters);

e some types of implementations (e.g., transconduc-
tance ones) even offer a constant size per element, thus
in principle scaling only with the number of parame-
ters (i.e., with the total number-of-connections).




It is worth emphasising that it is anyhow desirable to limit
the range of parameter values (Wray & Green, 1995) for
VLSI implementations because: (i) the maximum value of
the fan-in (Walker et al., 1989); and (ii) the maximal ratio
between the largest and the smallest weight cannot grow
over a certain (technological) limit. The paper will discuss
the influence of limiting the fan-in on the size optimality of
two different size-optimal solutions. It is structured as fol-
lows: Section 2 presents pervious results, while in Section
3 we shall prove our main claims. Conclusions and open
problems for research complete the paper.

2. Previous Results

One starting point is a classic construction for synthesis-
ing one BF with fan-in 2 AND-OR gates. It was extended to
the multioutput case and modified to apply to NNs.

Proposition 1 (Theorem 3 from (Horne & Hush, 1994))
Arbitrary Boolean functions f: {0, 1}" — {0, 1} can be
implemented in a NN of perceptrons restricted to fan-in 2
with a node complexity of © {L2"/(n+1logw)} and re-
quiring O (n) layers.

Sketch of proof The idea is to decompose each output BF
into two subfunctions using Shannon’s Decomposition
(Shannon, 1949):

S %y

By doing this recursively for each subfunction, the output
BFs will—in the end—be implemented by binary trees.
Horne & Hush (1994) use a trick for eliminating most of
the lower level nodes by replacing them with a subnetwork
that computes all the possible BFs needed by the higher
level nodes. Each subcircuit eliminates one variable and has
three nodes (one OR and two ANDs). Thus the upper tree
has:

K%)= Xy fo (e X)) + X0 fr (g X0X,) -

SIZ€ ey = 3P 25120
=3u(2"91-1) 1)
nodes, and:

dep th upper 2 (n - q) .

The subfunctions now depend on only g variables, and a
lower subnetwork that computes all the possible BFs of g
variables is built. It has:

= 3‘2:‘2122

<4.2% @

S1Z€ oyer

nodes, and:

depth lower = 2 q

(see Figure 2 in (Horne & Hush, 1994)). That g which min-
imises
Size pr, = Size

upper + size lower

is determined by solving d (size gz,) / dq = 0, and gives:

~ log{n + logp — 2log(n + logy)}. 3

By substituting (3) in (1) and (2), the minimum size:
size e = 302" 79

=3u-2"(n+logu)

is determined. '}

Proposition 2 (Theorem I from (Red’kin, 1970)) The
complexity realisation (i.e., number of threshold elements)
of IF, ,, (the class of Boolean functions f (x, x,...x,_,X,) that
have exactly m groups of ones) is at most 2 \2m + 3.

The construction has: a first layer of [(2m) /%] TGs (com-
PARISONS) with fan m n and weights <2~ L a second
layer of 2 I'(m 72V TGs of fan-in= n+r(2m) 2 and
weights <2"; one more TG of fan-in=2[(m/2)'/*] and
weights € {— 1 +1} in the third layer.

3. Limited Fan-in and Optimal Solutions

Proposition 3 (this paper) Arbitrary Boolean functions
f:{0,1}* - {0, 1}* can be implemented in a NN of per-
ceptrons restricted to fan-in A in O (n/1ogA) layers.

Proof We use the same approach as Horne & Hush (1994)
for the case when the fan in is limited to A. Each output BF
can be decomposed in 24~ 1 subfunctions (ie., 241 AnD
gates). The OR gate would have 2 A- inputs. Thus we have
to decompose it in a A-ary tree of fan-in = A OR gates. This
decomposition step eliminates A —1 variables and gener-
ates a A-ary tree having:

depth 1+[(A-1)/1ogAl,

and:

size. =22714rA 1oy /sa- ).

Repeating this procedure recursively k times, we have:

depth = k- {1+(A-1)/logAl} 4)

upper
size = 284 1e? - np/a- D) x

le{cz—ol 9 i (A1)

upper



= size- {2¥@-D_1} /8- 11y
=2kA-D (1 11/n)
~ nkA-k %)

where the subfunctions depend only on g=n—~ kA vari-
ables. We now generate all the possible subfunctions of g
variables with a subnetwork of:

depth,,,,, = L(n—kA)/Al{1+[(A-1)/logA1}(6)

SiZ€ 1o 28" - /- 1) x

/Al —k n—kA—iA
> 22

i=1

0 A n-Gk+1)A
= size- {22 +22 +...+2?

}

n-(k+1)A 0

A

(size+1)-22
- 2A'22n—kA—A (8)
The inequality (7) can be proved by induction. Cleatly,

0 0
size - 2% < (size+1)-22.

Let us consider the statement true for o; we prove it for
o+1:

0 A oA (a+DA
size- {22 +2% +...+2%  } + size 22

2(ou—l)A

2(0t+1)A
< size-2 + 2

0 A oA
size- {22 +22 +...+2% )
ZLXA
< (size+1)-2

(due to hypothesis), thus:

. 20A 2(a+1)A
(size+1)-2 <2

and computing the logarithm of the left side:

2% 1 log (size + 1)

=2% 4 og{227 1412 1 -y sra- 1)1}

2% 4 jog {2471 +2271/A+1)

A

< 2% LA
< y@+DA

From (4) and (6) we can estimate depth g, and from (5)

and (8) size gy, as:

depth g = {k+L(n—kA)/Al} {1+T(A-1)/1ogAT}

= (n/A) - (A/logA+1) €)
= n/logA
= 0 (n/logA)
size g, = W-size- {2¥G"D_1} /(A-1) +
2n—(lc+1)A
+ (size+1) -2
n—kA-A
~ 2k 9 52 (10)
concluding the proof. ' o

Proposition 4 (this paper) All the critical points of the size
size g, (W, 1, k, A) are relative minimum and are situated in
the (close) vicinity of the parabola kA = n —log(n + logp).

Proof To determine the critical points, we equate the par-
tial derivatives to zero. Starting from the approximation of
Size gp, We compute 0size 5, /0k = O

pe2®kamya-1) +

n~kA-A
+2822 (n2) - 2" ¥ =Am2). (-A) = 0

n—kA-A

{(LA=-1)/A/(n2)} - 2%A~k=-n  _ 52

and using the notations kA=, p=p (A - 1) /(A In2), and
taking logarithms of both sides:

logB+2y—k-n =2""Y"A an

which has an approximate solution y=n — log(n + logp).
The same result can be obtained by computing with finite
differences (instead of approximating the partial deriva-
tive):

size gr, (W, 1, k+ 1, A) — sizegr, (W, n, Kk, A) = 0

n—kA-A

size-{].L-ZkA_k—Z2 } =o0

n-kA-A
wo2Mk g2

and after taking twice the logarithm of both sides and using
the same notations we have:

log {logp + y(1-1/A)}
Yy =n—{A+log(1-1/A)} -
~log {y+A/(A-1)-logu}

=n-y-A

u

n — A - log (y+logw), (12)
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Figure 1. Size (in logarithmic scale) of NNs implementing arbitrary BFs as a function of fan-in and k, for: (a) n=16; (b)
n=64; (c) n=256 (clipped at 21000), and the contour plots for the same cases (d), (e), (f).

which has as the approximate solution: n-y-4

= {1 - 22" "/(km2)} - 22
Y = n-log(n+logu).
which—by neglecting 27+ Ay {k (In2) - 2™} —gives:
Starting again from (10), we compute dsize gr, /0A = 0:

oA logB+2y—k—-n =2""7"4

KA-k A 2"

n2 (n2) k + 27 (n2) 2 + i.e., the same equation as (11). These show that the critical
points are situated in the (close) vicinity of the parabola
kA = n —log(n + logp). The fact that they are relative mini-

on-Y-4 mum has also been proven (Beiu 1997b). Q

kA~

+28227 A(1112)2""“‘“A(1112) -k =0

n—y-A
pk-27% = g@2)2" 7722 -24.2

k27" k. ov-n The exact size has been computed for many different val-
ues of n, W, A and k. One example of those extensive simu-
k(n2) 2 2"TTA 2A. 911 o gn-T-a lations is plotted in Figure 1. From.Figure I(a) it may seem
that k and A have almost the same influence on size gy, The
n-y-A discrete parabola-like curves (the one closer to the axes is
approximately kA = n —log(n +logp)) can be seen in Fig-

ure 1(b).

uk-ZZY_k_" - {k(lnz)_zY+A—n} 22

(u/lnz) . 22’y—k—n

Table 1. Minimum size 4, for different values of n and p=1.

n |8=2316=2%/32=25| 64=2% | 128=27 | 256=2% | 512=2° | 1024=21 2048 =21

349,530 1.611x10°[6.917 x 10 18|5.104 x 1038|2.171 x 107®| 1.005x10%* | 1.685x 1037
6 2 2 2 2 2 2
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Figure 2. The reduced size (in logarithmic scale) of NNs implementing IF, ,, functions for m = 2% () £=0.1; (b) £=0.5;
(¢) £=0.9; and the contour plots for the same cases (d), (e), (f). The lowest values are obtained for very small

constant fan-in values.

Proposition 5 (this paper) The absolute minimum of
Size g, is obtained for fan-in A =2.

Sketch of proof We will analyse only the critical points by
using the approximation kA = n—logn. Intuitively the
claim can be understood if we replace this value in (10):

n—-n+logn—A

size;n ~ u.zn—logn—k + 2A_22

< p-onloen 2892
=p-2%n + 2427,
which clearly is minimised for A=2. m]

The detailed proof relies on computing the size:
size g, (n, W, k, A) for k = (n—logn) /A, and then showing
that:

size s (1 My A+ 1) = size g, (n, 0, A) > 0.

Hence, the function is monotonically increasing and the
minimum is obtained for the smallest fan-in A = 2. Because
the proof has been obtained using successive approxima-
tions, several simulation results are presented in Table 1. It
can be seen that while for relatively small » the size-optimal

solutions are obtained even for A=16, starting from
n 2> 64 all the size-optimal solutions are obtained for A =2.
It is to be mentioned that the other relative minima (on, or
in the vicinity of the parabola kA = n—logn) are only
slightly larger than the absolute minimum. They might be
of practical interest as leading to networks having fewer
layers: n/logA instead of n. Last, but not least, it is to be
remarked that all these relative minimum are obtained for
fan-ins strictly lower that linear (as A <n —logn).

A similar result can be obtained for JF, ,,, as the first layer
is represented by COMPARISONS (i.e., IF, ;) which can be de-

composed to satisfy the limited fan-in condition (Beiu,
1998; Beiu & Taylor, 1996a).

Proposition 6 (Lemma 1 & Corollary 1 (Beiu et al., 1994))
The COMPARISON of two n-bit numbers can be computed by
a A-ary tree NN having integer weights and thresholds
bounded by 24 for any3<A<n

The size complexity of the NN implementing one I, ,
function is (Beiu et al., 1994):
1 13)
+ depth } ’

1
] = 2nmm-{—< + ...
size jp nm {A/Z “r




Table 2 (from (Beiu, 1996b)). Different estimates of AT? for sRK (Siu et al., 1991), B_4 and B_log (Beiu et al., 1994; Beiu,
1996b), rRos (Roychowdhury et al., 1994) and veB (Vassiliadis et al., 1996).

elay Depth
Area

Fan-in Length

Size ATZ

Y. w fan-ins

3w wil+ion)

where:
depthy = logn/(logA- 1)1,

but a substantial enhancement is obtained if the fan-in is
limited. The maximum number of different BFs which can
be computed in each layer is:

2”/A2A(A/2)
A/2 o

2n/A
depth g -1
(A/2)

@n/A) 2%,

L)

depth g, -1
AG/DTE gy

For large m (needed for achieving a certain precision
(Beiu, 1998; Wray & Green, 1995)), and/or large n, the first
terms of the sum (13) will be larger than the equivalent ones
from (14). This is equivalent to the trick from (Horne &
Hush, 1994), as the lower levels will compute all the pos-
sible functions using only limited fan-in COMPARISONS.
Hence, the optimum size becomes:

k i-1 depth
., YY) PR m
sizep = 2n- 3+ Z Y
~ A2 @/

0 (i) ATZ,

ATB 4 = 0 (n lOg n) (1 ATB 4

O (nlogn) @ 0 (n )

2
ATyce

= O (nlog’n) @ | AT2, = 0@>

Following similar steps to the ones used in Proposition
5, it is possible to show that the minimum size is obtained
for A=3. To get a better understanding, we have done
simulations by considering that m = 2 ®". Some results can
be seen in Figure 2 (for € = 0.99).

We mention here that similar results (A =6...9), based
on closer estimates of area and delay have been proved for
VLSI-efficient implementations of JF, ,, functions (Beiu
1996b, 1997a). Different complexity estimates for COM-
PARISON can be seen in Table 2. All of these support the
claim that small constant farn-in NNs can be size- and VLSI-
optimal.

4. Conclusions and Open Problems

In this paper, we have extended a result from Horne &
Hush (1994) valid for fan-in A =2 to arbitrary fan-ins, and
have shown that the minimum size is obtained for small
(constant) fan-ins. We have also shown that, using their
construction, it is possible to obtain ‘good’ (i.e., relative
minimum) solutions for fan-ins strictly lower than linear.
The same results have been obtained for the size-optimal




solution of Red’kin (1970). The main conclusions are that:
(i) there are interesting fan-in dependent depth-size (and
area-delay) tradeoffs; and (ii) there are optimal solutions
having small constant fan-in values. Future work will con-
centrate on linking these results with the entropy of the
data-set, and with principles like “Occam’s razor” (Zhang
& Miihlenbein, 1993) and “minimum description length”,
as well as trying to find closer estimates for mixed ana-
log/digital implementations. The main conclusion is that
VLSI-optimal solutions can be obtained for small (con-
stant) fan-ins, and with respect to that we mention here that
there are similar small constants relating to our capacity of
processing information (Miller, 1956).
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