

LA-UR- 97-4359

DEEPER AND SPARSER NETS ARE OPTIMAL

Title:

CONF-980216-

Author(s):

Valeriu Beiu
Hanna E. Makaruk

RECEIVED
MAR 25 1998
OSTI

19980422 089

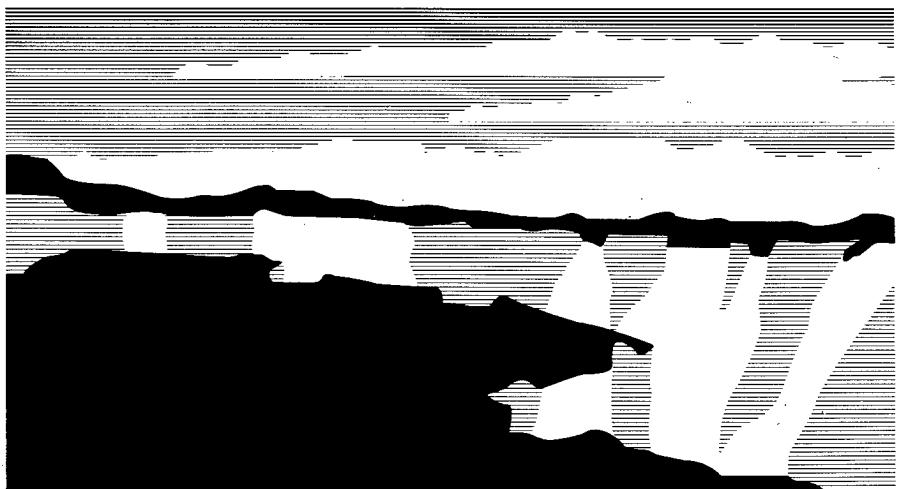
MASTER

Submitted to:

International Symposium on Engineering of Intelligent Systems EIS '98
Tenerife, Spain
February 9-13, 1998

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

~~DO NOT SPREAD THIS DOCUMENT~~



Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Form No. 836 R5
ST 2629 10/91

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Deeper and Sparser Nets Are Optimal

Valeriu Beiu¹ and Hanna E. Makaruk²

Space & Atmospheric Div. NIS-1, MS D466, and Theoretical Div. T-13 MS B213
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
E-mail: {beiu, hanna_m}@lanl.gov

Abstract—The starting points of this paper are two size-optimal solutions: (i) one for implementing arbitrary Boolean functions (Horne & Hush, 1994); and (ii) another one for implementing certain sub-classes of Boolean functions (Red'kin, 1970). Because VLSI implementations do not cope well with highly interconnected nets—the area of a chip grows with the cube of the fan-in (Hammerstrom, 1988)—this paper will analyse the influence of limited fan-in on the size optimality for the two solutions mentioned. First, we will extend a result from Horne & Hush (1994) valid for fan-in $\Delta = 2$ to arbitrary fan-in. Second, we will prove that size-optimal solutions are obtained for small constant fan-in for both constructions, while relative minimum size solutions can be obtained for fan-ins strictly lower than linear. These results are in agreement with similar ones proving that for small constant fan-ins ($\Delta = 6 \dots 9$) there exist VLSI-optimal (i.e., minimising AT^2) solutions (Beiu, 1997a), while there are similar small constants relating to our capacity of processing information (Miller 1956).

Keywords—neural networks, fan-in, threshold circuits, Boolean functions/circuits, circuit complexity, VLSI complexity.

1. Introduction

In this paper we shall consider feedforward neural networks (NNs) made of linear threshold gates (TGs), or perceptrons. A TG is computing a Boolean function (BF):

$$f: \{0, 1\}^n \rightarrow \{0, 1\},$$

where an input vector is $Z_k = (z_{k,0}, \dots, z_{k,n-1})$, and:

$$f(Z_k) = \text{sgn}(\sum_{i=0}^{n-1} w_i z_{k,i} + \theta),$$

¹ On leave of absence from the “Politehnica” University of Bucharest, Computer Science Department, Spl. Independenței 313, RO-77206 Bucharest, România.

² On leave of absence from the Polish Academy of Sciences, Institute of Fundamental Technological Research, Świdnicka 21, 00-049 Warsaw, Poland.

with the synaptic weights $w_i \in \mathbb{R}$, thresholds $\theta \in \mathbb{R}$, and sgn the sign function. The cost functions commonly associated are *depth* (i.e., number of edges on the longest input-to-output path, or number of layers) and *size* (i.e., number of neurons). However, the *area* of the connections counts, and the *area* of one neuron can be related to its associated *weights*, thus “*comparing the number of nodes is inadequate for comparing the complexity of NNs as the nodes themselves could implement quite complex functions*” (Williamson, 1990). That is why several authors (Abu-Mostafa, 1988; Hammerstrom, 1988; Phatak & Koren, 1994) have taken into account the total *number-of-connections*, or the total *number-of-bits* needed to represent the *weights* and the *thresholds* (Bruck & Goodmann, 1988), or the sum of all the *weights* and the *thresholds* (Beiu *et al.*, 1994). The sum of all the *weights* and the *thresholds* (also applied for defining the minimum-integer TG realisation of a BF) has been recently used—under the name of “*total weight magnitude*”—in the context of computational learning theory for improving on several standard VC-theory bounds (Barlett, 1996). A similar definition of ‘complexity’ $\sum w_i^2$ has also been advocated (Zhang & Mühlenbein, 1993). Such approximations can easily be related to assumptions on how the *area* of a chip scales with the *weights* and the *thresholds* (Beiu, 1996b, 1997a):

- for digital implementation, the *area* scales with the cumulative storage of *weights* and *thresholds* (as the bits for representing those *weights* and *thresholds* have to be stored);
- for analog implementations (e.g., using resistors or capacitors) the same type of scaling is valid (although it is possible to come up with implementations having binary encoding of the parameters—for which the *area* would scale with the cumulative log-scale size of the parameters);
- some types of implementations (e.g., transconductance ones) even offer a constant size per element, thus in principle scaling only with the number of parameters (i.e., with the total *number-of-connections*).

It is worth emphasising that it is anyhow desirable to limit the range of parameter values (Wray & Green, 1995) for VLSI implementations because: (i) the maximum value of the *fan-in* (Walker *et al.*, 1989); and (ii) the maximal ratio between the largest and the smallest *weight* cannot grow over a certain (technological) limit. The paper will discuss the influence of limiting the *fan-in* on the *size* optimality of two different *size*-optimal solutions. It is structured as follows: Section 2 presents previous results, while in Section 3 we shall prove our main claims. Conclusions and open problems for research complete the paper.

2. Previous Results

One starting point is a classic construction for synthesising one BF with *fan-in* 2 AND-OR gates. It was extended to the multioutput case and modified to apply to NNs.

Proposition 1 (Theorem 3 from (Horne & Hush, 1994)) *Arbitrary Boolean functions $f: \{0, 1\}^n \rightarrow \{0, 1\}^{\mu}$ can be implemented in a NN of perceptrons restricted to fan-in 2 with a node complexity of $\Theta\{\mu 2^n / (n + \log \mu)\}$ and requiring $O(n)$ layers.*

Sketch of proof The idea is to decompose each output BF into two subfunctions using Shannon's Decomposition (Shannon, 1949):

$$f(x_1 x_2 \dots x_{n-1} x_n) = \bar{x}_1 f_0(x_2 \dots x_{n-1} x_n) + x_1 f_1(x_2 \dots x_{n-1} x_n).$$

By doing this recursively for each subfunction, the output BFs will—in the end—be implemented by binary trees. Horne & Hush (1994) use a trick for eliminating most of the lower level nodes by replacing them with a subnetwork that computes *all the possible BFs* needed by the higher level nodes. Each subcircuit eliminates one variable and has three nodes (one OR and two ANDs). Thus the upper tree has:

$$\begin{aligned} \text{size}_{\text{upper}} &= 3 \mu \cdot \sum_{i=0}^{n-q-1} 2^i \\ &= 3 \mu (2^{n-q} - 1) \end{aligned} \quad (1)$$

nodes, and:

$$\text{depth}_{\text{upper}} = 2(n - q).$$

The subfunctions now depend on only q variables, and a lower subnetwork that computes all the possible BFs of q variables is built. It has:

$$\begin{aligned} \text{size}_{\text{lower}} &= 3 \cdot \sum_{i=1}^q 2^{2^i} \\ &< 4 \cdot 2^{2^q} \end{aligned} \quad (2)$$

nodes, and:

$$\text{depth}_{\text{lower}} = 2q$$

(see *Figure 2* in (Horne & Hush, 1994)). That q which minimises

$$\text{size}_{\text{BFs}} = \text{size}_{\text{upper}} + \text{size}_{\text{lower}}$$

is determined by solving $d(\text{size}_{\text{BFs}})/dq = 0$, and gives:

$$q \approx \log\{n + \log \mu - 2\log(n + \log \mu)\}. \quad (3)$$

By substituting (3) in (1) and (2), the minimum *size*:

$$\text{size}_{\text{BFs}} \approx 3\mu 2^{n-q}$$

$$= 3\mu \cdot 2^n / (n + \log \mu)$$

is determined. \square

Proposition 2 (Theorem 1 from (Red'kin, 1970)) *The complexity realisation (i.e., number of threshold elements) of $\text{IF}_{n,m}$ (the class of Boolean functions $f(x_1 x_2 \dots x_{n-1} x_n)$ that have exactly m groups of ones) is at most $2\sqrt{2m} + 3$.*

The construction has: a first layer of $\lceil(2m)^{1/2}\rceil$ TGs (COMPARISONS) with *fan-in* = n and *weights* $\leq 2^{n-1}$; a second layer of $2\lceil(m/2)^{1/2}\rceil$ TGs of *fan-in* = $n + \lceil(2m)^{1/2}\rceil$ and *weights* $\leq 2^n$; one more TG of *fan-in* = $2\lceil(m/2)^{1/2}\rceil$ and *weights* $\in \{-1, +1\}$ in the third layer.

3. Limited Fan-in and Optimal Solutions

Proposition 3 (this paper) *Arbitrary Boolean functions $f: \{0, 1\}^n \rightarrow \{0, 1\}^{\mu}$ can be implemented in a NN of perceptrons restricted to fan-in Δ in $O(n/\log \Delta)$ layers.*

Proof We use the same approach as Horne & Hush (1994) for the case when the *fan-in* is limited to Δ . Each output BF can be decomposed in $2^{\Delta-1}$ subfunctions (i.e., $2^{\Delta-1}$ AND gates). The OR gate would have $2^{\Delta-1}$ inputs. Thus we have to decompose it in a Δ -ary tree of *fan-in* = Δ OR gates. This decomposition step eliminates $\Delta - 1$ variables and generates a Δ -ary tree having:

$$\text{depth} = 1 + \lceil(\Delta - 1) / \log \Delta\rceil,$$

and:

$$\text{size} = 2^{\Delta-1} + \lceil(2^{\Delta-1} - 1) / (\Delta - 1)\rceil.$$

Repeating this procedure recursively k times, we have:

$$\text{depth}_{\text{upper}} = k \cdot \{1 + \lceil(\Delta - 1) / \log \Delta\rceil\} \quad (4)$$

$$\begin{aligned} \text{size}_{\text{upper}} &= \{2^{\Delta-1} + \lceil(2^{\Delta-1} - 1) / (\Delta - 1)\rceil\} \times \\ &\quad \times \sum_{i=0}^{k-1} 2^{i(\Delta-1)} \end{aligned}$$

$$\begin{aligned}
&= \text{size} \cdot \{2^{k(\Delta-1)} - 1\} / (2^{\Delta-1} - 1) \\
&\approx 2^{k(\Delta-1)} \cdot (1 + 1/\Delta) \\
&\approx 2^{k\Delta-k}
\end{aligned} \tag{5}$$

where the subfunctions depend only on $q = n - k\Delta$ variables. We now generate all the possible subfunctions of q variables with a subnetwork of:

$$\text{depth}_{\text{lower}} = \lfloor (n - k\Delta) / \Delta \rfloor \{1 + \lceil (\Delta - 1) / \log \Delta \rceil\} \tag{6}$$

$$\begin{aligned}
\text{size}_{\text{lower}} &= \{2^{\Delta-1} + \lceil (2^{\Delta-1} - 1) / (\Delta - 1) \rceil\} \times \\
&\quad \times \sum_{i=1}^{\lfloor n/\Delta \rfloor - k} 2^{2^{n-k\Delta-i\Delta}} \\
&= \text{size} \cdot \{2^{2^0} + 2^{2^\Delta} + \dots + 2^{2^{n-(k+1)\Delta}}\} \\
&< (\text{size} + 1) \cdot 2^{2^{n-(k+1)\Delta}} \tag{7} \\
&\approx 2^\Delta \cdot 2^{2^{n-k\Delta-\Delta}}
\end{aligned}$$

The inequality (7) can be proved by induction. Clearly,

$$\text{size} \cdot 2^{2^0} < (\text{size} + 1) \cdot 2^{2^0}.$$

Let us consider the statement true for α ; we prove it for $\alpha + 1$:

$$\begin{aligned}
&\text{size} \cdot \{2^{2^0} + 2^{2^\Delta} + \dots + 2^{2^{\alpha\Delta}}\} + \text{size} \cdot 2^{2^{(\alpha+1)\Delta}} \\
&< \text{size} \cdot 2^{2^{(\alpha+1)\Delta}} + 2^{2^{(\alpha+1)\Delta}} \\
&\text{size} \cdot \{2^{2^0} + 2^{2^\Delta} + \dots + 2^{2^{\alpha\Delta}}\} \\
&< (\text{size} + 1) \cdot 2^{2^{\alpha\Delta}}
\end{aligned}$$

(due to hypothesis), thus:

$$(\text{size} + 1) \cdot 2^{2^{\alpha\Delta}} < 2^{2^{(\alpha+1)\Delta}}$$

and computing the logarithm of the left side:

$$\begin{aligned}
&2^{\alpha\Delta} + \log(\text{size} + 1) \\
&= 2^{\alpha\Delta} + \log\{2^{\Delta-1} + \lceil (2^{\Delta-1} - 1) / (\Delta - 1) \rceil\} \\
&< 2^{\alpha\Delta} + \log\{2^{\Delta-1} + 2^{\Delta-1} / \Delta + 1\} \\
&< 2^{\alpha\Delta} + \Delta \\
&< 2^{(\alpha+1)\Delta}.
\end{aligned}$$

From (4) and (6) we can estimate $\text{depth}_{\text{BFs}}$, and from (5)

and (8) size_{BFs} as:

$$\begin{aligned}
\text{depth}_{\text{BFs}} &= \{k + \lfloor (n - k\Delta) / \Delta \rfloor\} \{1 + \lceil (\Delta - 1) / \log \Delta \rceil\} \\
&= (n / \Delta) \cdot (\Delta / \log \Delta + 1)
\end{aligned} \tag{9}$$

$$\begin{aligned}
\text{size}_{\text{BFs}} &= \mu \cdot \text{size} \cdot \{2^{k(\Delta-1)} - 1\} / (\Delta - 1) + \\
&\quad + (\text{size} + 1) \cdot 2^{2^{n-(k+1)\Delta}} \\
&\approx \mu \cdot 2^{k\Delta-k} + 2^\Delta \cdot 2^{2^{n-k\Delta-\Delta}}
\end{aligned} \tag{10}$$

concluding the proof. \square

Proposition 4 (this paper) All the critical points of the size $\text{size}_{\text{BFs}}(\mu, n, k, \Delta)$ are relative minimum and are situated in the (close) vicinity of the parabola $k\Delta \approx n - \log(n + \log \mu)$.

Proof To determine the critical points, we equate the partial derivatives to zero. Starting from the approximation of size_{BFs} we compute $\partial \text{size}_{\text{BFs}} / \partial k = 0$:

$$\begin{aligned}
&\mu \cdot 2^{k\Delta-k} (\ln 2) (\Delta - 1) + \\
&+ 2^\Delta \cdot 2^{2^{n-k\Delta-\Delta}} (\ln 2) \cdot 2^{n-k\Delta-\Delta} (\ln 2) \cdot (-\Delta) = 0 \\
&\{\mu (\Delta - 1) / \Delta / (\ln 2)\} \cdot 2^{2k\Delta-k-n} = 2^{2^{n-k\Delta-\Delta}}
\end{aligned}$$

and using the notations $k\Delta = \gamma$, $\beta = \mu (\Delta - 1) / (\Delta \ln 2)$, and taking logarithms of both sides:

$$\log \beta + 2\gamma - k - n = 2^{n-\gamma-\Delta} \tag{11}$$

which has an approximate solution $\gamma \approx n - \log(n + \log \mu)$. The same result can be obtained by computing with finite differences (instead of approximating the partial derivative):

$$\text{size}_{\text{BFs}}(\mu, n, k+1, \Delta) - \text{size}_{\text{BFs}}(\mu, n, k, \Delta) = 0$$

$$\begin{aligned}
\text{size} \cdot \{\mu \cdot 2^{k\Delta-k} - 2^{2^{n-k\Delta-\Delta}}\} &= 0 \\
\mu \cdot 2^{k\Delta-k} &= 2^{2^{n-k\Delta-\Delta}}
\end{aligned}$$

and after taking twice the logarithm of both sides and using the same notations we have:

$$\begin{aligned}
\log \{\log \mu + \gamma (1 - 1/\Delta)\} &= n - \gamma - \Delta \\
\gamma &= n - \{\Delta + \log(1 - 1/\Delta)\} - \\
&\quad - \log \{\gamma + \Delta / (\Delta - 1) \cdot \log \mu\} \\
&\approx n - \Delta - \log(\gamma + \log \mu),
\end{aligned} \tag{12}$$

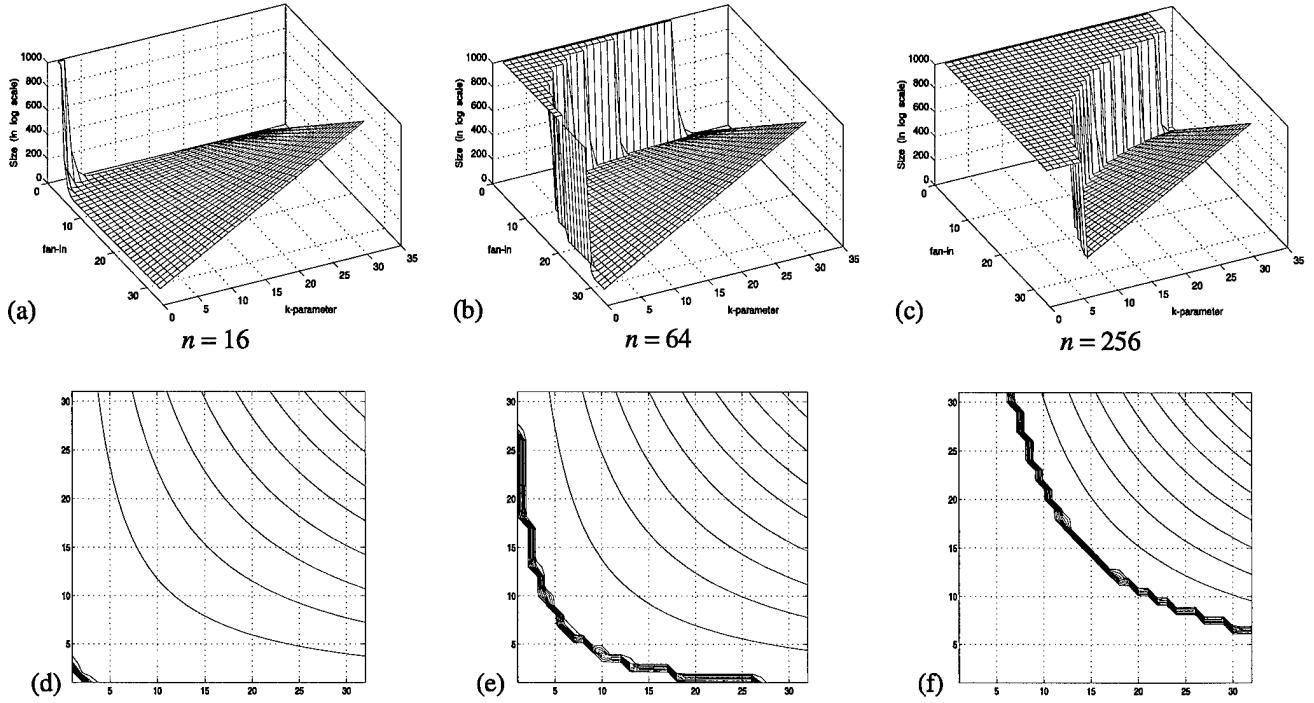


Figure 1. *Size* (in logarithmic scale) of NNs implementing arbitrary BFs as a function of *fan-in* and k , for: (a) $n = 16$; (b) $n = 64$; (c) $n = 256$ (clipped at 2^{1000}), and the contour plots for the same cases (d), (e), (f).

which has as the approximate solution:

$$\gamma = n - \log(n + \log\mu).$$

Starting again from (10), we compute $\partial \text{size}_{BFs} / \partial \Delta = 0$:

$$\begin{aligned} \mu 2^{k\Delta - k} (\ln 2) k + 2^\Delta (\ln 2) 2^{2^{n-k\Delta-\Delta}} + \\ + 2^\Delta 2^{2^{n-k\Delta-\Delta}} (\ln 2) 2^{n-k\Delta-\Delta} (\ln 2) (-k) = 0 \\ \mu k \cdot 2^{\gamma - k} = k (\ln 2) 2^{n-\gamma} \cdot 2^{2^{n-\gamma-\Delta}} - 2^\Delta \cdot 2^{2^{n-\gamma-\Delta}} \\ \mu k \cdot 2^{\gamma - k} \cdot 2^{\gamma - n} \\ = k (\ln 2) 2^{2^{n-\gamma-\Delta}} - 2^\Delta \cdot 2^{\gamma - n} \cdot 2^{2^{n-\gamma-\Delta}} \\ \mu k \cdot 2^{2\gamma - k - n} = \{k (\ln 2) - 2^{\gamma + \Delta - n}\} \cdot 2^{2^{n-\gamma-\Delta}} \\ (\mu / \ln 2) \cdot 2^{2\gamma - k - n} \end{aligned}$$

$$= \{1 - 2^{\gamma + \Delta - n} / (k \ln 2)\} \cdot 2^{2^{n-\gamma-\Delta}}$$

which—by neglecting $2^{\gamma + \Delta} / \{k (\ln 2) \cdot 2^n\}$ —gives:

$$\log \beta + 2\gamma - k - n = 2^{n-\gamma-\Delta}$$

i.e., the same equation as (11). These show that the critical points are situated in the (close) vicinity of the parabola $k\Delta \approx n - \log(n + \log\mu)$. The fact that they are relative minimum has also been proven (Beiu 1997b). \square

The exact *size* has been computed for many different values of n , μ , Δ and k . One example of those extensive simulations is plotted in *Figure 1*. From *Figure 1(a)* it may seem that k and Δ have almost the same influence on size_{BFs} . The discrete parabola-like curves (the one closer to the axes) can be seen in *Figure 1(b)*.

Table 1. Minimum size_{BFs} for different values of n and $\mu = 1$.

n	$8 = 2^3$	$16 = 2^4$	$32 = 2^5$	$64 = 2^6$	$128 = 2^7$	$256 = 2^8$	$512 = 2^9$	$1024 = 2^{10}$	$2048 = 2^{11}$
size	110	1470	349,530	1.611×10^9	6.917×10^{18}	5.104×10^{38}	2.171×10^{76}	1.005×10^{154}	1.685×10^{307}
Δ	4	8	16	2	2	2	2	2	2

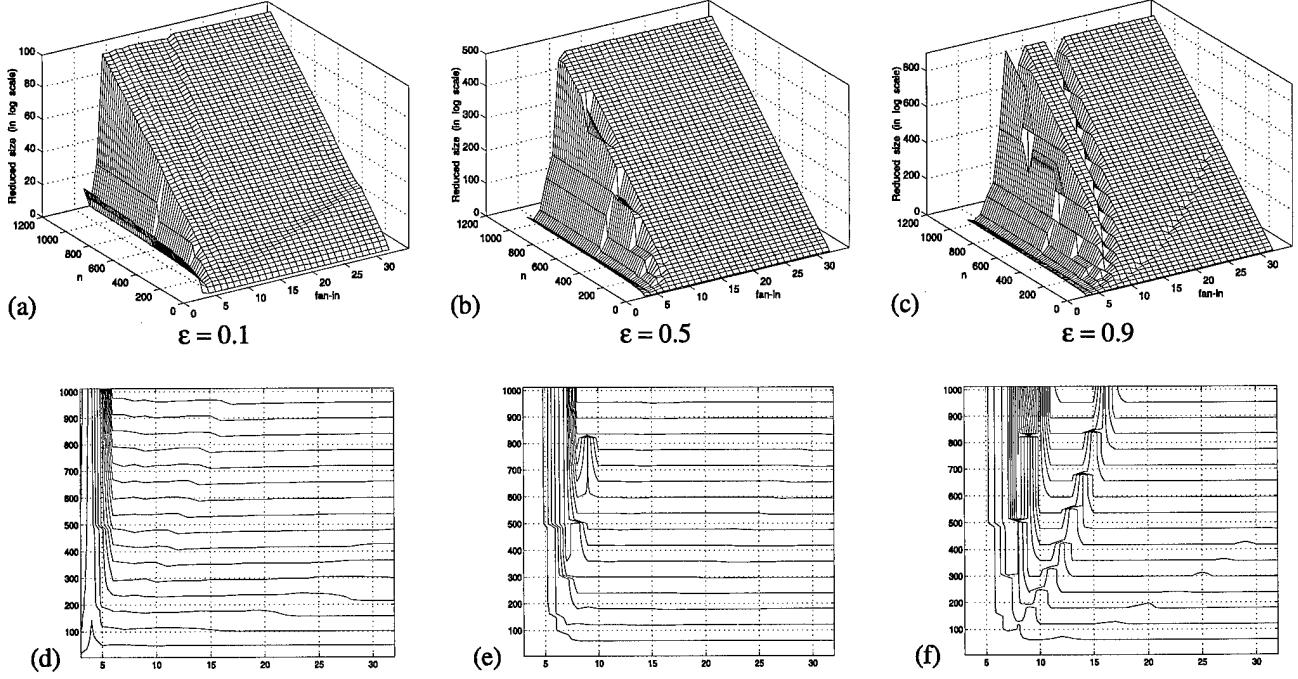


Figure 2. The reduced size (in logarithmic scale) of NNs implementing $IF_{n,m}$ functions for $m = 2^{\varepsilon n}$: (a) $\varepsilon = 0.1$; (b) $\varepsilon = 0.5$; (c) $\varepsilon = 0.9$; and the contour plots for the same cases (d), (e), (f). The lowest values are obtained for very small constant fan-in values.

Proposition 5 (this paper) *The absolute minimum of $size_{BFs}$ is obtained for fan-in $\Delta = 2$.*

Sketch of proof We will analyse only the critical points by using the approximation $k\Delta \approx n - \log n$. Intuitively the claim can be understood if we replace this value in (10):

$$\begin{aligned} size_{BFs}^* &\approx \mu \cdot 2^{n - \log n - k} + 2^\Delta \cdot 2^{n - n + \log n - \Delta} \\ &< \mu \cdot 2^{n - \log n} + 2^\Delta \cdot 2^{\log n} \\ &= \mu \cdot 2^n / n + 2^\Delta \cdot 2^n, \end{aligned}$$

which clearly is minimised for $\Delta = 2$. \square

The detailed proof relies on computing the size: $size_{BFs}(n, \mu, k, \Delta)$ for $k \approx (n - \log n) / \Delta$, and then showing that:

$$size_{BFs}^*(n, \mu, \Delta + 1) - size_{BFs}^*(n, \mu, \Delta) > 0.$$

Hence, the function is monotonically increasing and the minimum is obtained for the smallest fan-in $\Delta = 2$. Because the proof has been obtained using successive approximations, several simulation results are presented in Table 1. It can be seen that while for relatively small n the size-optimal

solutions are obtained even for $\Delta = 16$, starting from $n \geq 64$ all the size-optimal solutions are obtained for $\Delta = 2$. It is to be mentioned that the other relative minima (on, or in the vicinity of the parabola $k\Delta \approx n - \log n$) are only slightly larger than the absolute minimum. They might be of **practical interest** as leading to networks having fewer layers: $n / \log \Delta$ instead of n . Last, but not least, it is to be remarked that all these relative minimum are obtained for fan-ins strictly lower than linear (as $\Delta \leq n - \log n$).

A similar result can be obtained for $IF_{n,m}$, as the first layer is represented by COMPARISONS (*i.e.*, $IF_{n,1}$) which can be decomposed to satisfy the limited fan-in condition (Beiu, 1998; Beiu & Taylor, 1996a).

Proposition 6 (Lemma 1 & Corollary 1 (Beiu et al., 1994)) *The COMPARISON of two n -bit numbers can be computed by a Δ -ary tree NN having integer weights and thresholds bounded by $2^{\Delta/2}$ for any $3 \leq \Delta \leq n$.*

The size complexity of the NN implementing one $IF_{n,m}$ function is (Beiu et al., 1994):

$$size_{IF} = 2nm \cdot \left\{ \frac{1}{\Delta/2} + \dots + \frac{1}{\Delta/2} \right\}, \quad (13)$$

Table 2 (from (Beiu, 1996b)). Different estimates of AT^2 for **SRK** (Siu *et al.*, 1991), **B_4** and **B_log** (Beiu *et al.*, 1994; Beiu, 1996b), **ROS** (Roychowdhury *et al.*, 1994) and **VCB** (Vassiliadis *et al.*, 1996).

<i>Area</i>	<i>Depth</i>	<i>Fan-in</i>	<i>Length</i>
<i>Size</i>	$AT_{VCB}^2 = O(\sqrt{n})$	$AT_{B_4}^2 = O(n \log^2 n)$ (2)	$AT_{VCB}^2 = O(n^2 \sqrt{n})$
	$AT_{ROS}^2 = O(n / \log n)$	$AT_{B_log}^2 = O[n \log^3 n / \log^2(\log n)]$	$AT_{ROS}^2 \cong 3 \cdot n^3 / \log n$
	$AT_{SRK}^2 = O(n)$	$AT_{VCB}^2 = O(n \sqrt{n})$	$AT_{B_log}^2 \cong 4 \cdot n^3 / \log n$
	$AT_{B_log}^2 = O[n \log n / \log^2(\log n)]$	$AT_{ROS}^2 = O(n^3 / \log^3 n)$	$AT_{B_4}^2 \cong 4 \cdot n^3$
	$AT_{B_4}^2 = O(n \log^2 n)$	$AT_{SRK}^2 = O(n^3)$	$AT_{SRK}^2 \cong 27 n^3 / 4$
$\sum_{NN} fan-ins$	$AT_{VCB}^2 = O(n)$	$AT_{B_4}^2 = O(n \log^2 n)$ (3)	$AT_{B_log}^2 \cong 4 n^3$
	$AT_{B_log}^2 = O[n \log^2 n / \log^2(\log n)]$	$AT_{B_log}^2 = O[n \log^4 n / \log^2(\log n)]$	$AT_{VCB}^2 \cong 4 n^3$
	$AT_{B_4}^2 = O(n \log^2 n)$	$AT_{VCB}^2 = O(n^2)$	$AT_{B_4}^2 \cong 5 n^3$
	$AT_{ROS}^2 = O(n^2 / \log^2 n)$	$AT_{ROS}^2 = O(n^4 / \log^4 n)$	$AT_{ROS}^2 = O(n^4 / \log^2 n)$
	$AT_{SRK}^2 = O(n^2)$	$AT_{SRK}^2 = O(n^4)$	$AT_{SRK}^2 = O(n^4)$
$\sum_{NN} (\sum_i w_i + \theta)$	$AT_{B_4}^2 = O(n \log^2 n)$ (1)	$AT_{B_4}^2 = O(n \log^2 n)$ (4)	$AT_{B_4}^2 = O(n^3)$
	$AT_{B_log}^2 = O[n \sqrt{n} \log n / \log^2(\log n)]$	$AT_{B_log}^2 = O[n \sqrt{n} \log^3 n / \log^2(\log n)]$	$AT_{B_log}^2 = O(n^3 \sqrt{n} / \log n)$
	$AT_{ROS}^2 = O(n^2 / \log n)$	$AT_{ROS}^2 = O(n^4 / \log^3 n)$	$AT_{ROS}^2 = O(n^4 / \log n)$
	$AT_{SRK}^2 = O(n^2)$	$AT_{SRK}^2 = O(n^4)$	$AT_{SRK}^2 = O(n^4)$
	$AT_{VCB}^2 = O(n^{1/2} \cdot 2^{\sqrt{n}})$	$AT_{VCB}^2 = O(n^{3/2} \cdot 2^{\sqrt{n}})$	$AT_{VCB}^2 = O(n^{5/2} \cdot 2^{\sqrt{n}})$

where:

$$depth_{IF} = \lceil \log n / (\log \Delta - 1) \rceil,$$

but a substantial enhancement is obtained if the *fan-in* is limited. The maximum number of *different BFs* which can be computed in each layer is:

$$(2n/\Delta) 2^\Delta, \quad \frac{2n/\Delta}{\Delta/2} 2^{\Delta(\Delta/2)}, \dots, \\ \frac{2n/\Delta}{\Delta/2} \cdot 2^{\Delta(\Delta/2)^{depth_{IF}-1}}. \quad (14)$$

For large m (needed for achieving a certain precision (Beiu, 1998; Wray & Green, 1995)), and/or large n , the first terms of the sum (13) will be larger than the equivalent ones from (14). This is equivalent to the trick from (Horne & Hush, 1994), as the lower levels will compute *all the possible functions* using only limited *fan-in* COMPARISONS. Hence, the optimum *size* becomes:

$$size_{IF}^* = 2n \cdot \left\{ \sum_{i=1}^k \frac{2^{\Delta(\Delta/2)^{i-1}}}{\Delta(\Delta/2)^{i-1}} + \sum_{i=k+1}^{depth_{IF}} \frac{m}{(\Delta/2)^i} \right\}.$$

Following similar steps to the ones used in *Proposition 5*, it is possible to show that the minimum *size* is obtained for $\Delta = 3$. To get a better understanding, we have done simulations by considering that $m = 2^{\varepsilon n}$. Some results can be seen in *Figure 2* (for $\varepsilon = 0.99$).

We mention here that similar results ($\Delta = 6 \dots 9$), based on closer estimates of *area* and *delay* have been proved for VLSI-efficient implementations of $IF_{n,m}$ functions (Beiu 1996b, 1997a). Different complexity estimates for COMPARISON can be seen in *Table 2*. All of these support the claim that small constant *fan-in* NNs can be *size- and VLSI-optimal*.

4. Conclusions and Open Problems

In this paper, we have extended a result from Horne & Hush (1994) valid for *fan-in* $\Delta = 2$ to arbitrary *fan-ins*, and have shown that the minimum *size* is obtained for small (constant) *fan-ins*. We have also shown that, using their construction, it is possible to obtain ‘good’ (*i.e.*, relative minimum) solutions for *fan-ins* strictly lower than linear. The same results have been obtained for the *size-optimal*

solution of Red'kin (1970). The main conclusions are that: (i) there are interesting *fan-in* dependent *depth-size* (and *area-delay*) tradeoffs; and (ii) there are optimal solutions having small constant *fan-in* values. Future work will concentrate on linking these results with the entropy of the data-set, and with principles like "Occam's razor" (Zhang & Mühlenbein, 1993) and "minimum description length", as well as trying to find closer estimates for mixed analog/digital implementations. The main conclusion is that VLSI-optimal solutions can be obtained for small (constant) *fan-ins*, and with respect to that we mention here that there are similar small constants relating to our capacity of processing information (Miller, 1956).

References

Abu-Mostafa, Y.S. (1988) Connectivity Versus Entropy. In D.Z. Anderson (ed.), *Neural Information Processing Systems*, 1-8. New York, NY: AIP.

Bartlett, P.L. (1996) The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights Is More Important than the Size of the Network. *Tech. Rep.*, Dept. Sys. Eng., Australian Natl. Univ., Canberra [short version as (1997) in M.C. Mozer, M.I. Jordan & T. Petsche (eds.): *Advances in Neural Information Processing Systems*, Cambridge, MA: MIT Press].

Beiu, V., Peperstraete, J.A., Vandewalle, J. & Lauwereins, R. (1994) Area-Time Performances of Some Neural Computations. In P. Borne, T. Fukuda & S.G. Tzafestas (eds.), *SPRANN'94*, 664-668, Lille, France: GERP EC.

Beiu, V. & Taylor, J.G. (1996a) On the Circuit Complexity of Sigmoid Feedforward Neural Networks. *Neural Networks* 9(7):1155-1171.

Beiu, V. (1996b) On the Circuit and VLSI Complexity of Threshold Gate COMPARISON. *Tech. Rep. LA-UR-96-3591*, Los Alamos Natl. Lab., USA [to appear in (1997), *Neurocomputing*].

Beiu V. (1997a) Constant Fan-In Digital Neural Networks Are VLSI-Optimal. *Tech. Rep. LA-UR-97-61*, Los Alamos Natl. Lab., USA; also as (1997) Chapter 12 in S.W. Ellacott, J.C. Mason & I.J. Anderson (eds.), *Mathematics of Neural Networks: Models, Algorithms and Applications*, 89-94, Boston, MA: Kluwer Academic.

Beiu, V. (1997b) When Constants Are Important. *Tech. Rep. LA-UR-97-226*, Los Alamos Natl. Lab., USA. In I. Dumitache (ed.), *Proc. Control Systems & Computer Science CSCS-11*, vol. 2, 106-111, Bucharest, Romania: UPB Press.

Beiu, V. (1998) *VLSI Complexity of Discrete Neural Networks*. Newark, NJ: Gordon & Breach.

Bruck, J. & Goodmann, J.W. (1988) On the Power of Neural Networks for Solving Hard Problems. In D.Z. Anderson (ed.), *Neural Information Processing Systems*, 137-143. New York, NY: AIP [also as (1990), *J. Complexity* 6:129-135].

Hammerstrom, D. (1988) The Connectivity Analysis of Simple Association –or– How Many Connections Do You Need. In D.Z. Anderson (ed.), *Neural Information Processing Systems*, 338-347. New York, NY: AIP.

Horne, B.G. & Hush, D.R. (1994) On the Node Complexity of Neural Networks. *Neural Networks* 7(9):1413-1426.

Miller G.A. (1956) The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information. *Psych. Rev.* 63:71-97.

Phatak, D.S. & Koren, I. (1994) Connectivity and Performances Tradeoffs in the Cascade Correlation Learning Architecture. *IEEE Trans. on Neural Networks* 5(6): 930-935.

Red'kin, N.P. (1970) Synthesis of Threshold Circuits for Certain Classes of Boolean Functions. *Kibernetika* 5:6-9 [English translation as (1973) *Cybernetics* 6(5):540-544].

Roychowdhury, V.P., Orlitsky, A. & Siu, K.-S. (1994) Lower Bounds on Threshold and Related Circuits Via Communication Complexity. *IEEE Trans. on Information Theory* 40(2):467-474.

Shannon, C. (1949) The Synthesis of Two-Terminal Switching Circuits. *Bell Sys. Tech. J.* 28(1):59-98.

Siu, K.-Y., Roychowdhury, V.P. & Kailath, T. (1991) Depth-Size Tradeoffs for Neural Computations. *IEEE Trans. on Comp.* 40(12):1402-1412.

Vassiliadis, S., Cotofana, S. & Berteles, K. (1996) 2-1 Addition and Related Arithmetic Operations with Threshold Logic. *IEEE Trans. on Comp.* 45(9):1062-1068.

Walker, M.R., Haghghi, S., Afghan, A. & Akers, L.A. (1989) Training a Limited-Interconnect, Synthetic Neural IC. In D.S. Touretzky (ed.), *Advances in Neural Information Processing Systems*, 777-784. San Mateo, CA: Morgan Kaufmann.

Williamson, R.C. (1990) ϵ -Entropy and the Complexity of Feedforward Neural Networks. In R.P. Lippmann, J.E. Moody & D.S. Touretzky (eds.), *Advances in Neural Information Processing Systems*, 946-952. San Mateo, CA: Morgan Kaufmann.

Wray, J. & Green, G.G.R. (1995) Neural Networks, Approximation Theory, and Finite Precision Computation. *Neural Networks* 8(1):31-37.

Zhang, B.-T. & Mühlenbein, H. (1993) Genetic Programming of Minimal Neural Networks Using Occam's Razor. *Tech. Rep. GMD 0734*, Schloß Birlinghoven, St. Augustin, Germany [also as (1993) *Complex Systems* 7(3):199-220].

M98003447

Report Number (14) LA-UR--97-4359
CONF-980216 --

Publ. Date (11) 199803
Sponsor Code (18) DOE/MA, XF
UC Category (19) UC-900, DOE/ER

DOE