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Evolution on Folding Landscapes in Combinatorial Structures
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Abstract

In this paper we investigate the evolution of molec-
ular structures by random point mutations. We will
consider two types of molecular structures: (a) (RNA)
secondary structures and (b) random structures. In
both cases structure consists of (i) a contact graph
and (ii) a family of relations imposed on its adjacent
vertices. The vertex set of the contact graph is sim-
ply the set of all indices of a sequence, and its edges
are the bonds. The corresponding relations associated
with the edges are viewed as secondary base pairing
rules and tertiary interaction rules respectively. Map-
pings of sequences into secondary and random struc-
tures are modeled and analyzed. Here, the set of all
sequences that map into a particular structure is mod-
eled as a random graph in the sequence space, the
so called neutral network and we study how neutral
networks are embedded in sequence space. A basic
replication—deletion experiment reveals how effective
secondary and random structures can be searched by
random point mutations and to what extend the struc-
ture effects the dynamics of this optimization process.
In particular we can report a non-linear relation be-
tween the fraction of tertiary interactions in random
structures, and the times taken for a population of se-
quences to find a high-fitness target random structure.

1 Introduction

Evidently, the term “structure” can reflect different
levels of coarse graining. In biophysics “structure” is
defined in terms of some physical conditions, for exam-
ple minimum free energy or kinetic parameters; it can
also be defined as the set of all affine coordinates of the
atoms in a molecule. Alternatively, a structure can be
described as a list of all pairs of coordinates of the se-
quence that are joined by means of chemical bonds. In
this paper we will consider “structure” as such a cor-
relation scheme. In particular we will not assume that
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this scheme has to fulfill constraints that might arise
from an embedding in the three dimensional space. In
order to investigate different aspects of the process,
we consider the following two types of mappings from
RNA sequences: first, mappings into RNA secondary
structures, and second, into random structures which
are described below. For both RNA secondary struc-
tures and random structures, the structure consists of
(¢) a graph (the contact graph), in which the vertices
correspond to the indices of the nucleotides and the
edges correspond to the bonds, and (i7) a set of rela-
tions that represent the base-pairing rules.

2 Structures and compatible sequences

Definition 1 A secondary structure [7] is a vertez-
labeled graph on n wvertices {1,...,n} with an adja-
cency matric A = (a;k)1<ik<n Such that

esa;ir1=1forl1<i<n-1

e for each i there is at most a singlek £1—1,i+1
such that a;x = 1

e ifa;j=ary=landi<k<jtheni<l<j.

We call an edge {i,k}, |i — k| # 1 a bond or base pair.
A vertex i connected only to ¢ — 1 and i + 1 is called
unpaired. The number of base pairs and the number of
unpaired bases in a secondary structure s is n,(s) and
nyu(8) respectively. Let A = {ai,...,an} be an finite
alphabet. A pairing rule Il over A is a symmetric,
binary relation over A. Let s be a secondary struc-
ture and I(s) = {{i,k} |aix =1, k#i—1,i+1}its
set of contacts. The graph ({1,...,n},II(s)) is called
the contact graph of the secondary structure s. It ne-
glects the backbone bonds that are listed in the cor-
responding adjacency matrix. Suppose an alphabet A
and a base pairing rule II is fixed. A secondary struc-
ture induce a partition of sequence space as follows:
a vertex P € QF is compatible to s, if and only if



V{i,j} € Ii(s) : (zi,z;) € II i. e. the coordinates z;
and z; are in II for all pairs {i,5} € II(s). Let Csy]
be the set of all compatible sequences, it exhibits a
graph structure as follows

Clsn] = Q2 x Q) (2.1)

Accordingly, in C[s,] two sequences are adjacent if and
only if they differ in (i) in a single position ¢ which is
unpaired in s, or (ii) in two positions 7 and j which
form a base pair {i,7} € II(s). Secondary structures
have no tertiary bonds. Hence generalized structures
have been introduced [3]. Random structures allow for
a probabilistic analysis of structural properties which
is not feasible for secondary structures. Random struc-
tures allow for two types of contacts; first the sec-
ondary bonds which form a partial 1-factor graph and
second tertiary bonds that are completely random and
occur with independent probability p. More precisely
let 1 > ¢ > 0and 1 > ¢z > 0 be positive con-
stants. Suppose that m(n) is a monotonously increas-
ing map N — N such that lim, ZT’" = ¢1. mn)
can be viewed as the number of secondary bonds of
the random structure. Writing a sequence V € QF as
V =(P,...,P,), let X; be a partial 1-factor graph
on 2m(n) indices, say, {fi,...,%,..} C {1,...,n}.
X; is the contact graph formed by all secondary in-
teractions. Next let X be the random graph ob-
tained by selecting all possible edges between the n
nucleotides except the secondary edges with probabil-
ity co/n. Clearly, the graphs X; form a finite probabil-
ity space by assigning to each 1-regular graph uniform
probability. Analogously, the graphs X, form a finite
probability space where a graph (X3) with k edges has
probability ua { X2} = p’“(l——p)(;)""'k withp = ez /n.
The graphs X, X, induce the random graph X; ® X,
whose vertex set is {1,...,n} and whose edge set
e(X1 ® X3) is the (disjoint) union of all X;, X»-edges.
X1®X; has probability p{ X1 @ X2} = p { X1} p2{X>}
and is called the random contact graph. The probabil-
ity space formed by the graphs X; ® X3 will be referred
toas 'y ...
Definition 2 A random structure (r. s.), s, on n
nucleotides over a finite alphabet A consists of the fol-
lowing pieces of data: (i) a contact graph X; ® X
and (i) a family of symmetric relations (R., Ry)yex,,
where R,,Ry C A x A, such that for all a € A there
exists one b € A such that aRyb.

The relation R, is motivated by Watson-Crick base-
pairing rules observed in RNA secondary structures.
For y € X, the relation R, corresponds to a specific

(tertiary) interaction rule that might be context de-
pendent.

Analogous to secondary structures a vertex (sequence)
V € Q% is called compatible to sy, if and only if (i): for
all bonds y of the partial 1-factor graph X its nu-
cleotides indexed by the extremities {i,k} have the
property P;R, Pi and (ii): its nucleotides fulfill for all
tertiary bonds y € X3: PRy P;. Again we denote the
set of compatible vertices of the r. s. s, by C[sn]. The
contact graph X; ® X, induces a partition of its ver-
tex set {1,...,n} into the vertex sets of its components
(C}i)), where Cgi) denotes component i of X; ® X5 con-
taining exactly £ indices. Let V = (P,...,P,) be a
compatible sequence. Each component of the contact
graph X; ® X, Cg'), induces a multi-set (B;,, ..., B;,),
consisting of nucleotides whose indices belong to Cy).
This multi-set can be viewed to be an element of a new
alphabet, A;, whose elements are all possible multi-
sets (P;,...,P;,) induced by compatible sequences.
Accordingly we can rewrite a compatible sequence as

(cf. (2.1))
(Aiyy. . A, (2.2)

[ being the number of components of the contact
graph. We next analyze the graph structure of the
contact graph of random structures [3].

Theorem 1 Let 0 < ¢3,¢1 < 1, Zﬂn(ﬂl /¢ and let
T be the r.v. representing the number of vertices of a
random graph I'7, .. that are contained in tree compo-
nents. Then for [c1 + 2] < 1 asymptotically almost all
vertices of I'y,, .. are in tree components, i.e.

Tim []E{T] /n] ~1. (2.3)

There ezists a constant C(cy,cz) > 0 such that a.s. all
paths in T}, ., have length < C In(n).

For ¢ < 1/4 and arbitrary ¢y there exists a constant
C(ce) > 0 such that a.s. all tree components in Ty, .,
T, have the property |T| < C In(n).

Accordingly, contact graphs of r.s. decompose with
probability 1 into small components and it might in
this context be of interest to state the typical ranges
for ¢;, c2 that are observed in RNA and protein struc-
tures: 0.4 <¢; <0.7,0 < ¢y €0.2. In this parameter
range Theorem 1 guarantees that a.s. almost all nu-
cleotides of the contact graph (X; ® X») are contained
in small components.



3 Neutral Networks
Graphs

as Random

In this section we introduce a probabilistic model
of sequence to structure maps in secondary and ran-
dom structures as introduced in [6]. The model is
formulated in the language of random graph theory
and can be sketched as follows: a secondary structure
or random structure s, determines a set of compati-
ble sequences, as described in (2.1) and (2.2). For each
compatible sequence we probabilisticly decide whether
or not it maps into s, by selecting it with indepen-
dent probability A. The resulting random subset of the
set of compatible sequences induces a Q7-subgraph to
which we refer to as I'p[sp].

The above modeling of preimages of structures as
random graphs bases to large extent on properties of
random induced subgraphs of generalized n-cubes. In
the following we state some basic properties of random
induced subgraphs of generalized n-cubes [6].

Theorem 2 Let QF be a generalized n-cube and 'y, an
induced subgraph with p{T,} = AT=I(1 — A)2"~ITx|
and let \* =1— “Va~l. Then

l_i+m pn{Tr is Q4 -dense and connected}
n—00

_J1 for A>A*
0 for A<t
The next result shows that for A, > fﬂ‘;f—'-‘-)- there ex-

ists a.s. a unique giant component in random induced
subgraphs of Q [5].

Theorem 3 Let Q7 be a generalized n-cube, A, =
fﬂ‘,?‘l, ¢ > 0 and p, a measure such that p,{Ip} =
AE‘“'(I — M) ~ITnl. Then there exist ¢ > 0, h € N
such that the largest T'p-component, CS;I), is the in-
duced subgraph of all T',,-vertices that are contained in
I -components of size > n*, and

Ve>0  lim pn{Tn||CSV]| 2 (1~ €Ila|} =1.

Accordingly, for remarkably small picking probabili-
ties, asymptotically with probability 1, for a pair of
[p-vertices there exists a I';-path connecting them.
The next result investigates paths in random induced
subgraphs of generalized n-cubes further. It shows,
that for the slightly larger picking probability A, > n?,
0 < a < 1/2 the random graph distance of two vertices
P, @ scales linearly with the corresponding distance of
P,Q in Q7 [4].

Theorem 4 Let Q) be a generalized n-cube, A\, a
probability such that

dngeN,Vn>ng:
(3.1)

and p.{T,} = ,\Lr“l(l — )" "ITnl g measure on the
set of all induced QF-subgraphs. Then, for k € N such
that k > 32

lim po{Ts] for P,Q €CY:
a.s. dr, (P,Q) <[2k + 3] don PQ)}=1.

4 Sequence to Structure Maps

The intuitive idea of defining probabilistic sequence
to structure mappings in combinatorial structures f :
Q* —s {s,} is quite simple: one labels a given set
of structures, {s,} and constructs iteratively the neu-
tral networks as random graphs over the remaining
sequences. That is, we fix a mapping r : {s,} - N
having the property j <i => r(s;) > r(s;) and set

f7}(s0) =Tulso] f;(:) = Tulsi} \ |J [Talsil N Tals;] -

j<i
4.1)

One central property of the probabilistic sequence to
structure mappings is the embedding of two neutral
networks, i.e. what is the Hamming distance between
two neutral networks in sequence space? For sec-
ondary structures the following is the key result re-
garding this question [6]:

Theorem 5 Let I1 be a nonempty pairing rule on
A and s, and s, be arbitrary (nonempty) secondary
structures. Then

Clsn] N Clsh] #0. (4.2)

Theorem 5, combined with Theorem 2, guarantees
that for secondary structures with large neutral net-
works I'y{sy], Tnlsy] there are some sequences P €
Tnlsn], @ € T'y[s),] with pairwise small Hamming dis-
tances do» (P,Q). With random structures, we can
also study the minimum distance between neutral net-
works analytically in terms of a new graph, which is
obtained by taking the superposition of all edges of
the contact graphs of two random structures. Let
X1 ® X3 and X{ ® X; be the contact graphs with
respect to two random structures. Then their union

An>n"% where 0<a<1/2,



graph, (X; UX]) ® (X2UX]}), is obtained by first tak-
ing the union of the secondary edges in X;,X7, and
then all the tertiary X, X} edges that are not already
*in X7, X]. The main result reads [3]

Theorem 6 Let X; ® X2 and X{® X, be two random
contact graphs with limp 0o 2% = ¢; > 0 and 0 <
ce < 1. Then forc; <1 and cg = 0 a.s. almost all
(X1 U X)) ® (X2 U X3)-vertices are contained in line-
graph components. Further, there exists a constant
C > 0 such that a.s. components of (X; UX]) ® (XU
X}) have size < C In(n).

Suppose that 8¢1[2 — c1]c; > 1 and that £ # 0 solves
(1—z) = e 8al2~al22, Then (X; UX!) ®(XaU X3)
has a.s. components C'™ with the property

O™ 2 (1-nl 2~ (). (43)
n n

According to Theorem 6 there is a distinct change in

the graph-structure of (X; U X{) ® (X2 U X}). Below

the critical value for cp (for ¢; = 0.6 5™ =~ 0.13) the

largest component is < C'ln(n), C > 0, and above the

critical value a giant component emerges.

5 Discussion

In some sense random structures are generalizations
of biomolecular secondary structures, which are for-
mally planar knot-free graphs together with rules asso-
ciated with their bonds. Both, random structures and
secondary structures ([2]), induce neutral networks in
sequence space, i.e. extended, mostly connected sub-
graphs consisting of all sequences that are all mapped
into the random structure. However, random struc-
tures differ from secondary structures in two impor-
tant regards. First, they may include tertiary inter-
actions, and secondly, they need not satisfy such a
knot-freeness condition. Random structures induce
a natural, tractable probability space, I'y, .,, and ac-
cordingly allow for the formulation of “almost surely
"results, like Theorem 6. They also enable investi-
gation of the influence of tertiary contacts. For the
biologically-realistic parameter range, contact graphs
of random structures exhibit a similar graph structure
to the contact graphs of RNA secondary structures
(Theorem 1); their largest component scales with the
logarithm of sequence length. The computer gener-
ated statistics of contact graphs of random structures
illustrate the assertions of Theorem 1. These find-
ings imply that RNA secondary structures and ran-
dom structures exhibit a significant robustness with

respect to point-mutations. As noted in the introduc-
tion, the stability of these molecular structures with
respect to mutations in the sequences that form them
is important in the context of [1], since it provides an
explanation for the neutrality of many point mutations
at the genomic level. It also explains how diffusion on
neutral networks by the accumulation of neutral muta-
tions can, at some later stage, allow novel functionality
to emerge (i.e. the population discovers a new neutral
network). In the above we have used RNA molecules
as the model because of the availability of folding algo-
rithms and formal structural descriptions, because of
the clear relationship between structure and function,
and the history of in vitro RNA experiments. But of
course many of the same arguments apply to proteins.
In the mapping between DNA or RNA sequences and
proteins there is an additional source of neutrality,
which is the redundancy in the codon-amino acid cod-
ing. The robustness of RNA secondary structures and
random structures is the key observation for the mod-
eling of their neutral networks. Neutral networks con-
sist of a few components, whose size depends on the
fraction of neutral point mutants (with respect to the
structure). Key properties of neutral networks are
connectivity and path-structure. For random induced
subgraphs of generalized n-cubes there exists a thresh-
old value for connectivity 2 and a giant component
exists already for A, > @ Theorem 3. In the case
of RNA secondary structures connectivity can be for-
mulated with respect to their corresponding graph of
compatible sequences C[s] = Q'+ x QZ" (2.1). Ac-
cordingly, connectivity is defined with respect to (%)
point-mutations and (ii) base pair-mutations. Since
the graph QZ’ is simply a generalized n-cube over the
alphabet of base pairs all results of random induced
subgraphs derived so far (Theorems 2,3 and 4) apply
accordingly. An extension of the connectivity proper-
ties is the computation of the length of actual paths
between two sequences of a neutral network 4. The
main result is that for A, > n72, 0 < a < 1/2 the ran-
dom graph distance scales linearly with the distance
in the generalize n-cube. Because random structures
form a probability space, it becomes possible to ana-
lyze in detail the graph structure of the union of two
contact graphs, which can only be done for RNA sec-
ondary structures with a group theoretic argument [3].
This union of two contact graphs contains informa-
tion about how close the neutral networks of the two
constituent structures come. Considering the edges of
the contract graphs as constraints that have to be ful-
filled for a sequence to be compatible with a particular
structure, the union graph encodes those constraints




for two structures simultaneously; a sequence must ful-
fill all those constraints to be bicompatible. It is in the
region of bicompatible sequences that transitions be-
tween neutral networks take place, and the more base
pairs in a sequence that are incompatible with the
union graph, the greater the number of mutations a
sequence must undergo to move between the two net-
works. We have shown (Theorem 6) that the struc-
ture of this union graph changes dramatically while
varying the fraction of tertiary interactions c; in the
two constituent graphs, and shows a phase transition
phenomenon at certain critical threshold c; with the
sudden emergence of a giant component in the union
graph. This giant component is very likely to con-
tain cycles, which make it unlikely that that bicom-
patible sequences will exist, and will increase the dis-
tance between the neutral networks. Thus, we expect
that populations will find it increasingly difficult to
make transitions between neutral nets at higher c; val-
ues. Larger structures, in which the phase transition
is more marked, would show even stronger effects of
c. For a ¢; = 0.6 the critical fraction of tertiary inter-
actions for the emergence of a giant component in the
union graph of two random structures has c; = 0.15
as an upper bound (eq. (2)). For ¢; = 1 a lower
bound on the critical fraction would be 0.125. Known
3D-structures (for example t-RNA) have values of cz
which are well below this critical threshold, with about
4-6% nucleotides involved in tertiary interactions. In
order to investigate the effects of structure on the abil-
ity of populations to search, we induce dynamics over
a population of sequences using a replication—deletion
process which is described above. In these simulations,
sequences are assigned a fitness according to the struc-
ture they form, reflecting the assessment of fitness at
the phenotypic level. The replication—deletion process
is a simply scheme in which sequences are replicated
according to their fitness, with a constant population
size, in a flow reactor-type process. It should be noted
that the only genetic operator that is being used here
is point mutation—sequences make only local moves
in the sequence space, via their mutant offspring. Yet
because of the guarantee that for biologically realistic
parameter values neutral networks are dense and con-
nected (Theorem 2), populations of sequences evolv-
ing in this way are able to search a large proportion
of the shape space. The results demonstrate this—
populations of 2000 sequences rapidly find the neutral
network of one of the few high-fitness structures in a
landscape of 10000 structures.
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