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ABSTRACT

The purpose of this paper is to develop a controller for
dissimilar kinematic teleoperator systems, which include a
force/torque sensor mounted on the slave. Due to improved modemn
microprocessor computing capability and the trend toward redundant
slaves, the next generation of teleoperator systems will likely
incorporate dissimilar kinematics in their design; consequently, a
need exists for a workable control scheme for these systems. The
control scheme presented in this paper incorporates the work and
ideas of numerous researchers over the past 40 years. The master
controller and the orientation representation using Euler parameters
for both the master and slave will be the main focus of this paper.
The implementation of the master controller on a 6-degrees-of-
freedom (DOF) master is also discussed. Only a brief summary of
the overall control strategy will be presented.

INTRODUCTION

In the late 1940s Goertz (6] and his colleagues at Argonne National
Laboratory developed one the earliest recognizable mechanical master/slave
manipulators without force-reflection and later with force-reflecting capabilities.
Later, in the early 1950s, Goenz and his colleagues developed electric master/slave
manipulators where each slave joint servo was tied directly to the master joint servo
since both the master and slave were kinematically similar. The control structure
for these manipulators was the classical position-position controller. A positional
difference between the slave and an object in its environment is reflected back as a
drive signal to the master to push the human operator away from the object. The
positional-positional control scheme has been the basic controller for almost all
master/slave manipulators used by industry up to the present. There is another
scheme that originated with Goertz which was never implemented. This scheme
was the position/force controller [5]. The basic structure is simple: the slave's
controller is a positional controller and the master's controller is a torque or force
controller; however, the complexity of the stability problem plus poor torque
sensors probably, convinced Goertz that the position-force controiler was not a
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viable substitute for the positional-positional controller. In the late 1960s, Flatau
[3] built a master/slave manipulator using a position-force controller. While aware
of the technical difficulties associated with such a scheme, a master/slave
manipulator was finally built in 1969 on an extremely limited budget. Some of the
basic benefits of such a control scheme were shown, even though the overall
performance reliability was poor, simply because this system was based on analog
technology and it would be at least 10 years before suitable microprocessor
technology would be available to improve reliability. The next generation of
teleoperator systems will incorporate both dissimilar kinematics and force feedback
loops.

When the master and slave are not kinematically similar, the design of the
controller is particularly difficult. There are three major problems associated with
this design: (1) orientation representation, (2) accurate and stable force-reflection,
and (3) redundancy resolution. Representing the orientation between the master
and slave and using this information for force reflection is one of the more difficult
problems in the control of any teleoperated system that is not kinematically similar.
The objective of this paper is to show how to incorporate Euler parameters (which
are related to quarternions) into the controller design. To achieve accurate and
stable force-reflection, a type of stiffness controller will be designed for both the
master and the slave, plus a state-dependent force-feedback term to ensure stability.
Based on the use of both the master and slave Jacobians [9], accurate force
reflection for kinematically dissimilar manipulators is possible. When the slave has
more than 6 DOF, redundancy resolution needs to be addressed. With dissimilar
kinematic designs, simple joint positional differences are no longer adequate for a
force-reflecting manipulator. Because there are space limitations and since this
research is ongoing, the master manipulator will be the focus of this paper. A brief
discussion will be given concerning the slave controller; however, details will be
deferred until a later paper. The results are applied to a specific 6-DOF master
manipulator and a 7-DOF slave manipulator at Oak Ridge National Laboratory
(ORNL).

DEFINITION OF EULER PARAMETERS

Ditficulties with Present Schemes

Only three variables are needed to represent orientation, implying that there
is considerable redundancy in a rotational matrix composed of nine terms. Euler
angles (differing from Euler parameters) such as roll, pitch, and yaw have
difficulties when applied to teleoperated systems having a master dissimilar from
the slave. These difficulties can be summarized as follows: (1) Euler angles
introduce artificial singularities, and (2) they are not a natural representation for
force reflection. Clearly, another method of representing orientations that does not
produce these types of singularities is desirable. Such a scheme is possible with
Euler parameters.

Euler Parameters

Many of the matrix and vector relationships that are stated but not proven
can be found in Yuan's work [13] or at least in his references. Let frame A, {A},
and frame B, {B}, be two arbitrary frames that are initially coincident. If {A} is

fixed and {B} is rotated about a normalized vector AK by an angle 8 according to



the right-* -~ 1d rule, then the rotational matrix, § R, relating a vector in (B} to {A}
can be written in terms of AK and 6. Defining the following Euler parameters:

ey =k sin(6/2) (1)
e2 =ky sin(0/2) | 2)
e3 =ky sin(6/2) 3)
€4 = COS (6/2) , 4)

where AK = [ ki , k2 , k3 ]7. Let the first threz: Euler parameter terms be combined
into a vector

; (5)

which is given with respect to {A} since AK is given with respect to {A}. In this
paper, the Euler parameters will be represented by the set { €, € .

Time derivatives of the Euler parameters will be used in the design of the
stiffness controller. The Euler parameter rates can be written as:

1
2 , (6)

1 nx
2 ' , (7)

where o is the angular velocity vector with respect to (A}, and £ in Eq. (7) is a
matrix that is a function of the first three Euler parameters and is defined in Yuan
[13].

The relative onentation between two rotational matrices can be easily
defined in terms of the Euler parameters. Let R and ¢R be two arbitrary matrices

relating frames {M} and (S} to frame {0}, respectively. The rotational matrix ¥R
describing the orientational differences between these two frames is

MR = (4R R (8)

The Euler parameters of ¥R {0k, Se J, can be written in terms of the Euler
parameters of 4R, { €m, €m ], and ¢R, { €5, €} [13] as:

Ax o~

Oe= EmEs- EsEm - EMEs | (9)



and
AT A

O€4 = Em E€s + EMEs (10)

where ¢ is with respect to {M}.

STIFFNESS CONTROLLER USING EULER PARAMETERS
Master

The master manipulator will incorporate a stiffness controller [11]. The
torque signal is

Tm = Jh {(Kpm (Xs - Xm) + Kum (Xs - %m )]} # Tmgrav +VIneFs . (11)

where the m subscript indicates master terms and

Im = master Jacobian,
Y = master force-reflecting Jacobian,
Kpmand Ky = positional and velocity gain matrices

(typically diagonal matrices), respectively,

Tm grav = torque signal to compensate for gravity effects,

Xs and X = slave position and velocity, respectively,

v = force stability term (to be discussed next),

Fs = force/torque signal measured at the slave end-effector,
Xm and Xp, = master position and velocity, respectively.

The force stability term, v, can be either a negative constant or a function of the

. T
slave force vector and the master velocity vector, such as V = -Kfor XmFs. In the
past, v has been set to a negative constant, which is physically appealing but has the
potential for pumping energy into the system, thereby creating an unstable

condition. The advantage of using an expression such as V = -Kor XmFs is that
global stability cun be shown [9]; however, the physical interpretation and meaning
of this term i1s lost. Only the case where v is set to a negative constant will
discussed in this paper.

For the Kraft manipulator, counterbalance weights have been incorporated in
its design, making tm,r,y = 0; consequently, for the rest of the discussion in this

paper, it will be assumed to be zero. The external force, Fs | is the furce that is fed
back from a force torque sensor located on the wrist of the slave.

lav ller and Dynami

The slave manipulator considered in this paper has 7 DOF. The slave
manipulator will incorporate a stiffness controller (11, 9]. The torque signal is

Ts = JT[Kps (Xm'xs) +Kvs (Xm‘xs )] + Tigrav + Tred (12)



where the s subscript indicates slave terms and

)T = transpose of the slave Jacobian,

K and Kys = positional and velocity gain matrices
(typically diagonal matrices), respectively,

Ts grav = torque signal to compensate for gravity,
xs and X; = slave position and velocity, respectively,
Xm and X, = master position and velocity, respectively,
Tred = redundancy torque.

The redundancy torque, %ed, will be defined, based on extended task-space
techniques [10, 2]. The rationale is to add additional constraints to the system such
that the end-effector Jacobian can be extended to full rank. For a detail discussion,
see Jansen's work [8].

Assume that feedforward compensation has been incorporated to make T grav
= 0; consequently, for the rest of the discussion in this paper it will be set to zero.

The redundancy torque, Ted, is the signal used to exploit the redundancy of the
extra DOF without resorting to pseudoinverse techniques.

If, at steady state, the manipulator is stationary, then it can be shown [8]
that the governing equation describing the system dynamic response reduces to

Kps (xs - Xm) + Fsext 'jTTrcd=O , (13)

T M- -1 yTH
where J =M1JT (ym1yT) is the generalized inverse that minimizes kinetic energy
[12].

Equation (13) indicates that the stiffness seen by the end-effector depends
only on the difference between the slave and master positions and the redundancy

torque. If J' 1,4 can either be made small or zero, then the slave external force is
proportional to the positional differences in Cartesian coordinates in steady state.
Again, see the references [8] for details pertaining to why this term will always be
small.

The main difficulty with Eq. (12) is in representing the slave position, xs, and

the master position, x,,. Both x; and x, are vectors and have to be at least the

\ dimensions of 6 x 1, since six pieces of information are required to specify the
\ spatial location and orientation in three-dimensional space. The first three terms of
. these vectors should be the linear Cartesian posmon (i. e, the x, y, z coordinates).

InEq. (12), replace the first three terms in xg - X, with Ax. The first three terms in

Ax will be the linear Cartesian position difference between the slave and master
«with respect to the base frame. The next three variables in Xs - Xm, as proposed in
lhlS e“per should be the 8¢ vector. The stiffness controller of the master and slave
wﬂl modified to include Euler parameters



AX X - T 1=

Tm = J:ﬂ {Kpm f } + Kvm Af } + Tm grav + erl;lf I<S y (143)
5 5o |l
AR R

Tg = - J;r {Kps I: R } + Ky Ai( J \ + Tsgrav + Tred . (14b)
& il

- In the control algorithm, there are two Jacobians: the force-reflecting

Jacobian, J;¢, and the master Jacobian, J,,. The force-reflecting Jacobian is the
standard manipulator Jacobian [11]. The force-reflecting Jacobian is a
transformation relating the joint rates to the Cartesian rates. The force-reflecting
Jacobian of the master can be written as

Jqu=[ f“‘ } (15)
Wm

where ( (6x1 vector) is the joint actuator rate and  is the angular velocity vector

’

(3x1 vector) with respect to the base frame. The master Jacobian differs from the
force-reflecting Jacobian since the angular rates will be based on Euler parameters.

Define the (3x3) matrix, W, which relates the angular velocities © to SE (i.e.,

8 = W @ [8]. The master Jacobian, J,, is simply

I3 0 }
Jm-[ow It (16)
Similarly, the slave Jacobian, Js, and slave force-reflecting Jacobian, Jg, can be
defined:
J.«%[f‘}, (17)
s
_{30 J
J._[O Wl (18)
where
W= 0.5[%53{'48513-E;)(EMb-E;] ) (19)

It can be shown that W has no artificial singularities {§]. Stability of the proposed
controller can be shown, based on Liapunov stability methods [8].
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DISCUSSION AND APPLICATION TO THE KRAFT MASTER
Hardware

The controller was implemented on the Kraft master controller, shown
schematically in Fig. 1. Since the master is far from an ideal master, suitable
compensation was required to achieve the desired performance. The Kraft KMC
9100-MC is a lightweight 6-DOF master arm designed, manufactured, and sold by
Kraft Telerobotics, Inc., of Overland Park, Kansas. Position is measured at each
joint by potentiometers. The first five joints are actuated by ac servomotors for
force feedback and the wrist roll is not actuated.

Implementation

The control algorithm was programmed in the C language on a Motorola
68020 with a 68881 floating-point coprocessor. The control algorithm was
optimized by factoring the Jacobians so that common terms were not recalculated
and by a special assembly language routine that determines the sine and cosine of
each joint angle, simultaneously. When implemented, the master code ran at ~60
Hz, including the communication overhead.

Torque vs applied signal was measured in the laboratory for each of the five
actuated joints on the Kraft master. Experimental results show that all of the joints
required ~10 to 20% of the full-scale signal to move. To optimize between good
backdrivability and force sensitivity when using a master with this amount of large
"dead" region, some compensation is required. A simple form of compensation is
an offset function, called the preload function (PLF), which is the inverse of a
deadband function [4].

An analysis was performed using descriptive function methods to determine
if limit cycles (a limit cycle defined as an initial condition-independent periodic
oscillation occurring in dissipative systems [4]) would be present when applying
the preload function. The results indicated that, as long as there were not
significant amounts of backlash, then no limit cycle would occur. This is true for
the Kraft master arm.

( The PLF was implemented on the master controller. For most of the joints,
the preload was set to ~10% except for wrist pitch and yaw. For these joints, the
preload was reduced to ~5% to avoid a chattering at the switching line between plus
and minus preload. The PLF did not introduce any instabilities and it significantly
improved the force reflection.

GAIN SELECTION ‘FOR THE STIFFNESS CONTROLLERS

While both the master and the slave incorporate a type of stiffness
controller, the purpose differs from robotic operation. For robotic stiffness control,
the interaction between the environment and the robot arm is specified [1]. For
teleoperation, the purpose is to reflect the environmental forces and stiffness
accurately to the human operator. The human operator will vary impedance
according to changes in the slave impedance [7]. To achieve this, the positional

gain matrices for both the master and slave, Kpm, and, K, will be tuned so that
they are made large but not so large as to produce limit cycles [4].
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Fig. 1. Kinematic diagram and Denavit-Hartenberg table for the
: Kraft master controller.

CONCLUSION AND SUMMARY

This paper presents a formulation of a controller for a teleoperator system
with dissimilar kinematics and force feedback. The controller is a stiffness
controller for both the master and the slave. A mathematical problem associated
with representing orientations using Euler angles has been described and Euler
parameters are proposed as an alternative. Euler parameters are superior to Euler
angles, not only because they do not introduce artificial singularities, but also
because they are a natural representation for force reflection. Basic properties of
Euler parameters are presented, specifically those that pertain to stiffness control.
The stiffness controller for both the master and the slave is formulated using the
Euler parameters to represent orientation. Stability can be shown as well for the
proposed controller.



The master controller is presently implemented on a 6-DOF, force-reflecting
Kraft master manipulator and runs at a loop rate of ~60Hz. The stiffness controller
has worked well on the Kraft master manipulator. With the Euler parameter
formulation, artificial singularities were not present, unlike the Euler angle

formulation. Further, the magnitude (Euclidean norm) of 8¢ is proportional to the
sine of the half angular difference between frames, as can be seen in Egs. (1)

through (3). For small angular displacements, &€ is proportional to the angular
difference between frames, which is tae feel an operator desires. As the angular
displacements increase, the sine function will act as a saturation function, thus
preventing feedback of excessive forces. ‘

The controller was capable of being tuned to produce the "feel” of Cartesian
springs attached at a "home" location. The controller could also create artificial
walls and surfaces defined in Cartesian space to restrict operation in "forbidden
zones." With proper gain settings, these surfaces could be given a "repelling” feel
such that the operator would have to exert a strong force to pass through the
surface. This ability makes this control algorithm highly useful for obstacle
avoidance when operating in a cluttered environment. Dangerous obstacles can be
defined in the master's Cartesian space such that the operator cannot move the
miaster to a location that would drive the slave into the obstacle. A future paper will
discuss the overall performance of the controller with particular emphasis on slave
performance.
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