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NEUTRONICS COMPUTATIONAL APPLICATIONS OF SYMMETRY ALGEBRAS

Roy A. Axford
Los Alamos National Laboratory, Los Alamos, N. M. 87545 

University of Illinois at Urbana-Champaign 
103 S. Goodwin, Urbana, Illinois 61801

ABSTRACT

Lie groups of point transformations and their corresponding symmetry algebras 
are determined for a general system of second order differential equations, 
special cases of which include the multigroup diffusion equations and the 
"FLIP form" of the P equations. It is shown how Lie symmetry algebras can be 
used to motivate, formulate and simplify double sweep algorithms for solving 
two-point boundary value problems that involve systems of second order differ­
ential equations. A matrix Riccati equation that appears in double sweep al­
gorithms is solved exactly by regarding a set of first integrals of the second 
order system as a set of first order differential invariants of the group of 
point transformations that is admitted by the system. A second computational 
application of symmetry algebras is the determination of invariant difference 
schemes which are defined as difference schemes that admit the same groups of 
point transformations as those admitted by the differential equations that they 
simulate. Prolongations of symmetry algebra vector fields that are required to 
construct invariant difference equations are defined and found. Examples of in­
variant difference schemes are constructed from the basic difference equation 
invariance conditions and shown to be exact.

INTRODUCTION

The general objective of the ensuing paper is to define and to examine group 
theoretical foundations of computational algorithms that can be applied to 
obtain either analytic or numerical solutions of two-point boundary value 
problems that involve systems of differential equations formulated from the 
neutron transport equation. The scope of this paper is limited to developing 
the theoretical aspects of the topic, and analytic solutions of elementary 
examples are included to illustrate the theoretical points.

Double sweep algorithms have been reported in the reactor physics literature 
for solving both second order^difference equations and the one-group diffusion 
equation. Ehrlich and Hurwitz attribute to R. H. Stark a double sweep algor­
ithm for handling second order difference equations in diffusion theory and 
point out the computational advantages that are realized with this algorithm 
when solving two-point boundary value problems. In the first chapter of refer­
ence 2 Butler and Cook formulate from the point of view of the factorization 
method a double sweep algorithm for solving two-point boundary value problems 
that involve the one-group diffusion equation. Also, in the fourth chapter of 
reference 2 Gelbard considers double sweep algorithms for solving the equa-



tions.

Additional discussions of double sweep algorithms appear in references 3-7.
In Section 31 of reference 3 Gelfand and Fomin show how an inward-outward sweep 
algorithm for solving two-point boundary value problems that entail a single 
inhomogeneous second order differential equation can be obtained from the con­
cept of a field of a second order differential equation. Computational ad­
vantages of this algorithm, which is referred to as the Gelfand-Lokutsiyevskii 
method of chasing, are explored in the ninth chapter of reference 4. Double 
sweep algorithms for solving second order difference equations are developed 
in references 4-7.

Double sweep algorithms for both differential and difference equations that 
are discussed in references 1-7 are thought of in terms of the factorization 
method, of fields for second order differential equations, and of translating 
the left-hand boundary condition through the interior points to the right-hand 
boundary. A different point of view for understanding and formulating double 
sweep algorithms for systems of second order differential equations is intro­
duced and developed in this paper. We show how knowledge of a Lie algebra of 
group generators of a system of second order differential equations can be 
used to understand, motivate, formulate and simplify double sweep algorithms 
for such systems. Other applications of Lie groups and symmetry algebras to 
differential equations, which include obtaining similarity solutions, special 
classes of exact solutions, and partially invariant solutions, are presented 
in references 8-13 in which, however, no computational applications appear.
The simplification in a double sweep algorithm that can be achieved with a 
Lie algebra is particularly important because of the fact that the exact solu­
tion of a matrix Riccati equation can be found with the group generators.

A second computational application of symmetry algebras considered in this 
paper is that of constructing systems of difference equations that are invari­
ant under the same group of point transformations as that admitted by the 
system of differential equations being simulated. Invariant difference scheme^ 
in the sense of first differential approximations have been studied by Shokin 
in the field of gas dynamics. Since the fact that the first differential approx­
imation is invariant does not necessarily imply that all higher order differ­
ential approximations are invariant, the metljigd of constructing so-called in­
variant difference schemes studied by Shokin can not lead to exact differ­
ence equations. Accordingly, we introduce and develop a concept of invariant 
difference equations that is the direct analog to the concept of invariant dif­
ferential equations and that is capable of yielding exact difference equations. 
Specific neutronics examples of systems of group invariant difference equa­
tions that are exact have been found and are reported herein.

SYMMETRY GROUPS AND ALGEBRAS OF MULTIGROUP DIFFUSION MODELS

We consider sets of point transformations in the space (xjy^.y^, 
independent variable, x, and G dependent variables, y , g=l,2,.. defined by G+l independent functions, namely, ^

..,yr) of one 
,G, that are

x = f(x,y1,y2,...,yG;a1,a2,. (1)
and



(2)yg = f6Cx,y1,y2,...,yG;a1,a2,...,ar).

Each set of values of the parameters, a^,a2>....a^, in (1) and (2) labels a 
different point transformation in the set, and these parameters are assumed to 
be essential. The transformations (1) and (2) comprise an r-parameter group of 
point transformations under the binary operation of performing two successive 
transformations if they satisfy the four basic group axioms , namely, (1) 
closure, (2) existence of an identity transformation in the set, (3) existence 
of an inverse transformation for each transformation in the set, and (4) as­
sociativity for the binary operation. This section provides the determination 
of r-parameter groups of point transformations that are admitted by the multi- 
group diffusion equations taken in the form,

x_NDx(xND1Dxy1) - ^>lyl + S1 = 0, (3)

and

x ND (xND D y ) 
X g Xjg - CT-, y + R»g g

g-1

h=l
g)yv s =g 0, (4)

for g=2,3,...,G. In (3) and (4) the parameter N is a geometric parameter (N=0 
for slabs, N=1 for cylinders, and N=2 for spheres), and the source terms, S , may also include fission and/or external sources. As written, equation (4) ^ 
contains only down-scattering terms, but up-scattering may also be included.

A group of point transformations admitted by a system of differential equations 
transforms one solution into another and leaves the system itself invariant, 
that is, the system has the same form in the new coordinates as it did in the 
original coordinates. Such an invariance property of a system of differential 
equations is also called a symmetry property of the system. Symmetry properties 
of systems of multigroup diffusion equations can be found systematically by 
determining the vector fields,

G
U—s Ygs (5)

which are called group generators and are said to represent the infinitesimal 
transformations of the group around the identity for which

Xs(x’yl’

and

,yr) = d f
s a=a ---o

Ygs(x^, a=a ---o

(6)

(7)

for s=l,2,...,r. The group generators may be regarded as the basis of an r-di- 
mensional vector space, close under the Lie bracket or commutator operation, 
and comprise the Lie algebra, or symmetry algebra, of a system of differential 
equations. The functions,X and Y , are smooth and are called the coordinate functions of the group genirator.68



The coordinate functions of the group generators for the multigroup diffusion 
equations can be obtained as follows. We introduce the second order jet space 
whose coordinates represent the independent variable, x, the dependent varia­
bles , y , the first order derivatives, y', and the second order derivatives, y". Theemultigroup equations are regarde§ as a set of smooth functions,

F (x;y1* ’Vyl’ ’yG;y ■yp ‘D’ C8)

for g=l,2,...,G, which defines a smooth map from this second order jet space 
to a G-dimensional Euclidean space. The multigroup equations determine a sub- 
variety of the jet space because they indicate where this map vanishes. A 
group of point transformations whose second order prolongation leaves the sub- 
variety invariant is a symmetry group of the multigroup equations. The second order prolongation of the vector field, U , which will be denoted by pr^ 'U , 
acts on the second order jet space and is given by

pr(2)u = xd+y'Y a + 5] 0(1') d , +yy2)a
—s s x gs °y ^ gs ° y ’ ^gs 0y"

6=1 6=1 6 g=l
where

and

df1) = D Y - y*D X , 
rgs x gs Jg x s

(p^ = D - y"D X .
^gs Xrgs g X s

(9)

(10)

(11)
A necessary and sufficient infinitesimal invariance condition that the group 
generators U represent an r-parameter group of point transformations admitted 
by the multigroup diffusion equations is that

(2)pr 'U (F ) = 0, g=l,2,...,G, and 5=1,2,. -s g ,r, (12)
whenever F =0, When written out in full equation (12) becomes a system of lin­ear first §rder partial differential equations, which are called the determin­
ing equations of the group, for the coordinate functions X and Y of the
group generators, gs

The invariance condition (12) together with the second prolongation formulae 
(9)-(ll) allow for the simultaneous transformation of all independent and de­
pendent variables. Somewhat less general but very useful groups of point trans­
formations for the multigroup diffusion equations can be found from (12) by 
restricting the action of the group to the dependent variables, that is, to 
the scalar fluxes of each energy group. In this case the independent spatial 
variable is not transformed under the group action, so X =0, for s=l,2,...,r.
A second simplifying restriction is that the dependent variable coordinate 
functions are functions only of the independent variable. That is,

V*-yi..yp s V10, (13)

With these two restrictions the second order prolongation of the vector field 
Ug given by (9) reduces to



(14)pr(2)U
~*s

G
z
g=i

y ags
Gz

■ g”l
d y a ,

X gs y* 6

Gz6=1 DxY6s3y
6

With the definition of the mapping functions F in (8) implied by the multi­group diffusion equations (3) and (4), evaluating the infinitesimal invari­
ance condition (12) with the second order prolongation (14) produces the fol­
lowing set of differential equations satisfied by the dependent variable co­
ordinate functions, Y (x);gs

x~ND (x^D D Y. ) - 
x lx Is Wls = (15)

and
g-1

x ND (xND D Y ) - Y + X a (h*»g)Y, = 0,
x g x gs R,g gs hsh=l

(16)

for g=2,3,...,G. That is, groups of point transformations that leave the inhom­
ogeneous multigroup diffusion equations invariant can be found from solutions 
of the homogeneous multigroup diffusion equations when the group action is re­
stricted to the dependent variables and the dependent variable coordinate func­
tions, Y , have the restricted form (13). Since (15) and (16) comprise a sys­tem of 2§Ssecond order differential equations, their solution provides at most 
a 2G-parameter group of point transformations admitted by the inhomogeneous 
multigroup diffusion equations and a 2G-dimensional Lie algebra of group gen­
erators , U . Because all Lie brackets vanish, this algebra is Abelian. In the case of arbitrarily spatially dependent physical properties, group generators 
can be obtained by integrating (15) and (16) numerically. In the case of spa­
tially uniform or piecewise constant properties in composite domains, group 
generators can be found by solving (15) and (16) analytically.

Although all solutions of (15) and (16) provide 2G-dimensional Lie algebras of 
the inhomogeneous multigroup diffusion equations, there are G-dimensional sub­
algebras of group generators that generate G-parameter groups of point trans­
formations which have been found to be useful in the construction of double 
sweep algorithms as discussed in the next section. Specific results for G-di­
mensional subalgebras in the case of spatially uniform physical properties 
can be expressed in terms of the basis functions, V (x), defined as follows 
for slabs, cylinders, and spheres, respectively;

V (x) =s

cosh(B x), 
s

I (B x), o s

for N=0, 

for N=1, (17)
sinh(B x)/x, for N=2,s

where Bg= ^ . The group generators of the G-dimensional subalgebras
take the sam4 general form in each geometry, namely,

U = V (x) d + V (x) Q d—s s y s sg yJs g=s+l & •'g
(18)

for g=l,2,...,G-2,



(19)UG_1 = VG_1(x) + VG_1(x) Qg_1>g
G~1

f

and

% = VG(x) (20)

The non-zero elements of the matrix Q 
by the following formulae;

that appears in (18) and (19) are given

Qs, s+1 = <7(s-*-s+1)/D ,s s+1 (21)
for s=l,2,...,G-1, and

Q (B2 - B2) = D_1 
sg g s g [' (s

g-1
g) + X a(j-^g)QSjl >

j=s + l
(22)

for s=l,2,...,G-1 and g=s+2,s+3,...,G. The G-dimensional subalgebras cited in 
(18)-(22) are obtained simply by solving analytically the homogeneous multi­
group diffusion equations for the case of spatially uniform physical properties. 
The full 2G-dimensional Lie algebra of generators can be written out directly 
by adding the G additional vector fields in which the functions, V (x), in (18)
through (20) are replaced by the functions, R (x), defined bys

I
sinh(B x), s

K (B x), o s
cosh(B x)/x, s

for N=0, 

for N=1, 

for N=2.

(23)

In the cylindrical and spherical geometry cases the singular nature of these 
functions limits their utility. Linear combinations of the functions, V (x) 
and R (x), defined in (17) and (23) can also be used in the explicit construc­
tion of G-dimensional subalgebras of group generators.

GROUP THEORY OF DOUBLE SWEEP ALGORITHMS

In this section it is shown how knowledge of the Lie algebra of a system of 
second order differential equations can be applied to the problem of deriving 
double sweep algorithms which can be used to obtain either analytic or numer­
ical solutions of two-point boundary value problems that entail such systems. 
We consider two-point boundary value problems for the second order system of 
differential equations,

-N_ , N_ _ .x D (x D D y )x g xJg
Gz

h=l
A , y,gh h + S = 0, (24)

for g=l,2,. ..,G. This system is somewhat more general than the multigroup 
system (3)-(4) which can be recovered from (24) with the identifications,

gg - - aR,g' (25)
and



(26)
| ff(h*-g)» for 1< h< g-1, 

( 0, for h > g.

More general systems of the form (24) arise, for example when solving for the 
scalar fluxes in a subcritical assembly due to an external source and when 
solving for the even Legendre moments of the directed flux in the approx­
imation of the neutron transport equation. For the latter, see, for example, 
Gelbard*s discussion of the "FLIP form" of the P^ equations, which is (24) 
with N=0, in the fourth chapter of reference 2 and reference 15.

The basis of a G-dimensional Lie algebra of generators of a G-parameter group 
of point transformations that leaves the system (24) invariant is given by

G
U = "V Y ^ > for s=l,2,...,G, (27)
-s Z- gs uy 

g=l 6
in which the coordinate functions, Y , are solutions of the homogeneous setgs G

x NDx(xND D Y s) + £ A Yk„ - 0, for g,s-l,2,...,G.
h=l gh hs (28)

pr^U = 
—s

The first order prolongation of this group is 
G G
y Y ^ + y D Y ^ , . (29)gs °y Z- x gs °y*g=l 8 g=l 8

Every infinitesimal transformation of the group can be written in the form,
G

U = V e U , (30)
— s—s

S = 1
in which each e is a constant, and all first order prolongations can be ex­
pressed as

G

pr^U = y Sgpr^1^
s=l

(31)

To establish an outward and inward double sweep algorithm to solve two-point 
boundary value problems that involve the system (24) we seek a set of G first 
integrals of (24), namely,

GV We + I “gpy for *-1,2.... G, (32)
J=1

in which the geometric constants C are C =1, C^=2f, and 02=411. The functions,
W (x) and a .(x), in (32) are solutions o? differential equations obtained by 
sfibstitutinf'1 (32) into (24) and making use of the fact that the resulting rela­
tions must be identities in the dependent variables, y . That is, the set (32) 
must imply the system (24). It is found that the matrices, a .(x), must be 
solutions of the matrix Riccati system,



D a .x 8J (c/)- I
k=l

agAj/DK CNX gj 0, (33)

for g=l,2,...,G and j=l,2,..•,G. Once these matrices are known, the first in­
tegrals are obtained by solving the linear first order system,

G
DXWg + (CnxN)_1 X agjWj/Dj = S^g’ for S=1>2> • • • jG- (34)

j=l
The two systems (33) and (34) are both integrated in an outward sweep with 
initial conditions chosen so that (32) satisfies the left-hand boundary con­
ditions specified for the dependent variables, y . A typical example is 
W (0) = 0 and a ,(0) = 0. Following these two outward sweeps the solution of 
t§e system (24)*Hs found by integrating (32), regarded as a first order linear 
system, in an inward sweep with initial conditions that incorporate the right-
hand boundary conditions satisfied by the dependent variables, y .

§

In principle, the double sweep algorithm described above can be carried out 
completely with numerical integrations of the systems (32)-(34). However, a 
simplification can be achieved by obtaining the exact analytic solution of 
matrix Riccati system (33) in the following way. We first note that the set 
of first integrals (32) can be regarded as a set of first order differential 
invariants of the G-parameter group of point transformations generated by the 
basis of group generators (27). This fact implies that the first integrals are 
annihilated by the first order prolongation of the group given by (31), that 
is, that

pr<1)U(CNAgy' + Wg - jr ag.y.) - 0.
j=l

By combining (29) and (31) with (35) it is found that
G G
V e (CwxND D Y - V a -Y. ) = 0. 

s N g x gs gj js

(35)

(36)
s—1 j=l

This relation must hold for all values of the constants, e , which shows that
sthe matrices, a ., which satisfy the matrix Riccati system (33), are solutions of the set, 8'1

GV a .Y.Z- sj Is
c»xKVes, f°r

j=l
Upon defining the determinant,

,G. (37)

A =

Y11 Y21 ••• ygi

Y12 Y22 YG2 9 (38)

yig Y2G "• ygg

it follows directly from Cramer's rule that the solution of (37) is given by



^ CMXa t = N gl —-
N

- CMXas2 - -5-
N

Y D Y* 1G g 2G

and so forth to the last column

D Y’g gl Y21 ••• ygi

D Y* g g2 Y22 YG2

D Y* g gG Y2G ••• ygg

Y11 DgYgl ... YG1

Y12 DgYg2 ••• YG2

, for g=l,2,...,G,

GG

, for g=l,2,...,G,

(39)

(40)

Y11 Y21 ... D Y’g gl
Y12 Y22 ... D Y*g g2 , for g=l,2,...,G. (41)

yig Y2G ... D Y* g gG
Accordingly, solving the matrix Riccati system (33) has been reduced to the 
explicit construction of a G-dimensional Lie algebra of a G-parameter group 
of point transformations admitted by the inhomogeneous differential system 
(24) and to the evaluation of the determinants (38)-(41). The double sweep 
algorithm, in turn, simplifies to integrating the linear first order system 
(34) with an outward sweep and to integrating the linear first order system 
(32) with an inward sweep.

Further simplifications in the above analysis occur when the system (24) is 
reduced to the multigroup diffusion equations (3)-(4) with the definitions 
(25)-(26). In this case the relevant Lie algebra of group generators is given 
by (18)-(20) for which

Ygs

0, for g < s,
V (x), for g=s»

O

Vs(x)V f°r 6>S’
A= Y11Y22Y33..... YGG*

(42)

(43)

and, therefore,

a - 0, for g< s,gs (44)

and



(46)

In view of (44) and (45) the system (34) decouples and reduces to

“A+ ‘■uV(c.A) ■ vX-

for g=l, and to
g-1

D W + a W /(C„xND ) = C.,xNS - (CATxN)-1 V a .W./D , 
x g gg g N g N g N Z-. gj J g

j=l
for g=2,3,...,G. The system (32) also decouples to
VVi - °uyi = -v

(47)

(48)

for g=l, and to g-1
Cxlx^D y’ - a y = -W + ^ 
N g g gg g g a„-y

j-i
gj^j’

for g=2,3,...,G. It follows directly from (45) and (46) that

VvnV = V^n5!'

(49)

(50)

and from (45) and (48) that
Whi5 ' -”i'(c/DiYu)'

From (45) and (47) we obtain
g-1

D (Y W ) = C xNS Y - (CMxN) 1Y T a .W./D , 
x gg g N g gg N gg 4- gj J g

J=1

(51)

(52)

for g=2,3,...,G. It can be shown by straightforward but tedious algebra that 
equation (52) can be expressed in the alternative form,

g-1D (Y W ) = C..xNS Y + C xNY V a(h-^g)y 
x gg g N g gg NggZ- Jh

h=l g-1
+ D (Y x gg Z agjyj (53)

From (45) and(49) it follows that j=l
g-1

D (y /Y ) = x g gg
-W /(CmxND Y ) + (C.,xND Y )"1y a .y.. 

g N g gg N g gg Z- 81 J (54)
j=l

With equations (50)-(54) the integration of the multigroup diffusion equations 
(3)-(4) has been reduced to G outward sweep quadratures with (50) and (52) or 
(53) together with G inward sweep quadratures with (51) and (54). These qua­
dratures are decoupled and may performed successively. This type of decoupling 
does not necessarily occur for the more general second order system (24).

The manner in which solutions of the multigroup diffusion equations (3)-(4) 
can be found with the quadratures implied in (50)-(54) can be illustrated with



an elementary two-group example. In the case of a sphere with radius, R, 
spatially uniform properties and spatially uniform sources in the both the 
fast and slow energy groups, the fast group scalar flux obtained directly 
from (50) and (51) with elementary closed-form integrations is

yl = ~ R sinh(B1x)/x sinh(B1R)], (55)

and the slow flux obtained directly from (53) and (54), also with elementary 
closed-form integrations, is

- S2 ^ R sinh(B2x) " + a(W2) si ^ + Bj R sinh(B2x)

B2D2 x sinh(B2R)_ 2 2 B2d2 Vi B2 - B^ x sinh(B2R)

b: R sinh(B1x) £. ______ 1
2 2B^ - B^ x sinh(B^R)

(56)

when Dirichlet boundary conditions are applied on the outer surface. Multiple 
region solutions with piecewise constant properties can be obtained analytical 
ly in the same way. With an obvious interpretation of the sources, S , the double sweep algorithm that is defined by (50)-(54) can also be applied to the 
determination of the effective multiplication factor of an assembly with the 
source iteration method.

GROUP INVARIANT DIFFERENCE SCHEMES

Because of the many analogies between differential and difference equations, 
the notion of group invariant difference schemes arises quite naturally in the 
sense that difference equations formulated to provide solutions of differen­
tial equations should have the same invariance properties as the differential 
equations themselves. An approach to formulating group invariant difference 
equations is discussed in this section. The objective is to transfer invari­
ance properties of the solutions of systems of differential equations to their 
finite difference simulations.

Although difference equations with the same invariance properties as their 
corresponding differential equations are called "invariant difference schemes" 
there are different definitions of what is actually meant by an invariant 
difference scheme. In reference 14 Shokin defines a difference scheme to be 
invariant under a group of point transformations if its first differential 
approximation admits this group. However, Shokin*s definition implies that 
the actions of the prolongations of the group generators is on the space whose 
coordinates include the independent and dependent variables, the independent 
variable grid spacings, and all derivatives up to order one greater than ap­
pear in the system of differential equations. Consequently, Shokin*n defini­
tion of an invariant difference scheme can not lead to exact difference equa­
tions whose exact solutions agree with the exact solutions of the differen­
tial equations simulated as invariance of the first differential approximation 
does not necessarily imply invariance of all higher order differential approx­
imations. Even though Shokin*s definition of an invariant difference scheme 
does not yield exact difference equations, it does produce significantly im­
proved difference equations for solving the gas dynamics equations as dis-



cussed in reference 14.

A second definition of an invariant difference scheme is that a difference 
scheme is said to be invariant under a group of point transformations if it 
admits the prolongation of the group to the grid point values that appear as 
unknowns in the difference equations. This definition implies that the pro­
longations of the group generators act on the space whose coordinates are the 
independent variables and the dependent variables evaluated at the grid points. 
Also, this definition, which introduces a new type of prolongation, is cap­
able of producing exact difference equations.

To construct explicitly invariant second order difference equations for the 
system (24), it is necessary to determine the prolongations of the vector 
fields (27) to the dependent variables evaluated at x+1 and at x-1. We denote 
these prolongations by

G G
- I v 3y (x) + Y zss<+1> sy (*+!>

g=l 6 g=l S
G

+ 2 Zgs("i:> dy (x-1)
g=l g

(57)

in which the coordinate functions, Z (+1) and Z (-1), for the dependent var­iables with displaced arguments can §1 found in fie following way. We extend 
the sth infinitesimal transformation,

x = x + 5ag Xs(x,y1,...,yG),
yx> - ygCx) +SaB YgsU.yv...,7B->.

to
y (x+1) = y (x+1) + 3a Z (+1).g g s gs

But 00
yg(x+l) = yg(x) + £ D^yg(x)/k:.

k=l
The kth order derivative transforms according to

D_y (x) = D^y (x) + Sa 
x g s gs ’

(58)

(59)

(60)

(61)

(62)

where
(a)gs D Y - y* D X , x gs 'g x s

Y(k) = D Y(k 15 - y(k) D X , for k=2,3 
gs x gs J g x s

Upon substituting (59) and (62) into (61),
00

y (x+1) = y (x+1) + Sa (Y + V Y(k) 
g g s gs gs

it is found that 

/k!).

(63)

(64)

(65)



(66)
Comparing (60) and (65) yields

oo
Z (+1) = Y + V Y(k)/k! gs gs Z- gs

k=l
for the sth basis transformation in a multiparameter group. In a similar way 
it can be shown that

oo; (_i) = y + V (-l)k Y(k)/k!
gs gs Z-t gs (67)

k=l
In the case of evolutionary vector fields (X =0) the kth order derivative co­
ordinate functions simplify to

Y(k) = DkY » (68)
gs x gs

so that (66) and (67) become

Z (+) = Y (x+1). (69)gs — gs —
Accordingly, the vector field prolongations (57) can be expressed as 

G Gpr(2D)U = V Y (x)^ . . + V Y (x+1) ^
~s Z- gs uy (x) Z- gs °y (x+1)g=l 6 g=l S

G
+ Z Ygs(x"1) ^y (x-1)‘ (70)

g=l 8
With the prolongations (70) the definition of what is meant by an invariant 
system of second order difference equations can be quantified.

In analogy to the differential system (8) we denote an arbitrary system of 
second order difference equations by

HgCx,y1(x),...,yG(x),y1(x+l),...,yG(x+l),y1(x-l),...,yG(x-l)] = 0, (71)

for g=l,2,...,G. This system is said to be invariant under the r-parameter 
group generated by the vector fields U (27) with the prolongations (57) pro­
vided that

pr(2D)y (h ) = 0, for g=l,2,...,G and s=l,2,...,r,
-s g (72)

whenever H =0. This set of invariance conditions for a system of second order difference8equations is the finite difference equivalent to the set (12) of 
invariance conditions for a system of second order differential equations and 
comprises a completely different definition of difference scheme invariance 
than that based on the first differential approximation as employed by Shokin 
in reference 14 for gas dynamics problems.

To illustrate how the invariance conditions (72) can be implemented in the 
construction of invariant difference schemes we shall consider some elementary 
examples. As shown earlier the two-group diffusion equations in slab geometry 
admit a two-parameter group of point transformations with the two-dimensional 
Lie algebra.



(73)U = cosh(B1x) ^ + Q1_cosh(B1x) ^ ,
j- y1 ■*' ^ ■*- y 2

U„ = coshCB^x) ^ ,
y2

(74)

where

Q12 = a(l-*-2)/[D2(B2 - B^)]. (75)

Let the grid points be x =nh, where h is the mesh spacing, and let grid point 
values of the dependent variables be y (x )=y . Then the prolongations re­quired to construct invariant second o§der difference equations can be ex­
pressed as

pr(2D)y _ Cosh(nhB1) d + cosh[(n+l)hB ] ^
1 yl,n yl,n+l

+ cosh[(n-l)hB ] ^ + cosh(nhB1)Q1_ ^1 yl,n-l y2,n

and
+ cosh[(n+l)hB ]Q1_ ^ + cosh[(n-l)hB1 ]Q1 _ ^ ,1 y2,n+l y2,n-l

(76)

(2D),Pr^ = cosh(nhB_) ^ + cosh[(n+l)hB_] 3
Z y2,n y2,n+1

+ cosh[(n-l)hB2] (77)
2,n-l

Thinking in terms of three-point central difference formulae for second order 
derivatives, we start from the following possible forms for a set of two 
second order difference equations,

H1 ” En(yl,n+1 + yl,n-l Blyl,n + S1/D1 - T1(h) = 0 (78)

H0 = F (y_ ,. + y_ n - 2y_ ) - B_y„ + S_/D„2 n 2,n+l 2,n-l 2,n 2J2,n 2 2

+ [a(l-^2)/D,]y1 G - T.(h) = 0 z l,n n /

and apply the three invariance conditions,

(79)

and

pr(2D)U1(H1) = 0, (80)
pr(2D)U1(H2) = 0, (81)

pr(2D)U2(H2) = 0. (82)

Following a straightforward but rather lengthy calculation, we obtain the two 
following second order difference equations for the slab geometry two-group 
diffusion equations;



(83)- - B^y + S /D = 0,
(A/Bpsinh2(B1h/2) ’

^2,n+1 + ^2,n-l 2^2,n „2 n
—2—5---- 5-------- — - B,y_ ^ + S /D_ + a(l-#-2) G y /D(A/B?)sinh2(B0h/2) 2 2,n 2 2 n l,n

where

G = ... . . 1 -

= (G - l)S10(l-*-2)/(B D D ), n 1 l 1 z
sinh2(B^h/2)

sinh ('B^h/2')

(84)

(85)

Similar results can be derived in the same way for spherical and cylindrical 
geometries by thinking of second order derivatives in terms of three-point 
central difference formulae and first order derivatives in terms of two-point 
central difference formulae. It is of interest to note that, in the limit of 
very small mesh spacing, G—*»1, so that (83) and (84) reduce to difference 
equations obtained with standard three-point difference formulae for second 
order derivatives in this limit.

It mav also be noted that the difference equations (83)-(84) are accurate even 
for coarse meshes. In fact, they are exact. It can be shown directly that the 
exact solutions of (83) and (84) can be expressed as

and

l,n

2,n

B?Di

B2D2

1 ~

1 -

cosh(nhB^)

cosh(NjhB^)

cosMnhBp

cosKNjh^) ]
fi_<LQ^2) r
J?D1 B2D2 L 1 -

cosh(nhB^)

(86)

cosh(nhB2)

B^ - B^ cosh(NIhB^) B^ - B^ cosh(NIhB2)J
(87)

for the case of spatial intervals and Dirichlet boundary conditions on the 
outer surface. The exact solutions (86) and (87) of the difference equations 
(83) and (84) agree with the exact solutions of the two-group diffusion equa­
tions when these are evaluated at the grid points of the finite difference mesh.

CONCLUSIONS

Lie symmetry algebras and their corresponding groups of point transformations 
have been determined for systems of second order differential equations of the 
type encountered in various approximations of the neutron transport equation, 
which include, but are not limited to, the multigroup diffusion equations and 
the "FLIP form" of the equations. Two-point boundary value problems that



involve these systems can be solved with double sweep algorithms that can be 
motivated, fotmulated, and simplified with a knowledge of their symmetry al­
gebras . The concept of invariant systems of difference equations has been in­
troduced, and it‘has been shown how symmetry algebras can be used to con­
struct sets of difference equations that are also exact.
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