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FOREWORD 

* .  
The Shippingport Atomic Power Station located in  Shippingport, Pennsylvania was 
the  first large-scale, central-station nuclear parer plant i n  the United States  

c and t h e  first plant of such s i ze  i n  the world operated solely t o  produce e lec t r ic  
power. This program was s tar ted  i n  1953 t o  confirm the  pract ical  application of 
nuclear power for  large-scale e lec t r ic  power generation. It has provided much of 
t h e  technology being used fo r  design and operation of the  comnercial, central- 
s tat ion nuclear power plants now i n  use. 

Sxbsequent t o  development and successful operation of the  Pressurized Water Reactor 
in the DOE-owned reactor plant a t  t h e  Shippingport Atomic Power Station, the  Atomic 
Ehergy Commission i n  1965 undertook a research and development program t o  design 
and build a Light Water Breeder Reactor core fo r  operation i n  the  Shippingport 
Station. 

The objective of the  Light Water Breeder Reactor (IWBR) program has been t o  develop 
a technology t h a t  would s i a i f i c a n t l y  hprove . the  u t i l i za t ion  of the  nation's nuclear 
fue l  resources employing the well-established water reactor technology. To achieve 
t h i s  obJective, work has been directed toward analysis, design, component t e s t s ,  
and fabrication of a water-cooled, thorium oxide f i e 1  cycle breeder reactor for  
ins ta l la t ion  and operation at the Shippingport Station. The LWBR core s tar ted  
operation i n  the Shippingport Station i n  the Fall of 1977 and i s  expected t o  be 
operated f o r  about 3 t o  4 years. A t  the end of t h i s  period, the  core w i l l  be removed 
and the spent fue l  shipped t o  the Naval Reactors mended  Core Faci l i ty  fo r  a 
detailed exsmination t o  verify core performance including an evaluation of breeding 
chamct e r i s t i c s  . 
In 1976, with fabrication of the Shippingport IWBR core nearing campletion, the 
Fhergy Research and Development Administration established the Advanced Water Breeder 
Applications (AWBA) program t o  develop and disseminate technical infomation which 
would a s s i s t  U. S. industry i n  evaluating the  LWBR concept fo r  carnmercial-scale 
applications. The program w i l l  explore some of the problems t h a t  would be faced 
by industry i n  adapting technology confirmed i n  the  LWBR program. Information t o  
be developed includes concepts for  commercial-scale prebreeder cores which would ' ' 

'produce uranium-233 f o r  l igh t  water breeder cores while producing electr ic '  power, 
improvements fo r  breeder cores based on the  technology developed t o  fabricate  and 
operate the  Shippingpod LWBR core, and other information and technology t o  a id  in 
evaluating commercial-scale application of the  LWBR concept. 

All three development programs (Pressurized Water Reactor, Light Water Breeder 
Reactor, md Advanced Water Breeder ~ p p l i c a t i o n s )  have been administered by the  
Division of Naval Reactors with the goal of develop- pract ical  improvements i n  
the  u t i l i za t ion  of nuclear f i e 1  resources fo r  generation of e l ec t r i ca l  energy using 
'water-cooled nuclear reactors. 

Technical informtion developed under the Shippingport, LWBR, and AWBA programs has 
been and w i l l  continue t o  be published i n  technical memoranda, one of which i s  
t h i s  present report,. 

Revised U-27-78 
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C r i t i c a l  h e a t  f l u x  experiments were 
conducted f o r  upflow of water  i n  a  v e r t i c a l  
84 inch annular  flow channel,  0.303 inch  
hea ted  I . D .  and 0.500 inch  unheated O.D. 
Tes t  d a t a  were obtained a t  preTssures from 
1200 t o  2g00 p s i a ,  mass v e l o c i t i e s  from 
0.25 x 10 t o  2.8 x l o 6  l b / h r - f t 2  apd i n l e t  

0 
; temperatures  ranging from 200 t o  600 F. 

Three d i f f e r e n t  t e s t  s e c t i o n s  were employed 
wi th  (1) a x i a l l y  uniform h e a t  f l u x  over  the  
84 inch  l eng th  t o  s e rve  a s  a  no-hot-patch 
d a t a  base,  (2) a x i a l l y  uniform hea t  f l u x  
over  82 inches wi th  a  1.5 h e a t  f l u x  r a t i o  
ho t  patch over  the lsst two inches ,  and 
(3)  a x i a l l y  unifdrm h e a t  f l u x  over  82 
inches wi th  a  2.25 h e a t  f l u x  r a t i o  hot  
pa tch  over the  l a s t  two inches.  Comparisons 
of ho t  patch t b  no-hot-patch c r i t i c a l  h e a t  
f l u x  va lues  were made i n d i c a t i n g  t h a t  f o r  

, most cases  a  uniform two-inch e x i t  ho t  
. pa t ch  does not  cause a  reduct ion  i n  CHF 
a t  e i t h e r  ho t  pa tch  r a t i o .  However, t h e r e  
was a  tendency f o r  a  CHI? decrement t o  occur  
f o r  the  low i n l e t  en tha lpy  runs a t  high 
mass ve loc i ty .  

CRITICAL HEAT FLUX EXPERIMENTS WITH 
A LOCAL HOT PATCH I N  AN INTERNALLY HEATED ANNULUS 

(LWBR Development Program) 

INTRODUCTION 

Local hea t  f l u x  peaking can occur  i n a d v e r t e n t l y  i n  nuc lea r  

r e a c t o r  cores  having f u e l  rods  due t o  the combined e f f e c t s  of f u e l  

p e l l e t  e c c e n t r i c i t y ,  non-uniform p e l l e t  po ros i ty  and p o t e n t i a l  f u e l  

s t a c k  gaps c r e a t e d  by, d e n s i f i c a t i o n  dur ing  core  power opera t ion .  

Any one o r  combination of t hese  cond i t i ons  can produce a  l o c a l  region 

in .  a  f u e l  rod which ope ra t e s  a t  a h e a t  f l u x  h ighe r  than t h a t  intended,  thus  

inc reas ing  the  chance f o r  t he  occurrence of 9 c r i t i c a l  hea t  f l u x  (CHF) 

cond i t i on  i n  t h a t  region. 

The l o c a l  condi t ions  hyp0thesi.s of c r i t i c a l . h e a t  f l u x  phenomena 

sugges ts  t h a t  t he  increased h e a t  f l u x  over  a  region i n  a  f u e l  rod could 

produce a  CHF condi t ion  i n  the  rod a t  a  lower average rod h e a t  f l u x  

compared t o  a  f u e l . r o d  wi thout  l o c a l  f l u x  peaking. However, p rev ious  

experimental  evidence sugges ts  t h a t  i f  the  s i z e  of t h e  reg ion  and/or  

the magnitude of t he  h e a t  f l u x  peak is  small  enough then the  l o c a l  f l u x  



peak reg ion  w i l l  have no e f f e c t  on CHF (Reference 1 ) .  

Reference 1 r e p o r t s  r e s u l t s  from an experi,ment conducted t o  determine 

the  e f f e c t  of a  h o t  pa tch  a t  t h e  end of the heated l eng th  on CHF power 

l e v e l s .  The t e s t  s e c t i o n  was the  same a s  t h a t  employed i n  the  s u b j e c t  

experiment except t h a t  t he  inne r  diameter  of the  e l e c t r i c a l l y  hea ted  tube 

was reamed out  f o r  the  l a s t  1'114 inches  t o  produce a  c i r c u m f e r e n t i a l l y  

uniform h o t  patch w i t h  a  h e a t  f l u x  1.337 times the  rod average s u r f a c e  

h e a t  f l ux .  D i rec t  comparison of t h e  CKF power l e v e l s  of t h i s  t e s t  s e c t i o n  

w i t h  those  of a  s i m i l a r  t e s t  s e c t i o n  without  t h e  hot  patch ind ica t ed  t h a t  

the  h o t  pa t ch  did n o t  a f f e c t  t h e  CHF power c a p a b i l i t y  of t he  rod. 

A comprehensive t e s t  program f o r  h.ot patch e f f e c t i v e n e s s  i s  d iscussed  

i n  Reference 2  which p r e s e n t s  experimental  d a t a  obtained over  a  range of 

h o t  pa t ch  l eng ths  from 0.591 inches t o  7.874 inches  and w i t h  h e a t  f l ux  peaking 

f a c t o r s  of 1 .5 and 2.0. The t e s t  s e c t i o n s  employed i n  these  t e s t s  were 

e l e c t r i c a l l y  heated 8  mm I . D .  tubes wi th  water  flowing on the  i n s i d e .  The 

s u b j e c t  t e s t  program was undertaken t o  provide supplementary d a t a  concerning 

the e f f e c t  of hot  patches.  I n  p a r t i c u l a r ,  a v a i l a b l e  h o t  patch d a t a  i n  the  

l i t e r a t u r e  were l ack ing  a t  low q u a l i t i e s  ( l e s s  than 8%) where previous d a t a  

obta ined  a t  B e t t i s  i nd ica t ed  p o t e n t i a l  e f f e c t s  of ho t  patch on thermal 

pertormance. 

TEST EQUIPMENT 

The t e s t  equipment cons i s t ed  of  a  high p re s su re  water  c i r c u l a t i o n  loop, 

a D-C gene ra to r ,  t h e  t e s t  s e c t i o n ,  l o c a l  ins t rumenta t ion  and t h e  d a t a  

a c q u i s i t i ~ n  system. A Crocker-Wheeler d i r e c t  c u r r e n t  genera tor  was used 

f o r  t e s t  s e c t i o n  e l e c t r i c a l  power wi th  maximum r a t i n g s  nf 1.00 v n l t s  and 

7500 amps. Addi t iona l  t e s t  s e c t i o n  c u r r e n t  can be obta ined  by ar ranging  up 

t o  f o u r  gene ra to r s  i n  p a r a l l e l .  The t e s t s  were performed i n  B e t t i s  High 

P res su re  Loop No. 2 9  shown schemat ica l ly  i n  Figure 1. The loop can c i r c u l a t e  

50 gpm of water  through 2 inch  316 s t a i n l e s s  s t e e l  p ip ing  a t  p re s su re s  up 
0 

t o  2500 p s i a  and 650 F  using a  s i n g l e  canned motor pump. 

The t e s t  s e c t i o n  was a  0.303 + 0.001 inch O.D. stain1es.s s t e e l  tube 

wi th  a  0.035 inch th i ck  w a l l ,  surrounded by a  0.500 inch 1 , D .  ceramic tube 

conta ined  wi th in  a  1 inch O.D. p ipe ( see  F igure  2) .  An annular  flow 

p a t h  e x i s t s  between i n s i d e  0.303 inch O.D. tube and the  0.500 inch 



r. 
I.D. ceramic tube. The ceramic tube and ou te r  pipe a r e  i n  con tac t .  

The i n s i d e  of the heated tube con ta ins  a i r  a t  atmospheric pressure .  
r'' 

The heated tube was centered wi th in  the ceramic tubing by seven space r s  

l oca t ed  a t  12 inch i n t e r v a l s  w i th  the uppermost spacer  l oca t ed  9 ' inches 

before  the  end of the  heated length .  Each spacer  cons i s t ed  of t h r e e  
0 

s h o r t  tub ing  segments welded t o  t h e  t e s t  s e c t i o n  a t  120 l o c a t i o n s  a s  

can be seen i n . F i g u r e  3 .  Copper te rmina ls  a r e  a t t ached  t o  both ends of 

the  tube and a  h e a t  f l u x  i s  produced by DC r e s i s t a n c e  hea t ing  i n  t h e  tube 

wal l .  Heat f l u x  from the  tube wa l l  was uniform a x i a l l y  except  f o r  the 

increased  h e a t  f l u x  i n  t he  2 inch h o t  pa tch  which was produced by reaming 

o u t  the i n s i d e  of the s t a i n l e s s  s t e e l  tube t o  reduce the w a l l  th ickness  

t o  0.026 inch  a t  the  end, thus  inc reas ing  the e l e c t r i c a l  r e s i s t a n c e  l o c a l l y ,  

Figure 2  shows an a x i a l  and c ros s - sec t iona l  view of the t e s t  s e c t i o n  

i d e n t i f y i n g  the  l o c a t i o n  of the  o u t l e t  w a l l  thermocouples and the dimensions 

of t he  annular  flow channel. F igures  3 and 4 g ive  p a r t i a l  and f u l l  l ength  

a x i a l  views of t he  disassembled t e s t  s ec t ion .  F igures  5 and 6  show detai ' led 

drawings of t he  i n l e t  and e x i t  regions of t he  t e s t  s e c t i o n  showing the  i n l e t  

p re s su re  tap  and the  des ign  o f  the  heated tube and te rmina l  connect ions.  'The t e s t  

s e c t i o n  was we l l  i n s u l a t e d  and h e a t  l o s s e s  were n e g l i g i b l e  throughout the 

f u l l  range of t e s t i n g ,  

S t a i n l e s s  s t e e l  sheathed chromel-alumel thermocouples were used f o r  

water  temperature i nd ica t ion .  Four water  thermocouples were pos i t ioned  

i n  the  flow, two upstream and two downstream of t he  heated length .  Two 

asbes tos - in su la t ed  chromel-alumel wa l l  thermocouples were s p o t  welded 

i n s i d e  the heated tube near  the  e x i t  end of t he  t e s t  s e c t i o n  a s  shown 

i n  Figure 6. Readouts from these  thermocuples were' d i sp layed  cont inuously 

on osc i l l og raph  c h a r t s  and were used t o  i n d i c a t e  CHF. CHF was recognized 

by a 2 mm o r  g r e a t e r  r i s e  of e i t h e r  CHI? t h e ~ o c o u p l e  o s c i l l o g r a p h  

reading from i t s  base l i n e  va lue  corresponding t o  a  temperature r i s e  of 

~ O ~ F .  

Power measurements were recorded cont inuously a s  vo l t age  drop 

ac ros s  the  t e s t  s e c t i o n  te rmina ls  and cu r ren t  a s  measured by m i l l i v o l t  

drop a .crnss  a c a l i b r a t e d  shunt .  Voltage and cu r ren t .  a r e  es t imated  tjo 

be accu ra t e  t o  wi th in  + 1.0% and _+ 0.8% respec t ive ly .  

High p u r i t y  water  was used i n  a l l  t e s t s  wi th  a  pH nea r  7.0. The 

r e s i s t i v i t y  was maintained above 0.5 megohm-cm a t  room temperature and 

the oxygen .concentrat ion was maintained beluw 0.1 ppm. 



The t e s t  s e c t i o n  flow r a t e  was measured wi th  two o r i f i c e s  of the same 

s i z e  connected i n  s e r i e s .  O r i f i c e s  of diameters  0.100, 0.300 and 0.435 

inch were used i n  t h r e e  p a r a l l e l  flow legs .  The s i z e  used f o r  a  given t e s t  

run depended on t h e  flow r a t e .  A l l  o r i f i c e  c a l i b r a t i o n  cons t an t s  were 

eva lua t ed  from t e s t s  w i t h  a  weigh tank and f lowra te s  c a l c u l a t e d  from the  

two o r i f i c e s  agreed w i t h i n  2%, Water temperature a t  the  o r i f i c e s  was 

measured by two thermocouples accu ra t e  t o  about - + 2 ' ~ .  

The mass v e l o c i t i e s  were ca l cu la t ed  using the  measured f lowra tes  

and t h e  nominal flow a r e a  of the t e s t  s e c t i o n .  There i s  a  s i g n i f i c a n t  

u n c e r t a i n t y  (+6%, -34%) i n  l o c a l  mass v e l o c i t y  due t o  t he  inner  diameter  

t o l e r a n c e  of the ceramic tubing.  This unce r t a in ty  i s  not  present  i n  the 

l o c a l  en tha lpy  s i n c e  t h i s  quan t i t y  i s  ca l cu la t ed  from the t e s t  s e c t i o n  

power and. f  lowrate  determined from o r i f i c e  readings.  

The s t e a d y - s t a t e  d a t a  a c q u i s i t i o n  system cons i s t ed  of o sc i l l og raph  

r eco rde r s  f o r  CHF thermocouple monitoring and s t r i p  c h a r t  recorders  f o r  

gene ra to r  cu r r en t  and hub-to-hub t e s t  s e c t i o n  vo l t age  drop. The 

o s c i l l o g r a p h s  were e l e c t r i c a l l y  coupled t o  the t e s t  s e c t i o n  power supply 

such t h a t  t e s t  s e c t i o n  power was au toma t i ca l ly  reduced by 44% when a  CHF 

temperature excurs ion  was ind ica t ed .  

An I n t e g r a t i n g  D i g i t a l  Voltmeter (IDVM) was used to measure a l l  

thermocouple and D i f f e r e n t i a l  Pressure  (DP) c e l l  readings .  These readings 

were saved on magnetic tape recordings.  

- - 
wafer tLow r a t e s  were determined a s  t h e  numericai average of va lues  

c a l c u l a t e d  from t h e  two o r i f i c e s  connected i n  s e r i e s .  The t e s t  s e c t i o n  

i n l e t  mass v e l o c i t y  was determined by d iv id ing  the  f lowra te  by t h e  t e s t  

s e c t i o n  i n l e t  flow a rea .  The measurement e r r o r  on the  i n l e t  temperature 
o  

i s  e s t ima ted  a t  _+ 2 F. For the  system p res su re ,  t he  es t imated  e r r o r  i s  

+ 3  p s i  whi le  the h e a t  f l u x  and i n l e t  mass v e l o c i t y  a r e  each es t imated  t n  - 
be a c c u r a t e  w i th in  2 2%. These e r r o r s  combined w i t h  the  unce r t a in ty  

inhe ren t  i n  i d e n t i f y i n g  CHF l ead  t o  an es t imated  - + 10X allowed e r r n r  band 

on a  computed ho t  pa tch  t o  no-hot-patch f l u x  r a t i o .  

111. TEST PROCEDURE 

The t e s t  procedures f o r  the  no-hot-patch, 1.5 f l u x  r a t i o  ho t  pa tch  

and t h e  2.25 f lux  r a t i o  hot  pa t ch  CHF t e s t s  were i d e n t i c a l  and cons i s t ed  

o f :  



1, Es tab l i sh ing  loop cond i t i ons  of p re s su re ,  f l owra t e ,  
"" 

chemistry (pH = 7.0) and t e s t  s e c t i o n  i n l e t  temperature.  

2 .  Applying and inc reas ing  the  t e s t  s e c t i o n  power t o  an 

es t imated  va lue  below CHF and inc reas ing  power i n  

small  increments u n t i l  a  CHF i n d i c a t i o n  was obtained 

on e i t h e r  of the e x i t  wa l l  thermocouple o sc i l l og raph  

c h a r t s .  

3. Recording a l l  da ta .  

Following a  CHF run, the power was r e s e t  t o  approximate ly  98% of 

the CHF power l e v e l  and a  complete l i n e  of d a t a  recorded. These 98% 

runs served a s  a  backup i n d i c a t i o n  of nominal t e s t  s e c t i o n  condi t ions  f o r  

the CHF runs where a  rap id  CHF prevented the  record ing  of a  f u l l  l i n e  of 

da t a  on t h e  I n t e g r a t i n g  D i g i t a l  Voltmeter (IDVM). 

I V .  DISCUSSION OF RESULTS 

The d a t a  obtained a t  CHF and a t  98% of CHF from the 1.5 Hot Patch. 

Tes t  a r e  contained i n  Table 1. Comparable d a t a  f o r  the 2.25 Hot Pa tch  

Tes t  a r e  contained i n  Table 2.  The CHF d a t a  with no ho t  patch a r e  shown 

f o r  comparison i n  both t a b l e s .  Each t a b l e  l i s t s  the  run number, run 

type,  nominal system p res su re ,  i n l e t  mass v e l o c i t y ,  i n l e t  temperature,  

i n l e t  en tha lpy ,  c a l c u l a t e d  average e x i t  en tha lpy ,  average t e s t  s e c t i o n  

h e a t  f l u x  and the r a t i o  of average hea t  f l uxes  with and wi thout  the 

h o t  patch,  The q u a n t i t i e s  g iven  i n  t hese  t a b l e s  a r e  t he  a c t u a l  t e s t  

condi t ions .  

The e x i t  en tha lpy  was ca l cu la t ed  from the e q u a t i u u :  

where 

H = i n l e t  en tha lpy  (B tu l lb )  
i n  

2 
Q" = average h e a t  f l u x  ( B t u l h r - f t  ) 1 

2  
G = t e s t  s e c t i o n  mass v e l o c i t y  ( l b l h r - f t  ) 

Ah = t e s t  sectEon h e a t  t r a n s f e r  a r e a  = 0.5553 f t  
2  

Af = t e s t  s e c t i o n  annular  flow a r e a  = 0.0008625 f t  
2 



Any e f f e c t  of the ho t  pa tch  on c r i t i c a l  h e a t  f l u x  performance 

can be deduced by comparing the  h e a t  f l u x  of p a i r s  of runs i n  

Tables  1 and 2. I f  the  i n l e t  f l u i d  condi t ions  f o r  any p a i r  of runs a r e  

very  c l o s e  then the  h e a t  f l u x e s  can be compared d i r e c t l y .  I f  the  i n l e t  

f l u i d  cond i t i ons  f o r  any p a i r  of runs d i f f e r  s i g n i f i c a n t l y ,  then 

allowance must be made f o r  t h e  d i f f e r e n t  f l u i d  condi t ions .  

The h e a t  f l u x  r a t i o s  p r i n t e d  i n  t hese  t a b l e s  were used t o  develop 

p l o t s  d i scussed  below. In  some cases  t he  98% CHI? p o i n t s  were used on the  

p l o t s  and these  a r e  i nd ica t ed  i n  t h e  t a b l e s .  

No cor~iparison should be made between runs 34 a n d  158 a t  CHF o r  runs 

35 and I59 a t  982 CHF because runs 34 and 35 had Tin = ZOOOF while  runs 
0 150 ~ L I J  159 had T sy 427 F d11e t o  grlnerator 1imitation.n which occurred 

in 
dur ing  runs 158 and 159. 

A. Hot Pa tch  Data Comparison wi th  Flux Rat io  o f .1 .50  

Figure  7  summarizes t he  r e s u l t s  of  t he  1.5 f l u x  r a t i o  ho t  patch 

t e s t i n g  a s  compared t o  t h e  no-hot-patch d a t a  base ( r e f e r r c d  t o  as "new") 

a t  2000, 1600 and 1200 ps i a .  The r e s u l t s  a r e  presented  i n  t a b u l a r  form 

i n    able 1. ' The d e v i a t i o n  of t h e  h o t  pa tch  CHF d a t a  from the  no-hot- 

pa t ch  d a t a  base may be c h a r a c t e r i z e d  by the  CHF Rat io ,  def ined  a s  the  r a t i o  

of t h e  average h e a t  f l u x  a t  CHF wi th  ho t  pa tch  t o  t h e  average h e a t  f l ux  
,/ 

a t  CW without  h o t  pa t ch  f o r  t he  same p re s su re ,  mass v e l o c i t y  and i n l e t  

temperature.  An examination of t h e  d a t a  i n  F igure  7  shows t h a t  t h e r e  i s  

a decided mass v e l o c i t y  e f f e c t  and t h a t  t he  CHF r a t i o  is between 0.90 

and 1.10 except  f o r  s i x  of t he  37 d a t a  po in t s :  
6 2  

a. ' 2000 p s i a ,  200°F, 0.25 x  10 l b / h r - f t  , Rat io  = 1.12 
2  

b. 1600 p s i a ,  40o0I?, 0.25 x 106 l b / h r - f t  , Rat io  = 1.11 
6  2  

c.  1600 p s i a ,  50U0I?, 0.25 x  10 l b / h r - f t  , Rat io  = 1.11 
6 2 

d. 1200 p s i a ,  200°F', 0.25 x  10 l b / h r - f t  , Rat in  = 1.24 
6 2 

e. 1200 p s i a ,  40o0I?, 0..25 x  10 l b / h r - f t  , Ratio = 1.17 
6  2  

f .  1200 p s i a ,  500°F, 0.25 x  10 l b / h r - f t  , . R a t i o  = 1.16 



It i s  noted t h a t  ' a l l  s i x  of t hese  p o i n t s  a r e  a t  0.25 x  10 
6  

2  
l b / h r - f t  i n l e t  mass v e l o c i t y  and the  r a t i o  i s  always g r e a t e r  than  1.00. 

Since i t  i s  no t  expected t h a t  the hot  pa tch  would cause an improvement 
6  2  

i n  CHF a t  0.25 x  10 l b / h r - f t  mass v e l o c i t y , i t  i s  concluded t h a t  these  

.po in ts  a r e  probably i n  e r r o s .  It may a l s o  be concluded from these  

comparisons t h a t  t he  1.5 f l u x  r a t i o  h o t  pa tch  does not  r e s u l t  i n  

e a r l i e r  CHF. 

Because of the  u n r e a l i s t i c  t rend of the t e s t  r e s u l t s  d i scussed  

above a t  low mass v e l o c i t i e s ,  an a l t e r n a t e  s e t  of base case  d a t a  obta ined  

wi th  a  nominally i d e n t i c a l  t e s t  s e c t i o n  i n  a  previous t e s t  ( a s  descr ibed  i n  

t he  Appendix)was u t i l i z e d .  F igure  8 summarizes the r e s u l t s  o f .  t he  1.5 

f l u x  r a t i o  ho t  pa tch  t e s t i n g  a t  2000 and 1200 p s i a  us ing  the  a l t e r n a t e  

d a t a  base r e f e r r e d  t o  i n  the  Appendix a s  t he  " f i r s t  assembly". Figure 

8 shows t h a t  a l l  t h e  CHI? r a t i o s  a t  2000 p s i a  a r e  w i t h i n  the  + 10% 

experimental  s c a t t e r  band while  t h r e e  p o i n t s  a t  1200 p s i a  a r e  ou t s ide  the  

s c a t t e r  band. Again, however, a l l  of t he  CHF r a t i o s  ou t s ide  of the  s c a t t e r  

band a r e  g r e a t e r  than 1.00 sugges t ing  no hot  patch CHF decrements. 

Figure 9 compares t h e  r e s u l t s  of t he  1.5 f l u x  r a t i o  h o t  patch 

t e s t i n g  a t  2000, 1600 and 1200 p s i a ,  wi th  a  second a l t e r n a t e  d a t a  s e t  from 

a  previous t e s t .  These d a t a  were obtained i n  a  nominally i d e n t i c a l  t e s t  

s e c t i o n  r e f e r r e d  t o  i n  t he  Appendix a s  the "second assembly". Figure 

9 shows t h a t  a l l  the  CHF r a t i o s  a t  a l l  p r e s su re s  a r e  w i t h i n  the  + 10% 

experimental  s c a t t e r  band. 

F igures  10, 11 and 12 compare the  r e s u l t s  of t he  1.5 hea t  f l ux  

h o t  .patch t e s t i n g  t o  the no-hot-patch t e s t i n g  on the convent ional  f lux-  

en tha lpy  p l o t  a t  2000, 1600 and 1200 p s i a ,  r e spec t ive ly .  The 1.5 hot  

p a t c h ' d a t a  a r e  represented  by open squares  whi le  the  no-hot-patch d a t a  bases  

a r e  represented  by c i r c l e s .  An examination of these  th ree  f i g u r e s  shows 

t h a t  t he  1.5 hot  pa tch  d a t a  g e n e r a l l y  l i e  very  c l o s e  t o  the no-hot-patch 

d a t a  and a r e  c o n s i s t e n t l y  above and t o  the  r i g h t '  of the  no-hot-patch d a t a  

a t  t he  lower mass v e l o c i t i e s . .  A comparison of the o ld  and new no-hot-patch 

d a t a  bases  i n d i c a t e s  a  probable experimental  b i a s  between the  two s e t s  of da ta .  

'l'he only  known d i f f e r e n c e  between the  o ld  no-hot-patch t e s t  



s e c t i o n  and the  new no-hot-patch t e s t  s e c t i o n  was the type of spacers  

used t o  c e n t e r  t he  s t a i n l e s s  s t e e l  t e s t  tube i n  t h e  two t e s t s .  The o ld  

t e s t  used " sp r ing  c o l l a r "  space r s  descr ibed  i n  t he  Appendix while  the 

new t e s t  s e c t i o n  used smal l  d iameter  open tubes which were loca t ed  a t  

t he  same a x i a l  l o c a t i o n s  a s  the  s p r i n g  c o l l a r s  thus  y i e ld ing  a  nominally 

cen te red  t e s t  tube in  both cases ,  I n  both cases  t he re  was some unknown 

exper imenta l  t o l e r ance  i n  cen te r ing  the tube,  thus leading  t o  t he  

p o s s i b i l i t y  t h a t  the  one t e s t  s e c t i o n  tube was more e c c e n t r i c  than  the 

o t h e r .  However, i t  i s  no t  known i f  d i f f e r e n c e s  i n  t e s t  s e c t i o n  e c c e n t r i c i t y  

could in t roduce  the observed d i f f e r e n c e s  i n  t he  two d a t a  bases .  

Two conclus ions  can be drawn from a  comparison of the  1.5 CHF 

r a t i o  d a t a  based on the  new no-hot-patch d a t a  base vs.  the  same CHF 

r a t i o  based on the  o ld  (Appendix) no-hot-patch d a t a ' b a s e :  

1. The CHF r a t i o  i s  s e n s i t i v e  t o  the d a t a  base used, 
2 

e s p e c i a l l y  a t  0.25 x  l o 6  l b / h r - f t  . 
2. The CHF r a t i o  i s  never l e s s  than 0.9 i r r e s p e c t i v e  of 

t he  n o - h o t - ~ a t c h  d a t a  base used, s t rong ly  sugges t ing  

t h a t  t h e r e  is no-hot-patch CHF decrement over  the 

range of v a r i a b l e s  t e s t e d .  

B. Hot Pa tch  Data Comparison wi th  a  Flux Rat io of 2.25 

Figure 13 suinmariees t he  r e s u l t s  of the c u r r e n t  2.25 f l u x  r a t i o  

h o t  pa t ch  t e s t i n g  a t  2000, 1600 and 1200 p s i a ,  a s  compared w i t h  the  new 

no-hot-patch d a t a  base. These d a t a  a r e  t abu la t ed  i n  Table 2. An 

examination of t hese  d a t a  shows t h a t  the ho t  pa tch  t o  no-hot-patch CHF 

r a t i o  i s  between 0.90 and 1.10 except  f o r  s i x  of t he  34 d a t a  po in t s :  

6  2  
a. 2000 p s i a ,  600°1?, 0.25 x  10 l b / h r - f t  ., CHF Rat io  = 1.15 

6  2  
b. 2000 p s i a ,  2 0 0 ' ~ ~  1.00 x  10 l b / h r - f t  , CHF Rat io  = 0.86 

2 
c. 2UUU p s i a ,  ~ U U ' F ,  2.00 x l o 6  l b / h r - f c  , CHF Rario = 0.88 

6  2  
d. 1200 p s i a ,  200°1?, 0.25 x  10 l b / h r - f t  , CHF Rat io  = 1.16 

6 2 
e .  1200 p s i a ,  400°F, 2.00 x  10 l b / h r - f t  , CHI? Ra t io  = 0.80 

6  2  
f. 1200 p s i a ,  500OI?, 1.00 ~c 10 l b / h r - f t  , CIIF Rat io - 0.00 

It i s  noted t h a t  the two p o i n t s  a t  0.25 x  l o 6  l b / h r - f t 2  a r e  both g r e a t e r  

than  1.10 whi le  t he re  a r e  four  d a t a  p o i n t s  f o r  which a  CHF decrement e x i s t s .  



Figure 14 summarizes the r e s u l t s  of  cu r r en t  2.25 hot  patch t e s t i n g  

a t  2000 and 1200 ps i a , '  using the  a l t e r n a t e  d a t a  base. The no-hot-patch 

hea t  f l u x  va lues  used t o  compute the CHI? ra t . ios  f o r  t hese  f i g u r e s  were 

taken from a previous t e s t  and were obta ined  on a  nominally i d e n t i c a l  

t e s t  s e c t i o n  r e f e r r e d  t o  i n  the Appendix a s  the  " f i r s t  assembly". 

Figure 14 shows t h a t  a l l  bu t  one of t h e  ClIF r a t i o s  a t  2000 p s i a  a r e  

w i th in  the  - + 10% s c a t t e r  band whi le  t h r e e  p o i n t s  a t  1200 p s i a  a r e  o u t s i d e  the  

s c a t t e r  band.   ow ever, only one po in t  i s  on the  low s i d e  of the  s c a t t e r  
6  2 

band a t  condi t ions  of 1200 p s i a ,  400°F and 2.0 x 10 l b / h r - f t  where the  

CHF r a t i o  i s  0.87. 

Figure 15 summarizes the  r e s u l t s  of c u r r e n t  2.25 hot  pa tch  t e s t i n g  

a t  2000, 1600 and 1200 p s i a ,  wi th  a  second a l t e r n a t e  da t a  base from a 

previous  t e s t ,  The no-hot-patch h e a t  f l u x  va lues  used t o  compute the  CHF 

r a t i o s  f o r  these  f i g u r e s  were obtained on a  nominally i d e n t i c a l  t e s t  s e c t i o n  

r e f e r r e d  t o  i n  the  Appendix a s  the  "second assembly". This  comparison shows 

t h a t  a l l  of the  CHF r a t i o s  a t  a l l  p ressures  a r e  w i th in  the  + 10% experimental  

s c a t t e r  band. 

F igures  10, 11 and 12 compare the  r e s u l t s  of  the  2.25 h o t  .patch 

t e s t i n g  t o  the  no-hot-patch t e s t i n g  r e s u l t s  on the  convent ional  f lux-  

en tha lpy  p l o t  a t  2000, 1600 and 1200 p s i a ,  r e spec t ive ly .  The 2,'25 hot  

patch d a t a  a r e  represented by open t r i a n g l e s  while  t he  no-hot-patch d a t a  

base is  represented  by c i r c l e s .  An examination of these  figur,es shows 

t h a t  the 2.25 h o t  pa tch  d a t a  g e n e r a l l y  l i e  c lo se  t o  the  no-hot-patch d a t a  
6 2 

and a l l  bu t  one (1200 p s i a ,  400°F, 2.00 x 10 l b / h r - f t  ) of the  2.25 ho t  

p a t c h , d a t a  p o i n t s  a r e  judged t o  l i e  w i t h i n  the  experimental s c a t t e r  band 
C 

of t he  comparable old no-hot-patch d a t a  poin t .  A t  the h ighe r  mass 

v e l o c i t i e s  t he re  appears  t o  be a  t r end  of the 2.25 h o t  patch da t a  t o  l i e  

below and t o  t h e  l e f t  of t he  no-hot-patch d a t a  base .and t h i s  may sugges t  

a  smail  CHF decrement a t  these  condi t ions .  

V. CONCLUSIONS 

The 1.5 ho t  patch t o  no-hot-patch CHI? r a t i o  i s  always g r e a t e r  than  

0.90, independent ly of t h e  no-hoc-parch da ra  base (old and new) used t o  

compute the  CHF r a t i o .  This  r e s u l t  i n d i c a t e s  t h a t  t he re  i s  no ho t  pa tch  



CHF decrement due t o  a  2  inch long 1.5 f l u x  r a t i o  h o t  patch over  the  

range of v a r i a b 1 . e ~  and geometry t e s t e d .  

The 2.25 h o t  pa tch  t o  no-hot-patch CHF r a t i o ,  based on the  new 

d a t a  base ,  i s  g r e a t e r  than 0.90 except  f o r  d a t a  a t  f o u r  condi t ions :  

2 
a .  2000 p s i a ,  20o0F, 1,000,000 l b l h r - f t  , CHF Rat io  = 0.86 

2 b. 2000 p s i a ,  500°F, 2,000,000 l b l h r - f t  , CHI? Rat io  = 0.88 

c .  1200 p s i a ,  5 0 0 ° ~ ,  1,000,000 l b l h r - i t 2 ,  CHF Rat io  = 0.88 

d. 1200 p s i a ,  400°F, 2,000,000 l b l h r - i t 2 ,  CHF Ratio = 0.80 

The 2.25 h o t  pa t ch  t o  no-hot-patch CHF r a t i o ,  based on the  o l d  (Appendix) 

d a t a  base ,  i s  g r e a t e r  than  0.90 except  f o r  d a t a  a t  one condi t ion :  

0 6 2 
1200 p s i a ,  400 F, 2,000,000 x 10 l b l h r - f t  , CHF Ra t io  = 0.87 

These r e s u l t s  i n d i c a t e  t h a t  t h e r e  i s  no CHF decrement f o r  most of the  

h o t  pa t ch  d a t a  w i th  a  h e a t  f l u x  r a t i o  of 2.25 over t he  range of v a r i a b l e s  

t e s t e d .  However, t he re  was a  tendency f o r  a  CHF decrement t o  occur  f o r  the  

low i n l e t  en tha lpy  runs a t  h igh  mass ve loc i ty .  

Based on a  comparison of t he  new no-hot-patch d a t a  w i th  the  o ld  

no-hot-patch d a t a  (Appendix), t he  new no-hot patch d a t a  a t  250,000 l b l h r - f t  
2  

mass v e l o c i t y  a r e  probably i n  e r r o r .  I f  t hese  d a t a  a r e  used, t h e r e  i s  a  

c o n s i s t e n t  t r end  i n  both the  h o t  pa tch  d a t a  s e t s  showing an  improvement i n  
2 

CHF due t o  the  h o t  pa tch  a t  250,000 l b l h r - f t  . This  t rend  i s  no t  ev ident  

i f  t h e  o l d  no-hot-patch d a t a  a r e  used. 
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RUN 
NO. 

TABLE 1 

Comparison of Data With and Without A Hot Patch - 1.5 Heat 'F lux  Rat io 

M A S S  
V E L O C I t Y  INLET 
K 10-5 TEMPER- 

* PRES- ( L B / H R -  ATURE 
TYPE (PSIAI  F T S O )  (0EG.F.) 

CMF W/O -HP 2000 0 259' 201.5 
CHF W PP 2000 0.253 199.8 

CHF U / O  HP 2000 8 .499 231.4 
NO DATA 

CHF W/O HP 2000 0 .991  200.7 
CHF W WP 2000 l o 0 0 1  427.8 

CHF W/OHP 2000 8.245 b01.8 
CHF W HP 2000 0.253 400.5 

CHF W/O HP 2006 0.500 401.7 
CHF W HP 2000 0.497 400.0 

CALCU- AVERAGE RATIO 
MEASURED LATE0 HEAT FLUX OF 

INLET E X I T .  K 10-6 CRITICAL 
ENTHALPY ENTHALPY (BTU/HR- HEAT 
( BTU/L 0)  (BTU/LB) FT SQ) FLU E S  

3 1  CHF' W/O HP 2000 1 o O O G  398.9 376.1 695 S 0.496 
1 2 2  CHF W HP 2000 0.978 400.0 377.3 692.1 0 0478 96 

33 CHF W/O HP 2000 1 .989 C00.8 3 7 8 . 1  609.6. 0 . 7 1 6  
1 2 4  CHF W HP 2000 t . 0 0 2  400.0 377.3 610 0 0  0.723 1 ; O i  

* w/O BP mans vithout hot patcb. 
W UP Beone with hot .patch. 

** Rutis not comparable. 



TABLE 1 (Continued) 

Conparison of Daca With and Without X Hot Patch - 1.5 Heat Flux Ratio 

M i l  SS 
VELOCITY INLET 
K 10-5 TEYPER- 

PRE5- ILBIHR- ATURE 
TYPE IPS141 F r S O )  4DEG.F. )  

CALCU- ALERAGE RATIO 
MEASURED LATE0 HEAT ,FLUX OF 

I N L E T  E X I 1  K 10-6  CRITICAL 
E N ~ H A L P Y  ENTHALPY (ETU/HR- HEAT 
( BTUf LB) ( B T U f L B )  F T S Q )  FLU XES 

RUN 
NO. 

CHf U/OHP 2003 0.244 5 0 8. .. r 
CHF # HP 2iOO) 0.245 494i-BZ 

CHF W / O  HP 210 I 0.498 49'2 ,B 7 
CHF W HP 2 0 0 1  0.502 499e6 

CHF U/O HP 200;l 1. 000 50 0 *4, 
CHF W HP 266.1 0.984 495- 2 

CHF' W/O HP 2a00 1.990 500.2 
CHF H UP 2600 . 2,002 49e.6 

18 CHF W I O H P  2000 2.682 
1 3 4  CHF H UP 2 0 0 8  2 .626  

8 CHF W/OHP 2000 0.246 
1 4 4  CHF M UP 2008 am254 

1 0  CHF W I O  HP 2800 0.493 
1 4 6  CHF U HP 2008 0.500 

1 4  CHF W/O HP 2 9 0 0  1.986 599 ,. 4 614.1 738e6 0 . 3 8 4  
150 CHF W HP 2000  a.995 5994,k 6 1 4 0 1  735.5 8,377 98 

16 CHF U1OHP 2000 2.556 €OOa2 615 3 723.4 0.429 
1 5 2  CHF W HP 2000 2.754 !9 9.5 614.2 716.8 0.439 1.02 



TABLE 1 (Continued) 

Comparison of  Data w i t h  and Without  A Hot. P a t c h  - 1.5 Heat F lux  R a t i o  

HA SS CALCU- AVERAGE RATIO 
V E L O C E T Y  -INLET MEASURED L A T E D  H E A T  F L U X  OF 
. K 1 0 - 6  TEMPER- I N L E T  E X I T  X 10-6 C R I T I C A L  

PRES- ( t B / H R -  ATURE ENTHALPY ENTHALPY (BTU/HR- HEAT 
( P S I A )  F T S Q l  ( C E G . F . 1  (BTU/LB)  (BTU/LB)  F T S Q )  FLU E S  

RUN 
YO. 

71  
90 

7 3  
92 

7 5  
125 

7 7  
131 

69 
103 

67 
110 

65 
116 

63 
136 

61 
142 

TYPE 

CHF W/O HP 
CHF W HP 

CHF H/O HP 
CHF W HP 

CHF H/O HP 
CHF N HP 

CHF H/O HP 
CHF # HP 

CHF W/O HP 
CHF W HP' 

CHF H/O HP 
CHF H HP 

CHF W/O HP 
CHF W HP 

CHF W / O  HP 
CHF H HP 

NO OATA 
CHF H HP 



TABLE 1 (Continued) 

Comparison of Data With an.i Without A Hot Patch - 1.5 Heat Flux Ratio 

MASS CALCU- AVERAGE 'RAT 10 
VELOCITY I N L E T  MEASURED LATE0 HEAT FLUX OF 

X 10-6 , TEMPER- I N L E T  E X I 1  X 10 -6  C R I T I C A L  
RUN >RES- CLBIHR- ATURE ENTHALPY ENTHALP* (BTU/HR- HEAT 
Y O *  TYPE ( ' 3 S I A )  F I S Q )  (0EG.F.) ( B T U / L B )  (BTl)./L81 F f S Q )  FLUXES 

40 CHF W/O HP 1200  1B.245 200.2 l T L o 1  7 0-4.3 0.203 
1 5 4  CHF W HP 1200 0.253 20000 170.9 820.1 0.255 1.26 

4 2  CNF W/O HP 1200 0.501 189.8 170.6 68900 0.404 
1 5 6  CHF W Ho i 2 0 0  0.501 20 0 04 171.2 69802 0.410 . 1.02 

44  CHF WtO HP 1200 0,247 401.0 3 7 7 0 5  814.3 0.167 
88 CVF W HP 1200 0.257 399.5 375.9 8664 0 0.196 1.17 

4 6  CHF W/O HP 1200 0.493 399.8 376.2 735e.5 0.275 
94  CHF H HP 1200  0.500 400.2 376.7 731.3 0.276 1 000 

ChF W/O HP 1200 0.921 408.5 377.0 
NO DATA 

CHF W/OHP 1200 0.987 b00.7 377.2 
NO DATA 

C H F U t O H P  1200 20010 400.9 377.4 
CHF W HP 1200 1.973 399.9 3750 8 

CHF W/O HP f200 3.248 501.0 489.0 ' 

CHF W HP 2200 1.251 500.2 488.2 

684.6 0.471 
Repeat 

5 3  C'HF W/OHP 1200 D.b71 500.7 488.6 756.2 8.196 
t i 2  CHF U HP L200 3.498 5010.1 488.0 761.4 00212 1.08 

5 5  CHF WIOHP L200 .L0083 500.2 488.0 723.3 0.366 
118 CMF W HP 1200 0.980 499.0 486.7 704.7 0.332 9 1  

. 5 7  CHF WIO HP 2200 2.014 500.2 488.1 667.5 0,562 
1 3 8  CHF W HP 1200 2.003 500.1 488.0 655.0 0.520 • 93 

* No da ta  taken a t  CEF level-s,  see Run 129 a t  98 CHF l eve l s .  



TABLE 1 (Continued) 

Comparison of Data With and Without A Hot Patch - 1.5 Heat Flux Ratio 

M A  SS CALCU- AVERAGE 
V E L O C I T V  I N L E T  MEASURED LATEO HEAT FLUX 

X 16-6 TEMPER- I N L E T  E X I T  X 1 0 - 6  , Ratio of 
RUN PRES- ( L B f H R -  ATURE ENTHALPY ENTHALPY (BTU/HR- HEAT 
NO. * T Y P E  ~ P S I A )  F T S Q )  (OEG.F.)  (BTUILB) . (BTU/LB)  FTSQ)  FLU XES 

* Type 98 w/O EP mans a test  NU at  98% of CUP without hot patch. 
** Runs not comparable. 



TABLE 1 (continued) 

Comparison o f  Data With and Wit-lout A Hot Patch - 1.5 Heat Flux Ratio 

MASS 
V E L O C I T Y  INLET 

K 1 0 - 6  T EHPER- 
(LBIHR-  ATURE 

F l S O )  (0EG.F. )  

CALCU- AVERAGE 
LATE0  HEAT F L U X  

E X I T  K 1 0 - 6  
E N 1  HALPY 4 BTU/HR- 
( B T U / L B )  FTSQ)  

MEASURED 
INLET 

ENTHALPY 
( B T U / L B )  

Ratio o f  
HE AT 

F L U  MES 
RUN PRES- 
NO* 1 YPE ( P S I A )  

59  * NO DATA 
1 3 5  98 U HP 2 9 0 0  

- 

No d a t a  taken a t  C3F l e v e l s ,  see Rux 60 a t  98 CHF l e v e l s .  



TABLE 1 (Continued) 

Cornparcscy oE Data With and Without A Hot Patch  - 1.5 Heat Flux Rat io  

. M A S S  . CALCU- AVERAGE 
VELOCI f  Y I N L E T  MEASURED LATE0 HEAT FLUX 

X 10-6  TEMPER- I N L E T  E X I f  X 1 0 - 6  Ratio o f  
9UN PRES- ( L B /  HR- AT URE ENTHALPY ' ENTHALPY (BTU/HR- HEAT 
NO. TYPE . ( p S I A )  F r S O )  G o  (BTU/.LB) : (BTU/LB) FTSQ) FLU E S  

76 98 W/O HP 1600  ' 1.013 400.8 377.7 677.4 0 . 4 7 1  
1 2 6  98  U MP 1600 0 .982  400.5  3 7 7 . 4  690.8 0 0 4  7.8 1 .01  Used on P l o t  

0 .212  
0 .222  1.05 

0.336 
0  3 52  1.05 

0.570 
0 . 5 6 5  • 99 

0.690 
0 .707  1.03 Used on P l o t  



TABLE 1 (Continued) 

Comparison o f  D a t a W i t h  and Without A Hot P a t c h  - 1.5 Heat F lux  h t i o  

HA SS CALCU- AVERAGE 
V E L O C I T Y  INLET MEASURED LATE0 HEAT FLUX 

Y 6 TEEPER- INLET EXIT  X 1 0 - 6  Ratio of 
RUN PRES- (LB/HR-  ATURE EN1 HALPY ENTHALPV ( BTU/HR- HEAT 
NO. TYPE ( P S I A )  FTSO) (0EG.F. 1 (BTU/LB)  (BTU/LB) FTSQ 1 FLUXES 

,99  Used on P l o t  

6 0  98  W/O HP 1 2 0 0  2 , 2 9 7  b99 .6  487 .4  652.6 0 , 5 8 9  
1 4 1  9 8  W HP 1 2 0 0  2.823 500 1 4 8 8 . 0  625.7 0 .604  1 .03  Used on P l o t  



TABLE 2  

Comparison of Data Wi.th and Without A Hot Patch - 2.25 Heat Flux Ra t io  
. .  . 

MASS CALCU- AVERAGE RATIO 
VELOCITY I N L E T  MEASURED LATE0 HEAT FLUX OF 

X 18-6 TEMPER- I N L E T  E X I T  X 10-6 C R I T I C A L  
RUN PRES- (LB/HR- ATURE ENTHALPY ENTHALPY (BTU/HR- HEAT 
NO • TYPE ( P S I A )  FTSQ) (OEGa F a  (BTU/LB)  (BTU/LB)  F TSQ) FLUXES 

38 CHF W/O HP 2G00 3.259 201.5 174.2 779.4 0 a264 
209 CHF W 2.25 HP Z O O 3  0.254 199.4 172.1 8240 9 0 257  1.06 

3 4  CHF W / O  HP 2GOD 0.499 201.4 174.1 706.8 0. 413 
2 1 1  NO DaTA 

34 CHF W/O HP ZOOJ 0.991 200.7 173.4 635.3 0.711 
217* K O O A T A  

27 CHF W / O  HP 2000 0.245 40 1 8 379.2 858.3 0 . 1 8 2  
1 7 5  CHF W 2.25 HP ZOOJ 0.255 397 • 3 374.4 87 9.. 8 0.200 1.10 

29, CHF U/O HP 20093 0 . 5 0 0  40 1.. 7 379.1 783.8 0 314 
1 7 3  NOOATA 

3 1  CHF M / O  HP ,2003  1.600 398.9 376.1 695.5 0.496 
1 7 7  CHF W 2.25 HP 2003 0.998 400at i  378.2 . 676.3 ' Om462 a93 

** 
33- CHF H I 0  HP 2 0 0 3  1.989 400.8 378.1 609.6 0.716 

219 NO DATA 

2 5 .  CHF M / O  HP 2 0 0 3  0.244 5 0 1 0 4  489.3 885.7  0.150 
1 8 1  CHF W 2.25 HP 2 0 0 6  0.252 499.8 487.5 892.5 C.159 .1 0 6 

23 CHF W / G  HP 2040 0.498 499.7 487.4 800a1  0 242  
1 9 1  CHF W 2.25 HF 2005 0.501 500 a 5  488 e4 786 7 0 232 9 6  

* No d a t a  taken a t  CHF l e v e l s ,  s e e  Runs 212, 218 and 174 a t  98 CHF l e v e l s .  

* Maximum geaerator (no CHF) was reached. 



TABLE 2 (Continued) 

Cornparism of 1qata.With and Without A Hot Patch - 2-25 Heat F l u x  Ratio 

MASS CALCU- AVERAGE RATIO 
JELOCITY INLET MEASURED LATE0 HEAT FLUX OF 

X 1 0 - 6  TEMPER- I N L E T  E X I T  X 10-6  C R I T I C A L  
RUN PRES- (LB/HR- ATURE ENTHALPV ENTHALPV (BTU/HR- HiEAT 
NO. TYPE  PSI^) FTSQ) (0EG.F.) (BTU/LB) (BTU/L8) F T S Q )  FLUXES 

2 1  CHF W/O HP 2 0 0 3  1.000 5 0 0 0 4  488.2 74703 0.402 
1 9 3  CHF H 2.25 HP 2 9 0 0  10000 500.1 487.9 7230 6 0.366 9 1  

19, CHF H / O  HP 2009 1.990 500.2 b88.0 690.2 0.625 
223 NO OATA 

1 8  CHF # /0  HP 2000 2.682 501.1 489.0 660 1 0.713 
2 2 9  CHF W 2-25 HP 2609 2.810 499.7 v 8 7.05 639.5 0.666 93 

8 CHF ' W/O HP 2i80J 0.246 596.2 609.3 916.0 0 0  1 1 7  
205 C H F  W 2.25 HP 2005 0.250 6 0 1  0.4 617.0 962.E 0,135  1.15 

1 0  CHF H/O HP 2 0 0 0  6.493 
207  .CHF W 2.25 HP 2000 0.49'3 

1 2  CHF U/G HP 2000 1eG13 
199 CHF W 2.25 HP 2000 1.023; 

14 C H F  Y / O  HP 2003 1.486~ 
2 0 1  CHF W 2.25 HP 2000 2.007 

6 CHF H / O  HP 200U 2.556, 
2 0 3  CHF W 2.25HP 2 9 0 0  2.690 

* No data taken at  CEF l eve l ,  see  Run 224 a t  98 CHF l eve l .  



TABLE 2 (Continued) 

Comparison of Data  With and Without A Hot Patch - 2.25 Heat Flux Rat io  

MASS CALCU- . AVESAGE R A T I O  
VELOCITY  I N L E T  MEASURED L A T E 0  HEAT F L U X  OF 

X 10 -6  TEMPER- I N L E T  E X I T  X 10 -6  C R I T I C A L  
RUN PFiES- (LB/HR-  ATURE ENTHALPY ENTHALPY i B T U / H R -  HEAT 
NC. TYFE ( P S I A )  FTSQ)  (0EG.F. ( B T U / L B )  ( 8 T U I i . B )  F T S Q )  FLUXES 

7 1  CHF W/C HP 1600  00.250 402.5 379.5 842. 5 0 .  18G 
1 6 7  CHF W 2.25 HP 1EOO 0.249 400 0 4  377.3 847.6 0.182 1.01 

73  CHF W/O HP 1E09 0.501 4 0 1  03 378.3 , 728.3 0.272 
1 6 9  CHF W'2.25 HP 1 6 0 0  0.499 400.5 1 7  7 0 4  7G0 7 0.281 1.03 

7 5  ,,CHF W/O HP 1 E 0 3  1 ~ 0 1 0  400 06 377.5 681. 8 ' 0.478 
1 7 1  CHF W 2.25 HP 1 € 0 0  0.998. COO 0 2  377.1 685.5 0 478 1000 

77  CHF Y/O HP 1 6 0 0  2..003 4 0 1 0 0  3 7 8 0 0  610.4 0.723 . 
2 2 1  CHF H 2.25 HP 1E00 1.987 400.7 377.6 606.3 0.706 98  

6 9  CHF H/O HP 1 6 0 ' ~  5.250 499 • 3 486.9 868. 4 0.148 
1 8 3  CHF W 2.25 HP 1600  0.251 ' 500.7 4 8 8 0 5  881.8 0.153 1.02 

67  CHF W / C  HP 1 ~ 0 0  ~ 0 5 0 8  i 9 9 . 7  487.4 763.4 0.218 
1 8 9  CHF W 2 . 2 5 H P  1€OJ G0.502 500.8 488.6 781.5 0.228 1.05 

65  CHF W I G  HP IEOO 0.997 49907 '  487.3 708.2 0.342 
1 9 5  CHF W 2.25 HP 1 6 0 3  0.974 500.1 487.8 709. 3 0 0 3 3 5  0 9 8 .  

6 3  CHF W/O HP 1 E O O  1.989 5JU.1 487.8 675. 6 0.580 
2 2 5  CHF W 2.25 HP iEOO 1.969 5 0 0 0 0  487.6 667. 4 0 0 5 5 0  095 

6? NO DATA 
227 CHF' Y 2.25 HP 1600  ' 2.772 500 05 488.2 632.1 .O 0620 

* No d a t a  taken a t  CHF l e v e l ,  s e e  Run 6 2  a t  98 CHI? l eve l .  



TABLE 2 (Gont inued) 

Comparison c f  Data With and Without A Hot Patch - 2.25 Heat Flux Ratio 

H ASS CALCU- AVERAGE RATIO 
VELOCITY I N L E T  MEASURED L A T E 0  YEAT FLUX OF 

X 10-E TEMPER- I N L E T  E X I T  X 10-6 C R I T I C A L  
RUN PRES- (LB/HR- ATURE ENTHALPY ENT HALPY (BTU/HR- HEAT 
ti 0. TYPE ( P S I A )  FTSQ) (0EG.F. (BTU/LB)  (BTU/LB)  F T S Q )  FLUXES 

40 CHF d/O HP 1230 0.245 200 0 2  171.1 704.3 0.203 
215 CHF Y 2.25 HP 1 f l J  0.255 200 08 171.6 765.9 0.236 1.16 

42 CHF W / G  HP 12.30 O.501 199.8 170.6 689.0 0 a 404 
213 CHF W 2.25 HP 1210 0.500 20101 171.9 650.1 0.272 92 

46 CHF W/G HP 1230 0.247 40 1.0 37705 814.3 0.167 
163 CHF W 2.25 HP 1ZJO 0.247 400.2 376.7 845.9 0.18G 1.08 

4 6  CHF M / O  HP 1200 ,00493 399.8 376.2 735.5 0 27 5 
1E.2 CHF H 2.25 HP 1239 8.497 400.1 376.6 730.9 0.274 0 9 9  

48 CHF W / G  YP 1208 0.921 405 0 5  377.0 681.4 0.435 
1 6 4  CHF W 2.25 '4P 1290 0.989 400 0 5  377.0 663.2. 0 . 4 4 0 '  1.01 

48A CHF 'W/O 4 1200 0.987 
1 6 4  CHF W' 2.25 I P  1200 0.989 

50 CHF #/O qP 1290 2.010 
1 6 6  CHF V 2.25 4 P  1205 1.991 

5 1  CHF M/O 3P l f D 3  0.248 
1 8 5  C H F Y 2 . 2 5  I P  1200 0.251 

53 CHF W/O 4P 1205 0.471 
187  CHF U 2.25 YP 1 2 9 0  0.499 

0 47 1 
0 446 .93 Repeat 

55 CHF 'H/O PIP 1203 1.003 500.2 ' 488.0 723.0 0.366 
197  CHF U 2.25 HP 12DO 1.011 4990 t 487.1 691.4 9. 324 8 8  

57 CHF H/O dP 1205 2.014' 500 0 2  . .  488.1 667.6 0.562 

No 2.25 hot patch data talrtn doe to  gemrator limitations. 

No 2.25 hot patch data. taken iue to gesrator limitations 

* No data takeh at CHP h e l ,  eee Table 6 (Run 60) at 98 CW level .  



TABLE 2 (Continued) 

Comparison of  Data With and Without A Hot Patch - 2.25 Heat Flux Rat io  

MASS CALCU- AVERAGE R A T I O  
VELOCITY INLET tlEASUREO LATE0 HEAT FLUX OF 

X 10-6  TEMPER- INLET  E XI 1 X 10 -6  CRIT ICAL 
PRES- (LB/HR- AT URE ENThflLPY ENTHALPV (BTU/HR- HEAT 

TYPE (PSI&) FTSO) (0EG.F.) I R T t t t . 8 )  (BTUILB)  F T S Q )  FLUXES 
RUN 
NO. 

H/O HP ZOO0 ' 0.498 231.6 174.3 695.8 ' 0.403 
W 2.25 HP 2 0 0 0  0.497 201.1  173.8 711.1 0.415 1.03 Used i n  P l o t  

1.00 Used i n  P l o t  
I 
h) 
u 
I 

.93 



TA3LE 2 (Continued) 

~ c k ~ a r i s o n  of  Data With- and ' .J i thout.A Hot p a t c h  - 2.25 Heat F lux  R a t i o  

M A S S  CALCU- PVERAGE RATIO 
VELOCITY I N L E T '  HEASUREO LATED .-$EAT FLUX OF 

X 1 0 - 6  TEMPER- I N L E T  E X I T  X 1 0 - 6  C R I T I C A L  
RUN PRES- (LB/HR- ATURE EN,ThALPY ENTHALFV ( B f  U/HR- HEAT 
NO. TYPE' ( F S I A )  FTSQ) ('0EG.F. I ( 3TU/L 6 (0TU/LB) F T S Q )  FLUXES 



TABLE 2 (Continued) 

J 
Comparison of Data With and Without A Hot Patch - 2.25 Heat 'Flux Rat io 

. . 

MASS CALCU- 4VERAGE RATIO 
VELOCITY f NLET H E A S W E 0  LATE0 HEAT FLUX 0 F. 

X IC-6 TEMPER- INLET EXIT X 10-6 CRIT ICAL 
RUN . . PRES- (LB/HR- ATURE ENTHALQY . ENTHPLPY (BTUIHR- HEAT 
NO.  TYPE ( P S I A )  FTSQ) ( O E G a  F e  (BTUfLB) (BTUfLB)  FTSO) FLUXES 

7 8  CHF . H/O .tcP 1600 1.985 400 1 376.6 612.9 G 72 8 
2 2 2  98  H 2.25 HP 1600 ' 1.985 400 e 2  377.1 599.4 0 e.68 6 • 94 

.g2 Used I n  P l o t  



TABLE 2 icontinued) 

RUN 
NO. 

Comparison of Data Wi-;h and Without A Hot P a t c h  - 2.25 Heat F lux  Ratio 

MASS CALCU- AVERAGE R A T I O  
V E L O C I T Y  I N L E T  MEASURED LATE0 4EAT FLUX OF 

X 10-6 TEMPER- f NLET E X I T  X 1 0 - 6  CRIT ICAL 
PRES- 4LBiHR- ATURE ENTHALPY EMHALPY (BTU/HR- HEAT 

TYPE (PSIb) FTSQ) ( D E G a F r  1 (BTU/L8) [8TU/LB) F T S Q )  FLUXES 



FIGURE I :  SCHEMATIC DIAGRAM OF HOT PATCH T E S T  LOOP 
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KIGURE 4. Full Axial View of Hot Patch Test Section, 
Ceramic Housing and Backup Housing 
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FIGURE 6. HEATED TUBE END CONNECTION DETAIL (NOT TO SCALE) 
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FIGURE 7 :  CHF R A T I O  DATA COMPARISON F O R  HOT PATCH TEST 
W I T H  1.5 HEAT FLUX R A T I O  
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F IGURE 9. CHF  RAT IO  DATA COMPARISON FOR 1.5 HOT PATCH TEST  
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Appendix t o  
WAPD-TM-1419 

I n t e r n a l l y  Heated Annulus CHF Experiments 

This  Appendix desc r ibes  c r i t i c a l  hea t  f l u x  experiments conducted i n  1969 

i n  the  Thermal and Hydraulics Laboratory a t  B e t t i s  Atomic Power Laboratory i n  

which a  s i n g l e  rod was used a s  an  i n t e r n a l l y  heated annulus.  Tes ts  were 

conducted i n  two assemblies  which were nominally i d e n t i c a l  t o  each o t h e r  and 

t o  the no-hot-patch t e s t  assembly descr ibed  i n  t h i s  repor t .  

The t e s t  s e c t i o n s  were comprised of a  0.303 inch s t a i n l e s s  s t e e l  rod wi th  

a  84 inch  hea ted  l eng th ,  l oca t ed  i n s i d e  of ceramic tubes (alumina) w i th  a  

nominal 0.50 inch I . D .  w i th  v e r t i c a l  upflow of water .  The rod was centered  . 

i n s i d e  the  ceramic tubes by double window s p r i n g  ccl ' lars '  s i m i l a r  t o  those  

descr ibed  i n  Reference (a ) .  The l a s t  space r  was loca t ed  9 inches upstream 

from the  end of the heated l eng th  and a d d i t i o n a l  space r s  were loca ted  every 

12 inches upstream. 

Data were obtained over the  fol lowing range of v a r i a b l e s  : 

Pressure :  8 0 ,  1200, 1600 and 2000 p s i a  

6 6 
Mass Veloci ty:  0.25 x 10 t o  2.8 x 10 l b / h r - f t  

2 

I n l e t  ~ e m ~ e r a t u r e :  200 t o  6 0 0 ' ~  

6 6 
Heat Flux: 0.12 x 10 t o  0.71 x 10 B tu /h r - f t  

2  

Table A p re sen t s  t he  CHF d a t a  f o r  assemblies  1 and 2. The t e s t  s e c t i o n  

i n s u l a t i o n  was judged t o  be s u f f i c i e n t  t o  prevent  app rec i ab le  h e a t  l o s s  

and so  no h e a t  l o s s  co , r rec t ions  were appl ied  t o  t he  da t a .  

Reference 

(a) WAPD-TM-1013, " C r i t i c a l  Heat Fux and Pressure  Drop Tes t ing  i n  Bundles 
of Twenty Rods," B. W. LeTourneau, e t  a l ,  January 1975 



TABLE A 

CHF Data With L a s t  Spacer 9 Inches From the End of the  Heated Length 

Mass I n l e t  E x i t  
Ve loc i ty  Enthalp y Heat Flux 

P r e s s u r e  Enthalpy 

P C, x 1 0 ' ~  
H 

i n  
H 

2 ex 
Run No. (ps  i a )  ( I b l h r - f t  ) (Btu l lb)  ( ~ t u l l b )  

(FIRST ASSEMBLY) 

(SECOND ASSEMBLY) 



TABLE A (Continued) 
Mass I n l e t  

Veloc i ty  Enthalp y  
- 6 

G x 1 0 2  H i n  
( l b / h r - f t  ) (B tu l lb )  

Ex i t  
Enthalp y  

H 
ex 

(B tu / lb )  

Heat Flux 
Pressure  

P  
(p  s  i a )  Run No. 
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