SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305-4022 DE91 001359

SOL--90-15

A Discounted-Cost Continuous-Time Flexible
Manufacturing and Operator Scheduling Model
Solved by Deconvexification Over Time

by
B. Curtis Eaves and Uriel G. Rothblum

TECHNICAL REPORT SOL 90-15
August 1990

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, eXpress or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Goverament or any agency thereof.

Fiesearch and reproduction of this report were partially supported by the Department of Energy
Grant DE-FGO3-87ER25028 and the National Science Foundation Grant NSF DMS-8902662. »

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the authors and do NO'T necessurily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government
This document has been approved for public release and sale; its distribution is unlimited.

o
ufOrH’BUTga;‘{‘ OF 'rH,Q " ey ey v
GRS ZOCURENT Iy HEURT T

L hadb Rl NN 3 1) ‘c‘&r

1 ' v \ oy w o '
[ o " i " " o

3
-

[ A |



A DISCOUNTED-COST CONTINUOUS-TIME FLEXIBLE
MANUFACTURING AND OPERATOR SCHEDULING MODEL

SOLVED BY DECONVEXIFICATION OVER TIME

by
B. Curtis Eaves and Uriel G. Rothbium

ABSTRACT

A discounted-cost, continuous-time, infinite-horizon version of a flexible manufacturing and operator
scheduling model is solved. The solution procedure is to convexify the discrete operator-assignment
constraints to obtain a linear program, and then to regain the discreteness and obtain an approximate
manufacturing schedule by deconvexification of the solution of the linear program over time. The strong
features of the model are the accomodation of linear inequality relations among the manufacturing
activities and the discrete manufacturing scheduling, whereas the weak features are intra-period relaxation
of inventory availability constraints, and the absence of inventory costs, setup times, and setup charges.
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1. Introduction

In Eaves and Rothblum [1988, 1989], we described a procedure, called deconvexification
over time, and used it for solving an average-cost, infinite-horizon, flexible-manufacturing and
operator-scheduling problem for both discrete- and continuous-time versions. Qur purpose in the

current paper is to apply a new variant of the deconvexifcation over time to solve a discounted-

cost, rather than average-cost, version of the manufacturing and scheduling problem. We refer to

the ﬂexib‘lc-manufacturing and operator-scheduling prbblem as FMOS, as in the above references.

The relative strengths and weaknesses of FMOS with discounted-costs, as it can be solved
with deconvexification over time, remain, in character, the same as for the average-costs. On one
hand, we capture discrete manufacturing and operator scheduling requirements as well as linear
inequalities among manufacturing activities. On the other hand, the continuous-time inventory
availability constraints are relaxed to periodic inventory availability constraints and, further, we
cannot include inventory costs, setup times or setup charges. Nevertheless, all in all, we believe
that deconvexification, potentially, offers a significant planning tool for scheduliing in a complex
environment.

Deconvexification over time, as it has been applied in the past and as it is applied here, is a
polynomial-time algorithm. Inclusion of inventory costs, setup times or setup charges appears to
push the model into an intractable class, that is, one requiring exponential effort to solve. No
attemnpt, to date, has been made to use deconvexification over time in an exponential-time
algorithm. At present, FMOS, as solvable by deconvexification over time, seems to have its
greatest value as a planning tool in an environment where operator costs are high relative to
inventory or setup costs, and where setup times are relauvely small.

In the paragraph below we define the discounted-cost manufacturing and operator
scheduling problem to which we will refer as FMOS. This statement represents our problem

orientation; it is an important problem we know something about, but it is not a problem we can
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solve. Following the description of FMOS, we define a relaxation of FMOS referred to as

RFMOS. 1t is RFMOS, no. 1-MOS, that we will solve with deconvexification over time.

Definition of FMOS:
Divisible input materials, that is, raw materials, unfinished goods, etc., enter the
production system through, for example, purchase ac ivities. In the system various divisible in-

~ process goods are transformed into other in-process goods through the e*ecution of activities. The

rate and character of these activities depénd upon the asé.igned operator. The bperator pool may be‘ |
composed of, for example, skilled and unskilled labor, robots and machinés. The function of an
activity with an assigned operator is to transform in-process goods into in-process goods in fixed
proportions and at a rate not exceeding a bound which is determined by both the activity and the
operator . A class of operator constraints are available, for example, an activity can be manred by
at most one operator at any given time, an operator can be assigned at most one activity at any
given time , or certain collections of activities may be conducted at a single workstation which may
limit the number of operators present. It is assumed that operators can be moved from éctivity to
activity with negligible setup times or costs and that activities can be started up with negligible
delays or setup costs. Generation of in-process goods, for example, through
purchases or production, must precede their usage, for example, through seclling
or use in production. It is assumed that in-process goods can be inventoried on the spot with
negligible time delay. Finally, output gdods, that is, ﬁnished goods, processcd matcrials,
rejections, etc. exit the production system. The rates and and relative proportions of input
materials entering and of output goods exiting the system vary and depend upon operator-
assignments and activity-rate settings. The objective is to minimize costs (or maximize profits},
that is, operator costs, activity costs, and inventory costs minus revenues therefrom, all

discounted over the infinite horizon. ®



As mentioned earlier, FMOS as stated above represents our problem orientation, but it is
not a problem which we can solve. The example below illustrates that FMOS may have no optimal

solution, principally due to the lack of setup times and charges.

Buy-Sell Example for FMOS:
A trader buys and sells a single commodity. At any instant in time he must buy or sell, but

he cannot do both simultaneously. He can buy at rate of one item per unit-time at $1 per item, and

“ae can sell at a rate of one itemn per unit-time for $2 per item. He cannot sell short, that is, he must

have positive inventory which he has bought in order to sell. Assume that he has an interest rate of

20% per unit-time. The trader's task is to buy and sell so as to minimize his discounted-cost (or

. maximize his discounted-profit).

As we shall see in Sec..on 7 that there is no optimal policy to the above problem, however,
there are "stuttering” e-optimal policies, namely, for each positive €, there is a positive A where
the policy of iteratively buying and selling at consecutive intervals of length A/2 (starting with
buying) will result in a discounted cost which cannot be improved by any policy by more

thane. ®

We next define a relaxation of FMOS which we call RFMOS. It is RFMOS that will be
solved with deconvexification over time not FMOS. In FMOS, inventories must be nonnegative at
all times, and as we will show, this implies that discounted inventory levels must be nonnegative at
all times. RFMOS is obtained from FMOS by relaxing the inventory availability and discounted
inventory constraints to periodic constraints instead of constraints that must hold at all times. In
particular, periods are mentioned in RFMOS whereas FMOS is continuous time. The length of the
periods in RFMOS can be selected arbitrarily. We will see that the optimal objective value does not
vary with the selected length of the periods, however, other features of the optimal policy probably

will vary.

Definition of RFMOS:



RFMOS is FMOS with the emboldened sentence "Generation of in-process goods, for
example, through purchases or production, must precede their usage, for eXampie, through selling
or use in production" replaced by "At the end of each period inventory levels and discounted

inventory levels must be nonnegative," and the emboldened phrase "inventory costs" deleted. ®

FMOS requires that inventory levels are nonnegative at all times. These FMOS constraints
are relaxed in REMOS to the requiréments that inventdry levels and discounted inventory levels are
nonnegative at the end of each period. Indeed, in RFMOS, we allow for inventory lc?cls and
discounted inventory levels to become negative within a period. Because inventory levels in
RFMOS can be both negative and positive, we can no longer capture inventory carrying costs via

the linear objective..

Buy-Sell Example for RFMOS:

Consider the buy-sell example of FMOS with the following modiﬁcatidns. The trader is
allowed to sell short, that is, sell quantities he does not‘have in stock. But, he must cover all
outstanding orders at the end of each period. Further, for the interest rate of 20% per unit time, the

discounted inventory levels must be nonnegative at the end of each period. ®

The principle weakness of FMOS, as the example shows, is the absence of setup times and
charges; otherwise, FMOS is a bonefied model. However, we cannot solve it, nevertheless, we
take it as our problem orientation. The relaxed version of FMOS, namely RFMOS, suffers from a
weak treatment of inventories as well as the absence of setups. It is RFMOS that we soive with
deconvexification over time. | |

1.1 the next section we introduce a mathematical description of two dynamic programs
which we call DP and RDP, and we point out how they model FMOS and RFMOS, respectively.
Indeed, DP and RDP can be regarded as more precise formulations of FMOS and RFMOS. In
Section 3, we state an auxiliary dynamic program RRDP and a linear program LP which assist the

solution procedure. In Section 4, optimal policies are constructed for RRDP, RDP and hence



RFMOS. In Section 5 dependence of optimal policies and objective on interest rates and period
lengths is investigated. In Section 6, an interpretation is given to the discounted inventory

constraints. Finally, in Section 7, three matters are discussed further, but briefly.
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2. Dynamic Programming Formulations
: Two dynamic programs DP and RDP are defined in this section. DP and RDP are desig‘néd

to model FMOS and REMOS, respectively. As RFMOS 19 a relaxation of FMOS, RDP is a
‘rclaxation of DP. |

Let Z and R denote the set of integer and real scalars, respectively, and let, Z_ and R+
denote the set of nonnegative elements in Z and R, respectively. Let RMXn be the set of m X n
real matrices where m = 1,2, .. and n = 1', 2,...1In barticular, elements of RM = RMX1 and
Rls‘n are éallcd ¢01uhm and row vectors, respectively. Superscript T is used to indicate the
transpose of a matrix or a vector.

Througho'ut this paper dynamic programs, a linear program and an integer program are

employed. They require certain data. We define such data here once and for all.

Data
Let k, m and n be three positive integers. Let p and A be two positive scalars, Let
‘ae RIXk and be RIXn be two row vectors. Let C e RP<k and D € RMXN be two matrices.

Let E be a finite subset of Rk where Dx 20 for every xe E. ®

Let m be a function from R, info some topological space; We define &t to be piecewise
continuous if there is an increasing séquence of scalais 0 =t(0) < t(1) <t(2) <... in R, tending
to oo, where 7 iscontinuous on (t(s), t(s+1)] foreach se€ Z,. Note that the above definition
of piecewise continuity implies left continuity.

Throughout the paper we use the term policy to indicate tilﬁe-dependent decision variables

for several dynamic programs. We define a policy here, once and for all.
Policy

A policy © = (x(.), y(.)) isdefined to be a piecewise continuous function mapping R,

into RkxRN ., ®



As a casual remark to assist the reader, we note that each and every policy 7 = (x(.), y(.))
in this paper will alwﬁys have the additional properties x(t)e E and 0 < y(t) S Cx(t) for all
teR, . Also, the objective value of a policy m , as denoted by V., is always givenby V=

[, ePtax(T) + by(m)ldt .
We are now ready to introduce our first dynamic program,

Definition of DP:

DP is the following dynamic program wheré the search takes place over policies ©

=(x()y() :

DP:  Vpp= infimumy - i)y Jo € F*ax(@) + by(v)lde

subject to: x()e E forall te Ky (DP1)
0 < y(t) SCx(t) forall te R, , and - (DP2)
|, Dy®)dt20 forall te R,. (DP3)

Define m =(x(.),y(.)) to be a policy for DP if itis a policy satisfying the constraints of DP and let
Vp= Iom ePTax(T) + by(t)]dt denote the objéctive value of such a policy. The problem in DP is to
 select an optimal policy for DP, i.e., select a policy ® for DP which infimizes the objective value,

namely has, V= Vpp. ®

We next show how DP can be used to formulate FMOS. This is accomplished by
interpreting the data and the variables of DP in the context of FMOS. The discussion here is brief
and a more detailed discussion can be found in Eaves and Rothblum [1988, 1989].

‘The variable te R, represents time in FMOS and the finite set E corresponds to the
collection of possible operator-assignments in FMOS. The variable x(t) is the vector of operator-

assignments at time t, and the constraint (DP1) expresses the requirement that x(t) at eaci: time



instance be a possible operator-assignment, The coordinates of the vector y(t) represent the rates
at which the activities are executed at time t, and constraint (DP2) bounds the rate vector at each
time instance by a linear function of the operator-assignment vector, i.e., given the operator-
assignment vector x(t) the activity-levels, represented by the coordinates of the v2ctor y(t),
cannot exceed those of ‘Cx(t). The matrix D is the technology or netput matrix. Each column of
D vcorres onds to some activity as buying,' selling or transforming in-process ‘goods into in-
process gdods. The rnws of D correspond to in-process goods. For example, if column i of the
matrix D is the vé;ctor 3,-1,1,-2,0, ..., 0)‘T and the i-th component of | y(t) is 5 over ‘\the
period from time 2 till time 3,i.e., y(t);=5 for 2 <t< 3, then the net change in the quantities
of the first four in-procesé goods dunng that périod d.nc to this activ'i.ty wouldbe 15, -5, 5 and
-10, fespéctively. In general, given activity-levelé y(t), the rate of transformation of in-processl
goods is Dy(t) .:Constraint (DP3) corresponds to the réquirement that inven‘tory levels are never
negative, or indccd‘, that transformation cannot take place without the constituent inputs.

The opérator-assig‘nment set E is typically defined by-a unimodular linear inequality
system wherein extremé points correspond to elements of E . That such a system can be
constructed to accommodate the types of constraints that we have suggcsted in FMOS is fully
discussed in Eaves and Rothbum {1988, 1989] and will not repeated nerc. |

| Examining the objective of DP, we sce that discounted costs, which are linear in the
operator-assignment vcctofs and the activity-level vectors, can be incorporated into the objective.
‘We next show that linear inventory costs can actually be included in DP. Let bb' be the vector
whose coordinates are the inventory unit costs incurred per unit time for the different in-process

goods. lnventory levels at time t are determined by the activity-levels applied up to time t, and

are given by i(t) = Iol Dy(t)dt, implying that the discounted inventory cost would be
Jo~ ePbizmydt = b, eP3; Dy(o)doldt = bDJ,” y(o)lf, ePrdtido

= p-IbD],” ePry(r)de .

-10 -



Examining the objective of DP we see that we can incorporate discounted inventory costs by
adding the term p-1b'D to b. |

The problem of FMOS is to select a policy, that is, operator-assignments and achievable
activity-rates over tixﬁe which maintain nonnegative inventofy levels, with the purpose of
minimizi'ng the discounted operator-assignment and activity-rates costs. This corresponds to

finding a plicy © for DP with Vg = V‘Dp . An interprciation of the units of the data and variables |

is given in the table:
p percent per unit time
a $ per assignment per unit time
b $ per activity rate per unit time
C - activity rate per assignment
D | units of in-process goods per unit time per:activity rate
X assignment
y ‘ activity rate

This completes our argument that DP is a dynamic progrémming formulation for FMOS.

We next return to the example presented in the Introduction and show how it is formulated

by DP.

Buy-Sell Example for DP:
Let k=2, m=1, n=2, p=02, a=(0,0), b=(1,-2),
1 0 1 0

C: ( ), D=(1,'1)s E={( )v ( )]
o 1 0 1

®=(x() y() » x() = (x1(), x20) 5 ¥(O) = (y1(), y2()) » x{():Ry - Rl for i=1,2, and
yi(-2:R4 > R1 for i =1,2. The dynamic program DP is then giveli by:

DP:  Vpp =infimume—y).y(y Jo €310, 0x(®) + (1, ~2)y(]dt

-11 -



1 0

subjectto:  x(he E={( ), ()} forail te R, (DP1)
| 01 o

0<y®<x() forall te R, (DP2)

Jy . -Dy(@dt2 0 forall te R,. ® (DP3)

" The following lemma is used to derive implied constraints from DP.

Lemma 2.1.

Lc; v.R, - R bea boﬁnded, piecevyise contin‘udus function satisfyingv
| Jvde20 forall te R, . o | ey
Thenfqrany p>0, |
' ePrv(®dt20 forall te R, . - | - (2.2)

Proof.
Let V; denote the left derivative operator with respect to the variable t. Then,

Vt[J‘O‘v(ﬂc)d*c]= v(t), and ‘the left continuity of v(.) and (2.1) imply that for all te R;
[ eptvnydr = [ etV ] vio)dal}dr
= e P vyde - J; [Vo(ePDlll, vioxoldr

= e-ptfo' v(t)dT + pJO' e"”[foT v(o)do]ldt20. ®

Lemma 2.2.

The constraints of DP imply that

[, ePtDy(t)dr 20 forall te R, . (2.3)

212 -



Proof.
Apply Lemma 2.1 to each component of the integral. ®

We refer to a constraint of the type found in (2.3) as a discounted inventory constraint,

and we use such constraints in our relaxation RDP of DP.

Definition of RDP:

RDP is the following dynamic program where the search takes place over policies ©

=(x()y(0) :

RDP: Vgpp= infimu%((x.)'y(.)) Jow ePax(t) + by(t)ldt

subjectto: x(t)e E forall te R, , (DP1)
0 <y(t) < Cx(t) forall te R, , (DP2)
|, Dy(x)dt 20 forall se Z,, and (DP3A)
[.* ePDy(rydt 2 0 forall se Z, . (DP3B)

Define m =(x(.),y(.)) to be a policy for RDP if it is a policy satisfying the constraints of RDP and
let Vo= Owe'm[ax(t) + by(t)]dt denote the objective value of such a policy. The problem in
RDP is to select an optimal policy for RDP, i.e., select a policy ® for RDP which infimizes the

objective value, namely, has Vo= Vgrpp. ®

We observe that Lemma 2.2 implies that DP can be augmented by the discounted inventory
constraints without aliering the set of policies. As (DP3A) and (DP3B) are, respectively, the
restriction of (DP3) and (2.3) to times t =sA for se Z,, RDP is a relaxation of DP. In

particular, we have proved the following lemma:

Lemma 2.3.

-13-



Each policy nt of of DP is a policy of RDP and V2 Vgrpp . Thus, if DP is feasible, then
RDP is feasible, and further, the optimal objective value of DP is not less than that RDP, i.e., Vpp

2 Vrpp - ®

Though the discounted inventory constraints (2.3) are implied by the constraints of DP,
they are not necessarily implied by the constraints of RDP. We do not expect to be able to use the

next corollary, but we include it to maintain uniform development.

Corollary 2.4.

If m is a policy of DP with V= Vgpp, then m is an optimal policy for DP. |l

We do not know how to solve DP, but we can and do solve RDP. A policy = is defined to
be A-stationary if n(t) =n(t +A) forall te R, . We shall compute an optimal policy for RDP

which is A-stationary.

Now, let us indicate the correspondence between RDP and RFMOS. The period length of

RFMOS is A. That inventory levels and discounted inventory levels be honnegative at the end of
each periods is captured by the constraints (DP3A) and (DP3B), respectively. Otherwise, the
arguments that showed that DP models FMOS can be used to show that RDP models RFMOS. An

interpretation of the discounted inventory constraints is given in Section 6.

Buy-Sell Example for RDP:

We continue to use the data, augment by A =1, and the notation for policies from the

Buy-Sell Example for DP. The dynamic program RDF is then given by:

RDP: VRDP = infimumn._.((x_),y(_)) _“om e"‘/5[(0, O)X(T) + (1, "Z)y(’C)]dt

1 0
subjectto:  x(t)e E={( ), ( )} forall te R, (DP1)
0 1

0 <y(t)<x(t) forall te R, (DP2)

b



[, -1yt 20 forall se Z,, and (DP3A)

[ eus(1, -)y(ndr 20 forall se Z, . ® (DP3B)

oad
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3. Auxiliary Programs

Towards our the soluticn of RDP, and hence of RFMOS, we define a dynamic program
RRDP which is a relaxation of RDP and a linear program LP. The dynamic program RRDP is
‘obtained by replacing (DP3A) and (DP3B) in RDP by a single constraint which, as the next
lemma shows, is implied by the c:onsfraints of RDP. Although RRDP is a relaxation of RDP, as

‘we shall see, certain optimal solutions for RRDP are optimal for RDP as well.

Lemma  3.1.

The constraints of RDP imply that
[, ePDy(mdt20. | | (3.1)

Proof.
From (DP1) and (DP2), we see that Dy(.) is bounded, that is, for some K we have that
IDy(®H)ll. <K forall te R, . Hence,

I, e PTDy(1)dtll,, < KJ'ePtdt = Kp-leP[1 - e-P-0] forall t and r in R,

implying that the limit of jot e’PTDy(T)dt exists as t — oo, i.e., the integral jowc‘PtDy(’r)d’E is
well defined. In particular,
. sA o0
limg_,., ,[0 c*PTDy(r)dr=Io e P™Dy(t)dT,
and (3.1) follows from (DP3B) and the boundedness of Dy(.). ®
As the constraints of (3.1) are instances of those in (2.3) with t =0, we will also refer
to the constraints of (3.1) as discounted inventory constraints. RRDP is next defined as the

relaxaiion of RDP obtained by replacing the family of constraints (DP3A) and (DP3B) by the

single constraint (3.1) . We will construct optimal solutions of RRDP which will satisfy the

-16 -



constraints of RDP, hence, as RRDP is a relaxation of RDP, such solutions will also be optimal

for RDP.

Definition of RRDP:

RRDP is the following dynamic program where the search takes place over policies &

=)y

RRDP: VRggpp = infimumy - )y Jo €PFlax(®) + by(mldt

subject to: x(t)e E forall te R, (DP1)
0 Sy(t) SCx(t) forall te Ry, and (DP2)
J;” ePtDy(t)dt 2 0. | (DP3C)

Define m =(x(.),y(.)) to be a policy for RRDP, if it is a policy sarisfying the constraints of RRDP
andlet V= fom e-PTax(t) + by(t)Jdt denote the objective value of such a policy. The problem in
RRDP is to select an optimal policy for RRDP, i.e., select a policy © for RRDP which infimizes

the objective value, namely, has V= Vrrpp. ®

Lemma 3.2.

Each policy n of RDP is a policy of RRDP with Vp 2 Vprpp. Thus, if RDP is feasible,

then RRDP is feasible, and further the optimal objective value of RDP is not less than that of
RRDP, i.e., VRDP = VRRDP . ®

Lemma 3.2 provides a simple sufficient test for optimality of policies of RDP.

Corollary 3.3. ;
If a policy m of RDP satisfies V= Vprpp, then T is an optimal policy for RDP. ®

.17 -



Buy-Sell Example for RRDP
We continue to use the data and notation for policies from the Buy-Sell Example for RDP.

The dynamic program RRDP is then given by:

RRDP: VRgpp = infimummp.y.y() Jo € %510, 0x(1) + (1, -2)y(v)]dt

. 10 |
subjectto:  x(t)e E={( ), ( )} forall te R, - (DPD)
o 0 1
0<y() <x(t) forall te R, (DP2)
[ ev5(1, -Dy()de20. ® (DP3C)

In solving RDP and RRDP we employ the following linear program LP.

Definition of LP:
The decision variables of LP are vectors x in Rk and y in RP. LP is the following

linear program:

LP: V| p = minimumyy ) p-1(ax + by)

subject to: x € conv(E) (LP1)
0<y<Cx, and (LP2)
p-iDy 20, (LP3)

where the notation conv(E) is used to denote the convex hull of E. We call the pair of vectors

(x,y) afeasible sotution for LP, if it satisfies the constraints of LP and we let Vyy = p-1(ax + by)
denote the objective value of such a feasible solution. The problem in LP is to select an optimal

policy for LF, i.e., select a feasible solution (x,y) for LP which minimizes the objectivc value,

namely, has V,, =Vip. ®

- 18 -



The p-1's which appear in LP could, of course, be deleted without altering the sets of

feasible and optimal solutions. We include the p-!'s for subsequent notational convenience.

Lemma 3.4.

Let ©= (x() y(.)) be a policy for RRDP. Then
x=pl,” ePx(t)dt and y=pl,” ePry(r)dt

is a feasible solution to LP. Further, V= Vy, 2 VLp.
Proof.

From (DP1) and (DP2) the policy (x(.), y(.)) are bounded, hence, x and ‘y are well
defined and finite. Next observe that pj ePidr=1, hence, (DP1), (DP2) and (DP3C)

imply that x and y satisfy (LP1)- (LP3). Further,
Vo=l ePtax(t) + by(t)ldt = p-l(ax + by) = V2 Vpp,
The last inequality fdllowing from the feasibility of (x,y) forLP. ®

- Lemma 3.5

| If RRDP is feasible, then LP is feasible. Further the optimal objective value of RRDP is not
less than that of LP, i.e., VRrpp 2 Vip. ® | |

Proof. | |

It follows directly from Lemma 3.4 that if RRDP is feasible, then LP is feasible. Also, as
the inequality V= Vi p was established in Lemma 3.4 for ~ach policy © of F.RDP, we

conclude that Vrrpp2 Vip. ®

Corollary 3.6.
| Ifapolicy ® for RRDP satisfies Vp=Vyp, then 7 is an optimal policy for RRDP.®

-19.-



Buy-Sell Example for LP

We continue to use the data from the Buy-Sell Example for RDP. Let x =(xy, x9)T and y

= (y1, )T be the decision variables. The linear program LP is then given by:

LP: VLp = minimumy ) 5[0, 0)x + (1, -2)y]

subjectto:‘ x20, (I,Dx=1
0<y<x, and
5(1,-)y 20.

“The optimal solution of this linear prograrﬁ is given by x; =Xy =y =y, =2-1 and

VLP= -25 . ®

(LP1)
(LP2) |

(LP3)

Call a policy = = (x(.), y(.)) stationary if x(t) and y(t) are invariant with time t.

Generally we do not expect RRDP to have a stationary optimal policy, but to clarify the point of

our main eff rt in the next section, let us spend a moment on this issue. Consider the following

discrete program IP.

Definition of IP:

In IP the search is over vectors x in Rk and y in R". IP is the following discrete

‘program:

IP: Vip = minimumgy ,) p~1(ax + by)
subjcci to: xe E
0<y<Cx, and

5p-IDy 20,

- .20-

(IP1)

(LP2)

(LP3)



We call the pair of vectors (x,y) a feasible solution for IP if it satisfies the constraints of IP and

we let Vy, = p-l(ax + by) denote the objective value of such a feasible solution. The problem in

1P is to select an optimal solution for LP, i.e., select a feasible solution (x, y) for IP which

minimizes the objective value, namely, has Vy, =Vp. ®

It can easily be verified that = (x(.), y(.)) is é stationary policy for RRDP, if and only' if

n(t) = (x, y) forall t € R, and (x, y) is feaéiblc»for IP, in which case V= Vyy + see Lemma
~ 3.4. Indeed, the best stationary policy is obtained by solving IP for an optimal solutiqn x,y)
with objective value Vip and forming a policy = = (x(.), y(.)) with (x(t), y(t)) = (x,y) forall t
€ R, . Such a policy will have Vn = Vip. We observe that IP need not be feasible when LP is,
é.nd even when both IP and LP are feasibie it is typical that Vjp exceeds V p. We will construct a
single policy m for both RRDP and RDP with objective value Vp = V| p, and this policy will
typically be better than the best stationary policy, that is, V4 < Vip. |

Buy-Sell Example for IP:
We continue to use the data and notation from the Buy-Sell Example for RDP and LP. The

discrete program IP is then given by:

IP: Vip = minimumy . 5[(0, 0)x + (1, -2)y]

10
subjectto:x e E={( ), ( )} (IP1)
\ 0 1 ‘
0<y<x, and | (LP2)
51, -1)y 20.

(LP3)

The optimal solution of this discrete program is given by x = (1,0)T or x=(0, 1)Tand y =

(0,0) . Further, 0 = V]p > VLp=-2.5. ®
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4. Solv.ing the Relaxed Dynamic Programs

We have seén in Lemma 3.4 that policiés for RRDP result in feasible solution of LP. In the
'Cu.rrent section we use feasible solutions of LP to construct policies for RRDP which are also .
feasible for RDP. In particular, if we apply the construction to an optimal solution of LP we will
conclude from Corollaries 3.3 and 3.6 that the resulting policy is optimal for RRDP and RDP.

The following lemma is used in our construction of policies from feasible solutions of LP.

Lemma 4.1.

Let a,bl, ... ba be nonnegative vectors in RM with
asX_"br,
Then, there exist‘vcctors al, ..., ad in RM with 0 <ar<br for r=1, = and
r tar=a.

Proof.
~ The required vectors al, ..., ad in Rm are selected recursively by

: e o .
afy = min {b%;, g --Ej=1 a},r=1,.,qand i=1,..,m,

see the proof and the discussion in Appendix A of Eaves an Rothblum [1988] . ®

Given the data and a feasible solution (x,y) forLP, policy construction defined below,

generates a A-stationary policy m for RRDP and RDP with objective value Viy -

Policy Construction.

Let (x,y) be a feasible solution of LP. As x is in the convex hull of E, thereis a

positive integer q , vectors x!, ..., x4 in E and positive scalars Ay, ..., Aq with Zizlq A =1

and
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x=X_'Axi . | | @)

As 0sy<sDx= Zi;lq A;Dxi and Dx;20 , Lerama 4.1 shows the existence of vectors vl ..,

¥ in R0 with
0<yl<Dxi fori=1,..,q, and y=2,_* Ayl ' 4.2)

Next, using the function T defined in the Appendix, apply Lemma A.1 to obtain the nested

intervals
[0, A] = [(2Ig2.2|ph=0,

where I = (t;, 4 + AjAl A= Zj=‘1i lj and t; = AT(pA, A;) ‘fOI' i= 0,...q.

For te R, define the "A-remainder” function r:R, — (0, A] by

r(t) = minimize t + sA
subject to: t + sA > 0.

se Z.
Define the function & = (x(.), y(.)) from R, into RkxRD by
() = (xi, yi) if r(®) € [\, (4.3)

where ie {1,...q}. SeeFigure 1. ®
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Figure 1

We proceed to show that the object ® generated by policy construction from a feasible

solution (x,y) of LP is a policy.

Lemma 4.2. |

The object © generated by policy construction from a feasible solution (x,y) of LPisa
A-stationary policy satisfying (DP1) and (DP2).
Proof.

As the intervals [, ..., Iq are nested and Iq = (0, A], foreach t € R, we have that
there exists a unique ie {1,..,q} ‘fo‘r which r(t) € [\I;_; . Hence, %' is, in fact, a well
defined function from R, into into Rkx RN, As the intervals I, ..., I are open on the left

and closed on the right, © is left continuous. As r(t + A) =r(t) forall te R, , we conclude that
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n is A-stationary. As each xie E, wehave that x(f)e E forall te R, . Finally, as 0 < yig
Dxi, we have that 0 < y(t) < Dx(t) forallte R, . ® |

Lemma 4.3. ‘
The policy = = (x(.), y(.)) generated by pdlicy éonstruction from the feasible solution

(x,y) of LP has the following properties:

[ x(x)dt = Ax forall te R, | (4.4)
t+A ‘ | : | o . ‘ N
["* y(t)dt = Ay forall te R,, | (4.5)
. T -1g-pAs(] . e-pA B
As ePUx(t)dt = p-lePIS(1 - ePA)x forall se Z,, - (4.6)
L epty(nydt = prle-pAs(l - ePA)y forall se Z, , @47
[, eprx(nydr = p-lx, | (4.8)
[y ey =prly, | 4.9)
J' A(s+1) ‘
kN eP™Dy(t)dt 20 forall se Z,, (4.10)
[, ePDy(®)dr=0 and ) (4.11)
I ePtax(t) + by(ldT =V = Vo 2 Vi p. ‘ (412

Proof.

The definition of the intervals I, ..., I; and Theorem A.2 imply that
i, 16T = A - A A =NA | (4.13)

and
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pli;, ePTaT = (Aj- Ajpply ePide =Aj(1-ePd) (4.14)

Using the change of variable T — - t, it follows from (4.13), the A-stationarity of 7 and
4.1) - (4.3) that for all te R, ;

1 xode =[x+ o= xmde =2 w100 = 2 AjAn = Ax

aﬂd ':f

["ydr=]"ye + t)di =2 ywdi= z vy, 190 =2, ?ujij‘= Ay,
establishing (4.4) énd (4.5) . Similarly, using tﬁe change of variable T > 1T-sA, itfollows
from (4.14) and (4.1)- (4.2) that for all se Z, , | |

D eptxydt = | e+t + As)dr = epbsf * eptx(n)dt
=ePhs(E Ty ePtdn)] = p-lePAsE, xixj (1-ePh)]

=p-lePAs(]l - ePA)x,

establishing (4.6) .Using a corresponding string of equalities with (4.2) replacing. (4.1) we

similarly get that

A(s+1)
T epTy(n)dt = prlePAs(l - ePA)y
establishing (4.7) . We next conclude from (4.6) that
L) As+1)

Iom ePx(t)dt = Zs -0 Jas ePx(t)dr - Zs=0°°p-le-pAS(1 - e-PA)x =

=p1(1- ePA)yl(1 - ePA)x =p-lx,

=26 -



establishing (4.8), and similar arguments show that (4.9) follows from (4.7) . Next note that
(LP3) implies that Dy 20, hence, (4.10) and (4.11) follow directly from (4.7) and (4.9),
respectively. Finally, (4.12) follows from (4.8) and (4.9), as

Vp =], ePiax() + by(m)ldt = p-lax + by) = Vi 2 Vip. ®

The major results of this paper are now captured in the following theorem. Indeed, it
shows one how to compute a policy which is simultaneously optimal for RRDP and RDP, further,

the objective value of the policy is computed.

Theorem 4.4.

Given a feasible solution (x, y) of LP, policy construction yields a A-staticnary policy 7
for RRDP and RDP with objective value Vp =V, . Furthermore, if (x, y) is an optimal solution
of LP, then m is an optimal policy for RRDP and RDP .

Proof.

By Lemma 4.2, we see that nt is a A-stationary policy satisfying (DP1) and (DP2) and

(4.11) of Lemma 4.3 shows that © satisfies (DP3C). Thus, 7 is a policy for RRDP. Also,

(4.5) of Lemma 4.3 and the fact that Dy 2 O show that forall re Z_,

I pywydr=DZ_" (], " y(ryd] = DAY 20,

hence, (DP3A) is satisfied; further, (4.7) of Lemma 4.3 shows that forall re Z_

e epty(rydt) = DI, [p-lePAs(l - ePAyy]

Ar r-1
I ePDyydr =DE,_" i,
= p-l(1 - ePANDY 20,

hence, n satisfies (DP3B). Thus, we see that n is a policy for RDP as well. The fact that V, =

ny follows directly from part (4.12) of Lemma 4.3.

227 -



If (x,y) is an optimal solution of LP, then V= Vyxy=VLp, and Céirollary 3.6
immediateiy implies that 7t is optimal for RRDP, Similarly, Corollary 3.3 further implies that &
is optimal for RDP, ® |

Theorem 4.4 shows that an optimal policy to RRDP and RDP can be computed by apply ng

| policy construction to any optimal solution of LP. In particular, it follows that the optimal objective
value of RDP, RRDP and LP coincide. As Vi p and Vgrpp are independent of A, we conclude

- that sois Vrpp . These results are summarized in the next three corollaries.

Corollary 4.5. v
| One obtains an optimal policy 7t for RRDP and RDP by computing an optimal solution

(x,y) for LP and then applying pOlicy construction to (x,y). ®

Corollary 4.6.

VRrpp = VRrpP = VLp. ®

We note that as LP is a linear program, its objective value can be easily computed. Thus,

Corollary 4.6 establishes a method for computing VrRpp and VRRrDP .

Corollary 4.7.

The optimal objective function of RDP is invariant with A. ®

The last corollary is counter-intuitive (upon first sight), but, it is explained by the absence
of setups and inventory costs in RDP. Although the optimal objective of RDP is independent of
A., the optimal solution of RDP computed by policy construction from a given optimal solution of
LP is dependenton A.

On another matter, if we replace A and p by A' and p', respectively, where pA =
p'A', notice that the intervals I'gp, I'y, ..., I'q , are the intervals I, [, .., Iq scaled by A/A',

see the discusion in Section 5.
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- As RDP is a relaxation of DP we see that V| p is a lower bound for the optimal objective
value of DP, thatis, Vpp2 Vi p. We do not know how to construct a feasible policy for DP,
however, for any positive €, one can generate a policy n satisfying (DP1) and (DP2) and

almost satisfying (DP3), that is,
‘ jot Dy(t)dt 2 -eu for all te R,,

where u=(1,..1)T e R, Furthermore, V,; < Vpp . This policy almost satisfies the
constraints of DP and has objective value which cannot be improved upon by a policy for DP. To
‘obtain such a policy first select A so that ADy = -eu forall y satisfying 0<y s Cx forallxe
E . Then apply policy construction to an optimal solution (x, y) of LP to get the policy n. The
trouble is that as € tends to zero, so does A, and the desired policy stutters, that .s jumps around
from one pair (x,y) to another faster and faster as A tends to zero. All this leads one to suspect
that DP, in interesting cases, will not have an optimal policy. Once again the culprit is the absence
of setups and invontory CcOosts.

In policy construction the pairs (x!, y1), ..., (x4, y9) can be ordered arbitrarily, and each
order ge‘neratc‘s a different optimal policy. In fact, the order could be of considerable consequence,
for example, in reducing stockouts. The multitude of optimal policies is largely explained by the
absence of inventory costs in RDP. See other discussion of this matter in Eaves and Rothblum

[1988].

Buy-Sell Example for RRDP and RDP, the Solution:

We continue to use the data and notation of the Buy-Sell Example for RDP and LP. The
optimal solution of LP has x = (xy, o) = (2'1, 2°1) | y =(yy, yp) = (2], 21) and Vpp=-2.5.
Using policy construction we represent x by x =2-1(1, 0)T +2-1(0, 1)T, thus, q =2,
A=21, A =21, xI=(1,0)T and x2? = (0, 1)T, see Figure 2. Further, we compute y! =
(1,07, y2=©, DT and AT(pA,Ay) = T(51, 2-1) = 243.. . Thus, I} =[.243..,.743.. ]

-29 .



1

and I ={0, 1]. We can now define an optimal policy © = (x(.), y(.)) in the following way: for

se Z,, set

(x(®, y() = ((1, 0T, (1,00T) for s+ .243.. <t<s+.743.,

and

(x(t), y(®) = (0, DT, (0, DT) for s<t<s+.243. and s+.743.. <t <s+1.

Iy
( Il W
0 ‘ ) ' A
(xLlyly
(x2y2)
Figure 2

We observe that we could just as well have interchanged the selection of x! and x2, that
is ordered the extreme points of E differently, in which case we would arrive at the alternative

optimal solution n' = (x'(.), y'(.) defined in the following way: for se Z, , set
x'(t), y'®) = (0, DT, (0, DT) for s +.243.. <t<s+.743, and

and

'), y'®) = (1,07, (1,0T) for s<t<s+.243. and s +.743.. <t <s+1.®

1
[¥3]
<
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Buy-Sell Example for RFMOS, the Solution:

The above solution of RRDP and RDP for the Buy-Sell Example generates two optimal
| policies m and ' . These solutions represent the sequence of activities "sell, buy, sell" and "buy,
sell, buy",‘respectivgly, over shifts of the unit interval with breakpoints ‘0, 243..,.743.,, 1. Thé
maximum short positions of inventories are different for the two policies and equal .243.. for

and .256 for n'. The common objective value of these policies is -2.5 . @



vl

5. Sensitivity with the Interest Rate

In this section we investigate sensitivity of DP, RDP and RRDP on the interest rate and the
period length. In particular, we obtain expressions for the dependcnce of policies and their
ObjCCtl‘VC valucs on the interest rate. We shall use sufﬁx1es "(p)" and "(p, A)" to mdxcate

dependencc on the interest rate p and the perlod length A, e. g we refer to DP(p),

RDP(p,A), RRDP(p) and V(p)y .

For a given policy 7 = (x(.), y(.)) and o >0 , define the time scaled policy no. =
(xa(.), yo(.)) by xd(t) = x(at) and ya(t) = y(ot) forall te R, . The next lemma follows by

simple change of variables in the corresponding integrals.

Lemma 5.1..
Let p, A and o be positive numbers. Then:
a) apolicy = is feasible for DP(’p), if and only if mo is feasible for DP(ap),
b) a policy = is feasible for RDP(p,A) , if and only if ma. is feasible for
RDP(ap,o-lA),

‘ c)‘ a policy n is feasible for RRDP(p), if and only if mow is feasible for RRDP(ap),

- and

d) for every policy m, V(p)g =aV(ap),,

Corollary 5.2.

Let p, A and o be positive numbers. Then a policy = is optimal for DP(p) ,
RDP(p,A) and RRDP(p) if and only if moe is optimal for DP(ap), RDP(ap,o-lA) and
RRDP(ap) , respectively. ®

Select (p,A) and (p',A") with pA =p'A’. If policy construction generates the policy 7
for (p,A), then policy construction can be used to generate m(A'/A) for (p',A"), see
Section 4. The above corollary shows that such time scaling is useful whether or not the policy is

generated by policy construction.



Suppose we wanted to change the time; scale and convert from one time unit to another,
e.g., from months to years, where 6 time units in the old system becomes 1 | unit in the new
systgﬁn. Then the numerical value of the data is modified as follows: p«0p, a¢<0a, beb,
C (—— 8C and D « D. We note thatif n = (x(.), y(.)) is an optimal policy for the old data, then

7t = (x(0.), 8y(0.)) is optimal for the new data.
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6. The Discounted Inventory Constraints

Our next task is to give the discounted inventory constréints'an interpretation. On the one
hand, as the discounted inventory conétraints are implied by the constraints of DP, they require no
justification. On the other hand, to help appreciate thc severity, or lack thereof, of the relaxation in
‘moving from DP to RDP of RRDP we do want to understand the discounted inventory constraints,
~ However, let us not forget that the most dammaging aspect of the relaxation is that we lose
invenfdry costs in the objcétivc.

To pursue this matter we focus oﬁ the single discounted inventory constraint at infinity as
in RRDP, rather than the periodic discounted inventory constraints as in RDP. Let us create a.
parametric version RRDP(p) of RRDP by moving the discounted inventory consraints into the

objective with Lagrangian multiplier p e R1XM | We shall interpret the multipliers as prices.

Definition of RRDP(p):
RRDP(p) is the fo]lowihg parametric dynamic program where the search takes place over

policies T =(x(.),y(.)) :
RRDP(p) : VRRDP(P) = infimumy - x()y() [;” ePtax(r) + bymldt - pl, eP*Dy(v)ldt
subject to: x(t)é E for‘ali te R, (DPI)
0 <y(t) <Cx(t) forall te R, (DP2)

Define © =(x(.),y(.)) to be a policy for RRDP(p), if it is a policy satisfying the constraints of
RRDP(p) and let V(p) = ;" ePt[ax(t) + by(v)ldt - pJ,~ eP™Dy(T))dv denote the objective value

of such a policy. The problem in RRDP(p) is to select an optimal policy for RRDP(p), i.e., select a
policy ® for RRDP(p) which infimizcs the objective value, namely, has Vp(p) = VrRrpp(P) - ®

Define Y(t) = Jol y(t)dt and observe that DY(t) is the inventory on hand at time t.

Using integration by parts, we may rewrite the objective function of RRDP(p) as
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Va(p) = J.OM e-P*ax(t) + by(t)]d7 - fow e P ppDY(t)ldt.

Attime t, the inventory levels are DY(t) and at prices given by the coordinates of | p the dollar
value of the invéntory is pDY(t) . Now, imagine a market for in-process goods which pays an
interest rate p for ;he dollar value of in-process goods oh deposit and cliargcs an interest rate of p
‘for each dollar value of in‘-pro’éess goods on loan. The payment rate at time t to the market is |
ppDY(f) . The task of RRDP(p) is then to minimize discounted assignment costs plus discounted
~ activity costs plus discounted interest ‘payments to the market of in-procesé goods (minus
corresponding revenues therefrom). We will show that there are prices p such that if a policy is
optimal for RRDP then it is optimal for RRDP(p). | | .

As the linear program LP assisted in our analysis of RRDP we now introduce the :
parametric linear program LLP(p) to assist us in 6ur analysis of RRDP(p). As we created RRDP(p)
from RRDP, we create LP(p) from LP. Specifically, LP(p) is formed from LP by moving the

constraints p-!Dy > 0 into the objective via the use of prices given by the coordinates of p .

Definition of LP(p):
The decision variables of LP(p) are vectors x in Rk and y in RM. LP(p) is the

- following linear program:
LP(p): VLp(‘p) = minimumy .y p~1(ax + by) - p-lpDy
subject to: x € conv(E) | | (LP1)
0<sy<Cx. (LP2)

We call the pair of véctors (x,y) afeasible solution for LP(p), if it satisfies the constraints of
LP(p) and we let Vx)',(p) = p-l(ax + by) - p-!pDy denote the objective value of such a feasible
solution. The problem in LP(p) is to select an optimal policy for LP(p), i.e., select a feasible

solution (x,y) for LP(p) which minimizés the objective value, namely, has ny(p) =Vip(p). ®
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- The relationship between RRDP(p) and LP(p) is essentially as that of RRDP and LP, as the

following three lemmas show.

Lemma 6.1. |
Let m = (x(), y()) be a policy for RRDP(p). Then

x =pl,” ePix(D)dt and y = pf,” ePly(vyde

~ is a feasible solution to LP(p). Further, V(p) = Vyy(p) 2 Vp p(p) and pjow eP™Dy(t) = p-lpDy .
Proof. |

Modify the pfoof of Lemma 3.4 in the obvious manner, ®

Lemma 6.2. |

Given a feasible solution (x,y) for LP(p), policy construction yiélds a policy of RRDP(p)
with V() = Vyy(p) and |~ ePTDy() = p-lpDy.
Proof.

Modify the proof of Lemma 4.2 in the obvious manner. ®

Lemma 6.3.

VRrDpP®P) = VLp(P) .
Proof.

Lemma 6.1 shows that VRrpp(p) = VLp(p) and Lemma 6.2 assures that Vprpp(p) <
Vip(p) . ®

The relationship between LP and LP(p) is given in the next lemma.

Lemma 6.4.
The following three statements are equivalent:
a) (x,y) is an optimal solution for LP and p is part of an optimal solution for the dual of

~ LP corresponding to the constraints p-!Dy 20 .
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b) (x,y) isa feasible solution for LP, (x,y) is an optimal solution fbr LP(p), p >0 and
pDy =0. |

c) (x,y) isa feasible solution for LP(p), p=0 and
ny(P') s ny(p) < vx'y'(P) ’ ( (6.1)

~ for all feasible solutions (x',y") for LP(p) and forall p'20,
Further, if (a), (b) or (c) hold, then V;p=Vyp(p).
Proof. -

The lemma is a special case of Theorem B.1 of Appendix B. ®

Buy Sell Example for LP(p).
We continue to use the data from the Buy-Sell Example for RDP. Let x = (xq, x9)T and y

=y YZ)T be the decision variables. The parametric linear program LP(p) is then given by:
LP(p): Vi p(p) = minimum(x‘y) 5[(0, Oy + (1, —Z)y] - p5(1, -1)y
subject to: x20, (I,Dx=1 (LPD)
OSysx, and | (LP2)

The optimal dual variables p of the constraints 5(1,-1)y 20 of LPare p = 1.5 and, indeed, the
optimal solution of LP, namely, x; = x5 =y =y, =2"1 is also optimal for LP(1.5). The optimal

objectives of LP and LP(1.5) are equal, indeed, Vyp= V[ p(1.5)=-2.5.®

We have seen in Sections 3 and 4 that RRDP and LP are closely related, namely, given a
policy for RRDP we can obtain a feasible solution of LP, and vice versa, with coinciding objective

values; Vrrpp = VLp. Similarly, we have seen in the current section that RRDP(p) and LP(p)

are closely related, namely, given a policy for RRDP(p) we can obtain a feasible solution of LP(p),

and vice versa, with coinciding objective values; Vrrpp(P) = VL p(p) . We next relate RRDP and

RRDP(p) through LP and LLP(p) using the previous lemmia.
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Theorem 6.5.

The following four statemcnfs are equivalent:

a) T isan opﬁmal policy for RRDP and p is part of an optimal solution of the dual of LP
corresponding to the constraints p-lDy20.

b) m=(x(.), y(.)) is a policy for RRDP, 7 is an optima! policy for RRDP(p), p 20 and
pl,”ePTDy(1) = 0. |

¢) 7 isa policy for RRDP(p), p 20 and

Va(p) £ Va(p) < Vp(p) 3 | ‘ (6.2)

for all policies ' for RRDP(p) and forall p'20.
d) m is a policy for RRDP(p), p2 0 and

supremun,y infimumy: Vp(p') = Va(p) = infimumy supremurmyy Va(p') |

where the suprema are taken over the set of policies of RRDP(p) and the infima are taken over the
setof p'20.

Further, if (a), (b), (c) or (d) hold, then Vggrpp = VrRrpp(®) -
Proof. v

Let = (x(.), y(.)) be a policy and define x = pjow c'Pﬁ(t)dt and y= pfow ePly(t)dr.
The proof of the equivalence of (a) - (c) proceeds via a reduction to Lemma 6.4,

(a) = (b): Assume that (a) holds. As m is an optimal policy for RRDP, Corollary 4.6
and Lemma 3.4 show that Vip = Vpppp =V = Vyy: hence, (x,y) is optimal for LP. Thus, (a)
here implies (a) of Lemma 6.5, and we conclude from that lemma that (x, y) is a feasible
‘solution for LP, (x,y) is an optimal solution for LP(p), p=0 and pDy =0. In particular,
J,"ePDy()dt = p'Dy 2 0 assuring that 7 is a policy for RRDP, p>0 and pf,” eP*Dy(t)dt
=pDy =0. Thus, it remains to show that & is an optimal policy for RRDP(p). Observing that

V= Vyy we get from pDy =0, the optimality of (x,y) for LP(p) and Lemma 6.3 that, indeed,
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|

Vi = Vay = Viy - pp"IDy = Vy(p) = VLp(p) = Vrrop(P) -

‘(b) => (¢): Assume that (b) holds. Then the right inequalities of (6.2) follows from the
optimality of 7 for RRDP(p). Further, as Tt is a policy for RRDP, the term p'J,” e-P'Dy(1)dt is
nohnegative for éill p' 2 0. As our assumption asserts that this term is zero for p'=p, we get the
left inequalities of (6.2) . |

‘(c) = (a): Assume that (c) holds. Lemmas 6.2 shows that each feasible solution (x', y')
of LP(p) éan be used to construct a policy n' for RRDP(p) with Vx-y'(p) =Vp(p). As ny(p) =
Vn(pj , the right inequalities of (6.2) imply the right inequalities of (6.1) . Further, the right

inequalities of (6.2) show that for every p'20
p-lpDy = pJ,” eP™Dy(m)dt 2 pl,” eP™Dy(v)dt = p-1pDy ,

implying the left inequalities of (6.1). Hence, part (c) of Lemma 6.4 Holds and that lemma
implies that (x,y) is an optimal solution for LP and p is part of an optimal so‘lution'for the dual
of LP corresponding to the constraihts p-lDy20. In partic‘ular, \ - Vyy = YLp and Corollary
3.6 implies that 7 is optfmal for RRDP. |

(c) & (d): This equivalence is a standard characterization of ‘saddlc points of arbitrary
bivariate functions.

Finally, assume that (a) holds. Then V= Vgrrpp. As the proof of the implication (a)

= (b) shows that V= Vrrpp(p) we have that Vrrpp = VRrDP(P) - ®

Buy Sell Example for RRDP(p).
We continue to use the data from the Buy-Sell Example for RDP. We have seen that p =

1.5 is the optimal dual variables of LP corresponding to the constraints p-!Dy > 0. Thus,

optimal policies for the Buy-Sell Example for RRDP and RDP, e.g., those computed in Section 4,

are optimal for RRDP(1.5) with the same optimal objective value, namely, -2.5. ®
From (d) of Theorem 6.5 we see that the prices for which RRDP(p) and RRDP have a

common optimal solution are as unfavorable the manufacturer could face. Thus one could think of
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the discounted inventory constraint as one which discourages the manufacturer from arbitraging in

the in-process goods market.
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7. Remarks and Extensibns

An understanding of the dynaimic program DP is outside our present reach. For the very
simple case of the Buy-Sell Example of DP, we show that there is no optimal policy, but that

stuttering policies can be €-optimal. Although this is a very special case of DP, it is not
pathological, and we hasten to speculate that it is quite representative or indicative of the typical

nature of DP.

Buy-Sell Example of DP, an Analysis:
We continue to use the data and notation for polices of the Buy-Sell Example for DP.
Lemma 2.3, Corollary 4.6 and the solution of RDP and RRDP for the Buy-Sell Example show that

Vpp2 Vrpp= VLp=2.5. We next demonstrate that this lower bound on Vpp is not attainable

by poiicies of DP.
Assume that for a policy ® = (x(.), y(.)), Vp=-2.5. Then,

2.5 = V=, et5(1, -2)y(nde
=@, -2, eyt - [ ey (myd
=(1, -1, eyt - |, eWyy(txdr .
Averaging, we get that
25 =1.5(1,-D)f," e PSy(ndt - J,” e5[0.5y,(3) + 0.51y,(1)]dt
= 1.5(1, -, ePy()dt - 0.5),” e ¥5(1, 1)y()de (6.1)

Integrating by parts, we see that .[Ow e By(t)dt = 5"‘,[0“ 6'1/5[L; y(o)do]dt, and using (DP1)
and (DP2) to get (1, 1)y(t) < (1, 1)y(t) <1 we also see that ,fom e ¥5(1, Dy(t)dt = ,[Ow e Sdr

=5 . Hence, we obtain from (6.1) that
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2.5203),” (1, -1, yo)doldt - 2.5 (6.1

From (DP3) [(1, -1)f0‘ y(c)do] =20 for all Te R, . Hence, (6.1) implies that

[(1,- 1)!0 y(6)do] =0 forall T e R+ , implying that y(6) - y2(06) = (1,-1)y(0) = 0 for all |
ce R, . Further, from (DP1) and (DP2), 0 <y (t)ya(t) < x1(t)xp(t) =0 for a]l t e R,. But

(1‘,-1)y(t) =0 and y;(t)y2(t) =0, imply that y(t) = y2(t) =0 . Hence, y(t) =y,(t) =0 forall
t e R, , implyingthat V=0, a contradiction to the assertion that Vp=-25. Hence; Wc may
concludc that V> -2.5 for all p011c1es n for DP.

We next show that there are policies for DP whose objective value gets arbitrarily close to
- the unattainablc bound -2.5. Let A be a positive number. Then, the "buy it then sell it" policy
n(A) = ((x(.),y(.)) , defined by

xit)-1= x2(t)’= yit)-1= yi(t) =0 if sSASt<(s+ 2‘1)A‘f0r some s€ Z,, and
CXp(t) - 1 =x1() =ya(t) - 1 = yi)=0 if (s+2'HA<t<(s+ t)A for some se Z,
satisfies (DP1) - (DP3) and its objective value is easily computed and is given by
| Ve =-31 - 2e-A/10)(] - e-A/10)(]. - e-A/5)-1
From L'Hopital's rule it next follows that
limp_,0 Vra) =-2.5.

Thus, for every positive € there exists a positive A for which Vps) <-2.5+€. Combining this
fact with the earlier observation that 2.5 in an unattainable lower bound on Vpp, we conclude that

Vpp =-2.5 and that each policy of DP is dominated by a policy of the form n(A). ®

Buy-Sell Example of RDP without (DP3B):
If we drop the constraints (DP3B) from RDP for the Buy-Sell Example for RDP, the "sell
it then buy it" policy ® = ((x(.),y(.)) . defined by
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X)) -1 =x3() =yp(t) - 1 =y () =0 if s<t<s+21 forsome se Z,, and
i -1=xp®) =y - 1=y () =0 if s+2-1<t<s+1 forsome se Z, .

is optimal. This policy shorts inventory to the extent that is possible while covering the inventory
constraint at times s € Z, . Thc' corresponding optimal objective is then given by V.

= 5(-2+e-1/10)(1 .e-1/10)(] - ¢-1/5)-1 = -2.874.. . This id an improvement of about 10% over the
optimal objective value of RDP, however, the maximal shortage of inventories under this policy,

namely, -0.5, is about double that of the optimal policies of RDP that we constructed in Section
4, ®

In our definition of RDP we chose the period lengths to be equal. However, this special

* choice was motivated by notational convenience and was entirely unnecessary as we can solve the
problem for any afbitraly sequence of period lengths. Further, the optimal objectiVe value forthe
more general problem remains unchanged. To clarify these remarks, let 0= t(0) <t(1) <... be
any increasing sequence of scalars tending to o and let us define a modification RDPU of the
dynamic program RDP with period lengths t(s+1) - t(s) for se Z, ; the "U" stands for

"unequal”.

Definition of RDPU:

RDPU is the following dynamic program where the search takes place over policies n

=(x(.),y() :
RDPU: Vgppy = infimumy .,y Jo- €P5[ax(®) + by(m)ldt

subjectto: x(t) € E forall te R, , (DP1)

0 <y(t) <Cx(t) forall te R, (DP2)
J,¥ Dyydr 20 forall se Z, , and "~ (DP3AU)
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I, ePDy(t)dt 20 forall se Z, . (DP3BU)

Define m =(x(.),y(.)) to be a policy for RDPU if itisa policy satisfying the constraints of RDPU
andlet V= fow c*PT[ax(‘t) + by(t)]dt denote the objective value of such a policy. The problém in
RDPU is to select an optimal policy for RDPU, i.e., select a policy n for RDPU which infimizes

the objective value, namely, has V= Vrppy. ®

To solve RDPU we first solve LP and compute an optimal solution (x, y), and then
obtain the Ay, ..., lq,'xl, ws Xqs Y1 ¥q @8 in policy construction. Now, we define the
function ® = (x(.), y()) from R; into Rkx RN, For s =0, 1,2, ... execute the following: Let

A =t(s+1) - t(s) and construct the intervals
[0,A]=]jo 11 D..o D=,
as in policy construction, and fort & (t(s), t(s+)] let
n(t) = (xi, yl) if t-t(s)e L\,

where i€ {1,..,q}. A modification of the analysis of Section 4 then shows that the policy &
thus defined is optimal for RDPU and Vgpp = VRrpp = VRppy - TO see this we observe that,

for example,

Jiy T x(Wdt = [1(s+1) - 1(9)] for all se Z,
i Pt = prl{ePtS) - ePls+D)x forall se Z,

Iy ePix(dr = p-lx .



The research of this paper can be continued in a number of directions. An especially -

interesting prospect is the study of DP itself in an attempt to identify e-optimal policies. One

approach is to solve the modification of DP where (DP1) is relaxed by the "convexified version

x(t) € conv(E) for a]l‘ te R, .

This modified version of DP is a "continuous time linear program", see Perold [1978] and
‘Anstreicher [1983]. Now, suppose a solution to this "continuous time linear program" is found.
One will then attempt to gain discreteness by some deéonvexiﬁcatio‘n scheme that will preserve the
inQentory availability constraints (DP3) while giving up on € objective valu‘c, see the analysis of
the Buy Sell Example earlier in this section.

We finally note that due to the close relationship between the dynamic programs and the
Hnéar programs sensitivity analysis becomes available. Also, useful information can be obtained

from the dual of the linear program LP, see Section 6.
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Appendix A
The purpose of this appendix is to derive properties of the real valued function T(., .)

defined on R, xR, by

0-1In[O(1 - e9)-1] ~ for A=0 and >0, and
| (A.1)

T, A) = S
0-ln[(1 - e®MA-1(1 - e8)-1] for 0<A<1 and 6>0,
where R, = .{ B R:0>0}. The following lemma will be useful.

Lemma A.l
Forevery z>0 wehave zeZ+eZ<land z+e?>1.

Proof.
For the first statement we have equality at z=0, and the derivative of the term on the left

hand side of the inequality is negative. For the second statement we have equality at z=0, and

the derivative of the terms on the left hand-side of the inequality is positive. ®

Theorem A.2.
The function T:R,, xR, — R, is continuous.
For positive scalars p, A and A, the value t=AT(pA, A) is the unique solution of

[ pe-prar = Al pe-prdr . (A2)

t

For every positive scalar 6, the function T(0, .) : R, — R, has the following
properties:
a) T(8, A) is strictly decreasing in A € [0, 1],

b) T(6, A) + A is strictly increasing in A € [0, 1],

c)y T®,1)=0 and T, 1)+1=1, and
d) T(6,A)>0 and T, A)+ A<l for 0SA<1.
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Proof.

The function T is a compositioﬁ of contin’uous functions on the set R, X R,
which assures that it is continubus. Next, the continuity of T@®,.) at A=0 follows from
L'Hopital's Rule.

Let 6 = pA. By integrating the i¢ft and right hand-side of (A.2) we have that this equation
is equivalent to e-PY(1 - ‘e-‘eA) =A(l-¢e9). ‘In“particular, by taking natural logarithms, we see that
for positive A , (A.2) is equivalent to the assertion t= AT(O; A)= AT(pA, A).

For positive A, the derivative of T(8, A) with respectto A is given by
0-1[(1 - e0A)-1ge-8A - A-1] = (BA)-1(1 - e-BA)-1[ABe-BA - (1 - e-0A)]

and the first inequality of Lemma A.1 with z=A0 shows that this derivative is negative, hence

(@)
For positive A, the derivative of T(8, A) + A with respectto A is given by

(AG)1(1 - e-0A)-1[AGe-0A - (1 - ¢-0A)] + 1
= (AB)1(1 - e0AY 1[ABe-0A - (1 - e-0A) + AB(1 - e-0M)]
= (ABY1(1 - e0AY1[-(1 -e08) + AB]

and the second inequality of Lemma A.1 with z= A0 shows that this derivative is positive; hence
(b).

Direct substitution of A =1 into (A.1) shows that T(8, 1) =0, implying that T(6,1) +1
=1; hence (c). |

The conclusions of (d) follows immediately from (b) and (c). ®

Remark.
To understand the function T, note that the area under the curve pe-Pt from AT(pA,A)

to AT(pA, A) + AA is A times the area under the curve from 0 to A, see Figure 3. That is,
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for a fixed positive p and A, the length of the interval of integration and the computed area are

~ both proportional to A

A pe™

0 v ? AN
AT(PA,A) AT(PA,A) + AA
length = AA

Figure 3
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Appendix B

The results needed from linear programming for Lemma 6.4 are recorded here. Throughout‘

this appendix let the databe ae RM, be Rk, ce RIXn | A e Rmxn and B e Rk*n, and let
the variéblc;s be xe R", pe RI*M and qe RIXk, We define a linear program LP and three
other closely related linear programs DLP, LP(p) and DLP(p). DLP is the dual of LP. LP(p) is a

parametric version of LP attained by moving the constraints Ax >a into the objective. Finally,

DLP(p) is the dual of LP(p).
LP: V[ p= minimum, ¢x
subject to: Ax=2a

Bx=2b,

DLP: Vpj p = maximumy o pa +gb
subject to: pA+gB=c

p20, q20,

LP(p): Vi p(p) = minimum, cx - p(Ax - a)
subject to: Bxz2b
and
DLP(p): VpLp(p) '_= maximumg pa + gb
subject to: qB=c-pA

q20.



Note that we have included the constant pa in the objective‘ of both LP(p) and DLP(p). For x €

R" and pe RM define V,(p)=cx - p(Ax - a), see the objective for LP(p) .

- Theorem B.I.
The following three statements are equivalent:
a) x is an optimal solution for LP and p is part of an optimal solution for DLP.

b) x isa feasible solution for LP, x is an optimal solution for LP(p), p20 and p(Ax -

¢) x is a feasible solution for LP(p), p20 and
Vx(p) S Vi(p) £ Vy(p) | (B.1)

for all feasible solutions x' for LP(p) and all p'20.

Further, if (a), (b) or (¢) hold, then Vip =V p(p).
Proof.

(a) = (b): Let x and (p; q) be optimal solutions for L.P and DLP, respectively. In
particular pA + B =c and, by strong duality, cx = pa +‘qb . It now follows from these facts

and the nonnegativity of q, that for every x' which is feasible for LP(p),

VipScx=pa+qgb<pa+gBx' =pa+(c-pA)X =cx'-p(Ax'-a) = V,(p) .

Hence, Vi p < Vp(p). By complementary slackness, we have that p(Ax - a) =0 and, hence,
VLP =CX=CX ~ p(AX -a)= Vx(p) 2 VLP(p) .

Thus, Vi p = V,(p) =Vp(p). thatis, x is an optimal solution to LP(p).

(b) = (c): Assume that (b) hclds. As V,(p) is the objective value of x for LP(p), the
right inequalities of (B.1) follow from ‘thc fact that x is opiimal for LP(p). Also, as Axz2a,
we have that p'(Ax - a) 2 0 =p(Ax - a) forall p'>0, and the left inequalities of (B.1) follow

as well.
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(¢) = (a): The left inequalities of (B.l) imply that p'(Ax - a) 2 p(Ax - a) forall p'20,

immediately implying that Ax 2a . Thus, x is a feasible solution for LP. Further, by selecting p'
=0 we have that 0 = p(Ax - a). As p20 and Ax2a, p(Ax-a)20 and we conclude that

. p(Ax -a) =0. Now, for any feasible solﬁtion x' for LP we have p(Ax -a)=0<p(Ax'-a).
The right inequalities of (B.1) imply that cx - p(Ax - a) Scx'- p(Ax'- a) .- Combining these
inequalities, we get that cx < cx', establishing the optimality of x for LP. ®
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