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A DISCOUNTED-COST CONTINUOUS-TIME FLEXIBLE

MANUFACTURING AND OPERATOR SCHEDULING MODEL

SOLVED BY DECONVEXIFICATION OVER TIME

by

B. Curtis Eaves and Uriel G. Rothblum

ABSTRACT

A discounted-cost, continuous-time, infinite-horizonversion of a flexible manufacturing and operator

scheduling model is solved. The solution procedure is to convexify the discrete operator-assignment

constraints to obtain a linear program, and then to regain the discreteness and obtain an approximate

manufacturing schedule by deconvexification of the solution of the linear program over time. The strong

features of the model are the accomodation of linear inequality relations among the manufacturing

activities and the discrete manufacturing scheduling, whereas the weak features are intra-period relaxation

of inventory availability constraints, and the absence of inventory costs, setup times, and setup charges.
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I. Introduction E

_

In Eaves and Rothblum [1988, 1989], we descried a procedure, called deconvexification

over time, and used it for solving an average-cost, infinite-horizon, flexible-manufacturing and

operator-scheduling problem for both discrete- and continuous-time versions. Orr purpose in the

current paper is to apply a new variant of the deconvexifcation over time to solve a discounted-

cost, rather than average-cost, version of the manufacturing and scheduling problem. We refer to

the flexible-manufacturing and operator-scheduling problem as FMOS, as in the above references.

The relative strengths and weaknesses of FMOS with discounted-costs, as it can be solved -

with deconvexification over time, remain, in character, the same as for the average-costs. On one

hand, we capture discrete manufacturing and operator scheduling requirements as well as linear

inequalities among manufacturing activities. On the other hand, the continuous-time inventory

availability constraints are relaxed to periodic inventory availability constraints and, further, we

cannot include inventory costs, setup times or setup charges. Nevertheless, "aliin all, we believe

that deconvexification, potentially, offers a significant planning tool for scheduliing in a complex

environment.
!

Deconvexification over time, as it has been applied in the past and as it is applied here, is a

polynomial-time algorithm. Inclusion of inventory costs, setup times or setup charges appears to

push the model into an intractable class, that is, one requiring exponential effort to solve. No
-

attempt, to date, has been made to use deconvexification over time in an exponential-time

algorithm. At present, FMOS, as solvable by deconve×ification over time, seems to have its

greatest value as a planning tool in an environment where operator costs are high relative to

inventory or setup costs, and where setup times are relatively small.

In the paragraph below we define the discounted-cost manufacturing and operator
=

scheduling problem to which we will refer as FMOS. This statement represents our p:'oblem

orientation; it is an important problem we know something about, but it is not a problem we caJ_
lh



solve. Following the description of FMOS, we define a relaxation of FMOS referred to as

RFMOS. lt is RFMOS, no_ vMOS, that we will solve with deconvexification over time.
,,

Definition of FMOS:

Divisible i,aput materials, that is, raw materials, unfinished goods, etc., enter the

production system through, for example, purchase acfivities. In the system various divisible in-

process goods are transformed into other in-process goods through the execution of activities. The

rate and character of these activities depend upon the assigned operator. The operator pool may be

composed of, for example, skilled and unskilled labor, robots and machines. The function of an

activity with an assigned operator is to transform in-process goods into in-process goods in fixed

proportions and at a rate not exceeding a bound which is determined by both the activity and the

operator. A class of operator constraints are available, for example, an activity can be manned by

at most one operator at any given time, an operator can be assigned at most one activity at any

given time, or certain collections of activities may be conducted at a single workstation which may

limit the number of operators present, lt is assumed that operators can be moved from activity to

activity with negligible setup times or costs and that activities can be started up with negligible
i

delays or setup costs. Generation of in.process goods, for example, through

purchases or production, must precede their usage, for example, through selling

or use in production. It is assumed that in-process goods can be inventoried on the spot with

negligible time delay. Finally, output goods, that is, finished goods, processed materials,

rejections, etc. exit the production system. The rates and and relative proportions of input

materials entering .andof output goods exiting the system vary and depend upon operator-

assignments and activity-rate settings. The objective is to minimize costs (or maximize profits),

that is, operator costs, activity costs, and inventory costs minus revenues therefrom, ali

disc_Junted over the infinite horizon. ®
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As mentioned earlier, FMOS as stated above represents our problem orientation, but it is

not a problem which we can solve. The example below illustrates that FMOS may have no optimal

solution, principally due to the lack of setup times and charges.

Buy-Sell Example for FMOS:

A trader buys and sells a single commodity. At any instant in time he must buy or sell, but

he cannot do both simultaneously. He can buy at rate of one item per unit-time at $1 per item, and

'ae can sell at a rate of one item per unit-time for $2 per item. He cannot sell short, that is, he must

have positive inventory which he has bought in order to sell. Assume that he has an interest rate of

20% per unit-time. The trader's task is to buy and sell so as to minimize his discounted-cost (or

maximize his discounted-profit).

As we shall see in Set,.,on 7 that there is no optimal policy to the above problem, however,

there are "stuttering" e-optimal policies, namely, for each positive E, there is a positive A where

the policy of iteratively buying and selling at consecutive intervals of length A / 2 (starting with

buying) will result in a discounted cost which cannot be improved by any policy by more

than e. ®

We next define a relaxation of FMOS which we call RFMOS. lt is RFMOS that will be

solved with deconvexificatio_ overtime not FMOS. In FMOS, inventories must be nonnegative at

ali times, and as we will show, this implies that discounted inventory levels must be nonnegative at

ali times. RFMOS is obtained from FMOS by re,laxing the inventory availability and discounted

inventory constraints to periodic constraints instead of constraints that must hold at ali times• In

particular, periods are mentioned in RFMOS whereas FMOS is continuous time. The length of the

periods in RFMOS can be selected arbitrarily. We will see that the optimal objective value does not

vary with the selected length of the periods, however, other features of the optimal policy probably

will vary.

Definition of RFMOS:



RFMOS is FMOS with the emboldened sentence "Generation of in-process goods, for

example, through purchases or production, must precede their usage, for example, through selling

or use in production" replaced by "At the end of each period inventory levels and discounted

inventory levels must be nonnegative," and the emboldened phrase "inventory costs" deleted. ®

FMOS requires that inventory levels are nonnegative at ali times. These FMOS constraints

are relaxed in RFMOS to the requirements that inventory levels and discounted inventory levels are

nonnegative at the end of each period. Indeed, in RFMOS, we allow tbr inventory levels and

discounted inventory levels to become negative within a period. Because inventory levels in

RFMOS can be both negative and positive, we can no longer capture inventory carrying costs via

the linear objective.

Buy-Sell Example for RFMOS:

Consider the buy-sell example of FMOS with the following modifications. The trader is

allowed to sell short, that is, sell quantities he does not have in stock. But, he must cover all

outstanding orders at the end of each period. Further, for the interest rate of 20% rper unit time, the

discounted inventory levels must be nonnegative at the endof each period. ®

Tile principle weakness of FMOS, as the example shows, is the absence of setup times and

charges, otherwise, FMOS is a bonefied model. However, we cannot solve it, nevertheless, we

take it as our problerr_orientation. The relaxed version of FMOS, namely RFMOS, suffers from a

weak treatment of inventories as well as the absence of setups, lt is RFMOS that we solve with

deconvexification over time.

L: the next section we introduce a mathematical description of two dynamic programs

which we call DP and RDP, and we point out how they model FMOS and RFMOS, respectively.

Indeed, DP and RDP can be regarded as more precise formulations of FMOS and RFMOS. In

Section 3, we state an auxiliary dynamic program RRDP and a linear program LP which assist the

solution procedure. In Section 4, optimal policies are constructed for RRDP, RDP and hence
r,
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RFMOS. In Section 5 dependence of optimal policies and objective on interest rates and period

lengths is investigated. In Section 6, an interpretation is given to the discounted inventory

constraints. Finally, in Section 7, three maters are discussed further, but briefly.

-7-
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2. DynamiC Programming Formulations

Two dynamic programs DP and RDP are defined in this section. DP and RDP are designed

to model FMOS and RFMOS, respectively. As RFMOS is a relaxation of FMOS, RDP is a

relaxation of DP.

Let Z and R denote the set of integer and real scalars, respectively, and let, Z+ and R+

denote the set of nonnegative elements in Z and R, respectively. Let Rmxn be the setof rn x n

real matrices where m = 1, 2.... and n = 1,2 ..... In partic,dar, elements of Rm -- Rmxl and

Rlxn are called column androw vectors, respectively. Superscript T is used to indicate the

transpose of a matrix or a vector.

Throughout this paper dynamic programs, a linear program and an integer program are

employed. They require certain data. We define such data here once and for all.

Data

Let k, m and n be three positive integers. Let 13and A be two positive scalars. Let

a_ R lxk and be R lxn be two row vectors. Let C _ Rnxk and D e Rmxn be two matrices.

Let E be a finite subset of Rk where Dx > 0 for every x _ E. ®

Let rc be a function from R+ into some topological space. We define _ to be piecewise

continuous if there is an increasi_ngsequence of scalms 0 =t(0) < t(1) < t(2) < ... in R+ tending

to _, where _z is continuous on (t(s), t(s+l)] for each s e Z+. Note that the above definition

of piecewise continuity implies left continuity.

Throughout the paper we use the term policy to indicate time-dependent decision Variables

for several dynamic programs. We define a policy here, once and for all.

Policy

A policy _ = (x(.), y(.)) isdefined to be a piecewise continuous function mapping R+

into Rk× R n . ®
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As a casual remark to assist the reader, we note that each and every policy _ = (x(.), y(.))

in this paper will always have the additional properties x(t)e E and 0 < y(t) < Cx(t) for ali

t _ R.. Also, the objective value of a policy n , as denoted by Vn , is always given by Vn -

_o**e-PX[ax(x)+ by(x)]dx

We are now ready to introduce our first dynamic program.

Definition of DP:

DP is the following dynamic program where the search takes piace over policies _:

= (x(.), y(.)) '

DP: VDp =-infimumn = (x(.),y(.))_0"*e'_X[ax(x) + by(x)]dx

subject to: x(t)e E for ali tc R+ (DP1)

0 < y(t) < Cx(t) for ali te R+, and (DP2)

I0t Dy(x)dx _>0 for ali t e R.. (DP3)

Def'me _ ---(x(.), y(.)) to be a policy for DP if it is a policy satisfying the constraints of DP and let

Vn - So'e-PX[ax(x) + by(x)]dx denote the objective value of such a policy. The problem in DP isto

select an optimal policy for DP, i.e., select a policy r: for DP which infimizes the objective value,

namely has, Vn = VDp. ®

We next show howDP can be used to formulate FMOS. This is accomplished by

interpreting the data and the variables of DP in the context of FMOS. The discussion here is brief

and a more detailed discussion can be found in Eaves and Rothblum [1988, 1989].

The variable te R+ represents time in FMOS and the finite set E corresponds to the

collection of possible operator-assignments in FMOS. The variable x(t) is the vector of operator-

assignments at time t, and the constraint (DP1) expresses the requirement that x(t) at eacli time



instancebe a possible operator-assignment. The coordinates of the vector y(t) represen t the rates

at which the activities are executed at time t, and constraint (DP2) bounds the rate vector at each
,,

time instance by a linear function of the operator,assignment vector, i.e., given the operator-

assignment vector x(t) the activity-levels, represented by the coordinates of the-:ee.tor y(t),

cannot exceed those of Cx(t). The matrix D is the technology or netput matrix. Each column of

D corresponds to some activity as buying, selling or transforming in,process goods into in-

process goods. The rows of D correspond to in-process goods. For example, if column i of the

matrix D is the vector (3,-1, 1,-2, 0, ..., 0)T and thei-th component Of y(t) is 5 over the

period from time 2 till time 3, i.e., y(t) i 5 for 2 < t-< 3, then the net change in the quantities

of the first four in-process goods during that period due to this activity would be 15, -5, 5 and

-10, respectively. In general, given activity-levels y(t), the rate of transformation of in-process

goods is Dy(t). Constraint (DP3) corresponds to the requirement that inventory levels are never

negative, or indeed, that transformation cannot take place without the constituent inputs.

The operator-assignment set E is typically defined bya unimodular linear inequality

system wherein extreme points correspond to elements of E. That such a system can be

constructed to accommodate the types of constraints that we have suggested in FMOS is fully

discussed in Eaves and Rothbum [1988, 1989] and will not repeated here.

, Examining the objective of DP, we see that discounted costs, which are linear in the

operator-assignment vectors and the activity-level vectors, can be incorporated into the objective.

We next show that linear inventory costs can actually be included in DP. Let b' be the vector

whose coordinates are the inventory unit costs incurred per unit time for the different in-process

goods. Inventory levels at time t are determined by the activity-levels applied up to time t, and

are given by z(t) Sot Dy('r)dx, implying that the discounted inventory cost would be

j'0_ e'P_b'z('r)d'_ b'_o0_e-O_[_o Dy(o)do]d'c b'D_o y(o)[_ o e- dx]do

oo

= p-lb'D_0 e-PXy('c)dl:.
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Examining the objective of DP we see that we can incorporate discounted inventory costs by

adding the term p-lb'D to b.

"llae problem of FMOS is to select a policy, that is, operator-assignments and achievable

activity-rates over time which maintain nonnegative inventory levels, with the purpose of

minimizing the discounted operator-assignment and activity-rates costs. This corresponds to

findi'_g a plicy _ for DP with Vn = VDp. An interpretation of the units of the data and variables

is given in the table:

Obiect

13 percent per unit time

a $ per assignment per unit time

b $ per activity rate per unit time

C activity rate per assignment

D units of in-process goods per unit time per activity rate

x assignment

y activity rate

This completes our argument that DP is a dynamic programming formulation for FMOS.

We next return to the example presented in the Introduction and show how it is formulated

by DP.

Buy-Sell Example for DP:

Let k=2, m=l, n=2, p=0.2, a=(O,O), b=(1,-2),

1 0 1 0
C= ( ), D=(1,-1), E={(), ( )}

0 1 0 1

7r= (x(.), y(.)), x(.) = (xi(.), x2(.)), y(.) = (YI(.), Y2(.)), xi(.):R+ _ R1 for i = 1, 2, and

", yi(.):R+ -+ RI for i = 1, 2. The dynamic program DP is then given by:

' oo

DP: VDp - infimumn=((x.),y(.)) I0 e-X/5[(0, 0)x(x) + (1, -2)y(l:)]dl:

11-
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subject to: x(t) E E={(), ( )} for all tc R+ (DPi)
0 1

0 <__y(t) <_.x(t) for ali te R+ (DP2)

Jot (1, -1)y0;)d_->. 0 for ali tc R+. ® (DP3)

The following lemma is used to derive implied constraints from DP.

Lemma 2.1.

Let v:R+ -_ R be a bounded, piecewise continuous function satisfying

t

Io v(x)dl; > 0 for ali ta R+. (2.1)

Then for any p > 0,

t

J'oe'PXv(z)dz > 0 for ali t e R+. (2.2,)

PrOOf.

Let V t denote the left derivative operator with respect to the variable t. Then,
t

Vt[_o v(x)dx]= v(t), and the left continuity of v(.) and (2.1) imply that for ali t _ R+

t t

J'oe'PXv(x)dz= loe'PX{Vx[J'ov(o)do]}d'l;

= "'Jov(>d -foIv,(o
t t

= e-ptj'o v('l:)d'I:+ PJ'oe'P'qJ'o"¢v(o)d(_]d'l:>_O. ®

Lemma 2.2.

The constraints of DP imply that

lo' e'PZDY0;)d'c > 0 for ali t _ R+. (2.3)

-12-



Proof.

Apply Lemma 2.1 to each component of the integral. ®

We refer to a constraint of the type found in (2.3) as a discounted inventory constraint,

and we use such constraints in our relaxation RDP of DP.

Definition of RDP:

RDP is the following dynamic program where the search takes piace over policies

=(x(.),y(.)) •

' oo

RDP: VRDP _ infimumn=((x.),y(.))Jo e'PX[ax(x) + by(x)]dx

subjectto: x(t)c E forall tc R+, (DP1)

0 < y(t) < Cx(t) for ali tc R+, (DP2)

.[oasDy(_)d_ > 0 for ali sc Z+, and (DP3A)

So_ e-PXDy(x)dx _>0 for ali sc Z+. (DP3B)

Define rc= (x(.), y(.)) to be apo/icy for RDP if it is a policy satisfying the constraints of RDP and

let Vn - _0**e-_[ax(_:)+ by(x)]d_ denote the objective value of such a policy. The problem in

RDP is to select an optimal policy for RDP, i.e., select a policy n for RDP which infimizes the

objective value, namely, has Vn ---VRD P . ®

We observe that Lemma 2.2 implies that DP can be augmented by the discounted inventory

constraints without altering the set of policies. As (DP3A) and (DP3B) are, respectively, the

restriction of (DP3) and (2.3) to times t = sA for sc Z., RDP is a relaxation of DP. In

particular, we have proved the followir_g lemma:

Lemma 2.3.

-13-



Each policy _ of of DP is a policy of RDP and Vn > VRD P . Thus, if DP is feasible, then

RDP is feasible, and further, the optimal objective value of DP is not less than that RDP, i.e., VDp

> VRDP . ®

Though the discounted inventory constraints (2.3) are implied by the constraints of DP,

they are not necessarily implied by the constraints of RDP. We do not expect to be, able to use the

next corollary, but we include it to maintain uniform development.

Corollary 2.4.

If r_ is a policy of DP with Vn = VRD P , then rc is an optimal policy for DP. li

We do not know how to solve DP, butwe can and do solve RDP. A policy n is defined to

be A-stationary if n(t) -- n(t + A) for' ali t _ R+. We shall compute an optimal policy for RDP

which is A-stationary.

Now, let us indicate the correspondence between RDP and RFMOS. The period length of

RFMOS is A. That inventory levels and discounted inventory levels be nonnegative at the end of

each periods is captured by the constraints (DP3A) and (DP3B), respectively. Otherwise, the

arguments that showed that DP models FMOS can be used to show that RDP models RFMOS. An

interpretation of the discounted inventory constraints is given in Section 6.

Buy-Sell Example for RDP:

We continue to use the data, augment by A = 1, and the notation for policies from the

Buy-Sell Example for DP. The dynamic program RDP is then given by'

RDP: VRDP - infimumn=((x.),y(.))J'o**e'X/5[(0, 0)x(l:) + (1, -2)y('_)]dx

1 0

subjectto: x(t) e E= {(), ( ) } forall tc R+ (DP1)
0 1

0 < y(t) _<x(t) for ali t e R+ (DP2)

-14-



J'o'(1, -1)y(x)dx > 0 for ali s_ Z+, and (DP3A)

j'o' e,X/5(1, -1)y(_;)dx > 0 for ali s_ Z+ . ® (DP3B)

!5 _



3. Auxiliary Programs

Towards our the solution of RDP, and hence of RFMOS, we define a dynamic program

RRDP which is a relaxation of RDP and a linear program LP. The dynamic program RRDP is

obtained by replacing (DP3A) and (DP3B) in RDP by a single constraint which, as the next

lemma shows, is implied by the constraints of RDP. Although RRDP is a relaxation of RDP, as

we shall see, certain optimal solutions for RRDP are optimal for RDP as well.

Lemma 3.1.

"IRe constraints of RDP imply that

50 e-PTDy(_)dz___0. (3.1)

Proof.

From (DP1) and (DP2), we see that Dy(.) is bounded, that is, for some K we have that

IIDy(t)ll,_< K for ali t _ R+. Hence,

r -- _r _ .. _I15te-P_Dy('0d_ll_o<KJ re- dl; Kp'le-pt[1e'p(r'0]forallt and r in R+

t e-PXl.)y(l:)d,cexists as t_ _, i.e., the integral j'o**e-PXDy(1:)d'_isimplying that the limit of -_o

well defined. In particular,

lims_ _osAe'PXDY('_)d_ = .f0"e'PXDY(_)d_ ,

and (3.1) follows from (DP3B) and the boundedness of Dy(.). ®

As the constraints of (3.1) are instances of those in (2.3) with t = _, we will also refer

to the constraints of (3.1) as discounted inventory constraints. RRDP is next defined as the

relaxation of RDP obtained by xeplacing the family of constraints (DP3A) and (DP3B) by the

single constraint (3.1). We will construct optimal solutions of RRDP which will satisfy the

-16-



constraints of RDP, hence, as RRDP is a relaxation of RDP, such solutions will also be optimal

for RDP.

Definition of RRDP:

RRDP is file following dynamic program where the search takes place over policies

= (x(.)'y(.))•

RRDP: VRRRDP= infimurn n = (x(.),y(.))_0"*e'PX[ax(_;)+ by(z)]dl;

subject to: x(t)c E for ali tc R+ (DP1)

0 < y(t) _<Cx(t) for ali tc R+, and (DP2)

_o_ e'_Dy0;)dl; > 0. (DP3C)

Define _ = (x(.), y(,)) to be a policy for RRDP, if it is a policy satisfying the constraints of RRDP

and let Vn ---_o**e'PX[ax(1;)+ by(1;)]dz denote the objective value of such a policy. The problem in

RRDP is to select an optimal policy for RRDP, i.e., select a policy rc for RRDP which infimizes

the objective value, namely, has Vn = VRRDP. ®

Lemma 3.2.

Each policy n of RDP is a policy of RRDP with Vn > VRRDP. Thus, if RDP is feasible,

then RRDP is feasible, and further the optimal objective value of RDP is not less than that of

RRDP, i.e., VRD P _ VRRDP.

Lemma 3.2 provides a simple sufficient test for optimality of policies of RDP.

Corollary 3.3.

If a policy _ of RDP satisfies Vn = VRRDP, then _ is an optimal policy for RDP. ®
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Buy.Sell Example for RRDP

We continue to use the data and notation for policies from the Buy-Sell Example for RDP.

The dynamic program RRDP is then given by:

RRDP: VRRDP- infimumn=((×.),y(.))_o_ e-x/5[(o, o)x(x) + (1, -2)y(l:)]dl:

1 0

subjectto: x(t)c E= {(), () } forall tc R+ (DP1)
0 1

0 < y(t) < x(t) for ali tc R+ (DP2)

So_ e-X/5(1,- 1)y('0d_ > 0. ® (DP3C)

In solving RDP and RRDP we employ the following linear program LPo

Definition of LP:

The decision variables of LP are vectors x in Rk and y in Rn . LP is the following

linear program:

LP: VLp - minimum(×,y) p-l(ax + by)

subject to: x c conv(E) (LP1)

0 g y < Cx, and (LP2)

p'IDy >-O, (LP3)

where the notation conv(E) is used to denote the convex hull of E. We call the pair of vectors

(x,y) afeasible solution for LP, if it satisfies the constraints of LP and we let Vxy - p-l(ax + by)

denote the objective value of such a feasible solution. The problem in LP is to select an optimal

policy for LP, i.e., select a feasible solution (x, y) for LP which minimizes the objective value,

namely, has Vxy = VLp. ®
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t,

The p'l's which appear in LP could, of course, be,deleted without altering the sets of
,

feasible and optimal solutions. We include the p"l's for subsequent notational convenience.

Lemma 3.4.

Let _ = (x(.), y(.)) be a policy for RRDP. Then

x - Pro°*e'PXx0;)dx and y - P_0**eP_Y(1;)dx

is a feasible solution to LP. Further, Vn = Vxv > VLp.

Proof.

From (DP1) and (DP2) the policy (x(.), y(o)) are bounded, hence, x and y are well

Io"defined and finite. Next observe that p e'Prd_ = 1, hence, (DP1), (DP2) and (DP3C)

imply that x and y satisfy (LP1)- (LP3). Further,

OO

Vn - 50 e-OX[ax(x)+ by(x)]dx = p-l(ax + by) = Vxy _-.VLp,

The last inequality following from the feasibility of (x,y) for LP. ®

Lemma 3.5

If RRDP is feasible, then LP is feasible. Further the optimal objective value of RRDP is not

less than that of LP, i.e., VRRDP > VLp. ®

Proof.

It follows directly from Lemma 3.4 that if RRDP is feasible, then LP is feasible. Also, as

the inequality Vn > VLp was established in Lemma 3.4 for _ach policy _ of LRDP, we

conclude that VRRDP > VLp. ®

Corollary 3.6.

If a policy _ for RRDP satisfies Vn = VLp, then _ is an optimal policy for RRDP.®
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Buy.Sell Example for LP

We continue to use the data from the Buy-Sell Example for RDP. Let x =(x 1, x2)T and y

= (Y1' Y2)T be the decision variables, The linear program LP is then given by'

LP: VLp - minimum(x,y ) 5[(0, O)x + (1, -2)y]

subject to' x > 0, (1, 1)x = 1 (LP1)

0 < y < x, and (LP2)
J

5(1,-1)y _>O. (LP3)

The optimal solution of this linear program is given by x I = x2 = Y1 = Y2= 2-1 and

VLp -2.5. ®

Call a policy _ = (x(.), y(.)) stationary if x(t) and y(t) are invariant with time t.

Generally we do not expect RRDP to have a stationary optimal policy, but to clarify the point of

our main effr rt in the next section, let us spend a moment on this issue. Consider the following

discrete program lP.

Definition of IP:

In IP the search is over vectors x in Rk and y in Ra . IP is the following discrete

program:

IP: Vip = minimum(x,y ) p-l(ax + by)

subject to: x _ E (IP1)

0 < y < Cx, and (LP2)

5p-lDy > O, (LP3)
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We call the pair of vectors (x,y) a feasible solution for IP if it satisfies the constraints of IP and

we let Vxy ----p-l(ax + by) denote the objective value of such a feasible solution. The problem in

lP is to select an optimal solution for LP, i.e., select a feasible solution (x, y) for IP which

minimizes the objective value, namely, has Vxy = VII,. ®

It can easily be verified that n = (x(.), y(.)) is a stationary policy for RRDP, if and only if

_(t) = (x, y) for al! t ¢:.R+ and (x; y) is feasible for lP, in which case Vn = Vxy _ see Lemma

3.4. Indeed, the best stationary policy is obtained by solving lP for an optimal solution (x, y)

with objective value Vip and forming a policy n = (x(.), y(.)) with (x(t), y(t)) = (x, y) for ali t

R+. Such a policy will have Vn rip. We observe that lP need not be feasible wher_ LP is,

and even when both lP andLP are feasible it is typical that VIp exceeds VLp. We will construct a

single policy n for both RRDP and RDP with objective value Vn = VLp, and this policy will

typically be better than the best stationary policy, that is, Vn < Vip.

Buy.Sell Example for IP:

We continue to use the data and notation from the Buy-Sell Example for RDP and LP. The

discrete program lP is then given by:

lP: VIp = minirnum(x,y ) .5[(0,0)x + (1,-2)y]

1 0

Subject to'x_ E={(), ( )} (IP1)
0 1

0 < y < x, and (LP2)

5(1,-1)y > 0.

(LP3)

The optimal solution of' this discrete program is given by x = (1,0) y or x = (0, I) T and y =

(0,0). Further, 0 = Vip > VLp=-2.5. ®
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4. Solving the Relaxed Dynamic Programs

We have seen in [,emma 3.4 that policies for RRDP result in feasible solution of LP. In the

current section we use feasible solutions of LP to construct policies for RRDP which are also

feasible for RDP. In particular, if we apply the construction to an optimal solution of LP we will

conclude, from Corollaries 3.3 and 3.6 that the resulting policy is optimal for RRDP and RDP.

The following lemma is used in our construction of policies from feasible Solutions of LP.

Lemma 4.1.

Let a, b l, bq be nonnegative vectors in Rm with

q bra <Z__I .

Then, there exist vectors a l, ..., aq in Rm with 0 < ar < br for r 1, ..., q and

' _r=_lq ar = a.

Proof.

The required vectors al, ..,, aq in Rna are selected recursively by

_j r-1aJi} r = 1 ..., q and i= 1, mari = min {bri, ai - =1 , , ..... ,

see the proof and the discussion in Appendix A of Eaves an Rothblum [1988] .®

Given the data and a feasible solution (x,y) for LP, policy construction defined below,

generates a A-stationary policy _ for RRDP and RDP with objective value Vxy.

Policy Construction.

Let (x, y) be a feasible solution of LP. As x is in the convex hull of E, there is a
L

positive integer q, vectors x 1, ..., xq in E and positive scalars _,1, .... _,q with Y',i=lq _i = 1

and
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x = _t=l q _ixi . (4.1)

As 0 _ y < Dx -- ___i=lq 2qDxi and Dx i > 0, Lemma 4.1 shows the existence of vectors yl, ...,

yq in Rn with

q
0 < yi < Dx i for i = 1, ..., q, and y = _i--.l _'iYi. (4.2)

Next, using the function T defined in the Appendix, apply Lemma A.1 to obtain the nested
i .

intervals

[0,A] = Iq D Iq.l D ... D I1 D I0 = O,

where Ii - (ti, t i + AiA], Ai = Ej_l i _j and ti = AT(pA, Ai) for i = 0, ..., q.

For t e R+ define the "A-remainder" function r:R+ _ (0, A] by

r(t) - minimize t + sA

subject to: t + sA > 0.

seZ.

Define the function _ = (x(.), y(.)) from R+ into Rk× Rn by

n(t) = (xi, yi) if r(t) _ Ii \Ii. 1 , (4.3)

where i e {1, ..... q}. See Figure 1. ®

r
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lq.1 _

I2

I 1

Ol ' .......I ,,o*, I I _--'1-'-- I ' ooo-I,, ' Z_

(xl,y1)
L

(x2,y2)

(xq,yq)

Figure 1

We proceed to show that the object n generated by policy construction from a feasible

solution (x, y) of LP is a policy.

Lemma 4.2.

The object n generated by policy construction from a feasible solution (x, y) of LP is a

A-stationary policy satisfying (DP1) and (DP2),

Proof.

As the intervals I l, ..., Iq are nested and Iq = (0, A], for each t _ R+ we have that

there exists aunique i _ {1, ..., q} for which r(t) _ Ii\Ii. 1 . Hence, "tc_is, in fact, a well

defined function from R+ into into Rkx Rn . As the intervals I1, ,.., Iq are open on the left

and closed on the fight, n is left continuous. As r(t + A)= r(t) for ali tc R+, we conclude that
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n is A-stationary. As each xie E, we have that x(t)e E for ali te R+. Finally, as 0 _ yi ._

Dx i , we have that 0 < y(t) < Dx(t) for ali te R+. ®

Lemma 4.3.

The policy n = (x(.), y(.)) generated by policy construction from the feasible solution

(x, y) of LP has the following properties:

.ftt+ax(1;)d't:= Ax for ali te R+, (4.4)

j'tt+ay('t;)dx = Ay for ali te R+, (4.5)

'A A(s+l)s e'PXx(_)dz = P"le'pAs(l" e'PA)x for ali se Z+, (4.6)

_A A(s+ l)
s e'PXY(_)dl:= P"Ie'pAs(I"e'PA)Yforallse Z+, (4.7)

J'o**e'PXx(1;)dl;= P"Ix, (4,8)

50**e'PXY(x)d'c = p-ly, (4.9)

f A(,+I)e.PXDy(a:)dx> 0 forallse Z+ (4.10)9

So*°e'PXDY(a;)di; > 0 and (4.11)

_o00e-PX[ax(x)+ by('c)]dl;= Vn Vxy_ VLp. (4.12)

Proof.

The definition of the intervals I0, ..., lq and Theorem A.2 imply that

J'IjXIj.1 ]d'_ = AjA- Aj.IA = ;LjA (4.13)

and
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PJljqj.l e'PXd'l;= (Aj- Aj.l)p.[ ? e-PXd'l;= _,j (1- e'pA). (4.14)

Using the changeof variable _ _ _ - t, it follows from (4.13), the A-stationarity of :x and

(4.1)- (4.3) that for all t e R+,

j-t+Ax(_)d'c= j'oa x(1;+ t)d'_= .[oAx(l:)dl; = Xj=Iq xJ(Iljklj.l ld'0 = Ej=,a2_jA×j= Ax

and ,_

t+ay(l:)dl; = l A a y(x)d'c Y']=lq ld'l;) = ]_j i q_,jAyj= AyJ', o y(l: + t)dx = J'o = yJ(Sljklj., = ,

establishing (4.4) and (4.5). Similarly, using the change of variable I: --,z - sA, it follows

from (4.14) and (4.1)- (4.2)that for ali seZ+,

_a,a('+') e'PXx(x)dl: = I? e'P(X+AS)x(_+ As)d_ = e-p_S_oae'PXx(l:)d1:

= e'P&S[_j=lqxJ(Iijkij.1e-PXd1:)]= p'le-pZks[_j=lqxJ_,j(1-e'PA)]

= p"le'pas(1 - e'PA)x,

establishing (4.6).Using acorresponding string of equalities with (4.2) replacing (4.1) we

similarly get that

IA a(s+ 1)s e'P_Y('0d_:= P"le'p_(1 - e-PZX)y,

establishing (4.7). We next conclude from (4.6) that

.o f a(s+l)J'o e'PXx(1:)d1:= Es=o**'a, e'PXx(l:)dl:= Y',=oP"le'pzxs(1- e'PA)x =

= p-l(1 - e-PA)-l(1 - e-PA)x = p-Ix,
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establishing (4.8), and similar arguments show that (4.9) follows from (4.7). Next note that

(LP3) implies that Dye0, hence, (4.10)and (4.11) follow directly from (4.7) and (4.9),

respectively. Finally, (4.12) follows from (4.8) and (4.9), as

Vn = So*"e'PX[ax(x) + by(x)]dx = p-l(ax + by) = Vxy >_VLp. ®

The major results of this paper are now captured in the following theorem. Indeed, it

shows one how to compute a policy which is simultaneously optimal for RRDP and RDP, further,

the objective value of the policy is computed.

Theorem 4.4.

Given a feasible solution (x, y) of LP, policy construction yields a A-stationary policy

for RRDP and RDP with objective value Vn = Vxy. Furthermore, if (x, y) is an optimal solution

of LP, then _ is an optimal policy for RRDP and RDP.

Proof.

By Lemma 4.2, we see that _ is a A-stationary policy satisfying (DP1) and (DP2) and

(4.11) of Lemma 4.3 shows that _ satisfies (DP3C). Thus, _ is a policy for RRDP. Also,

(4.5) of Lemma 4.3 and the fact that Dy _ 0 show that for ali r _ Z+,

SOArDy(x)d_ = DZ, o"l [la zx(_+l)y(1:)d1:]= rDAy > 0,

hence, (DP3A) is satisfied; further, (4.7) of Lemma 4.3 shows that for all r _ Z+

=D_E r.! .r A_+1) =Dr" r-ISotu e'PXDY(_)d_' _=o [JAs eP_Y(_)d_] L__-o lp'le'pas( 1 " e'pA)y]

= p-l(1 - e'Pt'r)Dy > 0,

hence, _ satisfies (DP3B). Thus, we see that rc is a policy for RDP as well. The fact that Vn =

Vxy follows directly from part (4.12) of Lemma 4.3.
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If (x, y) is an optimal solution of LP, then Vn = Vxy = VLp, and Corollary 3.6

immediately implies that n is optimal for RRDP. Similarly, Corollary 3.3 further implies that

is optimal for RDP. ®

Theorem 4.4 shows that an optimal policy to RRDP and RDP can be computed by apply ng

policy construction to any optimal solution of LP. In particular, it follows that the optimal objective

value of RDP, RRDP and LP coincide. As VLp and VRRDP are independent of A, we conclude

that so is VRD P . These results are summarized in the next three corollaries.

Corollary 4.5.

One obtains an optimal policy 7I for RRDP and RDP by computing an optimal solution

(x, y) for LP and then applying policy construction to (x, y). ®

Corollary 4.6.

VRDP = VRRDP= VLp. ®

We note that as LP is a linear program, its objective value can be easily computed. Thus,

Corollary 4.6 establishes a method for computing VRDP and VRRDP.

Corollary 4.7.

The optimal objective function of RDP is invariant with A. ®

The last corollary is counter-intuitive (upon fh'st sight), but, it is explained by the absence

of setups and inventory costs in RDP. Although the optimal objective of RDP is independent of

A., the optimal solution of RDP computed by policy construction from a given optimal solution of

LP is dependent on A.

On another matter, if we replace A and p by A' and p', respectively, where pA =

p'A' notice that the intervals I'0, I' ...,, 1, ..., I'q, are the intervals I0, I 1, lq scaled by A/A',

see the discusion in Section 5.
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As RDP is a relaxation of DP we see that VLp is a lower bound for the optimal objective

value of DP, that is, VDp > VLp. We do not know how to construct a feasible policy for DP,

however, for any positive e, one can generate apolicy n satisfying (DP1) and (DP2) and
, ,

almost satisfying (DP3), that is,

_0tDy(x)d_; > -eu for ali t e R+

where u = (1 .... 1)T e Rn . Furthermore' Vn < VDp. Thispolicy almost satisfies the

constraints of DP and has objective value which cannot be improved upon by a policy for DP. To

obtain such a policy first select A so that ADy >_-eu for ali y satisfying 0 < y < Cx for ali x

E. Then apply policy construction to an optimal solution(x, y) of LP to get the policy _. The

trouble is that as e tends to zero, so does A, and the desired policy stutters, that '.sjumps around

from one pair (x, y) to another faster and faster as A tends to zero. Ali this leads one to suspect

that DP, in interesting cases, will not have an optimal policy. Once again the culprit is the absence

of setups and inventory costs.

In policy construction the pairs (x l, yl), ..., (xq, yq) can be ordered arbitrarily, and each

order generates a different optimal policy. In fact, the order could be of considerable consequence,

for example, in reducing stockouts. The multitude of optimal policies is largely explained by the

absence of inventory costs in RDP. See other discussion of this matter in Eaves and Rothblum

[1988].

Buy-Sell Example for RRDP and RDP, the Solution"

We continue to use the data and notatioa of the Buy-Sell Example for RDP and LP. The

optimal solution of LP has × = (x 1, x2) = (2-I, 2-1), y = (Yl, Y2) = (21, 21) and VLp = -2.5.

Using policy construction we represent x by x = 2-1(1, 0)T + 2-1(0, 1)T , thus, q = 2,

_1 =2"1, _,2= 2"1 , xI = (1, 0)T and x2 = (0, 1)T , see Figure 2. Further, we compute yl =

(1, 0)T , y2 = (0, 1)T and AT(pA,_,I) = T(5-1, 21) = .243... Thus, 11 = [.243.., .743.. ]



and 12 = [0, 1]. We can now define an optimal policy n = (x(.)i y(.)) in the following way: for

s _ Z+, set

(x(t), y(t)) = ((1, 0)T , (1, 0)T) for s + .243.. < t _ s + .743..

and

(x(t), y(t)) = ((0, 1)T, (0, 1)T) for s < t_<s +.243.. and s + .743.. < t < s + 1 .

12

I1

! I ¸ I |

0 A

(xlyl)

(x2y 2)

Figure 2

We observe that we could just as well have interchanged the selection of xl and x2 , that

is ordered the extreme points of E differently, in which case we would arrive at the alternative

optimal solution n'= (x'(.), y'(.) defined in the following way: for s _ Z., set

(x'(t), y'(t)) = ((0, 1)T , (0, 1)T) for s + ,243.. < t -<s + .743, and

and

(x'(t), y'(t)) - ((1, 0)T , (1, 0)T) for s < t < s + .243.. and s + .743.. < t -<s + 1.®



Buy.Sell Example for RFMOS, the Solution:

The above solution of RRDP and RDP for the Buy-Sell Example generates two optimal

policies _ and rc'. These solutions represent the sequence of activities "sell, buy, sell" and "buy,

sell, buy!', respectively, over shifts of the unit interval with breakpoints 0, .243.., .743.., 1. The

maximum short positions of inventories are different for the two policies and equal ,243.. for

and .256 for g'. The common objective value of these policies is -2.5. ®
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5. Sensitivity with the Interest Rate

In this section we investigate sensitivity of DP, RDP and RRDP on the interest rate and the

period length. In particular, we obtain expressions for the dependence of policies and their

objective values on the interest rate. We shall use suffixies "(p)" and "(p, A)" to indicate

dependence on the interest rate p and the period length A, e.g., we refer to DP(p),

RDP(p,A), RRDP(p)and V(p) n.

For a given policy x = (x(.), y(.)) and o_> 0, define the time scaled policy xo_=

(xo_(.),yo_(.)) by xo_(t) = x(o_t) and yo_(t)= y(o;t) for all t _ R+. Tl-ienext lemma follows by

simple change of variables in the corresponding integrals.

Lemma 5.1..

Let p, A and tz be positive numbers. Then:

a) a policy x is feasible for DP(p), if and only if xcx is feasible for DP(o_O),

b) a policy x is feasible for RDP(p,A), if and only if x o_ is feasible for

RDP(txp,tx- lA),

c) a policy n is feasible for RRDP(p), if and only if xo_ is feasible for RRDP(txp),

and

d) for every policy x, V(9) n = otV(o_P)nct . ®

Corollary 5.2.

Let p, A and o_ be positive numbers. Then a policy x is optimal for DP(9),

RDP(p,A) and RRDP(p) if and only if xcz is optimal for DP(o_p), RDP(o_p,cz-IA) and

RRDP(ap), respectively. ®

Select (p,A) and (p',A') with pA = p'A'. If policy construction generates the policy

for (p,A), then policy construction can be used to generate x(A'/A) for (p', A'), see

Section 4. Tile above corollary shows that such time scaling is useful whether or not the policy is

generated by policy construction.



Suppose we wanted to change the time scale and convert from one time unit to another,

e.g., from monthsto years, where 0 time units in the old system becomes 1 unit in the new

system. Then the numerical value of the data is modified as follows: p ¢-- 0p, a _-- Oa, b _ b,
i

C _-- 0C and D<-- D. We note that if n= (x(.), y(.)) is an optimal policy for the old data, then

= (x(0.), 0y(0.)) is optimal for file new data.
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6. The Discounted Inventory Constraints

Our next task is to give the discounted inventory, constraintsan interpretation. On the one

hand, as the discounted inventory constraints are implied by the constraints of DP, they require no

justification. Onthe other hand, to help appreciate the severity, or lack thereof, of the relaxation in

moving from DP to RDP or RRDP we do want to understand the discounted inventory constraints.

However, let us not forget that the most dammaging aspectof the relaxation is that we lose

inventory costs in the objective.
•

To pursue this matter we focus on the single discounted inventory constraint at infinity as

in RRDP, rather than the periodic discounted inventory constraints as in RDP. Let us create a

parametric version RRDP(p) of RRDP by moving the discounted inventory consraints into the

objective with Lagrangian multiplier p e Rlxm. We shall interpret the multipliers as prices.

Definition of RRDP(p)"

RRDP(p) is the following parametric dynamic program where the search takes piace over

policies n = (x(.), y(.)) '

o0

RRDP(p) ' VRRDr,(P) -infimumn = (x(.),y(.))_0 e'PX[ax(x) + by('_)]dz - P_o e-_Dy(x)]dx

subject to: x(t)e E for ali te R+ (DP1)

0 < y(t) < Cx(t) for ali t e R+ (DP2)

Define n = (x(.), y(.)) to be a policy for RRDP(p), if it isa policy satisfying the constraints of
o0

RRDP(p) and let V_(p) - _o**e'PX[ax(x)+ by(x)]d1:- P_0 e'PXDY(X)]di; denote the objective value

of such a policy. The problem in RRDP(p) is to select an optimal policy for RRDP(p), i.e., select a

policy rc for RRDP(p) which infimizes the objective value, namely, has Vn(p) = VRRDP(p). ®

Define Y(t) ---_o y(x)d_ and observe that DY(t) is the inventory on hand at time t.

Using integration by parts, we may rewrite the objectS,re function of RRDP(p) as
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0

Vn(P)=-[0 e-PX[ax(x)+ by('_)ldl;- I0 e'lX[ppDY('_)ld'_ '

At time t, the inventory levels are DY(t) and at prices given by the coordinates of p the dollar

value of the inventory is pDY(t). Now, imagine a market for in-process goods which pays an

interest rate P for the dollar value of in-process goods on deposit and charges an interest rate of P

for each dollar value of in-process goods on loan. The payment rate at time t to the market is

ppDY(t). The task of RRDP(p)is then to minimize discounted assignment costs plus discounted

activity costs plus discounted interest payments to the market of in-process goods (minus

corresponding revenues therefrom). We will show that there are prices p such that if a policy is
,,

optimal for RRDP then it is optimal for RRDP(p).

As the linear program LP assisted in our analysis of RRDP we now introduce the

parametric linear program LP(p) to assist us in our analysis of RRDP(p). As we created RRDP(p)

from RRDP, we create LP(p) from LP. Specifically, LP(p) is formed from LP by moving the

constraints p-lDy > 0 into the objective via the use of prices given bythe coordinates of p.

Definition of LP(p):

The decision variables of LP(p) are vectors x in Rkand y in Ria. LP(p) is the

following linear program:

LP(p)' VEp(p) - minimum(x,y )p'l(ax + by)- p-lpDy

subject to: x e conv(E) (LP1)

0 .<_y < Cx. (LP2)

We call the pair of vectors (x,y) a feasible solution for LP(p), if it satisfies the constraints of

LP(p) and we let Vxy(p) = p-l(ax + by)- p-lpDy denote the objective value of such a feasible

solution. The problem in LP(p) is to select an optimal policy for LP(p), i.e., select a feasible

solution (x, y) for LP(p) which minimizes the objective valuel namely, has Vxy(p) = VEp(P). ®
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The relationship between RRDP(p) and LP(p) is essentially as that of RRDP and LP, as the

following three lemmas show,

Lemma 6.1.

Let _ = (x(,), y(.)) be a policy for RRDP(p), Then

o_ oo

x - P_0 e'P_x(x)dx and y -=P.[0 e'PXY(X)dl;

oo

is a feasible solution to LP(p), Further, Vn(p) = Vxy(P) > VLp(p) and P.[0 e'PZDY(x) = P"lpDy '

Proof.

Modify the proof of Lemma 3.4 in the obviousmanner. ®

Lemma 6.2.

Given a feasible solution (x, y) for LP(p), policy construction yields apolicy of RRDP(p)
oo

with Vr_(p)= Vxy(P) and _0 e'PXDY(X)= 9"IpDy •

Proof.

Modify the proof of Lemma 4.2 in the obvious manner. ®

Lemma 6.3.

VRRDP(p) = VLp(p).

Proof.

Lemma 6.1 shows that VRRDP(p)> VLp(p) and Lemma 6.2 assures that Vp,RDP(p)_K

VLp(p) ®

The relationship between LP and LP(p) is given in the next lemma.

Lemma 6.4_

The following three statements areequivalent:

a) (x, y) is an optimal solution for LP and p is part of an optimal solution for the dual of

LP corresponding to the constraints p-lDy _ 0
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b) (x, y) is a feasible solution for LP, (x, y) is an optimal solution for LP(p), p > 0 and

pDy = 0.

c) (x, y) is a feasible solution for LP(p), p > 0 and

Vxy(P') < Vxy(P) < Vx,y,(p) (6.1)

for 'ali feasible solutions (x', y') for LP(p) and for all p' > 0.

Further, if (a), (b) or (c) hold, then VLp = VLp(p).

Proof,

The lemma is a special case of Theorem B. 1 of Appendix B. ®

Buy Sell Example for LP(p).

We continue to use the data from the Buy-Sell Example for RDP. Let x = (Xl, x2) T and y

= (Y1, Y2)T be the decision variables. The parametric linear program LP(p) is then given by:

LP(p): VLp(p ) _ minimum(x,y ) 5[(0, 0)x + (1,-2)y] - p5(1,-1)y

subject to: x > 0, (1, 1)x = 1 (LP1)

0 < y < x, and (LP2)

The optimal dual variables p of the constraints 5(1, -1)y > 0 of LP are p = 1.5 and, indeed, the

optimal solution of LP, namely, x1 = x2 -- Yl - Y2= 2"1 is also optimal for LP(1.5). The optimal

objectives of LP and LP(1.5) are equal, indeed, VLp= VEp(1.5)=-2.5. ®

We have seen in Sections 3 and 4 that RRDP andLP are closely related, namely, given a

policy for RRDP we can obtain a feasible solution of LP, and vice versa, with coinciding objective

values; VRRDP= VLp. Similarly, we have seen in the current section that RRDP(p) and LP(p)

are closely related, namely, given a policy for RRDP(p)we can obtain a feasible solution of LP(p),

and vice versa, with coinciding objective values; VRRDp(p)= VLp(p) . We next relate RRDP and

RRDP(p) through LP and LP(p) using the previous lemma.
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Theorem 6.5.

The following four statements are equivalent:

a) rc is an optimal policy for RRDP and p is part of an optimal solution of the dual of LP

corresponding to the constraints 9"lDy >0.

b) _ = (x(.), y(.)) is a policy for RRDP, rc is an optimal policy for RRDP(p), p > 0 and

l-po e'p'CDy(x) = 0.

c) rc is a policy for RRDP(p), p > 0 and

Vn(p') <,V_(p) < Vn,(p) (6,2)

for all policies Tr' for RRDP(p) and for all p'> 0.

d) _ is a policy for RRDP(p), p > 0 and

supremunp, infimurn_, Vn'(P') = Vn(P) = infimurn_, supremump, Vn,(p')

where the suprema are taken over the set of policies of RRDP(p) and the infima are taken over the

set of p'>0.

Further, if(a), (b), (c) or (d) hold, then VRRDP = VRRDp(p).

Proof.

fo lo"Let _z= (x(.), y(.)) be a policy and define x -- p "e-PXx(_)d'c and y - p e-P_y(x)dx.

'Re proof of the equivalence of (a)- (c) proceeds via a reduction to Lcmma 6.4.

(a) =_ (b): Assume that (a) holds. As _ is an optimal policy for RRDP, Corollary 4.6

and Lcmma 3.4 show that VLp = VRRDp = Vn= V×y ; hence, (x, y) is optimal for LP. Thus, (a)

here implies (a) of Lcmma 6.5, and we conclude from that lemma that (×, y) is a feasible

solution for LP, (×, y) is an optimal solution for LP(p), p > 0 and pDy =0. In particular,

j'o_e-PXDy('c)dx= p'lDy > 0 assuring that _ as a policy for RRDP, p > 0 and pj'o0_e-PXDy0;)dx

= pDy = 0. Thus, it remains to show that _ is an optimal policy for RRDP(p). Observing that

Vn = Vxy we get from pDy = 0, the optimality of (x, y) for LP(p) and Lemma 6.3 that, indeed,
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Vn = Vxy = Vxy- pp'lDy = Vxy(p) = VLp(p) = VRRDp(p).

(b) =_ (c): Assume that (b) holds. Then the right inequalities of (6.2) follows from the
oo

optimality of _ for RRDP(p). Further, as _ is a policy for RRDP, the term P'_o e'PXDY(_)dl; is

nonnegative for ali p' >0. As our assumption asserts that this term is zero for p' = p, we get the

left inequalities of (6.2).

(c) =:1,(a): Assume that (c) holds. Lemmas 6.2 shows that each feasible solution (x', y')

of LP(p) can be used to construct a policy _:' for RRDP(p) with Vx,y,(p) = Vn,(p). As Vxy(P) =

Vn(p), theright inequalities of (6.2) imply the right inequalities of (6.1). Further, the right

inequalities of (6.2) show that for every p'> 0

p'Ip'Dy = P'_o" e-P_Dy(1;)dl;>_p_o_ e'PXDy(x)d'c = p-lpDy,

implying the left inequalities of (6.1). Hence, part (c) of Lemma 6.4 holds and that lemma

implies that (x, y) is an optimal solution for LP and p is part of an optimal solution for the dual

of LP corresponding to the constraints p'lDy > 0 In particular, Vn = Vxy = VLp and Corollary

3.6 implies that _ is optimal for RRDP.

(c) ¢:_(d): This equivalence is a standard characterization of saddle points of arbitrary

bivariate functions.

Finally, assume that (a) holds. Then Vn = VRRDP. As the proof of the implication (a)

(b) shows that Vn = VRRDp(P) we have that VRRDP= VRRDP(P). ®

Buy Sell Example for RRDP(p).

We continue to use the data from the Buy-Sell Example for RDP. We have seen that p =

1.5 is the optimal dual variables of LP corresponding to the constraints p-lDy > 0. Thus,

optimal policies for the Buy-Sell Example for RRDP and RDP, e.g., those computed in Section 4,

are optimal for RRDP(1.5) with the same optimal objective value, namely, -2.5. ®

From (d) of Theorem 6.5 we see that the prices for which RRDP(p) and RRDP have a

common optimal solution are as unfavorable the manufacturer could face. Thus one could think of
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the discounted inventory constraint as one which discourages the manufacturer from arbitraging in

the in-process goods market.
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7. Remarks and Extensions

An understanding of the dynamic program DP is outside our present reach. For the very

simple case of the Buy-Sell Example of DP, we show that there is no optimal policy, but that

stuttering policies can be e-optimal. Although this is a very special case of DP, it is not

pathological, and we hasten to speculate that it is quite representative or indicative of the typical

nature of DP.

Buy-Sell Example of DP, an Analysis:

We continue to use the data and notation for polices of the Buy-Sel ! Example for DP.

Lemma 2.3, Corollary 4.6 and the solution of RDP and RRDP for the Buy-Sell Example show that

VDp > VRD P = WLp = 2.5. We next demonstrate that this lower bound on VDp is not attainable

by policies of DP.

Assume that for a policy n = (x(.), y(.)), Vn = -2.5. Then,

lo"-2.5 = Vn = e-X/5(1,-2)y(_)d_

= (2, -2).[0"e</Sy(x)dl: - .[o_ e-X/Syl0:)dx

= (1,-1).[o*_e-x/Sy(_:)dl:- So_ e-x/Sy2(_)d_.

Averaging, we get that

-2.5 = 1.5(11,-1)fo e Z/5y(x)d_- -[o e'X/5[0'5yl 0:) + 0"51y2(_)]dl:

= 1.5(1,- 1)So_ e-x/Sy(l:)dz - 0.5_o"°e-X/5(1_ 1)y(x)dl: (6.1)

Integrating by parts, we see that -[o**e_/SY(_)dx = 5"_o" eX/5[_o_y(c_)do]d_, and using (DP1)
c_, oo

..... = e-X/5dxand (DP2) toget(1 1)y('_)<(1 1)y('c)<l we also see that 50 eX/5(1 1)y(x)d_ .[o

= 5. Hence, we obtain from (6.1) that



-2,.5 > 0.3.[0 e-X/5[(1,-1).[ 0 y(_)dcy]dx- 2.5 (6.1)

From (DP3) [(1,-1).[0_ y(_)dt_] >0 for all x E R+ ' Hence, (6.1) implies that

[(1,-1)_y(o)do] 0 for ali x e R+, implying that yl(o)- y2(o) = (1,-1)y(t_) = 0 for all

_ R+. Further, from (DP1) and (DP2), 0 < Yl(t)y2(t) < Xl(t)x2(t) =0 for ali t _ R+. But

(1,-1)y(t)=0 and yl(t)y2(t)=0, imply that yl(t)=y2(t)-0. Hence, yl(t)=y2(t)=0 forall
,

t _ R+, implying that Vn = 0, a contradiction to the assertion that Vn= -2.5. Hence, we may

conclude that Vn> -2.5 for ali policies n for I)P.

We next show that there are policies for DP whose objective value gets arbitrarily close to

the unattainable bound -2.5. Let A be a positive number. Then, the "buy it then sell it" policy

_(A) = ((x(.), y(.)), defined by

Xl(t ) - 1 = x2(t) = yl(t) - 1 = y2(t) = 0 if sA.<_t < (s + 2"I)A _for some s _ Z+, and

x2(t) - 1 = xi(t) = y2(t) - 1 = yl(t) = 0 if (s+ 2-1)A __.t < (s + 1)A for some s e Z+

satisfies (DP1)- (DP3) and its objective value is easily computed and is given by

Vn(A) = -5(1 - 2e'A/10)(1 - eA/10)(1 - e-A/5)-I.

From L'Hopital's rule it next follows that

lim6o0 Vn(A) = -2.5.

Thus, for every positive e there exists a positive A for which Vn(A) < -2.5 + e. Combining this

fact with the earlier observation that 2.5 in an unattainable lower bound on VDp, we conclude that

VDp = -2.5 and that each policy of DP is dominated by a policy of the form _(A). ®

Buy-Sell Example of RDP without (DP3B):

If we drop the constraints (DP3B) from RDP for the Buy-Sell Example for RDP, the "sell

it then buy it" policy n = ((x(.), y(.)), defined by
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x2(t)- 1 = xl(t) = Y2(t)- 1 =Yl(t) =0 if s <t < s + 2"l for some s z Z+, and

xi(t)-I =x2(t)=yl(t)-l=y2(t)=0 if s+2-1<t<s+l forsome se Z+.
L

is optimal. This policy shorts inventory to the extent that is possible While covering the inventory

constraint at times s e Z+. The corresponding optimal objective is then given by V_

= 5(-2+e-1/10)(1-e-1/l°)(1 - e-l/5) "1 = -2.874... This id an improvement of about 10% over the

optimal objective value of RDP, however, the maximal shortage of inventories under this policy,

namely, -0.5, is about double that of the optimal policies of RDP that we constructed in Section

4. ®

In our definition of RDP we chose the period lengths to be equal. However, this special

choice was motivated by notational convenience and was entirely unnecessary as we can solve the

problem for any arbitrary sequence of period lengths. Further, the optimal objective value for the

more general pro01em remains unchanged. To clarify these remarks, let 0 = t(0) < t(1) < be

any increasing sequence of scalars tending to oo and let us define a modification RDPU of the

dynamic program RDP with period lengths t(s+l) - t(s) for s e Z. ; the "U" stands for

"unequal".

Definition of RDPU:

RDPU is the following dynamic program where the search takes piace over policies rc

=(x(.),y(.)) •

oo

RDPU: VRDPU--=-infimumrt=((x.),y(.))_o e'PX[ax(z) + by(a;)]d'c

subject to: x(t) e E for ali tz R+, (DP1)

0 _<y(t) _<Cx(t) for ali t e R+, (DP2)

_0'(s) Dy('c)dl: > 0 for ali se Z+, and (DP3AU)
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J'ot(_)e-PXDy('t;)d't:> 0 for ali se Z+. (DP3BU)

Define n = (x(,), y(.)) to be a policyJbr RDPU if it is a policy satisfying the constraints of RDPU

and let Vn - .[0=e-PX[ax('t;)+ by(z)]d'g denote the objective value of such a policy. The pr°blem in

RDPU is to select an optimal policy for RDPU, i.e., select a policy n for RDPU which infimizes

the objective value, namely, has Vn = VRDPU. (_)

To solve RDPU we first solve LP and compute an optimal solution (x, y), and then

obtain the _,1, ..., _-q, xi, ..., Xq, Yl, ..., Yq as in policy construction. Now, we define the

function _ = (x(.), y(.)) from R+ into Rk× Rn. For s = 0, 1, 2, ... execute the following: Let

A = t(s+ 1) - t(s) and construct the intervals

[0, AI = Iq D Iq.l D ... D I1 D I0 = CD,

as in policy construction, and fort e (t(s), t(s+)] let

rc(t) = (xi, yi) if t- t(s) z Ii\Ii. 1 ,

where i z {1, ..., q}. A modification of the analysis of Section 4 then shows that the policy

thus defined is optimal for RDPU and VRD P = VRRDP = VRDPU. To see this we observe that,

for example,

't t(s+l)x('t:)d¢ = [t(s+l)- t(s)] for ali sz Z+(s)

j. ,_+l)e.P,_x(x)d_ = p.l{e.pt(s ) _ e.p[t(s+l)}x for ali sz Z+t(s)

[ o_,o ePXx(x) d't;= P"Ix'
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The research of thispaper can be continued in a number of directions. An especially

interesting prospect is the study of DP itself in an attempt to identify e-0ptimal policies. One

approach is to solve the modification of DP where (DP1) is relaxed by the "convexified version

x(t) e conv(E) for ali t _ R+,

This modified version of DP is a "continuous time linear program", see Perold [1978] and

Anstreicher [1983]. Now, suppose a solution to this "continuous time linear program" is found.

One will then attempt to gain discreteness by some deconvexification scheme that will preserve the

inventory availability constraints (DP3) whLlegiving up on e objective value, see the analysis of

the Buy Sell Example earlier in this section.

We finally note that due to the close relationship between the dynamic programs and the

linear programs sensitivity analysis becomes available. Also, useful information can be obtained

from the dual of the linear program LP, see Section 6.
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Appendix A

The purpose of this appendix is to derive properties of the real valued function T(., .)

defined on R++ x R+ bY

0"lln[0(1-e-0) "1] for A =0 and 0 >0, and

T(0, A) = (A.1)

0"llnl(1 - e-0A)A-I(1 - e-0)-1] for 0 < A _<1 and 0 > 0,

where R++ - 10 _ R' 0 > 0}. The following lemma will be usefld.

Lemma A.1.

For every z > 0 we have ze-z + e-Z< 1 and z + e'Z> 1.

Proof.

For the first statement we have equality at z = 0, and the derivative of the term on the left

hand side of the inequality is negative. For the second statement we have equality at z = 0, and

the derivative of the terms on the left hand-side of the inequality is positive. ®

Theorem A.2.

The function T ' R++ × R+ --->R+ is continuous.

For positive scalars p, A and A, the value t = AT(pA, A) is the unique solution of

J'tt+AApe-PXdl:= AlpApe-PXdx. (A.2)

For every positive scalar 0, the function T(0, .) : E+ _ R+ has the following

properties:

a) T(0, A) is strictly decreasing in A e [0, 1],

b) T(0, A) + A is strictly increasing in A _ [0, 1],

c) T(0, 1)= 0 and T(0, 1)+ 1 = 1, and

d) T(0, A)>0 and T(0, A)+A< 1 for 0<A<I.
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Proof.

The function T is a composition of continuous functions on the set R++× R++

which assures that it is continuous. Next, the continuity of T(0, .) at A = 0 follows from

L'Hopital's Rule.

Let 0 = pA. By integrating the left and right hand-side of (A.2) we have that this equation

is equivalent to e-pt(l - e-0A)= A(1 oe'0). In particular, by taking natural logarithms, we see that

for positive A , (A.2) is equivalent to the assertion t = AT(0, A) = AT(pA, A).

For positive A, the derivative of T(0, A) with respect to A is given by

0-I[(1 - e-0A)-lOe-0A- A-1] = (0A)-I(1 - e-0A)-I[A0e"0A- (1 - e'0A)],

and the first inequality of Lemma A.1 with z = AO shows that this derivative is negative, hence

(a).

For positive A, the derivative of T(0, A) + A with respect to A is given by

(A0)-I(1 - e-0A)-l[A0e -0A- (I- e'0A)] + 1

= (A0)'I(1 - e-0A)-l[A0e -0h- (1 - e-0A)+ A0(1 - e-0A)]

= (A0)'I(1 - e'0h)'l[-(1 e "0A)+ AO]

and the second inequality of Lemma A.1 with z = AO shows that this derivative is positive; hence

(b).

Direct substitution of A = 1 into (A.1) shows that T(O, 1) =0, implying that T(O, 1) +1

= 1 ; hence (c).

The conclusions of (d) follows immediately from (b) and (c). ®

Remark.

To understand the function T, note that the area under the curve pe-Pt from AT(pA, A)

to AT(pA, A) + AA is A times the area under the curve from 0 to A, see Figure 3. That is,
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for a fixed positive p and A, the length of the interval of integration and the computed area are

both proportional to A.

A

area = A j'0pdPltlx

" I "-

o / I \ aAT(pA,A) AT(pA,A) + AA
length = AA

Figure 3
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Appendix B

• Theresults needed from linear programming for Lemma 6.4 are recorded here. Throughout

this appendix let the data be a _ Rm , b _ Rk , c _ R lxn , A _ R mxn and B E Rkxn , and let

the variables be x _ Rn , p _ RlXm, and q e Rlxk. We define a linear program LP andthree
, ,

Other closely related linearprograms DLP, LP(p) and DLP(p). DLP is the dual of LP. LP(p) is a

parametric version of LP attained by moving the constraints Ax > a into the objective. Finally,

DLP(p) is the dual of LP(p).

•LP: VLp - minimum x cx

subject to' Ax > a

Bx>b,

DLP: VDL P -_ maximump,q pa + qb

subject to: pA + qB = c

p>O, q>O,

LP(p): VLp(p) - minimum x cx- p(Ax- a)

subject to: Bx > b

and

DLP(p): VDLp(p) maximumq pa + qb

subject to: qB = c - pA

q>O,

AC',



Note that we have included the constant pa in the objective of both LP(p) and DLP(p). For x e

Rn and p e Rm define Vx(p) = cx- p(Ax- a), see the objective for LP(p).

Theorem B,I.

The following ihree statements are equivalent:

a) x is an optimal solution for LP and p is part of an optimal solution for DLP.

b) x is a feasible solution for LP, x is an optimal solution for LP(p), p >_0 and p(Ax -

a) =0.

c) x is a feasible solution for LP(p), p > 0 and

Vx(p') rx(p) Vx,(p) 03.1)

for all feasible solutions x' for LP(p) and all p'> 0,

Further, if (a), (b) or (c) hold, then VLp = VLp(p).

Proof.

(a) =_ (b)' Let x and (p, q) be optimal solutions for LP and DLP, respectively. In

particular pA + qB = c and, by strong duality, cx = pa + qb. It now follows from these facts

and the nonnegativity of q, that for every x' which is feasible for LP(p),

VLp -< C× = pa + qb _<da + qBx' = pa + (c- pA)x' = cx'- p(Ax' - a) = Vx,(p).

Hence, VLp < VLp(p). By complementary slackness, we have that p(Ax - a) 0 and, hence,

VLp = cx = cx- p(Ax- a) = Vx(P) > VLp(p).

Thus, VLp = Vx(p) = VLp(p), that is, x is an optimal solution to LP(p).

(b) =_ (c): Assume that (b) holds. As Vx(P) is the objective value of x for LP(p), the

fight inequalities of (B. 1) follow from the fact that x is optimal for LP(p). Also, as Ax > a,

we have that p'(Ax - a) > 0 = p(Ax- a) for ali p'> 0, and the left inequalities of (B.1) follow

as weil.
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(c) =_ (a): The left inequalities of (B.1) imply that p'(Ax- a) 2p(Ax- a) forall p'>0,

immediately implying that Ax > a. Thus, x is a feasible solution for LP. Further, by selecting p'

= 0 we have that 0 _ p(Ax- a), As p > 0 and Ax > a, p(Ax- a) > 0 and we conclude that

p(Ax - a) = 0. Now, for any feasible solution x' for LP we have p(Ax- a) = 0 < p(Ax' - a).

The right inequalities of (B.1) imply that cx - p(Ax- a) < cx'- p(Ax' - a). ,Combining these

inequalities, we get that cx < cx', establishing the optimality of x for LP. ®
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