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Abstract

Sheared rotation dynamics are widely believed to have significant influence on
experimentally-observed confinement transitions in advanced operating modes
in major tokamak experiments, such as the Tokamak Fusion Test Reactor
(TFTR) [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)], with
reversed magnetic shear regions in the plasma interior. The high-n toroidal
drift modes destabilized by the combined effects of ion temperature gradi-
ents and trapped particles in toroidal geometry can be strongly affected by
radially-sheared toroidal and poloidal plasma rotation. In previous work with
the FULL linear microinstability code, a simplified rotation model includ-
ing only toroidal rotation was employed, and results were obtained. Here, a
more complete rotation model, that includes contributions from toroidal and
poloidal rotation and the ion pressure gradient to the total radial electric field,
is used for a proper self-consistent treatment of this key problem. Relevant
advanced operating mode cases for TFTR are presented. In addition, the
complementary problem of the dynamics of fluctuation-driven E x B flow is

investigated by an integrated program of gyrokinetic simulation in annulus



geometry and gyrofluid simulation in flux tube geometry.
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I. INTRODUCTION

Sheared rotation dynamics are widely believed to have significant influence on
experimentally-observed confinement transitions in advanced operating modes in major toka-
mak experiments, such as the Tokamak Fusion Test Reactor’ (TFTR), with reversed mag-
netic shear regions in the plasma interior.? The high-n (toroidal mode number) toroidal drift
modes destabilized by the combined effects of ion temperature gradients and trapped parti-
cles in toroidal geometry can be strongly affected by radially-sheared toroidal and poloidal
plasma rotation. In previous work with the FULL linear microinstability code,®* a sim-

1 including only toroidal rotation was employed, and results”® were

plified rotation mode
obtained. However, a more complete rotation model,? that includes contributions from
toroidal rotation and poloidal rotation and the ion pressure gradient to the total radial
electric field, is needed for a proper self-consistent linear treatment of this key problem.
Specifically, this new model is capable of including effects of the E x B shearing frequency
in general geometry,'® written in terms of equilibrium quantities, and evaluated at the out-
board midplane, wg = 27|[(RBg)*/B]0/0V(E,/RBy)|, where ¥ is the poloidal flux and By
is measured via the Motional Stark Effect diagnostic,? and k, ~ ky has been assumed in
accordance with the results from measurements in TFTR! and simulations.!? > We include
wp on an equal basis with the other rotation model terms in the linear instability calcula-
tion. Both rotation models result in stabilizing or destabilizing drifts in addition to the usual
magnetic drifts. All of the rotation terms are now evaluated for a numerically-calculated
flux-coordinate MHD equilibrium with magnetic surfaces of arbitrary cross-sectional shape
and aspect ratio. Needed E x B levels for linear stabilization with this approach are com-
pared with corresponding levels from the heuristic stabilization criterion wg ~ =, where 7
is the linear growth rate without rotation effects, as observed in ion temperature gradient

1416 which has sometimes shown good correlations with experimen-

(ITG) mode simulations,
tal transitions. Relevant advanced operating mode cases for TFTR will be presented.

Many magnetic confinement experiments have indicated that E x B shear can suppress



turbulence and consequently lead to significant reduction of plasma transport.'”® It has
been also observed in gyrofluid simulations that the fluctuation driven E x B flow plays a
dominant role in the nonlinear saturation of I'TG turbulence (both with and without trapped-
electron dynamics®) which has been identified as a likely deterrent to efficient confinement in
tokamak plasmas. It is therefore of vital importance for nonlinear simulations to accurately
treat the dynamics of the fluctuation driven flow. This complementary nonlinear problem
is investigated in the present work by an integrated program of gyrokinetic simulation in
annulus geometry'? and gyrofluid simulation in flux tube geometry.

The new linear rotation model implemented in the FULL code is worked out in Sec. II,
and results for several TF'TR cases are presented and compared in Sec. III. In Sec. IV, results
from three dimensional global gyrokinetic simulations are used to investigate the validity
regimes of estimates of poloidal rotation damping and the residual level. Results for the
dynamics of turbulence-driven fluctuating E x B flows from nonlinear flux-tube gyrofluid

simulations are presented and discussed in Sec. V. Conclusions are given in Sec. VI.

II. LINEAR ROTATION MODEL

We will implement a linearized version of the rotation model described in Ref. 9, and
solve the corresponding gyrokinetic equation by an extension of the method described in
Ref. 3. While it was shown in Refs. 20 and 21 that the ballooning representation®? breaks
down for substantial values of the Mach number, it was also shown in Refs. 20 and 23 that
this representation is still usable for small values of the Mach number, and we will thus con-
tinue to employ it here. One-dimensional (ballooning representation) and two-dimensional
calculations for toroidal drift modes have been compared for the older rotation model of
Refs. 5 and 6 in Ref. 8, and a way of modeling one of the missing two-dimensional effects
in the one-dimensional calculation was found there. This was the effect of ‘eigenfunction
shearing,” in which the individual eddies in the two-dimensional eigenfunction twist as the

Mach number increases, and the value of k, at § = 0 increases. By making the ballooning



parameter®® , (which enters the ballooning representation expression for k) an explicit,
fitted function of the local Mach number, reasonable quantitative agreement was obtained
for the growth rates between the one-dimensional and two-dimensional calculations. This
procedure is not carried out for the new rotation model presented in this section, but in
principal it could be.

We employ the PEST-I flux coordinate system described in more detail in Ref. 3, in which
( is the toroidal angle, 6 is a poloidal angle variable, and %) is a radial coordinate related to
the poloidal flux W by d¥ = 27 ByF(¢)dv, and v = (Ry/27) [ d*x/R* and also the functions
F(), g(), q(¢), and p(vp) are calculated as part of the MHD equilibrium solution. The
toroidal major radius is denoted as R, the toroidal major radius at the magnetic axis is Ky,
the magnetic field strength at the magnetic axis is By, and the Jacobian is J = vR?/27 R,.
Also, the collision operator discussed in Refs. 4 and 24 is used. The gyrocenter velocity is
given by Eq. (15) of Ref. 9, but for the unperturbed orbit, to lowest order in p;/L, where
p; = (2T;/m;) %/ (e;By/mjc) is the gyroradius for species j and L is an equilibrium radial

length scale, it becomes

dR 1
% = UHb +ug + eJ—BbX[/,LVB + m]'(UHb + uE) . V(Unb + uE)] (1)

Here, b = B/B, ugy = bxV®/B, and we will neglect any poloidal angle dependence of
the equilibrium electrostatic potential ® to this order, for the reasons given in Ref. 9, so
that ® depends only on . Note that in Eq. (1) there are both linear terms and quadratic
terms with respect to ug, and that some of the terms are proportional to Vug, and thus
involve ®” (and therefore E!). In the Maxwellian equilibrium distribution function FJ},
we include a parallel shift by u¢; (also referred to as V), so that F; o exp(—F/T;) and
VinFj = Vinn[l + ni(E/T; = 3/2)] + (m;/Ti)(v) — ug)Vug; — (p/T5)V B, where E =
(m;/2)(v) — u¢;)® + pB. Then, after some algebra, the linearized gyrokinetic equation can

be written in the ballooning representation in the form
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in standard notation. Here, the hat(") indicates that a quantity has been decomposed in the
ballooning representation; o = sign(vy)), hoj = foi + ¢;0(0)Fj/T;, fi is the perturbed distri-
bution function, the operator k = —1V is to be evaluated in the ballooning representation
in the PEST-I flux coordinates, r,c; = —(dInu¢;/dr)™", Jo = Jo(kivy /Q;) = Jo(), and the
rest of the notation is standard. Equation (2) is written in the electrostatic limit, but the
generalization to the electromagnetic case is straightforward, as shown in Refs. 3 and 4.
On both sides of Eq. (2), the quantity k - ug appears. With the ballooning rep-
resentation in our coordinate system, this becomes k - up = —n®’(¢)/BoF (), which
can be Taylor expanded about (), the orbit time-average value of 1, as k - up ~
(—=n/Bo)[®' (v )/ F (@) + (¢ — ) (" /F — ' F'[F*) |y ). The first term in the Taylor
series is the usual Doppler shift term, and the second term [ (9/0W) (E,./RBjy)| contains
the E x B shearing frequency, wg. Thus, wg enters the linear calculation through this
term in Eq. (2), and will therefore appear in the final mode equation. The constancy of
the toroidal canonical angular momentum can be used to obtain a computationally useful
relation for evaluating this second term, which is ¥ — (©) ~ (m;jc/BoyFe; )[Ry — (Ruy) ).
The additional rotational terms on the left hand side of Eq. (2), other than the Doppler
shift term, can be combined with the magnetic gradient and curvature drift terms to give
an extended drift frequency. After considerable algebra, it can be evaluated in the PEST-I

flux coordinates as:

2ancl’: | . ) 2 By dj 1
Wd](e) = — ‘. J [(Uz + Uﬁ)[/{l + (0 — 00)/{2] — 47[_}3?2 % + U—JZ[KL:), + (0 — 00)/434]
oy 0_0 _ nmje (@7 O _ (0)
B+ 0=ty - i (G- Bty = (Rl
where v; = (275 /m;)V2, 6 = v /v, O = vy /v;, 01 = vi v}, Gicj = uej/vj, and the six £'s can

be expressed in terms of the PEST-I equilibrium and mapping metric quantities, as follows:
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and

0 2 F' 2 0 R 2 299
VP = =T = 00— i (o + A ). (1)

We define a scaled Jacobian J = J | BoF such that b-V = (1/Bj)(8/80), acting only

on q%(@), so that our linearized gyrokinetic equation (2) becomes

g) 0 - , , : . .
%69 oj — tw + w1 + vy — wei(0)]he;(0) = —z{w + wi + ows(0) + tue;b -V —wy;
E 3 nj A A ] 7
<[rem (£ - 3) +2r it - o] 2 Bd0100), (12)

where w; = n®'/ByF is the Doppler shift frequency and wy(0) = (nmjc/BgFe;) ("] F —

' F'|F?)|Rvj — (Rvy)®| o wg. Note that wy; as given by Eq. (3) contains both even terms
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and odd terms in ¢ = sign(v)), unlike the usual magnetic drift frequency, which contains
only even terms; we separate wg; into even and odd parts, wy = wy + owy. Then, we
can solve Eq. (12) for itgj by a straightforward extension of the method of Ref. 3. The
solution for circulating particles is the same as that in Ref. 3 with the substitution of
{wtwitows(0)+iugb NV —w. i [L40;(E/T;=3/2)42(ru; [1ruc; )igi ()= tg;)]} for (w—w]}). The
trapped-particle solution is the same as that in Ref. 3, with the corresponding substitution,

and with additional terms due to wflj:
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where I = (w + vy — wsj(o))/wb, e = —wfl](o)/wb, wy(h) = —f;l do" [wy;(0") —
Wl NBI [oy(0")], wg(0) = — [ do” [w3(0”") — 3 VIBT [|oy(0”)], Uh, is the same as W2

with an extra factor of wy(f)/wy in the integrand, and the rest of the notation is the same
as in Ref. 4. Employing the results for itgj(ﬁ) in the quasineutrality condition gives us the
eigenmode integral equation. The perturbed electrostatic potential qAb(G) is then expanded in
terms of chosen basis functions (Hermite functions) so that the integral equation is converted
into a matrix equation, which is solved by standard methods. The solution procedure, and

the electromagnetic generalization, are described in detail in Refs. 3 and 4.

I1I. LINEAR ROTATION RESULTS

To investigate the effects of rotation, we start with a case that was investigated in Ref. 8
using the old “Vy” rotation model of Refs. 5 and 6, and recalculate the linear growth rates v
and the real frequencies w, using our new “F,” rotation model as described in the previous
section. This is a case with experimentally-derived density and temperature profiles and a
numerically-calculated MHD equilibrium for the TFTR “enhanced reversed shear” (ERS)
discharge 84011, at ¢t = 2.70 s, just before the ERS confinement transition time. We do the
calculation for the electrostatic toroidal drift mode, including a carbon impurity species and
a hot beam species with a slowing-down equilibrium distribution function. For this case we
will use the E, profile obtained from E, = VyBy — V3 By + (1/ecnc)dpe/dr, with all the
quantities on the right hand side being experimentally determined, except that for V; we
use V;**°, the neoclassical estimate?®® for V;. We define the local Mach number M = |vg]|/v;,
and we will vary M artificially by multiplying the entire ® profile by a constant, and we will

multiply the V} profile by the same constant.



Results for v and w, versus M for r/a = 0.2 for this TFTR ERS case with n = 21,
kgp; = 0.88, and ballooning parameter?? fy = 0 are shown in Figs. la and 1b, respectively.
Curve (i) shows the effect of this artificial variation of M, keeping the first and second terms
in our Taylor series expansion of k-ug [the w; and wz(#) terms in Eq. (12) and the last term
in wg;(8) in Eq. (3)] as the only rotational terms. We see that these terms can decrease the
growth rate substantially, but do not give complete stabilization at any relevant value of M.
For curve(ii), we add in the rest of the terms for the F, rotation model [the k3, k4, k5, and
ke terms in wy;(0) in Eq. (3)]; we see that the mode can be almost completely stabilized, but
only at values of M that are several times higher than the experimental value. Curve (iii)
shows the corresponding results obtained with the old V; model, and these are seen to be
roughly similar to those with the new F, model, at least in this case, despite the differences
in the two models.

Another point to notice in Fig. 1 is that the experimental value of M falls short by a
factor of several from that needed to completely stabilize the mode. Also, the needed E x B
level for linear stabilization from the heuristic stabilization criterion wg ~ =y, observed in

1416 \where 7 is the linear growth rate without rotation effects, would

ITG mode simulations,
say that the mode should not be stabilized here, because (wg)** falls short of vy by a factor
of several also. The two shortfall factors differ by a factor of two or more, but we have
at least rough qualitative agreement between the two stabilization criteria, if E, were to
be scaled up to those levels. However, the F, rotation model variation of v with M is not
linear for this case! The results from the F, model in general show both linear and quadratic
behavior, as well as ‘flat spots’ and ‘tails’, for different cases in different ranges of M.

The corresponding results for this TFTR ERS case for r/a = 0.3 are shown in Fig. 2 for
n =41 and kgp; = 0.79. The linear growth rates in Fig. 2a are shown in curve (i) with only
the first and second Taylor series terms as the rotational terms, and again these are only
partially stabilizing. With all the terms in the £, model, as shown in curve (ii), v is almost

linear in M, with one ‘flat spot’. Curve (iii), for the old V; model, is at first almost flat and

then quadratic as M increases, whereas curve(ii) for the £, model is almost linear (with a
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FIG. 1. (a) Linear growth rate v and (b) real frequency w, for TFTR ERS discharge 84011
at t = 2.70 s, for the electrostatic toroidal drift mode with carbon and a slowing-down beam, for
r/a = 0.200, n = 21, kgp; = 0.88, and V, o< M. Here, curve (i) corresponds to the L, rotation

model with the wy and wz(#) terms only, curve (ii) to the E, model with all terms, and curve (iii)
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FIG. 2. As in Fig. 1, except with r/a = 0.300, n = 41, and kgp; = 0.79.

‘flat spot’), but the corresponding M,,;; values for marginal stability are almost the same.
Also, for this radius, vo/(wg)®? is almost exactly equal to M,.;+/M..,. In this sense, the
E, rotation model and the heuristic criterion for stabilization wg ~ 7o are in nearly exact
agreement for this case, if the E, level were to be scaled up. The real frequencies, shown in
Fig. 2b, are again almost linear, as expected.

Another TFTR ERS case of interest is for discharge 103794, at ¢ = 2.0 s, which is the
time when the measured value of Vj reaches its maximum magnitude. We will compare three
different sets of input data for the E, radial profile: FE, = 0, corresponding to an absence of

rotation, K, = E,(V"?), where the neoclassical estimate?® of V} is used to calculate E, from
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the radial force balance relation £, = VyBs — Vo By + (1/ecne )dpe /dr, and E, = E,. (V%)
where the spectroscopically measured profile?® of Vj is used in the same relation. The radial
profiles for V> and V;*“** can be substantially different, by an order of magnitude or more,
at localized times and places in the discharge. Correspondingly, the associated profiles for
E,., shown in Fig. 3, and of the radial derivative of F,, are drastically different in the inner
half of the cross-section, though roughly comparable in the outer half. The corresponding
results for the linear growth rates of the electrostatic toroidal drift mode, for kgp; = 0.81 and
0o = 0, are shown in Fig. 4 for the three choices for F,. The mode is stable for r/a ~ 0.3
due to a flat spot there in the pressure profile. For r/a > 0.3, the (outer) growth rate
profiles are almost identical for £, = 0 and for F,(V;**°), while the growth rate profile for
E.(Vy7*) is somewhat narrowed and is lowered by ~ 30%. For 0.1 < r/a < 0.3, the mode is
unstable for F, = 0, but this (inner) growth rate profile is lowered by ~ 40% and narrowed
to 0.2 < r/a < 0.3 for E.(V;"*°). However, for £, = E.(V;***), the mode is completely
stabilized in this inner region. In fact, even for £, = 0.1 x E.(V;"**), the mode would

still be completely stabilized, so that it is likely that this linear stabilization would actually

occur at an earlier time, when V;"** is not as large.

0
meas
—E, (V")

r

E (10* V/m)

_107“‘\“‘\“‘\“‘\“‘

FIG. 3. Radial profiles of E,(Vy) and E,.(V;****) for TFTR LERS discharge 103794 at

t=2.0 s.

The corresponding experimental profile for wg(V;°**) is shown in Fig. 5, along with the

13



l 5 - Er (VemeaS) ]
rHU) Er =0 ’,' "
S 1} E v JARANE
> ';ﬂ ‘|| \

05} ) ! RS

0 LA K
0 0.1 0.2 0.3 0.4 0.5
r/a

FIG. 4. Radial profile for v for TFTR ERS discharge 103794 at t = 2.0 s, for the electrostatic

toroidal drift mode with carbon and a slowing-down beam, with E, =0, E.(V;"*°), and E,(V;"°**).

growth rate curves from Fig. 4. Comparing the wg(V;****) curve with the F, = 0 growth
rate curve, which is the curve for the growth rate +y without rotation, the heuristic criterion

would say that for the inner region 0.15 < r/a < 0.3 the mode should be stable, since

wg > Yo there, and the result with the new rotation model using FE,(V,***) also is that the
mode is stable there. For 0.34 < r/a < 0.42, wpy < 70, so the heuristic criterion says that

the mode should be unstable in that region. In fact, the new rotation model calculation
with E,. (V%) gives a slightly wider region of instability, 0.32 < r/a < 0.45, but this
extent is reasonably close. Thus, the FULL code calculation with the E, rotation model
can give comparable results to the heuristic criterion, though we saw for the previous cases
that they are often similar only within a factor of two or so on the necessary stabilizing
level of F,. Once linear stabilization is achieved in this inner region, so that the anomalous
transport is suppressed there, nonlinear processes of the sort described by Diamond, et a

1.27

and Newman, et al.*® and others can act so as propagate this region of suppression outward.
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FIG. 5. As in Fig. 4, but with a different vertical scale, and showing also wg (V]°*?).

IV. STUDY OF FLUCTUATION-GENERATED FLOW IN GYROKINETIC

SIMULATIONS

Recent results from TFTR,?® of the sort shown in Fig. 3, indicate that significant, ra-
dially localized E x B flow can be generated in the core by some mechanism which cannot
be described by the present neoclassical theory. While there is no quantitative theoretical
prediction to date which can be compared to the experimental data directly, it has been
observed in many simulations that fluctuations can generate E x B flow. In particular, the
dominant role of the fluctuation-generated small scale E x B flow in the nonlinear satura-
tion of toroidal ITG turbulence,®* 1% including the case with trapped electron dynamics,!®
has been observed in gyrofluid flux-tube simulations. Its importance has been also ob-
served in gyrofluid simulations in sheared slab geometry,® and in gyrokinetic flux-tube
and annulus'® simulations. It is therefore of vital importance for realistic nonlinear simula-
tions to accurately treat the dynamics of the fluctuation-generated E x B flow, as emphasized
in Ref. 33.

We also note that such flows with wider radial scales on the order of a fraction of the
system size have been often observed in previous nonlinear simulations. These include
particle simulations of electron drift waves,? gyrokinetic simulations of I'TG instabilities®®

in slab geometry, fluid simulations of dissipative drift wave turbulence models,*® and fluid

simulations of pressure gradient driven turbulence.?” Theoretical discussions regarding the
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flow generation mechanism via Reynolds’ stress and its potential importance in enhancing
confinement can be found in Ref. 29. A simple dynamic model based on this mechanism
indicates that the poloidal flow shear excursion is usually of limited duration.®® Finally, there
is experimental evidence of fluctuation-generated small scale E x B flow from the DIII-D
edge as well.?*

A new toroidal gyrokinetic particle code has been developed using magnetic coordinates
and Hamiltonian guiding center equations of motion. By utilizing a non-spectral Poisson
solver,*® the new turbulence code can efficiently handle general geometry and realistic equi-
librium profiles. The dynamics of fluctuation-driven poloidal E x B flow is studied in this
section using both global and annular simulations with a variety of boundary conditions.
The residual poloidal flow in response to an initial perturbation which is constant on a mag-

netic surface has been calculated by an initial value approach.®® Here, we solve the following

gyrokinetic equation with an initial source 4 foq through gyrokinetic simulations,

o . o .. o1,
5; T b+ vatup) o —b 'V(/«LB‘I'(I))a—U” [ =4Jood(t),

where b* = b + (U”/Q)E) X (E) . VE)) In the simulations, the poloidal flow is initialized at
t = 0 and its steady state value is measured after a few bounce times. The residual levels of
poloidal flow in the simulations, as shown in Fig. 6, agree well with the theoretical results of
Ref. 33 in the high aspect ratio limit where the theory is valid. We note that similar results

have also been obtained in flux-tube gyrokinetic simulations.*!

The relaxation of the initial poloidal flow in Fig. 6 occurs via damped oscillations with
a characteristic frequency corresponding to that of the geodesic acoustic mode (GAM).*?
In these processes, the m = 1 harmonic can be excited by toroidal coupling to the m = 0
harmonic. To be consistent with the analytic theory, the m # 0 harmonics are suppressed
in the simulations on the ground that they are Landau damped. However, when the safety
factor ¢ is large, the resonant particles move out to the Maxwellian tails and the m = 1

harmonic becomes undamped. As a result, the oscillations of residual poloidal flow persist.
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FIG. 6. Linear flow damping for gyrofluid (solid) and gyrokinetic (dashed) simulations for
(1) initializing perpendicular flow only, ®(r). Also shown are gyrofluid results (2) initializing

perpendicular flow with a small parallel flow (dotted).

Since the microturbulence in tokamaks typically has a ballooning structure, it is impor-
tant to be able to model the generation of poloidal flows from m = 1 sources. This coupling
of m =1 sources to the m = 0 harmonic is predominantly due to trapped particle effects.
Because of the up-down symmetry of the equilibrium magnetic field, only the part of the
m = 1 harmonic that is even in § can generate poloidal flow. This has been verified by the
simulation results, which show that the time asymptotic poloidal flow is finite for a #-even
source and zero for a #-odd source.

Gyrokinetic simulation results in this section show that there is a significant enhance-
ment of E x B flow generation with a non-zero m component of the drive. We also note
that in a generally shaped, finite aspect ratio tokamak, the E x B shearing rate can also
have strong #-dependence even when @ is a flux function.!® In-out asymmetry of the fluc-
tuation suppression behavior in DIII-D, measured via heterodyne microwave scattering,*® is

in qualitative agreement with a prediction based on this observation.**
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V. DYNAMICS OF TURBULENCE DRIVEN FLUCTUATING E x B FLOWS

FROM GYROFLUID SIMULATION

In gyrofluid flux-tube simulations, fluctuations in the electrostatic potential are nonlin-
early driven by the turbulence, leading to radially sheared poloidal E x B flows. These
“radial” modes are roughly constant on a flux surface, but have small radial scales, on the
order of the turbulent scale size.

The linear damping of these poloidal E x B flows was shown to be crucial and was in-
vestigated in Ref. 15. The nonlinear drive of the flows is balanced by linear damping and
nonlinear damping. We first investigate the linear damping of the flows, by initializing a
perturbation and solving the linearized gyrofluid equations*® forward in time. This flow will
initially experience fast collisionless damping, as shown in Fig. 6 for k.p;/v/2 = 0.2. Here,
two different initial conditions are used: (1) perpendicular flow only, by initializing only ®(r),
and (2) perpendicular flow with a small parallel flow. Both initializations show a damping
rate on the order of a few transit times. Results from gyrokinetic particle simulations are
also shown for case (1), as discussed in Sec. IV. The gyrofluid and gyrokinetic results agree
very well in the fast linear damping phase. Later in time, there is a smaller residual linearly
undamped component, depending on the initial conditions, as emphasized by Rosenbluth
and Hinton.?® The present gyrofluid equations do not recover this small residual flow compo-
nent with much accuracy, as trapped particle effects are important. For this residual flow to
be significant nonlinearly, the nonlinear damping of the flows would have to be weak, so that
the linear details could dominate. From the time history of the k,,pi/ﬂ = 0.2 component
of the potential over the saturated phase of a nonlinear gyrofluid simulation, its correlation
function can be obtained, as shown in Fig. 7. Since the correlation time of the flow is on the
order of the fast linear damping rate, the flow does not have time to relax to the residual
flow component before nonlinear effects break it up. This correlation time is also on the
order of the turbulent decorrelation time of the turbulence. When the nonlinear effects are

strong enough, as in this case, the short correlation time indicates that nonlinear damping
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is saturating this component. Also, modifying the gyrofluid equations to change the linear
level of residual flow does not seem to change the heat flux as long as the fast linear damping

is retained, and the turbulence is not very weak.

0 ) 10 15
time (qR/v,)

FIG. 7. Correlation function of the kgp;//2 = 0.2 component of the flow from a nonlinear

gyrofluid simulation.

VI. CONCLUSIONS

An improved linear rotation model and its implementation in the FULL code linear
eigenfrequency—eigenfunction calculation have been described. This ‘E,.” model is formulated
in terms of the radial electric field, £, = V,Bs — V3 B, + (1/ecnc)dpe /dr, and thus contains
rotational contributions from Vj,, Vj, and dp/dr, whereas the older ‘V’ rotation model only
contains the contribution of Vj. Also, the new FE, model includes terms proportional to
the E x B shearing frequency (in flux coordinates) in the final mode equation. Several
TFTR ERS cases were presented, in which the old and new rotation models were compared,

and shown to give roughly comparable Mach numbers for complete stabilization of the
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electrostatic toroidal drift mode. Comparisons are also made with the heuristic criterion,
WE ~ Yo, for complete stabilization, and the needed F, values are seen to be similar within
factors of two or so. Finally, a comparison of results using the neoclassically estimated profile
of V4 and the much larger experimentally measured profile show that V;** is sufficient to
give complete stabilization in the inner unstable region of one TFTR ERS discharge, while
Vy°? is not.

Analytic calculations®® of the residual flows have been substantiated by gyrokinetic sim-
ulations. These results show that the § dependence of the turbulent source has a significant
impact on the flow generation and evolution. Nonlinear gyrofluid simulations find that the
correlation time of the flows is on the order of the fast linear damping time, indicating that
nonlinear damping effects may be playing a significant role in the long time evolution of the
flows, at least in the strongly turbulent parameter regimes that we have studied. The resid-
ual flow level may be more important in weakly turbulent regimes near marginal stability.
Good agreement is found between the fast linear damping of poloidal flows in gyrofluid and

gyrokinetic simulations.
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