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ABSTRACT

We present a formalism for the evoluiion in Q% of multiquark systems as an appli-
eation of perturbative quantum chromodynamics {(QCD) to asymptotic, exclusive
nuclear amplitudes, To leading terms in log Q? our formalism is equivalent to
solving the renormalization group equations for these amplitudes. Completely
antisymmetric multiquark color-singlet representations are constructed and their
evolution is investigated from the one-gluon exchange kernel, We argue that the
evolution equation, together with a cluster decomposition, demonstrates a transi-
tion from the traditionzl mescn and nucleon degrees of freedom of nuclear physics
to quark and gluon degrees of freedom with increasing @7, or at small internucleon
separations. As an example, we derive an evolution equation for a completely an-
tisymmetric six-quark distribution amplitude and solve the evolution equation for
a deuteron S-wave amplitude. The leading anomalous dimension and the cotrre-
sponding eigensolution are found for the deuteron in order to predict the asymp-
totic form of the deuteron distribution amplitude {i.e., light-cone wave function
at short distances]. The fact that the six-quark state is 8¢ percent kidden color
at small transverse separation implies that the deuteron form factor cannoct be
described at large 7 by meson-uucleon degrees of freedom alone. Furthermore,
since the N-N channel is very suppressed under these conditions, the effeclive
nucleon-nucleon potential is naturally repulsive at short distances.,

1. INTRODUCTION

Nuclear chromodynamics is concerned with the application of quantum chro-
modynamics {QCD) to nuclear physics.l} Its goal is to give a fundamental descrip-
tion of nuclear dynamics and nuclear properties in terms of quark and gluon fields
at ghort distance, and to obtain a synthesis at long distances with the normal
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nuclecn, isobar, and meson degrees of freedom. If we define QF 2s & geale of mo-
mentum square involved in a certain reartion, then there are two complementary
approaches to nuclear chromodynamics: one for high @® region and the other
for low Q2 region. The essential criteria for the high and the low Q? regic1 3 are
based on two principles in QCD; asymplotic freedom and confinement respectively.
Whereas many models such as Skyrmions and eoliton bags, ete., are available as
viable approaches in the low @2 region,?l perturbative QCD is the only consistent
approach in high—-@?3 region. Therefore, it is worthwhile looking at the implications
of exact perturbative QCD predictions on various effective nuclear phenomena.

One of the main ingredients in the perturbative QCD approach is the fac-
{orization theorem for both inclusive and exclusive processes which separates the
hadronic bound state physics from perturbative dypamics. The processes which
are easily analyzed are those in which all inal particles are measured at large
invariant masses compared to each other, i.e.: large momentum transfer exclusive
reactions. This includes form factors of hadrons and nuclei at Jarge momentum
transfer @ and large angle scattering reactions such as photoproduction 4p — 7% n,
nucleon-nucleon scattering, photodisintegration 4d — np at large c.m. angles and
energies, ete., which can be analyzed in terms of a simple pictare for exclusive
processes based on light-cone perturbation theory. A key resnlt is that such am-
plitudes factorize at large momentum transfer in the farm of a convolution of a
herd scattering amplitude Ty which can be computed perturbatively from quark-
gluen subprocesses multiplied by process-independent “distribution amplitudes”
¢#{z, @) which contain all of the bound-state non-perturbztive dynamics of each
of the interacting hadrons.® For example, the baryon form factor at large Q7 is
represented by tke factorized form [se Bg. 1(a)]¥

1

(@)= [ 16 164 8 0080 Tl 15,82 [1+0(3)]

0

a2r? o2(0? 2y ~Ta—Tm 2
2 =27
- C (%?—21) (tn—f—::) (as QF — large) , (1.1)

where z; ia the light-cone longitudinal momentum Faction of P quark
z; = (k] + k3)/(° + p*), [dz] = dz1dzzdzad (1 - T;z;) and @: = min(=,Q).
The dominant Q% dependence (a,{Q?}/Q*}? is derived from the hard scattering
amplitude Ty lx;,v:, Q) of the subprocess 4* + 3g — 3g [see fig. 1(b)] with the
only weak (logarithmic) @2 dependence coming from quark distribution ampli-
tude ¢(z;, @) (o is the leading anomalous dimension) [see fig. 1{c)]. The essential
feature of eq. (1.1) is that a very complicated process can be simply represented
by the factorization into product of three amplitudes.
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Fig. 1. (a) Fectorization of the nucleon form factor at large Q? in QCD. (b)
The leading order diagrams for the hard scattering amplitude Ty, The dots
indicate insertions which enter the renormalization of the coupling constant. (c)
The leading order diagrams which determine the @* dependence of ¢5(z, Q).

The quark distribution amplitude ¢(z;, @) is the amplitude for converting
the baryon into three valence quarks at impact separation b, ~ 0(1/Q). It is
related to the equal v = ¢ + z hadronic wave function (z;, k,,)%:

) g4
3=z, Q) ¢ f H a*ky; 6% (E E;.-') iz, ki) (1.2)

=l

and contains the physics of that part of the hadronic wave function which affects
exclusive processes at Jarge momentum transfer. Therefore, constructing ¢ (z;, @)
is an essential part of developing the perturbative QCD approach to the nuclear
chromodynamics.

In this talk we will present a generalized method of construeting ¢(z;, @) for
multibaryon systems of 3n qua.rkx“] which satisfies the evolution equation derived
basically from the Bethe-Salpeter equation [see, e.g., fig. 1{c)]. For the baryon
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{three-quark) system the evolution equation has been derived a2nd solved by Brod-
sty and Lepage.’] However, their method of solving the evolution equation cannot
be simply extended to multibaryon sysiems. Recently, Brodsky and 7l developed
a new method in order to extend the simple baryon analysis to the case of multi-
baryon systems.B®| As a starting point, in the next section we use a simple sealar
field mnAsl anAd Aerive an evelution equation for a two-body bound state. Then
we extend il to a realistic three-quark system and descsibe our new method of
solving the evolutlion equation in section 3. In section 4 we present an analysis of
a six-quark system as an example of the extension to multibaryon systems. We
focus on calenlating a leading anomalous dimension for a deuteron S-wave ampli-
tude, In section 5 we present an application of our formalism. We derive rigorous
constraints en the shorl distance effective force between two baryans, using an
evolution in Q% of a toy dibaryon system. Discussions and conclusions follow in
section 6.

2. SOLUTIONS OF TLLE BOUND STATE EQUATION AND THE EVOLU-
TION EQUATION

In this section and as an introduction, we will use (&*)s—type theory, which
shares the asymptotic freedom property of QCD. The moedel Lagrangian density
which we consider in this section is

1
L = - (BupOFP+ Bux d'x) — 3 m?s® — g’y , 2.1}

1
2
where p runs from 1 te 6, and ¢ and x are “quark™ and “gluon™ felds respectively.

A conventional tool for dealing with the rzlativistic two-hody problem in
quantum field theory is the Bethe-Salpeter formalismi® utilizing the Green func-
tions of covariant perturbation theory. However this formalism has difficulties with
the relative time dependence especially for multiparticle states and in systemati-
cally including higher order irreducible kernels such as cross diagrams and vacuum
polarizations.f3

An alterpative approach which can remove these difficulties and restore a
systematic periurbative calculation for oblaining higher accuracy is the reformu-
lation of the covariant Bethe-Salpeter equation using the light-cone coordinate. 19
This is equivalent to expressing the Bethe-Salpeler egupation in the jnfinite mo-

mentum frame.'¥! The light-cone quantization method™¥! provides a Fock-state
representation at eqnal light-cone time r = t + z/¢ for a bound state |B)

(B) = (¢3|B) |48) + (ddx| B) |83x) +.-- . (2.2}

and removes the difficulty of the relative time dependence of the covariant farmal-
ism. The light-cone wavefunctions { ¢| B), {ééx| B), ... provide a physically




transparent description of a bound state, since the vacuum fuctuations are sup-
pressed in the light-cone frame and all constituents are on the mass shell where

- _ ki+m]
k'- = ;—1'—— . {2.3)

with »; = k}" ] P*. Furthermore, cross diagrams can be included systemntically
when higher Fock-state contributions such as [¢@xx} are taken into account.

2.1 Bound State Equation

By taking into account only two- and three—body sectors, we arrive at the
eﬂ'ectlve equa.hun for the two-body wavefunction (21 = z, 2, = 1 -z, kyy =

-k =k):

1 -
k% +m? dy a4
M - =gy | Y=k = f - |

x{ﬂ(#-z) . +(1Hyl}
y—=z M,_k{:m’ 24+m® (E :r!:

x ¥ (yl i.!.) 1
{2.4)
which we call the light-cone ladder approximation (LCLA).M:!5] This equation
provides an eigenvalue problem and the eigensolution is a nonperturbative selution
in the sense that it includes the eflect by summing all orders of ladder diagrams.
The eigenvalue of the bound state equation is the binding energy in terms of the
coupling constant. An approximate solution of eq. (2.4} to the ground state has

been suggested by Karmanov:1¢
N

2
(M‘ - ‘—’-Li-m—)) (1+ 22— 1)

d’(’: E.Ll = 1 {2.5}

z(1—

where N is a normzlization constant. The corresponding eigenvalue (binding
energy]“l is given by the following relation between the coupling constant
a = g*/(16xm?) and the binding energy 5% = m? — (M3 /4):

1 = -i.-;z_ (.ﬂ_' — tm"l 1 ) <+ n ‘l_ ’ (2‘6)
a -1 \2 z—1 z
where z = m?/5%.



2.2 Evolutjon Eguation
The distribution amplitude in the (¢#*)s model is given by

|Eu]<
#z,Q) = / [d‘l'c';] wl@(z, k), . (2.7)

where [d*k,] = 1/[2(2n)%] d*k, = k2 /(647>) dki. The variation of ¢ with @
comes from the upper imit of the integration as well 25 from renormalization
scale dependence of the wave function

Wz, k) = z’((Q’) Pl (z, £, ), (2.9)

where Z3(Q) = ¢!/® ¢19) with £(Q) = ?[d‘EL] lg?(k?%)]/F4 because of vertex and
qQ

self-energy insertions.’! Therefore, the differentiation of eq. (2.7) yields

2 fnZ
@ 50 65,@) = @ 220 412,00+ (@) 229 y(z,0) . )

By taking asymptotic limit |k, | = @ — o) of eq. (2.4), one can compute
¥\ (z, Q) in terms of the distribution amplitude @ which combines with eq. (2.9)
and ends up with the following evolution equation:

|
Q 3@, #z.Q) = - =5 94Q) {gaz,m- f dyv:z.umu.a)} , (2.10)
g
where
= _Z Y el
Viz,y) = Oy }y+0(= y)l_y . (2.11}

This is an integro-diflerential equation and again provides an eigenvalue prob-
lem. The general solution of eq. {2.10] is given by a linear combination of the
Gegenbauer polynomials:

Q) = 2ll-2) 3 AC¥H 2z - 1) WE@)

n=0




where each eigensolution C:l ’(2::— 1) is directly related tc & term in the operator-
product expansion of the wave function evaluated near the light cone and the
eigenvalues are the corresponding anomalous dimensions, -7, given by

1

Tt  m+Dnt+2)

.Y

To leading terms in InQ, the evolution formalism is equivalent to solving the
renormalization group equation for the distribution amplitude.
3. EVOLUTION OF THE COLOR-SINGLET THREE-QUARK SYSTEM

We now extend the evolution formalism to the realistic three-quark system
using QCD. The evalulion equation for the color-singlet three-quark system has

been derived by Brodsky and Lepage®

1
T1 T3y (BE 30]') é( IIQ) %’ j dyl V(xliyl’ ¢(ynQ) (3. 1}
]

where O = 2/3, Cp = 4/3 and # = 11 .- 2n;/3. The leading order kernel is
cnmputed from the single-gluon exchange diagram [see fig. 1{¢)] and V(=y,1;) in
this case is given by

6;.‘. A
V(z"y;j = 2n 72 Z O{y‘ - xi) §(x, _Vk)-l ( ; — -+ — )
3] £+ Ty Vi — Xy (3 2)

= V(o). (F#47),

where Ad{y;) = ¢(w) — ¢(z:), and Jh,- R = 0{1) when the helicities of constituents
aze antiparalle]l (paralle)). The generalJaolution of eq. (3.1) is

#(2i, Q) = zrz273 f: Anén(zi) e_q-E(Q] | (3.3)

n=0

where the anomalous dimensions 7, and the eigenfunctions 3,.[:;) satisfy the char-
acteristic equation

L e (-‘7-+%%£) éalz) = % Df [dy) V {zi, v:) #nlvs) - (34)



Therefore, the rest of this sectian is just duseribing the method to solve the eigen-
value problem of eq. (3.4).

Let's introduce first the Bradsky-Lepage’s method:Y

(1) Take the basis for da(z;) s (= 28} Fs0-

(2} Construct the kernel matrix under the above basis by integrating

over ;.

(3} Disgonalize the kernel matrix and ind the eigenvalues 4, and the

eigenfunctions ¢n{x).

In the simple three-qu.. 'k case, the color ninglet property guarantees alf three
quarks have different quantum numbers. However, if we consider multibaryon
systems of 3n quarks,®l then the colar singlet . equirement does not guarantes that
all the querks of the system have different quantum numbers. Thus, we have ta
antisymmetrize the system according to Pauli’s principle and ¢,(x;) cannot be
derived by expanding V (z;,* on 2 simple polynamial basis {z} 2§}§%..o-

The new method which we developed” ia basically the same as the Brodsky-
Lepage method except for replacing the basis {zF '-'1!}?,@0 by {completely anti-
symmetric ¢alor-isospin-spin-index power (zf z§ z3") representationz}f, .o The
index power z¥ £fz* is analogous to the orbital dependence of norrelativistic
wave functions., The new method can be extended to multibaryon systems of 3n
quarks®¥] and predicts the correct distribution awmplitudes of multiquark systems
since the basis of the new msthod is a set of conwletely antisymmetric represen-
tations. Furthermore, it has several additional advantages. Among them,

{1) Even in the three quark system, one can classify the baryon system by ob-
serving the isospin multiplet (e.g., nucleon and isobar helong to T = 1/2 and 3/2
respectively), Therefore, we predict the difference of £n @* behavior between the
form factors of the nucleon (V) and the isobar (A).7]

(2) Combining the results obtained by the new method for multiquark systems
with the fractional parantage technique'®! which can decompase the systems into
clusters, one can derjve constraints on the effective force among baryons at short
distances. The analysis for toy dib:ryon systems of four quarks®! and the rigorous
constraints on the effective force between baryons derived from first principle QCD
will be presented in section 5.

4. GE"ERALIZATION TO MULTIQUARK SYSTEMS

As we have discussed, the eigenvalue problem [or the evolution formalism is
generically given by

Kl¢s) = 1ida) o (4.1)

where K, and |4} represent the kernel, the eigenvalue (e.g., anomalous dimen-
sions) and the eigenfunction which is given by a linear combination of the aptisym-
metric representations respectively, and the integration aver y; [see ¢.g., eq. (3.1}



is understood. If we consider only the single-gluon exchange and factorize the
color matrices, then the kernel K can be written as

K=Y (% . .'};1) Vij s {4.2)

i

where Vj; is the dynamical part obtained by caleulating the one-gluon exchange di-
agrams. For simplicity (but without losa of generality), let us consider n
six-quark case as an example of muitiguark systems.

The six-quark system has five orthogonal color singlet states |{222}a) with
a=1,2,...,8 (see below) and the evolution kernel becomes § x 5 matrix:

Kos = 3 Caplind) Vis (4.3)
1
where
Coslivj) = <[222)a-§—‘ . -';i (222),B> . {4.4)

Tharefore, the ganeral formula of the evolution equation [n terms of a color-singlet
basis becomes

Kap|eh) = 1163 - (1.5

The key ohservation to simplify the above matrix equation is that Kag can

be written In terms of Ky which has a well-defined permutation symmetry!9
rapresented by & Young-tableau f and a certain Yamanouchi-label ¥;

Hop = 3.3 ((222)e, fY|(222)3) Ky (4.6)
J Y

From the Clabsch-Gordan coefficients of the S5 group, we know that only two
Young~-tableaus are possible for the six-quark one-gluon exchange kernel and they
are given by (see table I)

C,
Kig) = -—5—" § Vij » (4.7a)
J

Ky = § Z;#E {(222)ax, (42)Y |(222)B) Copli\d) Vi,  (4.70)
o ]

where only one Yamanouchi-label is allowed in f = (6), and f = (42) has nine
different Yarnanouchi-labels,




o1

TABLE!

Ky Ny (86)  {48) (45} (35) (35) {26) (25) (1) (15) (23) f{(24) (34) ({u) (13) [12}
Kieyiuany -é 1 1 ! H 1 1 1 L 1 1 1 1 1 1 1
Saapainy g 12 3 3 3 3 1 3 a3 3 2 2 2 2 2 2
Kiasyasansyy —2.@ » 3 3 1 3 1 a4 1 1 2 a2 2 2 2
Kiazjfanian| % 6 2 3 1 a3 1 < 1 2 1 a9 2
Kuayjzina % = TR R | 1 4 1 0 1 1
Kaapizas) -\-;'E 3 -1 1 -1 1 N S R | 1 1
Kyaymany 7"1_6 4 -2 -2 »1 1 -2 1 =1 2
Ky Jll_o 2 2 - 1 1
Kiaahrraany le:n R R DR T S |
Hiayp :—n 4 1 -1 1




As an example, let us calculate the leading anomalous dimenslon of the
deateron atate. Since the total index-power is n = 0 for the leading anoma-
lous dimension and the iscspin is fixed na a ainglet for the deuteron stats, two
antisymmetric representavions are possible and defined by the inner-product of

Young-tableaus'®;

141) = 1222))¢ x {32))y x ()} x [(&))o {4.84)

143) = |(222)}c x K33))r % (42)}g * (D)o » (4.88)
The sigensolutions will be linear combinations of |4;) and |43},

|E1) = coadjAy) +sind|A;) , (4.9a)

[Bs} = —sinf{4;) +cosf|As) , (4.94)
where |E;) and | E;) have eigenvalues £; and ey respectively,

Kap|El) = u|BD) , (4.100)

Kap |£,’) = e|ES) . (4.108)

Az we have pointed out, an essential simplification can be obtained by replacing
Kog with K¢y. Projecting out & certain state which has common color (C), isospin
(T) and index-power {0) representations, we get a set of equations for spin states:

K (6))s = (e1c05%0 + e25in®d) |(6))5 , (4-11a)
Kuzy 16)}g = (&1 ~e3)cosfsin8[(42)Y} 5 , (4.113)
YIS T ()75 (42 | @Y ) iy (43l

Yy ¥y
= (ex ~ e3) {9in®0 — cos’8) |(42)Y)g . (4.12¢)

u



Since the kernel of each equation has a definite symmetry and its explicit
representation is known (see table I), we can determine relative weighting fac.
tors among the independent equations (4.11s),{4.11b) and (4.11c) by counting the
number of spin annihilation terms [see e.g., 6,,‘.;,1 term in eq. (3.2)] in the kernel:

K i{ehs = wiiE)s , {4.120)
Kay|6)s = %@ml(ﬂ)‘i’)s . (4.125)

Y S 3 (Y, (42)¥ | (Y ) K, WAY5),
Yg Yy

= & iy, . (4.12¢)

where - ig the eigenvalue of eq. (4.12a). Comparing eqs. (4.11) and (4.12), we
find

Z5
1 L ® — 0, € = -m, {4.13)

tand = T

L
2

o

and the only equation which we have to solve explicitly is eq. (4.12a), which hes
the symmetric kernol K(g). Solving eq, (4.122) ®l we find

58 = 0 » ‘414“)

3
1

;- ol
=@ =9

=#1. {4.145)

Therefore, the leading anomalous ‘dimension for a deuteron state Is given by

min(e;,e3) = for §z = 0 , (4.15q)

=3 )t

= %1 . (4.1256)

=|Q =@
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Using the result of Eq. (4.15), one can cailculate the asymptotic deuteron
form factor Fg{Q?). The QCD prediction for the asymptotic §3-behavior of the
deuteron reduced form factor®™ f;(Q?) defined hy

fal@h) = Z4Z
TR

is given by
] 1\ Cr /28
@) ~ 242 (. T)T (416)

& APPLICATION: THE EFFECTIVE FORCE BETWEEN BARYONS

In Section 4, we have shown how we can solve QCD evolution equations in
order to predict the short distance behavior of multiguark systems using Youug
diagrammatic methods. Since the eigensolutions obtzined in this way have definite
permutation symmetry, we can apply the fractional parentage technique!?! for the
multibaryon system in order to relate the eigensojutions to clusier representations
which have physical baryon, or alternatively, “hidden-calor” degrees of freedom.

For example, if we apply this technique to the simple case of the four-
quark system under SU’(Z);:,at then we find the transition matrix given by Table IT
(T = 8 = D cese) which relates the symmetry basis represented by four-quark eigen-
solutions and the physical basis represented by “toy”-dibaryon and hidden-color
degrens of freedom, From thie table we can expand the distribution amplitudes of
the physical basis in terms of eigensolutions:

oy BIICkiE PR X -Ter ¥/
dnw(zi Q) = 0.07¢ () (-‘-'ﬂ'fi-) — 0.64¢y(z;) (‘"1‘5) taen
gt 0.43C» /6 2+ —D0GCH[/H
daa(=i, Q) = —0.07¢: (=) ('J*I,-) — 0.59¢s(z:) (lﬂﬁ) ..
%y HI3Cr LB 0080w B
dcolzi @) = —0.70d (=) (tn% — D.35¢ (=i} (!n% +...
(5.1}

where Cp == 3/4 in this case.
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Table IL. The relationship between four-quark antisymmetric
SU(2) colar represeatations and effective two-cluster represen-
tations (T = S = O case). Isospin singlet and triplet states bath
with calor singlet are denoted N and A, while color triplet state
is represented by C. The square and curly brackets represent
orbital {O) and epin-isospin (T5) symmetries separately.

4| {22} j22 {22} [22] {4}
NN -} -} ;a
aa ; } e
cc 315 —5‘,,_, 0

Thus, we find that the NN, AA and CC states have completely different G
evolution. As Q% goes to infinity, the NN and AA compaonents are negligible but
the CC components are large. In other word, the dominant degrees of freedom at
the origin of the dibaryon system at zero impact separation are hidden-color states
rather than physical baryon states. This indicates that the physical dibaryons have
a repulsive core at the origin® while the colorful hidden-color clusters behave as in
an altractive well. In this wey, we derive constraints on the effective force between
two baryons.??l We discuss the results for the six-quark states using the realistic
SU(3)c in the next section.

6. DISCUSSIONS AND CONCLUSIONS

By using a new method based on completely antisymmetric representations,
we have analyzed the quark distribution amplitudes ¢(x,, @) in QCD in order to
predict the shurt distance behavior af multiquark systems, Since the new method
is based on permutation symmetry, we can readily classify the multiguark systems.
In the 3-quark case, we can resolve the N and A form factors. In the multibaryon
system, this method is essential since it cannot be guarapteed that all quarks have
different quantum numbers.

We have also decomposed the multiquark systems into multibaryon physical
components and hidden color components, and expanded each compenent in terms
of the QCD eigensolutians. Through the evolution of each components we can
derive constraints on the effective force between the clusters. Using the toy-
SU(2)c—dibaryon analysis, we find that colorless clusters tend to be repulsive but
colorfu) clusters are attractive at short distances.

The deuteron state which has the leading anomalous dimension is related
to the NIV, AA, and hidden coler (CC) physical bases, for both the {T'S) = (01)

and (10) ceses with Young symmetry of {33}, by the formula!?l
= Jz ,}, 1 ¢ + JE i/
)33} = g YNN + \/ 15 Vas 3 vee

14
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Thus the physical deuteron state, which ia mostly yxy at large distance,
must evolve to the yyg(aa) state when the six-guark transverse separations

&, < 0(1/@) — 0. Since this state is 80% hidden color, the denteron wave
function cannot be described solely by the meson-nucleon isobar degrees of
frecdom in this domain. The fact that the aix-quark color singlet state inevit-
ably evolves in QCD to a dominantly
hidden color configuration at smali
transverse separation also has impli-
cations for the ferm of the nucleon-
nucleon (§; = 0) potential, which
can be considered as ane interaction

Vet

‘\\ component in a coupled scattering
™ Y channe] system. As the two nucle-

s, ons approach eac! other, the system

AN must do work in order to change the

~ six-quark state to a domipantly hid-

Y
\ : R den color configuration; 1.e., QCD
ri{fm) .
0 AY > 3 . requires that the nucleon-nuclean po-
<t iential must be repulsive at short dis-
tances [see Fig. 2].20 Finally, we note
that the evolution equation for the
six-quark system suggests that the
distance where this change occurs is
in the domain where a,(Q*)} most
strongly varies.

Fig. 2. Schematic representation of the
deuteron wave function in QCD indicat-
ing the presence of hidden color six-quark
components at short distances.
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