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ABSTRACT 

We present & formalism for the evolution in Q1 of multiquark systems as an appli­
cation of perturbative quantum chromodynamica (QCD) to asymptotic, exclusive 
nuclear amplitudes. To leading terms in log Q1 our formalism is equivalent to 
solving the renormalization group equations for these amplitudes. Completely 
antisymmetric multiquark color-singlet representations are constructed and their 
evolution is investigated from the one-gluon exchange kernel. We argue that the 
evolution equation, together with a cluster decomposition, demonstrates a transi­
tion from, the traditional meson and nucleoli degrees of freedom of nuclear physics 
to quark and gluon degrees of freedom with increasing Q 3 , or at small internucleon 
separations. As an example, we derive an evolution equation for a completely an­
tisymmetric six-quark distribution amplitude and solve the evolution equation for 
a deuteron S-wnve amplitude. The leading anomalous dimension and the corre­
sponding eigensolution are found for the deuteron in order to predict the asymp­
totic form of the deuteron distribution amplitude {i.e., light-cone wave function 
at short distances). The fact that the six-quark state is 80 percent hidden color 
at small transverse separation implies that the deuteron form factor cannot be 
described at large <£>' by meson-uucleon degrees of freedom alone. Furthermore, 
since the N-ff channel is very suppressed under these conditions, the effective 
nucleon-nucleon potential is naturally repulsive at short distances. 

1. INTRODUCTION 
Nuclear chromodynamics is concerned with the application of quantum chro-

modynamies (QCD) to nuclear physics.1! Its goal is to give a fundamental descrip­
tion of nuclear dynamics and nuclear properties in terms of quark and gluon fields 
at short distance, and to obtain a synthesis at long distances with the normal 
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nudeon, isobar, and meson degrees of freedom. If we define Q* as a scale of mo­
mentum square involved in a certain reaction, then there are two complementary 
approaches to nuclear chromodynamics: one for high Q2 region and the other 
for low Q2 region. The essential criteria for the high and the low Q2 regict i are 
based on two principles in QCD; asymptotic freedom and confinement respectively. 
Whereas many models such as Skyrmions and eoliton bags, etc., are available as 
viable approaches in the low Q2 region,3) perturbative QCD is the only consistent 
approach in high-<?3 region. Therefore, it is worthwhile looking at the implications 
of exact perturbative QCD predictions on various effective nuclear phenomena. 

One of the main ingredients in the perturbative QCD approach is the fac­
torization theorem for both inclusive and exclusive processes which separates the 
hadronic bound state physics from perturbative dynamics. The processes which 
are easily analyzed are those in which all final particles are measured at large 
invariant masses compared to each other, i.e.: large momentum transfer exclusive 
reactions. This includes farm factors of hadrons and nuclei at )arge momentum 
transfer Q and large angle scattering reactions such as photoprodnction i p —• ir + n, 
nucleon-nucieon scattering, photodisintegration fd —* np at large cm. angles and 
energies, ere, which can he analyzed in terms of a simple picture for exclusive 
processes based on light-cone perturbation theory. A key result is that such am­
plitudes factor]zc at large momentum transfer in the farm of a convolution or a 
hard scattering amplitude TH which can be computed perturbatively from quaxk-
gluon subprocesses multiplied by process-independent "distribution amplitudes" 
4>{xt Q) which contain all of the bound-state non-perturbatrve dynamics of each 
of the interacting hadrons,3! For example, the baryon form factor at large Q2 is 
represented by the factorized form (see Eg. 1(a)]*! 
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where x,- is the light-cone longitudinal momentum fraction of t t b quark 
H = (A? + fc?)/(p° + p 3 ) , \dx] = ds! dx 2 dz 3 f i ( l - ^xf) and $ , s mim(zi<?). 
The dominant Q2 dependence (a,(Q2)/Q2)2 is derived from the hard scattering 
amplitude T#(x; tj/,-,0 of the subprocess ->* + 3q —• 3g [see fig. 1(b)] with the 
only weak (logarithmic) Q2 dependence coming from quark distribution ampli­
tude $(xi,Q) (fa is the leading anomalous dimension) [see fig. 1(c)J. The essential 
feature of eq. (l.l) is that a very complicated process can be simply represented 
by the factorization Into product of three amplitudes. 
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Fig. 1. (a) Factorization of the nucleon fonn factor at huge Q* in QCD. (b) 
The leading order diagrams for the hard scattering amplitude Tfj, The dots 
indicate insertions which enter the renormalization of the coupling constant, (c) 
The leading order diagrams which determine the Q2 dependence of ^5(2:, Q). 

The quark distribution amplitude <j>[z{,Q) is the amplitude for converting 
the baryon into three valence quarks at impact separation 6j_ — 0(ljQ). It is 
related to the equal r = t + z hadronic wave function ^(i;, £j.J 5' : 

±i *(?«") tffo.*u) (1.2) 

and contains the physics of that part of the hadronic wave function which affects 
exclusive processes at large momentum transfer. Therefore, constructing tj>(xi,Q) 
is an essential part of developing the perturbative QCD approach to the nuclear 
chromodynamics. 

In this talk we will present a generalized method of constructing ^(x,-, Q) for 
multibaryon systems of 3n quarks0! which satisfies the evolution equation derived 
basically from the Bethe-Salpeter equation [see, e.g., Gg. 1(c)]. For the baryon 
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(three-quark) system the evolution equation has been derived and solved by Brod-
sky and Lepage. 3 ' However, their method of solving the evolution equation cannot 
be simply extended to multibaryon systems. Recently, Brodsky and f l developed 
a new method in order to extend the simple baryon analysis to the case of multi-
fa ary on systems.B , 9I As a starting point, in the next section we use a simple scalar 
field m" ' 1 ' , ' *"<* rWivj- an evolution equation for a two-body bound state. Then 
we extend it to a realistic three-quark system and describe our new method of 
solving the evolution equation in section 3. In aection i we present an analysis of 
a six-quark system as on example of the extension to multibaryon systems. We 
focus on calculating a leading anomalous dimension for a deutexan S-wave ampli­
tude. In section 5 wo present an application of our formalism. We derive rigorous 
constraints on the short distance effective force between two bajyons, using an 
evolution in Q 2 of a toy dibaryon system. Discussions and conclusions follow in 
section (5. 

2. SOLUTIONS OF THE BOUND STATE EQUATION AND THE EVOLU­
TION EQUATION 

In this sertion and as an introduction, we will use (^ 3 )e- type theory, which 
shares the asymptotic freedom property of QCD. The model Lagrangian density 
which we consider in this section is 

L - \ {d^ d»<t> + duX S"X) - \ m ! ( i ! - 9<?X , [2.1) 

where fi runs from 1 to 6, and tj> and x a^e "quark' ?-nd "gluwi" fields respectively. 
A conventional tool for dealing with the r-ilativistic two-hody problem in 

quantum field theory is the Bethe-Salpetcr formalism 1 0! utilizing the Green func­
tions of covariant perturbation theory. However this formalism has difficulties with 
the relative time dependence especially for multip article states and in systemati­
cally including higher order irreducible kernels such as cross diagrams and vacuum 
polarizations."' 

An alternative approach which can remove these difficulties and restore a 
systematic perlurbative calculation Tor obtaining higher accuracy is the reformu­
lation of the covariant Bethe-Satpeter equation using the light-cone coordinate. 1 !1 
This is equivalent to expressing the Bethe-Salpeter equation in the infinite mo­
mentum frame. 1 3 ' The light-cone quantization method 1 , 1 ' provides a Fock-state 
representation at equal light-cone time r = t + zjc for a bound state \B) 

[B) = (<M{B) \^) + (^xlB) |c4^) + . . . , (2.2) 

and removes the difficulty of the relative time dependence of the covariant formal­
ism. The light-cone wavefunctions ( 0 ^ | B), {$4>x\ B) , . . . provide a physically 
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transparent description of a bound state, since the vacuum fluctuations are sup­
pressed in the light-cone frame and all constituents are on the mass shell where 

with X{ = k^}P+. Furthermore, cross diagrams can be included systematically 
when higher Fock-state contributions such as ffixx) we taken Into account. 
2.1 Bound State Equation 

By talcing into account only two- and three-body sectors, we arrive at the 
effective equation for the two-body wavefunction (x\ = i , x 3 = 1 - x, H^ = 

a 

* 1 —y y - x 

(2.4) 
which we call the light-cone ladder approximation (LCLA).">15I This equation 
provides an eigenvalueproblem and the eigensolution is a nonperturbative solution 
in the sense that it includes the effect by summing all orders of ladder diagrams. 
The eigenvalue of the bound state equation is the binding energy in terms of the 
coupling constant. An approximate solution of eq. (2.4} to the ground state has 
been suggested by Karmanov:16! 

tf(*,fcjj = - ^ , (2.5) 

("-3£S) ( l + [ 2 x - l | ) 

where JV* is a nonnalization constant. The corresponding eigenvalue (binding 
energy)17! is given by the following relation between the coupling constant 
a = j'/(l6jrm*) and the binding energy 02 = m? - {Af*/4): 

l = J £ * ( * t ^ * ) + tni, (2.6) 
a i/z^-l \ 2 -Jz—\J * 

where * * m 2/0*. 
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2.2 Evolution Equation 
The distribution amplitude in the (£3)e model is given by 

|Ix|<Q 

*(r,<?) = J [d*k±] *W(z,kj.) , (2.7) 

where [d*kx] = I/[2(2TT) 5 | d*kx = £*/(64;r3) dk\. The variation of 4> with Q 
comes from the upper limit of the integration as well as from renonnalization 
scale dependence of the wave function 

where Z,(Q) = e 1 / 6 W> with ((Q) = J [d*kx] le1^)]/*! because of vertex and 
Q 

self-energy insertions.1''I Therefore, the differentiation of eq. (2.7) yields 

By taking asymptotic limit (|fcj = Q -* «>) of eq. (2.4), one can compute 
ip{Q}(x,Q) in terms of the distribution amplitude <f> which combines with eq. (2.0) 
and ends up with the following evolution equation: 

Q* £§, *(*,Q) = " g^3 »aW) IJ *(*•«) " / <frv(*.v)*(vi9)} - (2-10) 

where 
V(x,y) = O(»-x|J + 0 ( * - y ) i ^ . (2.11) 

This is an integro-dtflexential equation and again provides an eigenvalue prob­
lem. The general solution of eq. (2.10) is given by a linear combination or the 
Gegenbauer polynomials: 

DO 

<6(x,Q) = x ( l - x ) Yi AnCy{2x~l)e-1«ZW , 
n=0 
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where each eigensolutfon C»"(2*—1) is directly related tc a term in the operator-
product expansion of the wave function evaluated near the light cone and the 
eigenvalues are the corresponding anomalous dimensions, •?„ given by 

1 
6 (n + l)(n + 2)* 

Tb leading terms in £nQ*, the evolution formalism is equivalent to solving the 
renormalixation group equation for the distribution amplitude. 

3. EVOLUTION OF THE COLOR-SINGLET THREE-QUARK SYSTEM 
We now extend the evolution Formalism to the realistic three-quark system 

using QCD. The evolution equation for the color-singlet three-quark system has 
been derived by Brodsky and Lepage3! 

i 

*i*iX3 ( ^ + ̂ f ) fo"°) = y- J fa] v{*itVi) ?(».<?), (3.1) 

where Cg = 2/3, Op ~ 4/3 and ft = 11 - 3n//3, The leading order kernel is 
computed from the single-gluon exchange diagram [see fig. 1(c)] and V(xi,yi) in 
this case is given by 

Vi *> V*» + rJ » - * • / (3.2) 

where A^(ft) = $!(») _ ^(*«). and *",_ j = 0(1) when the helicities of constituents! 
are antiparallel (parallel). The general solution of eq. (3.1) is 

*(*,-, Q) = i n n s f ; X»?„(x 1 )e"' 1 , " f ( Q l , (3.3) 
n=0 

where the anomalous dimensions 7» and the eigenfunctions 4>n(xi) satisfy the char­
acteristic equation 

i 

x, xa xt (-7. + ̂ ) £.(*.) = X / [ < f k ) K ( X " w ) ** t f c ) ' { 3 ' 4 ) 
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Therefore, the rest of this section is just describing the method to solve the eigen­
value problem of eq. (3.4). 

Let's introduce first the Bradsky-Lepagels method:^ 
(1) Take the basis for i.fa) as {*f x§}J° ( = 0 . 
(2) Construct the kernel matrix under the above basis by integrating 

over y,-. 
(3) Dingonalize the kernel matrix and and the eigenvalues t a and the 

eigenfunctions ^ n(x,). 
In the simple three-qi. kease, the color singlet property guarantees all three 

quarks have different quantum numbers. However, if we consider mtiHibaryon 
systems of 3n quarks,"1 then the color singlet. equirement does not guarantee that 
all Che quarks of the system have different quantum numbers. Thus, we have to 
antlsymmetrize the system according to Pauli's principle and cV„(x,) cannot be 
derived by expanding V(xj,y,-1 on a simple polynomial basis {s$2$}£^n< 

The new method which we developed7' is basically the same as the Brodsky-
Lcpage method except for replacing the basis {xf • ^ } w = 0 by {completely anti­
symmetric color-isospin-spin-index power (xfxjxj*) representations}^,,,.^ The 
index power xfxjXJJ* is analogous to the orbital dependence or nonrelattvistic 
wave functions. The new method can be extended to tnultibaryon systems of 3n 
quarks8'9! and predicts the correct distribution amplitudes of multiquaxk systems 
since the basis of the new method is a set of completely antisymmetric represen­
tations. Furthermore, it has several additional advantages. Among them, 
(1) Even in the three quark system, one can classify the baryon system by ob­
serving the isospin multiplet [e.g., nucleon and isobar belong toT = 1/2 and 3/2 
respectively). Therefore, we predict the difference of tn,Q2 behavior between the 
form factors of the nucleon (JV) and the isobar (A). 7' 
(2) Combining the results obtained by the new method for mnltiqnark systems 
with the fractional parantage technique18) which can decompose the systems into 
clusters, one can derive constraints on the effective force among baryons at short 
distances, The analysis for toy dibiiryon systems of four quarks*) and the rigorous 
constraints on the effective force between baryons derived from first principle QCD 
will be presented in section 5. 

4. GENERALIZATION TO MULTIQUARK SYSTEMS 
As we have discussed, the eigenvalue problem for the evolution formalism is 

generically given by 
X\M = 71^) , (4-1) 

where K,i and |ifo) represent the kernel, the eigenvalue [e.g., anomalous dimen­
sions) and the elgcnfunction which is given by a linear combination of the antisym­
metric representations respectively, and the integration over y, [see e.g., eq. (3.1)| 
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is understood. If we consider only the single-gluon exchange and factorize the 
color matrices, then the kernel K can be written as 

where Vy is the dynamical part obtained by calculating the one-gluon exchange di­
agrams. For simplicity (but without loss of generality), let us consider a 
sbVqu&rk case as an example of muitiquark systems. 

The six-quark system has five orthogonal color singlet states |(222}a) with 
a •*1 ,2 , . . . , 5 (see below) and the evolution kernel becomes 5 x S matrix: 

W 
where 

Capfrj) = ( (822)« |£ • ^ | { 2 2 2 ) ^ . (4.4) 

Therefore, the general formula of the evolution equation in terms of a color-singlet 
basis becomes 

The key observation to simplify the above matrix equation is that K„p can 
be written in terms of Kjy which has a well-defined permutation symmetry19! 
represented by a Young-tableau / and a certain Yamanouchi-labeJ Y; 

K°P = Z ) Z ((282)a,/y|(2a2)«Jif/ir . (4.6) 
/ r 

From the Clebsch-Gordan coefficients of the Se group, we know that only two 
Young-tableaua are possible for the abc-quark one-gluon exchange kernel and they 
are given by (see table J) 

tffej - 4 l 7 « ' ( 4- 7 t t ) 

W 
*(«)V » 5 £ £ £ «222)a,(42)y|(222)/») C o / f (t , i) Vi} . (4.76) 

* P &j 

where only one Yamanouchi-label is allowed in / = (6), and / = (42) has nine 
different Yamanoueni-labeb. 



TABLE I 

R,r Njr (56) (46) (45) [38) (35) (26) (25) (16) (15) (23) (24) (34) (14) (13) (12) 

*lflHllllU| - ^ 1 1 ' 1 1 1 1 1 I 1 1 1 1 1 1 

' f |4 3 ) |»uil l -JJ W -3 -3 -3 -3 -3 -3 -3 

XJ4!H»M!t] -JJ- D -3 -3 1 -3 1 -3 

« I « | | M M I I | - j j 8 - 2 - 3 1 - 3 

X|43||aillll| - j j j - 3 -1 J 

f(«a)|IMUl] - S 3 - 1 - 1 

K|«)|uiaiU ^=g 4 - 2 

* t « ) | i » i » l y^g 2 -2 .1 -1 1 1 

* t o » | i n u i | y ^ g - 1 1 -1 I 

-3 2 2 2 2 2 2 

1 1 •2 -2 -2 2 2 

1 -1 1 -2 1 •1 •2 

1 •1 •1 0 1 1 

-1 1 •I •1 •1 1 1 

-I •1 1 •2 1 •1 2 

\ 



As an example, let us calculate the leading anomalous dimension of the 
deuteron state. Since the total index-power is n = 0 for the leading anoma­
lous dimension and the iscepin is fixed as a singlet for the deuteron state, two 
antisymmetric representations are possible and defined by the inner-product of 
Young-tableaus1*)* 

\Ai) = |{222)>c X |(33))T x |(6)}, x |(«)) 0 , <4Ai) 

Ml) = l(222))c x l(33))T X | («)>, X | (6)) 0 , [4M) 

The eigensolutions will be linear combinations of \Ai) and \A$, 

\Ei) = coa6lAi)+sin$\A9) , (4.9a) 

\Et) = -ain8\Ai) + cos9\Ai) , (4.0ft) 

where \Bt) and |JE>s) have eigenvalues t] and eg respectively, 

Kap\E{) * ei |£f) , (4.10a) 

Kafi\El) m ea\E$) . (4.106) 

As we have pointed out, an essential simplification can be obtained fay replacing 
Ko/i with K/Y' Projecting out a certain state which has common color [C), isospin 
(T) and index-power (O) representations, we get a set of equations for spin slates: 

Kmm)a = (ei*o*a* + ea«n*«)l(6)>s , (4.1io) 

Knwm>s - (e i -« 3 )cos*sin*l«2)J% , (4.11ft) 

~ («J - <j) (n'n'f - <u^B) \{42)Y)S . (4.11c) 

t l 

* 



Since the kernel of each equation has a definite symmetry and its explicit 
representation is known (see table I), we can determine relative weighting fac­
tors among the independent equations (4.1 la),(4.1 lb) and (4.1 le) by counting the 
number of spin annihilation terms [see e.g., V i . term in eq. (3.2)] in the kernel: 

*<e)i(6»5 = TW|{6»S , (4.12o) 

1 2 *S*K 

^ T 0 l ( 4 2 ) V ) 5 , «-««0 

where TO la the eigenvalue of eq. (4.12a). Comparing eqs. (4.11) and (4.12), we 
find 

y/B 2B 8 
Ian* = — , ei - — 70 . e 3 « - TO . (4.13) 

and the only equation which we have to solve explicitly is eq. (4.12a), which has 
the symmetric kernel Jfyj, Solving eq. (4.12a),9l we find 

To - | y & = 0. (4 Ho) 

= { ^ = ±1 . (4.141) 

Therefore, the leading anomalous'dhnension for a denteron state is given by 

3 CP mm(ei,«j) = - - £ for S2 = O , (4.15a) 

- J ^F = ±1 • (4-156) 
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Using the result «f Eq, (4.15), one con calculate the asymptotic dcuteroit 
fens factor Fj(Q3)- The QCD prediction for the asymptotic Q3-behavior of the 
deuteron. reduced form factor*0! U{Q%) defined by 

MQ*} 

is given by 

FAQ7) 

Cr/20 

J M « n - « ^ i ( f c § f ) w . (,16, 

S. APPLICATION: THE EFFECTIVE FORCE BETWEEN BARYONS 

In Section 4, we have shown haw we can solve QCD evolution Equations in 
order to predict the short distance behavior of umltiquark systems using Young 
diagrammatic methods. Since the eigensaltttions obtained in this way have definite 
permutation symmetry, we can apply the Fractional parentage technique18! for the 
multibaryon system in order to relate the eigensolutions to cluster representations 
which havs physical baryon, or alternatively, "hidden-color" degrees of freedom. 

For example, if we apply this technique to the simple case of the four-
quark system under STJ(2)c,st then we find the transition matrix given by Table II 
(T = S = 0 case) which relates the symmetry hasis represented by four-quark eigen-
solutions and the physical basis represented by *ltoy"-dibaryoa and hidden-color 
degrees of freedom. From this table we can expand the distribution amplitudes of 
the physical basis in terms of eigcnsolutians: 

+ ... 

t , ^ QAiCrfp / n j % -0.06 Crffl 
+ ... 

+ ... 
(5.IJ 

where Cp = 3/4 In this case. 
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Table II. The relationship between four-quark antisymmetric 
SU{2) color representations and effective two-cluster represen­
tations (T = S = 0 case}. Isospin singlet and triplet states both 
with color singlet are denoted N and A, while color triplet state 
is represented by C. The square and curly brackets represent 
orbital (O) and spin-isospm (TS) symmetries separately. 

j4| {22} [22] {22} [221 {*} 
NN 
AA 
CC 

1 
2 

1 
2 
I 

2? 

l 
2 

1 
5 

l "75 

1 

73 
i 

75 
0 

Thus, we find that the NN, AA and CC states have completely different (J5 

evolution. As Q' goes to infinity, the NN and AA components are negligible but 
the CC components are large. In other wo'd, the dominant degrees of freedom at 
the origin of the dibaryon system at zero impact separation are bidden-color states 
rather than physical baryon states. This indicates that the physical dfbaryons have 
a repulsive core at the origin11' while the colorful hidden-color clusters behave as in 
an attractive well. In this wcy, we derive constraints an the effective force between 
two baryons.22! We discuss the results for the sbc-quark states using the realistic 
SU(3)C in the next section. 

6. DISCUSSIONS AND CONCLUSIONS 
By using a new method based on completely antisymmetric representations, 

wc have analyzed the quark distribution amplitudes $(xt,Q) in QCD in order to 
predict the short distance behavior of multiquark systems. Since the new method 
is based on permutation symmetry, we can readily classify the multiquark systems. 
In the 3-quark case, we can resolve the N and A farm factors. In the multibaryon 
system, this method is essential since it cannot be guaranteed that all quarks have 
different quantum numbers. 

We have also decomposed the multiquark systems into multibaryon physical 
components and hidden color components, and expanded each component in terms 
of the QCD eigensolutions. Through the evolution of each components we can 
derive constraints on the effective force between the clusters. Using the toy-
SU(2)c-dibaryon analysis, we find that colorless clusters tend to be repulsive but 
colorful clusters are attractive at short distances. 

The deuteron state which has the leading anomalous dimension is related 
to the NN, AA, and hidden color [CC) physical bases, for both the {TS) = (01) 
and (10) cases with Young symmetry of {33}, by the formula17! 

<fr|6]{33> = y g ties + \J-^ $&& + \Ji tec • 
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Thus the physical deuteron state, which is mostly \I>NN at large distance, 
must evolve to the îfii/33} state when the atx-quark transverse separations 
b\ < 0(1/Q) —* 0. Since this state is BOSS hidden color, the deuteron wave 
function cannot be described solely by the mcson-nucleon isobar degrees or 
freedom in this domain. The fact that the sbc-quark color singlet state inevit­

ably evolves in QCD to i dominantly 
hidden color configuration at small 
transverse separation also has impli­
cations for the form of the nucleon-
nucleon [St — 0) potential, which 
can be considered as one interaction 
component in a coupled scattering 
channel system. AH th" two nucle­
olus approach eac1 other, the system 
must do work in order to change the 
six-quark state to a dominantly hid­
den color configuration; i.e., QCD 
requires that the nucleon-nucteonpo-
tential must be repulsive at short dis­
tances [see Fig. 2 j . 2 0 ' Finally, we note 
that the evolution equation for the 
six-quark system suggests that the 
distance where this change occurs is 
in the domain where a,(Q2) most 
strongly varies. 

r(fm) 

Fig. 2. Schematic representation of the 
dcuteron wave function in QCD indicat­
ing the presence of hidden color six-quark 
components at short distances. 
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