

MASTER

New Anomaly in Axial-Vector Ward Identity*

P. H. Frampton
Department of Physics
The Ohio State University
Columbus, Ohio 43210

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Abstract

It is shown how a new type of anomaly, in addition to the Adler-Bell-Jackiw anomaly, can occur in a gauge theory with γ_5 couplings. Such an anomaly renders standard theories of quantum flavor dynamics non-renormalizable.

* Supported in part by the U.S. Department of Energy

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

One peculiar feature encountered in renormalization of a gauge theory involving γ_5 couplings is the ABJ anomaly¹ which destroys renormalizability unless it is cancelled.^{2,3} Here we exhibit a new anomaly which further undermines renormalizability and which is not, in general, cancelled by the usual restrictions.

The crucial point is that the renormalized lagrangian must itself be gauge invariant so that gauge invariance is preserved order by order in the renormalized perturbation series and unitarity is satisfied.

Consider an abnormal-parity triangle embedded in a general Feynman diagram as indicated in Fig.1. The usual procedure⁴ is first to regularize dimensionally all meson loops and define counter-terms by their $(4-n)^{-1}$ poles [here n = space-time dimensionality], then perform the Dirac trace for $n=4$ and finally regularize separately the fermion loop momentum integral by any convenient method. Such a procedure appears dangerous, especially when the abnormal-parity fermion loop is itself involved in an overlapping divergence; as a possible example, see Fig.2. That this danger is real will now be shown by a computation of the triangular vertex. Only a sufficient outline is presented; further details will be given elsewhere.⁵

Consider the triangle vertex with kinematics defined as shown in Fig.3. The full vertex $(\Gamma_{\mu\nu\lambda}^{abc})$ involves first adding the crossed diagram by

$$I_{\mu\nu\lambda}^{abc}(p_1, p_2; m_\alpha, m_\beta, m_\gamma; n) = T_{\mu\nu\lambda}^{abc}(p_1, p_2; m_\alpha, m_\beta, m_\gamma; n) + T_{\nu\gamma\lambda}^{bac}(p_2, p_1; m_\alpha, m_\beta, m_\gamma; n) \quad (1)$$

and then summing over flavors $\{\alpha, \beta, \gamma\}$ which belong to a generation g of fermions where g contains sufficient flavors to cancel the ABJ anomaly

$$\Gamma_{\mu\nu\lambda}^{abc} = \sum_{\{\alpha, \beta, \gamma\}cg} I_{\mu\nu\lambda}^{abc}(p_1, p_2; m_\alpha, m_\beta, m_\gamma; n) \quad (2)$$

Let the flavor-group matrices $T_{\alpha\beta}^a$ be understood to include any relevant coupling constant as well as sign (± 1) corresponding to right- or left-handed helicity. Then

$$T_{\mu\nu\lambda}^{abc} = T_{\alpha\beta}^a T_{\beta\gamma}^c T_{\gamma\alpha}^b t_{\mu\nu\lambda}(p_1, p_2; m_\alpha, m_\beta, m_\gamma; n) \quad (3)$$

Now, $t_{\mu\nu\lambda}$ is given by the usual Feynman rules as

$$t_{\mu\nu\lambda} = \int \frac{d^4 k}{(2\pi)^4} \frac{1}{[(k+p_2)^2 - m_\gamma^2][k^2 - m_\alpha^2][(k-p_1)^2 - m_\beta^2]}$$

$$\text{Tr}[\gamma_5(k+p_2+m_\gamma)\gamma_\nu(k+m_\alpha)\gamma_\mu(k-p_1+m_\beta)\gamma_\lambda] \quad (4)$$

Performing the Dirac trace (in 4 dimensions) and introducing Feynman parameters now gives

$$t_{\mu\nu\lambda} = \frac{8i}{(2\pi)^4} \int_0^1 dx \int_0^{1-x} dy \int \frac{d^4 k}{(k^2 + 2k \cdot Q - M^2)^3}$$

$$[T_{\delta\epsilon\zeta; \mu\nu\lambda} (k+p)_\delta k_\epsilon (k-p_1)_\zeta$$

$$+ \epsilon_{\mu\nu\lambda\alpha} (m_\alpha m_\beta (k+p)_\alpha - m_\beta m_\gamma k_\alpha + m_\gamma m_\alpha (k-p_1)_\alpha)] \quad (5)$$

where

$$Q_\mu = x p_{2\mu} - y p_{1\mu} \quad (6)$$

$$M^2 = m_\alpha^2(1-x-y) + (m_\gamma^2 - p_2^2)x + (m_\beta^2 - p_1^2)y \quad (7)$$

$$T_{\delta\epsilon\zeta,\mu\nu\lambda} = \epsilon_{\rho\delta\nu\epsilon} (g_{\rho\mu}g_{\zeta\lambda} - g_{\rho\zeta}g_{\lambda\mu} + g_{\rho\lambda}g_{\mu\zeta}) - \epsilon_{\rho\mu\zeta\lambda} (g_{\rho\delta}g_{\nu\epsilon} - g_{\rho\nu}g_{\delta\epsilon} + g_{\rho\epsilon}g_{\delta\nu}) \quad (8)$$

It is easiest to employ standard dimensional regularization formulae to perform the k -integration giving

$$t_{\mu\nu\lambda} = -\frac{1}{4\pi^2} \int \frac{dx dy}{(-Q^2 - M^2)^{3-n/2}} \left[\Gamma\left(3 - \frac{n}{2}\right) A_{\mu\nu\lambda} + (-Q^2 - M^2) \Gamma\left(2 - \frac{n}{2}\right) B_{\mu\nu\lambda} \right] \quad (9)$$

with the tensors $A_{\mu\nu\lambda}, B_{\mu\nu\lambda}$ given by

$$A_{\mu\nu\lambda} = \epsilon_{\mu\nu\lambda\alpha} (A^1 p_{1\alpha} + A^2 p_{2\alpha}) + \epsilon_{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} (A^3 p_{1\lambda} + A^4 p_{2\lambda}) + \epsilon_{\mu\lambda\alpha\beta} p_{1\alpha} p_{2\beta} (A^5 p_{1\nu} + A^6 p_{2\nu}) + \epsilon_{\nu\lambda\alpha\beta} p_{1\alpha} p_{2\beta} (A^7 p_{1\mu} + A^8 p_{2\mu}) \quad (10)$$

$$B_{\mu\nu\lambda} = \epsilon_{\mu\nu\lambda\alpha} (B^1 p_{1\alpha} + B^2 p_{2\alpha}) \quad (11)$$

where

$$A_1 = -p_1 \cdot p_2 y (1-y) (1-2x) + x(1-x) (1-y) p_2^2 - y^2 (1-y) p_1^2 + m_\alpha m_\beta y - m_\beta m_\gamma y + m_\gamma m_\alpha (y-1) \quad (12)$$

$$A_2 = -p_1 \cdot p_2 xy(1-2x) + x^2(1-x)p_2^2 - xy^2 p_1^2 + m_\alpha m_\beta (1-x) + m_\beta m_\gamma x - m_\gamma m_\alpha x \quad (13)$$

$$A_3 = -A_7 = -y(1-y) \quad (14)$$

$$A_4 = -A_8 = xy \quad (15)$$

$$A_5 = y(1-2x-y) \quad (16)$$

$$A_6 = -x(2-2x-y) \quad (17)$$

$$B_1 = (3y-1) + \frac{1}{2}(4-n)(1-y) \quad (18)$$

$$B_2 = (1-3x) + \frac{1}{2}(4-n)x \quad (19)$$

The vector and axial-vector Ward identities require contraction of $t_{\mu\nu\lambda}$ with $p_{1\mu}$, $p_{2\nu}$, q_λ respectively. Then we use

$$p_{1\mu} A_{\mu\nu\lambda} = \epsilon_{\nu\lambda\alpha\beta} p_{1\alpha} p_{2\beta} \left[x(-Q^2 - M^2) + p_1^2 y(1-x-y) + (\delta m^2)_1 \right] \quad (20)$$

$$p_{2\nu} A_{\mu\nu\lambda} = \epsilon_{\mu\lambda\alpha\beta} p_{1\alpha} p_{2\beta} \left[-y(-Q^2 - M^2) - p_2^2 x(1-x-y) + (\delta m^2)_2 \right] \quad (21)$$

$$q_\lambda A_{\mu\nu\lambda} = \epsilon_{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \left[(x+y-2)(-Q^2 - M^2) + (p_1^2 y + p_2^2 x)(1-x-y) + (\delta m^2)_3 \right] \quad (22)$$

$$(\delta m^2)_1 = x \left[m_\alpha^2 (1-x-y) + m_\gamma^2 x + m_\beta^2 y \right] + m_\alpha m_\beta (1-x) + m_\beta m_\gamma x - m_\gamma m_\alpha x \quad (23)$$

$$(\delta m^2)_2 = -y \left[m_\alpha^2 (1-x-y) + m_\gamma^2 x + m_\beta^2 y \right] + m_\alpha m_\beta y - m_\beta m_\gamma y + m_\gamma m_\alpha (y-1) \quad (24)$$

$$(\delta m^2)_3 = (x+y-2) \left[m_\alpha^2 (1-x-y) + m_\gamma^2 x + m_\beta^2 y \right] + m_\alpha m_\beta (1-x-y) - m_\beta m_\gamma y + m_\gamma m_\alpha (y-1) \quad (25)$$

The corresponding results for $B_{\mu\nu\lambda}$ can be read off immediately from Eqs. 11, 18 and 19.

Now we systematically expand the right-hand-side of the Ward identities in $(4-n)$ using

$$\Gamma(3 - \frac{n}{2}) = 1 + \frac{1}{2}(4-n)\Gamma'(1) + \dots \quad (26)$$

$$\Gamma(2 - \frac{n}{2}) = 2(4-n)^{-1} + \Gamma'(1) + \dots \quad (27)$$

$$\frac{1}{(-Q^2 - M^2)^{2-n/2}} = 1 - \frac{1}{2}(4-n) \ln(-Q^2 - M^2) + \frac{1}{8}(4-n)^2 \ln^2(-Q^2 - M^2) + \dots \quad (28)$$

We insist that the vector Ward identities be maintained since they involve the electromagnetic current conservation. Thus we write

$$t'_{\mu\nu\lambda} = t_{\mu\nu\lambda} + c_{\mu\nu\lambda} \quad (29)$$

and define the contact term $c_{\mu\nu\lambda}$ such that

$$p_{1\mu} t'_{\mu\nu\lambda} = 0 \quad (30)$$

$$p_{2\nu} t'_{\mu\nu\lambda} = 0 \quad (31)$$

A sufficiently general decomposition is

$$c_{\mu\nu\lambda} = \epsilon_{\mu\nu\lambda\alpha} (\gamma^1 p_{1\alpha} + \gamma^2 p_{2\alpha}) \quad (32)$$

and the functions γ^1, γ^2 are provided as power series in $(4-n)$ by the requirements of Eqs. 30, 31.

We may then compute the (unique) result for the axial-vector Ward identity. After straightforward algebra, the result is

$$q_\lambda t'_{\mu\nu\lambda} = \frac{1}{4\pi^2} \epsilon_{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} [\alpha_0 + \alpha_1 (4-n) + \dots] \quad (33)$$

with

$$\alpha_0 = 1 \quad (34)$$

This is the ABJ anomaly, and is cancelled in Eq.2 above provided that

$$\text{Tr}[T^c \{T^a, T^b\}_+] = 0 \quad (35)$$

which is the usual cancellation condition.²

More interesting is

$$\alpha_1 = \frac{1}{2} \Gamma'(1) \alpha_0 - \int_0^1 dx \int_0^{1-x} dy \ln(-Q^2 - M^2) \quad (36)$$

The first term in Eq.36 is harmless, but the second term makes the flavor sum in Eq.2 intractable, in general, because M^2 depends on $\{\alpha, \beta, \gamma\}$ through the fermion masses in Eq.7. This term depends on the energies p_1^2, p_2^2, q^2 and hence a necessary and sufficient condition for its cancellation (which must hold for all energies) is degeneracy of $m_\alpha, m_\beta, m_\gamma$ as would be the case in an abelian theory without non-diagonal matrix elements.

Note that although we have chosen to employ dimensional regularization, the result is expected to be independent of this choice.

Also, the new anomaly occurs in an individual Feynman diagram (or two diagrams if we count the crossed diagram) and inter-diagrammatic cancellations are possible. Because 3-loop diagrams are involved, checking this explicitly is technically difficult.

To conclude and summarise, let us note the two possibilities for the standard $SU(2) \times U(1)$ model of leptons⁶ extended to quarks with the GIM mechanism⁷ and further extended to six flavors to accommodate CP violation⁸ and experiment.^{9,10}

The first possibility is that the new anomaly is cancelled between different Feynman diagrams at fixed order in perturbation theory. That such miraculous cancellation occur might be suggested by the fact that in a temperature bath at sufficiently high T the symmetry is restored, the fermions are mass-degenerate (massless) and the new anomaly is absent. But this requires both that all quark and lepton masses arise from the Higgs mechanism and that the cancellation be demonstrated.

The alternative possibility is that the cancellation simply does not occur. Then either the quark-lepton generations such as (e, u, d) , (μ, c, s) , (τ, t, b) are mass-degenerate--such degeneracy is certainly ruled out physically--or the usual quantum flavor dynamics is shown to be non-renormalizable.

References.

1. S.L. Adler, Phys. Rev. 177, 2426 (1969), J.S. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969), See also: J. Steinberger, Phys. Rev. 76, 1180 (1949), J. Schwinger, Phys. Rev. 82, 664 (1951).
2. C. Bouchiat, J. Iliopoulos and Ph. Meyer, Phys. Letters 38B, 519 (1972), D.J. Gross and R. Jackiw, Phys. Rev. D 6, 477 (1972), H. Georgi and S.L. Glashow, Phys. Rev. D 6, 429 (1972).
3. For a recent review, see e.g. P.H. Frampton, Lectures on Gauge Field Theories, Part Three: Renormalization, Ohio State University preprint COO-1545-245 (1978).
4. W.A. Bardeen, Proceedings of the Sixteenth International Conference on High Energy Physics, Fermilab (1972) Vol. 2 P. 295.
5. P.H. Frampton, in preparation.
6. S. Weinberg, Phys. Rev. Letters 19, 1264 (1967), A. Salam, in Elementary Particle Theory, edited by N. Svartholm, Almquist and Forlag, Stockholm (1968) p. 367.
7. S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285 (1970).
8. M. Kobayashi and K. Maskawa, Prog. Theor. Phys. (Kyoto) 49, 652 (1973).
9. M.L. Perl et al., Phys. Rev. Letters 35, 1489 (1975); Phys. Letters 63B, 466 (1976); Phys. Letters 70B, 487 (1977).
10. S.W. Herb et al., Phys. Rev. Letters 39, 252 (1977); Ch. Berger et al., Phys. Letters 76B, 243 (1978); C.W. Darden et al., Phys. Letters 76B, 246 (1978).

Figure Captions

Fig. 1 General Feynman diagram containing triangle anomaly.

Fig. 2 Specific example of overlapping divergence.

Fig. 3 Kinematics for triangle diagram.

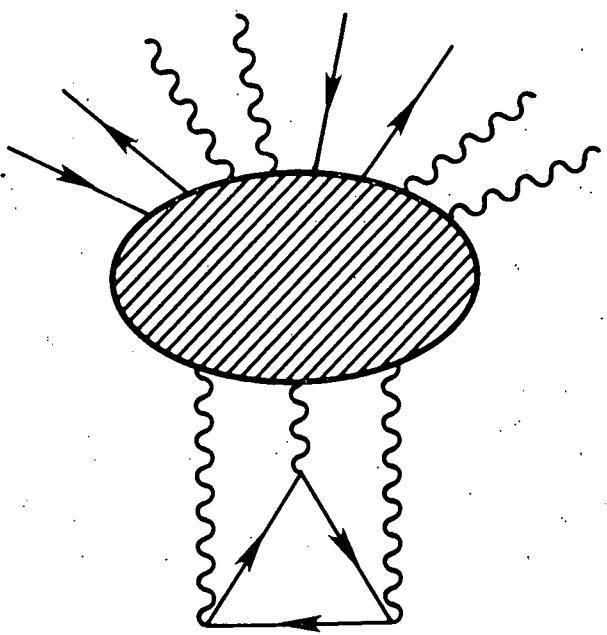


Fig. 1

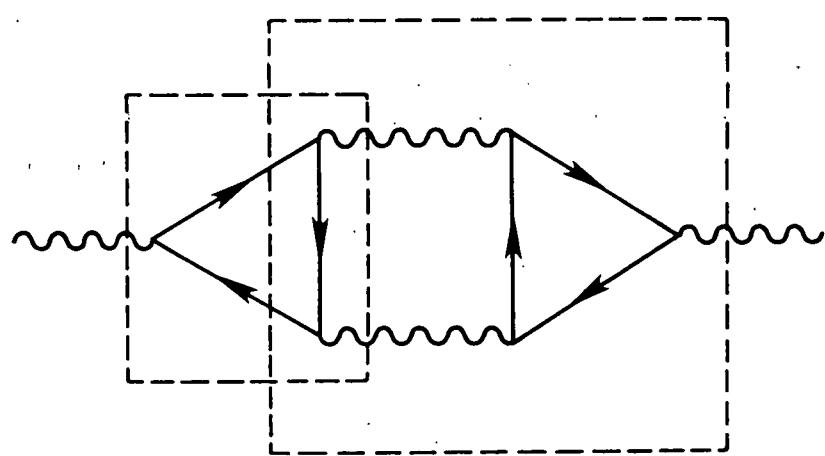


Fig. 2

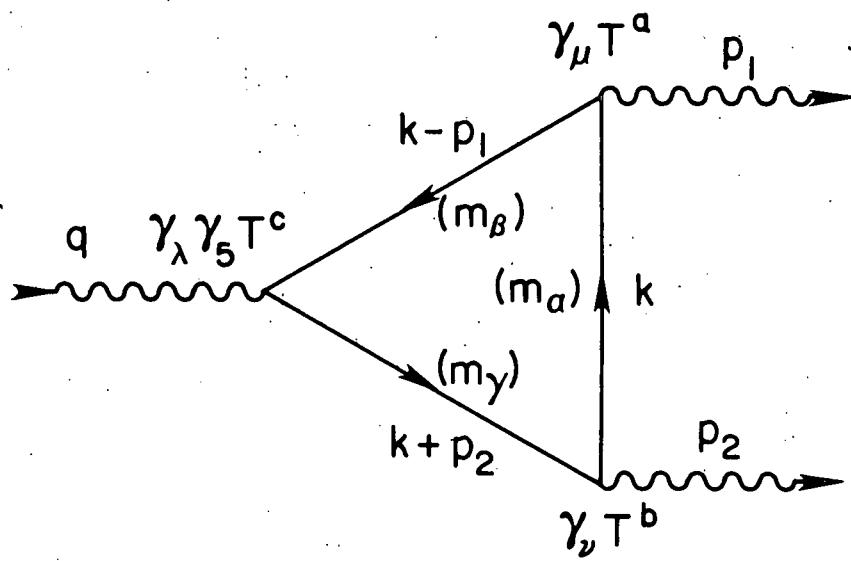


Fig. 3