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Abstract

It is'shown how a new type of anomaly, in addition to the

Adler-Bell-Jackiw anomaly, can occur in a gauge theory wtth Y5

couplings.  Such an anbmaly renders standard theories of quantum

flavor dynamics non-renormalizable.
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Ond:'peculiar feature encountered in renormalization of a gauge theory

involving Y5 couplings is the ABJ anomalyl which destroys renormalizability

23
unless it is cancelled. ' Here we exhibit a new anomaly which further

undermines renormalizability and which is not, in general, cancelled by the

usual restrictions.

The crucial point is that the renormalized lagrangian must itself be

gauge invariant so that gauge invariance is preserved order bycorder in

the renormalized perturbation series and unitarity is satisfied.

Consider an abnormal-parity triangle embedded in a general Feynman

4
diagram as indicated in Fig.1.  The usual procedure  is first to regularize

-1
dimensionally all meson loops and define counter-terms by their (4-n)

poles [here  n = space-time dimensionality], then perform the Dirac trace

for n=4 and finally regularize separately the femion loop momentum integral

by any converient method.  Such a procedure appears dangerous, especially

when the abnormal-parity fermion loop is itself involved in an overlapping

divergence; as a possible example, see Fig.2.  That this danger is real will

now be shown by a computation of the triangular vertex.  Only a sufficient

outline is presented; further details will be given elsewhere.5

Consider the triangle vertex with kinematics defined as shown in

Fig.3.  The full vertex (I bc) involves first adding the crossed·diagram by
klvk

abc abc
Ifvk(Pl,P2;ma'roB,InY;Il) = T,1vk(pl'P2;ma,InB,mY;n)

bac
+ Tvyk(I>2'plima'mB,my;n)                   (1)

and then summing over flavors {a,B,y} which belong to a generation g of ·

fermions where g contains sufficient flavors to cancel  the ABJ anomaly
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abcr
BVA =                   IRVA(Pl,·P2;ma,13'my;n) . (2)

abc

{"B,y}cg

Let the flavor-group matrices T  be understood to include any

relevant coupling constant as well as sign (El) corresponding to right-or

1eft-handed helicity.  Then

abc acb
T    =T   T T t.   (p .D :m m ;n) (3)

B vk CO         By         71        A V A         1         2 -    a'm p,     Y

Now, t is given by the usual Feynman rules as                                   «
11 VA

4F d k              1

AVA - J  (2·rr)4 [(k +P2)2-m ][k2 -m ][(k-pl)2 -m ]

Tr[Y5(R +02 +my) Yv(% +ma) YX.(li - 01 +mB) Yll (4)

Performing the Dirac trace (in 4 dimensions)  and introducing Feynman

parameters now gives

1   1-x
8i  r    r r d k

4

tpvk
= 4 jdx jdy j 2 2 3

(2TT)     0          0               (k   +2 k•Q-M  )

[T6£C'*VA(k +P).6ks(k - Pl) C

+ € (m  m   (k + p)Bvka a B a - nbrayka +myrna(k- pl)a) 1                             (
5)

where
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(6)
QB   =   xP 2X  -  TP 1%

2     2M - ma(1 - x - y) + G< - P >' + (.; - pi>y                           (7)

T6€C'Bvx = sp 6vgC pl1 Ck - gpc AB +gplg'J,C 

-  e      (g       -g  g   +g  g ) (8)PFCA  Pogve   pv 66   pe Ov

It is easiest to employ standard dimensional regularization formulae

to perform the k-integration giving

t,1 VA   =    -2    
dx dy F / n\ 2   2  /   n\    3
2   2 3-n/2 Lr(3 - 2)Axvi + (-Q  -M) r(2 -·2)Bl.vx_1(9)4Tr       (-Q   -M )

with the tensors A   .B    given by11 vk' Bvk

2    \
A =€11\Ika Alplct +A P2a/  +  £110Bplap20<A3Plk +A4p21 

11 VA

   £p,Ac©PlaP2B(A5Piv +A6P2 v) te 0 0          (10)
vkc©* la*- 20  Alplt' +ABP2F 

<Blpla +82p2a                               (11)B    = €
11 VX 11\Ila\

where

Al  =  -  Pl 'P2Y(1-y)(1-2x) tx(1-x)(1-y)p2 -y2(1-y)p2

(12)

+   ma"hy  -  mB™YY  + myma Cy- 1)
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2 t 2 2A2 = -pl'P2xy(1-2x) +x2(1-x) 2 1 xy pl

(13)

+m m  (1-x) +m m x-m m x
a B By  ya

A3 = -A7 =
-Y(1-y) (14)

A4 = -A8 - xy (15)

A5 =
y(1-2x-y) (16)

A6 =
-x(2-2x-y) (17)

Bi =  (3y-1) t#(4-n)(1-y) (18)

82 = (1-3x) t (4-n)x (19)

The vector and axial-vector Ward identities require contraction of

t    with p respectively.  Then we use
11 VX 10' Piv'  X

F .2 2 2
P].BARVA = avxapplap2BLX(-Q -M ) +ply(1-x-y) +(6m2)1                    (20)

2 2  2
P2 ,Afvx = EXACBPLJP2 3 -y(-Q -M ) -P2ic(1-x-y) +(6m2)2                    (21)

2  2    /2    2
qAAX vx =  611MC©PlaP2B (x-ly-2)(-Q  -M  ) +(plypp2x (1-x-y) +(6m2)3  (22)

2     2
(6m2)1 = x| m2(1-x-y) +myx +mBy 

(23)

+m m  (1-x) +m m x-m m x
a B By    Ya
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(6m2)2= IYEm (1-x-y) tm ]c+4yl + mamby-m m vtmm (yil) (24)BY Ya
\

(6m2)3 = (x-ly-2) m2(1-x-y) tm ]c tm y +mam (r-x-y) -m m v tm m (y-1)  (25)Y Ya

The corresponding results for B can be read off immediately from Eqs.11,18 and 19.
B vA

Now we systematically expand the right-hand-side of the Ward identities in

(4-n)    us ing

I(3-  ) = 1 +*(4-n)r'(1) + (26)

-1

I'(2 .. ) = 2(4-n)   +r'(1) +----- . (27)

1

= 1 -*(4-n) en (-Q2-M2) + (4.n) 20912 (-Q2-M2) + (28)
2  2 2-n/2

(-Q -M )

We insist that the vector Ward identities be maintained since they involve

the electromagnetic current conservation. Thus we write

'                                                      (29)t      =t     +c
#1 VX 11 VA PVX

and define the contact term c such that
B VA

plFt,Bvk =0 (30)

P2vt'Bvx = O
(31)

A sufficiently general decomposition.is

/1 2    )
C'1\,A - afvky(Y Plot + 9 P20:)                                  (32)

1   2
and the functions y ,y  are provided as power series in (4-n) by the

requirements of Eqs.30,31.
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We may then dompute the (unique) result for the axial-vector Ward

identity.  After straightforward algebra, the result is

1
at' =- [ao +al (4-n) + --- 1 (33)
'X 11Vk 2     6X vjBP laP 2/

4TT

with

a=1 .(34)0

This is the ABJ anomaly, and is cancelled in Eq.2 above provided that

Tr[Tc{Ta,Tb) l =
0 (35)

2
which is the usual cancellation condition,.

Mete interesting is

al =   *r'(1)ao - 2  dx  dy en(-Q2-M2)                             (36)

The first term in Eq.36 is harmless, but the second term makes the flavor

sum in.Eq.2 intrattable, in general, because M2 depends on {a, B,y} through

the ferrnion masses in Eq.7.  This term depends on the energies p , p , q2 and

hence a necessary and sufficient condition for its cancellation (which must
,

hold for all energies) is degeneracy of m 'm ,m  as would be the case in an

abelian theory without non-diagonal matrix elements.

Note that although we have chosen to employ dimensional regularization, the

result is expect to be independent of this choice.

Also, the new anomaly occurs in an individual Feynman diagram (or two

diagrami if we count the crossed diagram) and inter-diagrammatic cancellatiods

dre possible.  Because 3-loop diagrams are involved, checking this explicitly

is technically difficult.
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To conclude and summarise, let us note the two possibilities for the

standard SU(2)  x U(1) model of leptons6 extended rto quarks with the GIM

7                                                                                              8
mechanism  and further extended to six flavors to accommodate CP violation

9.10
and experiment.

The first possibility is that the new anomaly is cancelled between

different Feynman diagrams at fixed order in perturbation theory. That such

miraculous cancellation occur might be suggested by the fact that in a temperature

bath at sufficiently high T the symmetry is restored, the fermions are mass-

degenerate (massless) and the new anomaly is absent.  But this requires both

that all quark and lepton masses arise from the Higgs mechanism and that the

cancellation be demonstrated.

The,alternative possibility is that the cancellation simply does not occur.

Then either the quark-lepton.generations such as (e,u,d), (B,c,s), (T,t,b) are

mass-degenerate--such degeneracy is certainly ruled out physically--or the usual

quantum flavor dynamics is shown to be non-renormalizable.
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Figure Captions                                                                '

Fig. 1  General Feynman diagram containing triangle anomaly.

Fig. 2  Specific example of overlapping divergence.

Fig. 3  Kinematics for triangle diagram.

\
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