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Ibstract

The concept of boson-fermion symmetries and supersymmetries is
applied to odd-odd nuclei.

The approach to even-even and odd-even nuclei based on nuclear
symmetries in IBM/IBFM has received much attention in recent years [ARI76,
ARI78, ARI79,BAL81,BAL83,IACT79,IAC80].

In this repcort we discuss the extension of this concept to odd-odd
nuclei. Odd-cdd nuclei provide richer and more camplex structure, and the
residual proton-neutron interaction appears explicitly in the boson-fermion
interaction.

0dd—odd nuclei are described as mixed system of bosons and fermions
(proton and neutron) by the Hamiltcnian

H=HB+HF+VBF. (1)

Here, l-lB is identical to the IBM Hamiltonian, HF includes ane-fermion
and fermion-fermion interaction terms and VBF is the boson-fermion inte-
raction. The camputer code for diagonalizing Hamiltonian (1) for odd-odd
nuclei has been recently written [VRE84]. As a residual proton-neutron
force the surface delta-, spin- and tensor-interaction were included. Canm-
putations have been performed for same particular cases [BRA84,VRE84,PAA84,
PAARBS,MEY85] . .

Particularly, the Hamiltonian (1) was diagonalized in the case of a
proton particle jp and a neutron particle jn coupled to cthe SU(3) core.
The camputed energy pattern exhibits two regular low-lying bands based on
the states of angular mamenta J = jp +3j and J= ljp - jn} [PAR84, PAABS, :
PAAB5a ]. In camparison to the rotational model, these two bands are the %
truncated analogs of the Gallagher-Moszkowski bands based on the Nilsson $
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» =3  [PAAB4] . It was shown [PAA85a] that the wave functions
of the P° 0D “states of J=j +j_ band can br Drought to the form of
the approximate SUSY wave function of the analogs of Nilsson states
in odd-A nuclei BUN84 |.The energies of this band follow the J(J+1) energy
rule, with the same marent of inertia as tor the boson core.

The band structure in odd-odd nuclei nas been also explored in the

case of 0(6) boson core [BRA84].
Here we discuss boson-fermion system for odd-odd nuclei using

the concept of dynamical symmetry and supersymmetry. The dimension of the
fermionic subspace is ren,+ n,, where nq(ny) is the total number of campo-
nents of the angular m?nenta of the unpaired protons (neutrons). One can
construct the (n;+ ny)¢ generators of the group Un(n,+ n,), where the sub-
script F reminds that a fermionic realization is employed. In general,
the group structure of the Hamiltonian is

UB(6) x Up(n +n)) . (2)

There is a second, alternative approach. One could assume that the
unpaired neutron and the unpaired proton form a quasibound state. The total
number of camponents of the angular mamenta of this quasi-bound state is
given by nn. Then we introduce a pair ot new bosonic creatign and annihila-
tion operators associa with each level of this subsystem, cp +Cyr 1,J =

states ¢ _=j
p

1,2,...,nn,. The (ngn,)° operators Gpj = c} ¢y constitute a bosonic realiza-
tion of the U(n;n,)algebra. The group s{ructure of the corresponding Hamilto-
nian is

(3)

where the appropriate representation of U(n.n,) is the fundamental repre-
sentation (1,0,0,...,0).

To find analytical solutions to the eigenvalue problem of the either
Hamiltonian, associated with (2) or (3), the key idea is the use of the isam~
crphisms between groups in the two chains, one starting with Ug(6) and the
other aone starting with either Ur(n,+n,) or UF(n,n,). (This idea is along
the liye of approach to boson-fermion symmetries for odd-even nuclei, which
was introduced in ref. I.ACBO] ¢) Groups obtained by joining two chains
transform simultaneously bosons into bosons and fermions into fermions.

Sare special solutions associated with the group structure (3) have
been studied by two of us [HUBB4, PAABS ,HUBBSa] .

In the recent work [BAL85] we give a detailed study of various level
schemes for odd-odd nuclei obtained by analytical solutions of Hamiltonian
associated with either (2) or (3). The isamorphisms between the two group
chains are elaborated for the case where the unpaired nucleons occupy same
or all of levels with 3 = 1/2,3/2,5/2 and the analytical expressions for
the corresponding energy eigenvalues are given.

In a further step, such solutions are embedded into a supergroup and
new chains arising fram such embedding are given.

Now we look for correlations in the spectra of the four neighboring
nuclei: the even-even nucleus with (2,37),the odd-even nucleus with (2Z,A+1),
the even-odd nucleus with (Z2+1,A+1), and the odd-odd nucleus with (Z+1,A+2}.
Such correlations arise if the Hamiltonian associated with (2) has a super-
group structure U(6/n;+ n,). Consequently, the properties of these four
nuclei could be related by the symmetry operations of this supergroup. In
particular, we have obtained analytical expressions for the eigenvalues of
this Hamiltonian in terms of the eigenvalues of the Casimir operators of
chaiﬁiFof supergroups starting with U(6/n,+ n,) and terminating with
Spin~ " (3) [BALBS] - Such a situation was termed a dynamical supersymmetry
in the previous investigations of odd-even nuclei [BALSI ].



The concept of dynamical supersymmetries was successfully used to
connect the properties of even-even nuclei with the neighboring odd-even nu-
clei. If we want to study, say, the correlation between an even-even nucleus
and the next, odd-proton nucleus, the first decawposition in the supergroup
chain is

u(6/n,+ n,) o U(6/n;) x Uln,) (4)
ne can then continue the chain with the decanpositions of the supergroup
U(6/n_ ) as was done in ref. [BAL8L].

The appropriate representation of the group U(n,; in the case of an
odd-proton nucleus is a singlet, hence the existence of the group U(n,) in
the chain does not affect any of the quantum numbers. A similar situation
arises in the case of corrélations between an even-even nucleus and the

neighboring odd-neutron nucleus.
In this case we start with, what we call, the canonical decamposition

U(6/n,+ n,)> U (6)x U (n,+ n,) >0, (6) x Up(ng) x Up(ny), (5)
and continue the chains in various possible forms [BAL85]. The difference to
the case of boson-fermion dynamical symmetries is that several nuclei are
now placed in the same supermultiplet. Consequently, parameters appearing in
the energy formulae take the same values for all nuclei in the same super-
multiplet.
As an illustration of dynamical supersymmetry with canonical decampo-
sition we construct a supermultiplet starting fram the even-even nucleus
194pt . In this region the proton shell is dominated by j = 3/2 and the neu-
tron shell by j = 1/2,3/2,5/2. Hence n_ =4 and n_ = 12. The relevant re-
presentation of the appropriate supergroup U(6/16) is the one with N'= 7. Va-
rious nuclei are placed in the tensor product representations as follows:

U(6/16)=Ug (6) x UL(16) > Uy(6) x ulg"’ 4) x UP(,\)) (12)

|7y = ([7].{0}) = ([7],10},{0})
194,
+ ([6],(1}) = ([6].(1},{0}) + ([6].{0},{1})
195}\u 195Pt
(5,07 = (s].?y, 0 +([5], (1}, (N +([5], 10}, 11%))
196Hg* 196, , 196pt*
T (6)

In the above expression asterisk over a given symbol denotes the two—quasipar-
ticle states in that nucleus. Eq. (6)is illustrated below
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Asterisk * denotes two—quasiparticle states in cven-cven and ** denotes
three—quasiparticle states in odd-even nuclei. Dashed line separates nuclei
belonging to the same representation of the direct product growy:

UB(6) xU (n+n ).

A new p0551b111ty of supersymmetry arises when n
case, using fermionic creation and annihilation operators it is possible to
construct the generaiors of the symplectic group Usp (2n). Consequently a
supergroup chain starting with decamposition into the orthosymplectic group

U(6/2n) @ Osp (6/2n) (7)
might be relevant in such cases. The properties of orthosymplectic supergroups
are studied in refs. (gAR79 (BALB2]. The appealing aspect of this case is that
it emphasizeSthe residual force between the unpaired neutiron and the unpaired
proton, while retaining the supersymmetry scheme. The main problem, however,
is that this group decamposition does not conserve the boson number N.

However, there is an intermediate situation with the decamposition
(8)

= n, =n. In this

U(6/2n)> SUB(6) x SUF(Zn)DSUB(G) X SpF(2n)
The representation of Sp(2n) contains the n-dimensional fundamental represen-—
tation (1,0,0,...,0,0) of SU(n), which we denote a and its conjugate re-
presentation (1,1,1,...,1,0) which we denote & .

In general, the proper bases to describe nuclei with cone unpaired
nucleon, would be given by linear cambinations of the bases of SU(n):

|iso > =coso |u> +sino |8 > (9)

isotope > =-sing |o> +cos © [O> (10)
where |a > denotes the basis of the representation a and {a@> denotes
that of @ ., Here we consider the case 0 = 0, but the results can easily
be generalized for the finite © case. (The choice = 0 would be physi-
cally transparent if, say, the unpaired neutrons are particles and the unpair-
ed protons are holes, or vice versa, since it is reasonable to caonsider
conjugate representations far holes.)

A good place to lock for such a supersymmetry is again the Pt -Au re-
gion. In this region the odd neutron and proton occupy mostly levels with
j =1/2,3/2,5/2. In this case we have n, = n, = n = 12. The resulting
supersymmetry '9’25 then a U(6/24) structure. Again if we start fram the even-
even nucleus 17pt with N'= 7 and 0(6) core, we employ the tensor product
representation
U(6/24)DUB(6) X UF(24):>UB(6) X SpF(24) S UL (6)x SUF(12)

which gives the corresponding energy formula | BAL8S . A typical spectrmm of
the low-lying states in Sg(24) scheme is shown in flg 1 and campared to the

(11)
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A capparison of the Sp(24) spectrum with the experimental spectra of
1562y and 198py seems encouraging. This is particularly interesting since
the previous attemnpts to describe such nuclei using the canonical chain could
not account for the cbserved ground state spin [BAI,,BAR84]. Fxperimental stu-
dies of the odd-odd nuclei is very desirable to decide whether or not the Sp
(24) chain is applicable in this region.

As another illustrative application of supergymretry extension to
odd-odd nucleil we consider spectrum of odd-odd SQCu3 if one assumes L

that the eve.ni-even nucleus Zn3 4 odd-even nucleus 3 29Cu3 4 and odd-
odd nucleus gQCu33 correspogg to the members of the same ©" super-
multiplet. In a simplified presentation with odd proton and odd

neutron 'restricted only to j = 3/2 configurations and with U_(5) boson
core, the resulting energy formula [BAL85] gives the spectrum presg.nted in
fig.2.

We note that this spectrum is obtained using the supersymmetry
relation to the neighboring nuclei ©3Cu and ®%2n, without adjusting any
T parameter to 62Cu.

. , We note that the
5',5"‘_._31» T i A idea of symmetry and super-
G- R -~ symmetry was further extend-
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e of us [HUB8S,HUBB5a, PAA8S].
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
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