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Nodal methods have been developed and implemented for the numerical
solution of the discrete-ordinates neutron transport equat:ion.l’2
Numerical testing of these methods and comparison of their results to
those obtained by conventional methods have established the high accu-
racy of nodal methods.l 2 Furthermore, it has been suggested that the
linear-linear approximation is the most computationally efficient, prac-
tical nodal approximation.2 Indeed, this claim has been substantiated
by comparing the accuracy in the solution, and the CPU time required to
achieve convergence to that solution by several nodal approximations, as

well as the diamond difference scheme.?-v3

Two types of linear-linear nodal methods have been developed in the
literature: analytic linear-linear (NLL) methods in which the
"transverse-leakage" terms are devied analytically,lv2 and approximate
linear-linear (PLL) methods in which these terms are approximated.z'4 In
spite of their higher accuracy, NLL methods result in very complicated
discrete-variable equations that exhibit a high degree of coupling, thus
requiring special solution algorithms. On the other hand, the =sacri-
ficed accuracy in PLL methods is compensated for by the simple
discrete-variable equations and diamond difference-like  solution
algorithm.3‘5 In this Summary we outline the development of an NLL
nodal method, the Bilinear method,® which can be written in a weighted
diamond difference (WDD) form with one spatial weiéht per dimension
which is analytically derived, rather than preassigned in an ad hoc

fashion.

First, the domain of the problem 1is divided into computational

cells, or nodes, which in two-dimensional Cartesian geometry are closed



rectangles whose edges are parallel to the x- and y-axes. Zeroth and
first order (i.e., up to bilinear) spatial moments of the discrete-
ordinates transport equation are taken vyielding expressions for the
local balance of the neutron flux moments over each node. These expres-
sions involve zeroth, first and bilinear nodal moments, as well as
zeroth and first order transverse moments (evaluated at node surfaces)
of the angular flux. [Nodal and transverse moments of the flux have
been defined previously; see Refs. 1 or 3.] Additional equations relat-
ing these quantities are needed in order to close the set of discrete-

variable equations. In conventional WDD schemes, equations of the form

(l+a ) (l-a ) (1)

Y- b (+a) + 5 Y (-a)
are assumed where ¢n and ¢n (+a) are the nodal moment and the y-moment
evaluated at the node x-surfaces, of the angular flux in the nth angular
direction, respectively, and a is a preassipgned x-direction spatial
weight associated with direction n. An equation similar to Eq. (1), but
with y-dependent quantities on the RHS is also used. The flux moments
appearing in Eq. (1) represent only the zeroth moment of the flux, since

higher order moments are not commonly incorporated in WDD methods.

In order to derive the WDD form, we take the zeroth x- and the
zeroth y-moments (0,0) of the transport equation, then separately take

its first x- and zeroth y-moments (1,0) to obtain



(2)
n
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U
n
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2a
respectively, where Yn is the y-leakage of the nth angular flux, and
¢n,x,0 (*a) are the transverse-averaged nth angular flux evaluated at x
= *a, Next, we transverse-average the transport equation with respect
to y and integrate it exactly using an integrating factor of the form:
exp (ax/pn). We expand the integrating factor in a Legendre polynomial

of order one cnly in the integral involving the leakage and source

moments, to obtain

1!
2a n,x,0(+a)~e ¢n,x,0(—a)

n [eaa/un . —oa/p

(4
Lo [Sn,o,o"Yn,o,o] * B [Sn,l,o"Yn,l,o]

The expansion coefficients of the integrating factor, En 0 and En 1> are

given by
E . =— sinh(e )
n,0 € pnhten) o
n
(3)
E =3 sh(e ) - L sinh(e ) = ga/,
n,1 < coshte, € ‘n ’ €n T 9B, -

Finally, we use Eqs. (2) and (3) to eliminate the RHS of Eq. (&),

to obtain



¢n,(0,m) +3 an¢n,(l,m) - 2 n,
. (6)
(1~ )
2

+ ¥ (-a), m=0,11,

for m = 0, where

l-(l/en)tanh(en) )
*n T tanh(en) - (3/en)[l—(l/en)tanh(en)] ’ ‘n aTa/#n )

The m = 1 case can be derived similarly by taking the (1,0) and (1,1)
moments of the transport equation in the first step, and by taking its
first y-transverse moment then applying the integrating factor and

proceeding in a similar fashion as above.

Equation (6) is a generalization of the WDD equation, Eq. (1), to
include a linear spatial component of the flux in addition to the con-
stant component present in conventional WDD schemes. Moreover, it is an
analytic LL nodal method, a2ven though it has a simpler form than exist-
ing PLL schemes, 3% which permits using a WDD algorithm to solwve the
discrete-variable equations. Also, it requires the storage of only one
parameter, e, per node, per dimension, per distinct discrete-ordinate,
compared to a larger storage requirement even in current PLL methods.-
It is worth mnoting that the simplification of the final form of NLL
methods presented here is possible only because we have retained the

bilinear flux moment which has been ignored by previous authors.2-4

In order to verify the derivation of our method we implemented our

equations in a computer program, and used it to solve a one-group



sion of the well-logging problem3 on various meshes, with an 5-6 EQN
type angular quadrature, and a 10°° pointwise relative convergence cri-

terion. The quantity of interest in this problem is the response of the

detector located in the steel region3 8 cm above the source. The aver-

age flux in the detector as calculated by the Bilinear method is com-

pared in Table 1 to that calculated by other nodal methods,’ as well as

to the hz-extrapolated value.’/ The comparison indicates the correctness

and very high accuracy of our Bilinear nodal method.

We have shown that a highly accurate NLL nodal scheme, the Bilinear
Nodal method, for the two-dimensional neutron transport equation can be

written in a simple, single spatial-weight, WDD form, so that the fimal

equations can be solved via a WDD algorithm. This result can be gen-

eralized to three-dimensional geometries, and higher order spatial

approximations (e.g., quadratic-quadratic). Users familiar only with

WDD methods now have easy access to the high accuracy and computational

efficiency of NLL nodal methods through the method described here.
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Table 1. Comparison of the detector response in the well-logging
problem3 as calculated by several nodal methods.
The h2- extrapolated value is 1.7170.7 Except for
the Bilinear Method results, all entries were obtained

from Ref. 6.
each value is given in parentheses.

The % error [= 100x(¢-1.717)/1.717] for

Node

Size

8 cm

4 cm

2 cm

CL Method
[Ref. 1]

1.0826
(-36.9)

1.5709
(-8.51)

1.6795
(-2.2)

CQ Method
[Ref. 1]

1.3434
(-21.8)

1.6030
(-6.6)

1.6831
(-2.0)

LN Method BL Method
[Ref. 4]}

1.6475 1.4517
(-4.0) (-15.5)
1.7326 1.6840
(.9 (-1.9)
1.7188 1.7137
(.15 (-.2)




