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Abstract

We consider the longitudinal instabilities.of a
bunched beam subject to a non-harmonic RF potential.
Assuming the unperturbed bunch to ba describad by a
Maxwell-Boltzmann distribution, our treatment is based
upon the linearized Vlasov squation. The formalism
developed is exact, and in particular, correctly de-
scribes the effect of the dependence on smplitude of
the synchrotron oscillation frequency. We discuss Eh‘
fast blowup limit, and extend Wang and Pellegrini's
treatment cof the microwave instability to include the
case of a non-Gausaian bunch. Next, within the short
bunch approximation, we derive the dispersion relation
describing the Landau damping of the coupled bunch
modes, resulting from the use of a Landau cavity.

Equations of Motion

The azimuthal position of a circulating particle
relative to a stationary observer is denoted by angle

8, and & 1s the instantaneous value of the angular
velocity. Relative to a synchronous particle of
energy E, and angular velocity uw,, the azimuthal
position is ¢ = @ - Wyt and the energy is e=E-E,.
Assuming the energy E, to be large compared to the
rest maes, the esquations of ng:ion describing the
synchrotron oscillationa are:

$o - olot/Eo )
. .ﬂo
€ === [Vpp(®) + v (00)] . (2

Here, @ is the particle's electric charge, a the
momentum compaction, Vpy(4) the RF potential, and
v1(9,t) the induced po:cn:ial resulting from the
impedance of the ring.

In the absence of the induced potential, the
equations of motion are derived from the Hamiltonian:

B =teieu e, @
with

0 (9 = 22 2  ar vepten) oW
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Uoder the canonical transformation® from p,9 to
action-angle variables J,8, the element of phase space
area is invariant, dpd4 = dJd9, and the transformed
Hamiltonian is a function only of the actiocn variable

J--i-;s‘pdo . 5

The new equations of wotion are Jeoand 8- wg(D),
vhere w,(J) = dH,/dJ is the angular synchrotron
oncilh:iou frequancy. The azimuthal position ¢ is
determined as a function of J and 9 by

o 9,03,0) : (6)
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wvith periodic ¢, satisfying #5(J, 6+2%)= ¢4(J,9).

To describe the effect of the induced potential,
we introduce the distribution ¥(p,¢,t), normalized to
the total number N of particles in the ring,

J dpde ¥(p,4,8) = Ne , ¢))
and the line charge density
A(e,t) = IdP*(Pnht) . (8)

Our goal is to determine the conditions required for
the line charge density to exhibit a coherent oscilla-

tion with frequency £, i.e.
A(#,t) = p_(¢) + p(e)exp(-iac), (9)

corresponding to an induced potential of tha form
v (0,8) =V (9) + Vi(O)cxp(-l.Q:). Ve shall ignore the

ciu indcpcndcn: potential well distortion, Vy(¢),

and concentrate our attention upon the coharent term,
which is related to the ring impedance Z,(w) and the
Fourier transform of the perturbed line charge density

P by

"1(’) .- E Py zn(nuo-l-n)cxp(inﬂ. (10)

The Viasov .qua'tiou for the distribution ¢ is

2{«» [w,H] = 0, (11

where [¥,H] is the Poisson~Bracket between ¥ and the
full Hamiltonian:

e ow  $(5®)
- =2 .2 ! 7, (4" Jexp(~-12t). (12)
B=H(J) + Pl {d’ 1 (#' Jexp .

We look for coharently oscillating solutiona of Eq.
(11), having the form,

¥ = 9,00 + ¥, Oexp(-1at) , a3

and we shall aesums the oquililgri_ distribution
¥4{J) to be Maxwell-Boltzmann:

(D) = A exp(=2(D/d?) . (14)

In terms of Eh‘ v.ri.bl!l p and ¢, clearly, ¥o(p,¢)
« exp(-p /20‘ Ug(9)/0%), showing that ¢ rapresents
the one-standard deviation spread in revolution fre-
quency among particles in the bunch. From Eq. (2) it
follows that ¢ is related to the energy spread o
via

“Q
= To—- LA (15)

The constant A in Eq. (14) is determined from the
normalization condition of Eq. (7).

To procesd we now insert Eqs. (12) and (13) into
the Vlasov Eq. (11), and linearize the rasult dropping
terms second-order in ¥4, obtaining
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3#1
-13#1 + ﬂ‘(J) 7.l x(J,9), (16)
where x(J,0) = x(J,0+2%) is defined by
o, eu 3, (3,9
x(J3,0) = % *;(J)Vi“o(.!. 8)] — an
° .

and v"’(J) - d#old.l. The periodic solution _o! Eq. (16)

can be written:

L]
o . exp(10(J)6) . -
¥ 0" Ty (Texp(ZFI(T IQIZ:'X(J'B dexp( 1Q2fgg')
vhere wa have defined

QJ) = ﬂ/u.(J) . (19)

Eq. (18) has the important property that it exprasses
the perturbed distribution ¥;(J,0) in terss of the
Fourier coefficients pn of the line charge demsity,
Since, on the other hand, the line charge density is
derivable from the distribution according to Eq. (8),
ons is led to the following infinite set of linear
equations determining the Fourier coefficients of the
perturbed line charge density:

LI nz_ TonPs (20)
where the matrix T,, is given by
zZ - ¥ (D , ,
Trte 2 | Sy Ty |40 eri-s)
Qn

W j doexp(ind (J,0+0')-1m¢ (J,9)) ,
-2%

- 3 -
with 2wx ocuo/zno and zn zn(nu°+n).

The coherent frequency {I is determined by the con-
dition that the matrix T have an eigenvelue equal to
unity, and the coherent perturbation to the line charge
densicy is the corresponding eigenvector. A reprasen~
tation of T in terms of synchrotron modes follows upon
defining the coefficients Fy(n,J) by

axp(ing, (J.o)) - Z F (n,J)exp(110) , (22)
P-.
and applying Eq. (22) to Eq. (21), yiclding
¥ (-,J)r (n,J)
(23)

.- 2!1:—- Zn fdJ#'(J) W

This expansion is useful when one synchrotron mods dom—
inates, howaver, when many synchrotron modes contribute

the representation of Eq. (21) is preferrable.

Microwave Iastability

¥a cam nov extend Wemg and Pellegrini's® treatment
of the microwave instability to a Non~Gaussian bunch
iateracting with a non-harmonic RF potential. The
aicrowave imstability- is characterized by coherent
uedes vwith growth ates large compered to the

S

synchrotron oscillation fraquency, driven by perturb-
ing 2lectromagnetic fields having wavelengths short
compared to the bunch length. Let L denote the rmas
bunch length measured in radisns. We assume a broad-
band high frequency impedance satisfying zn- zﬂo ’

for |n-ng|<8, whera n>>8>>1/L. The bandwidth 4

is of the order of the inverse range of the wake
field.

Assuming ImQ(J)>>1 in Eq. (21), we may expand the
function ¢4,(J,8+6') in a Taylor expansion about 8'=0.
Then performing the change of integration variables:
(J,8) + ($,4) and 8" + w(J)E, we derive the fol-
lowing asymptotic representation for T,,, valid for
ng = A<m,nln, + A2

-1.1 z

T -~
™ owE a(o /R, )2 "

(-]n—’;) B(m-n) , (24)

where

(x) = | EdEexp(=E2/2 + 1xE) . (25)
-]

and B(n) is the normalized Fourier coefficient of the
unperturbed bunch density, po(é#)= exp(=Uy(#)/c),
i.e.

8(n) [den (#) = [ddo (#exp(-1n) . (26)

In Eq. (24) we hava used Eq, (15) to express ¢ in
terms of 0g, and we have denoted the average bunch

current by IL,.

When all eigenvalues of T,, have magnitude less
than unity, there can be no solution to Eq. (20), and
this fact allows the derivation of a stability crite-
rion. Since B(m=n) is sherply pesked about m=n, the
width of the peak being of the order i/1<<A, the larg-
est eigenvelues of T,, should be well approximated
by extending Eq. (24) to the entire range -=<a,n<e=,
Within this approximation, the threshold of the insta-
bility is determined by the largest eigenvalue, An,,,

of the matrix B(a-n). Using the fact that [h(x)|< 1

for Im x > o, wa 1ee that there exists no coherent
frequency with Imiddo as long as

oL A x

3 @n
2%E a(c /E )

When ths bunch length is short compared to the circum=-
ference of the ring, L<<!, we find

2% - Ipuk
I -

A - (23)
WX Jasexp(-u (/0D To

Thersfore, in Eq. (27), wa replace IOA“ by the
peak curgent Ipgek of the bunch, ob:aining the
Boussard™ stab: licy criterion, derived originaliy on
the basis of an intuitive physical argument. Boussard
noted that vhen the perturbiag electromagnetic fields
have wavalengths short compared to the bunch length,
the bunch looks liks a coasting beam with current

Ipeak*
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landau Cavit .

A landau cavity®s7 operatas at a multiple of
the fundamental RF fregquency, with its voltage and
phase chosen such that for small amplitude oscilla-
tions the RF 'po:antial energy” defined in Eq. (4)
becomes Uy(¢) = be'/4, with b>0. The use of such a
cavity results in a_non-Gaussian bunch density,

Pol )= exp(-U°(¢)/az). and an increase of the rus
bunch length. Hence, the use of the landau cavity re-
duces the peak current and allows the threshold
(expressad in terms of average currant) of the micro-
wave ‘instability to be increased. Also, because of
the nonlinear restoring force, the Landau cavity pro-
ducee a large spread of synchrotron oscillation fra-
quencies within the bunch. This provides stability,
via Landau danping, against coupled bunch instabili-~
ties.

Neglecting the effect of the ring's impedance,
the synchrotron oscillations in the presence of the
Landau cavity are described by [see Eq. (6)]:

$,(3,8) = r en(2K8/7) , (29)

vhere ¢n(x) is the Jacobi elliptic function of modulus
k = 1//Z, and K = K(1/v¥2) is the elliptic iategral of
the first kind. The amplitudq r is related to the
action-variable by J = 2K/D r>/3x, and tha distribu-
tion in oscillation lmglitud. of the unperturbed bunch
is v () = A exp(—rl'/r° . The normslization conatant
A is determined by Eq. (7), and r: = 4g%/b. Since the

equation of motion is nonlinear, the synchrotron
frequency varies with oscillation amplitude,

r b
w (r) = du X vith 8w, ==z Vb 1 . (30)

Lat us suppose the wavelengths of the perturbing
elactromagnetic fields are long compared to the bunch
length. We use the synchrotron mode expanaion of Eq.
(23), and asawming nr<<{l, we approximate

Fu(n,J) - inriu ,» (u#o) i

Cvith 7/¢, = YZ K cosh[(u~1/2)%] for U odd, and & = o

for u even., When Eq. (31) is used, the matrix T be-
comes of rank one, and we can derive the dispersion
ralation :

2
4.30u"el_ Z . ()
1= —°—-"—'—§f—-— 6~lasau) . @2
ZIEO(Au')
«“ith
Ld 6 -x“
~1 xe
16 (g) = fdx-ﬂ_ . (33)
o x“=q

The neglsct in Eq. (32) of synchrotron modes with
lu')l in justified due to the rapid decrease of ¢,
i Luovednlug ve 1 the cnne of M equally spaced
bunchas each containing N/M particles, wa define the
effective impedance Zg ¢e(R) corresponding to fixad
multibunch mode number s = 0,1,2.40,H=1 by Zq£e(Q) =
qu(nu°+ﬂ), where the sua is restricted to n = Mj+s
(with ] integer), and we consider the sum to be cut
oFfFf at 0 *1/Le The average currunt in the eing in
denoted L, = New,/2%, In Fig. 1, we plot Im G{q)
against RaG(q) at threshold (Imq'= 0+) and above (Imq

= 0.l)

As evidence that the neglect of higher-order
synchrotron modes is justified in the derivation of
Eq. (32), consider the limit [8[>>4u,. In this
case, when all higher-order modes are retained, one
obtains

2 iael_Z
8 ‘aveff s (38)

w x
o [-]

' which has the form of a superposition of ccasting beam

dispersion relations. One can check that in the same

~ 1imit, Eq. (32) agreas with Eq. (34) to 1% accuracy.
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