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Abatract

We consider the longitudinal Instabilities.of a
bunched beam subject to a non-hamonic RF potential.
Assuming the unperturbed bunch to ba described by a
Maxwall-Boltzmann distribution, our treatment is baaed
upon the linearized Vlasov aquation. The formalism
developed is exact, and in particular, correctly de-
scribes the effect of the dependence'on amplitude of
the synchrotron oscillation frequency. Ha discuss the
fast blowup limit, and extend Hang and Pellegrini's
treatment of the microwave instability to Include the
casa of a non-Gaussian bunch. Naxt, within the short
bunch approximation, we derive the dispersion relation
describing the Landau damping of the coupled bunch
nodes, resulting from the use of a Landau cavity.

Equation* of Motion

The azimuthal position of a circulating particle
relative to a stationary obaerver ia denoted by angle

9, and 9 is tha instantaneous value of the angular
velocity. Relative to a synchronous particle of
energy Eg and angular velocity u0, the azimuthal
position is + • 9 - Hot and the energy Is t-E-Eg.
Assuming tha energy Eg to be large compared to the
rest mass, the equations of notion describing the
synchrotron oscillations are:

• " "

(2)

Here, e is the particle's electric charge, a the
momentum compaction, V^yC*) the RF potential, and
Vj.(t>t) the induced potential resulting fro* the
impedance of the ring.

In the absence of tha induced potential, the
aquations of motion are derived from the Hamiltonian:

with

V*">

(3)

(4)

Under tha canonical transformation from p,+ to
action-angle variables J,6, the element of phase space
area is Invariant, dpd* - dJdS, and the transformed
Hamiltonian Is a function only of the action variable

!*»• (3)

The new equations of motion are J • o and 8 »
where «a(J) - dHg/dJ ia the angular synchrotron
oscillation frequency. The azimuthal position + is
determined as a function of J and. 9 by

• - •gCJi*) (6)
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with periodic •„ satisfying +0(J,e+2ir)- to(J,e).

To describe the effect of the induced potential,
we Introduce the distribution Wp,*,t), normalized to
the total number N of particles in the ring,

/ dpd+ iKp.+.t) - He

and the line charge density

(7)

(8)

Our goal is to determine the conditions required for
the line charge density to exhibit a coherent oscilla-
tion with frequency fl, i.e.

p(*)exP(-i0t), (9)

corresponding to an Induced potential of the form
V1(*,t) - VQ(*) + Vt(*)exp<-lQt). Ue shall ignore the
time independent potential wall dlatortion, Vo(+),
and concentrate our attention upon the coherent tent,
which ia related to the ring impedance Z^u) and the
Fourier transform of the perturbed line charge density
Pn by

Pn Zn(nuo+IJ)exp(in*). (10)

The Vlasov equation for the distribution • i s

| * + [*,H1 - 0 , (11)

where [f,H] i s the Poiason-Bracket between • and the
full Hamiltonian:

•.<•'.•>
H - H (J)0

d*' V (••)exp(-mt). (12)

He look for coherently oscillating solutions of Eq.
(11), having the form,*

• - *0(J) + •1(J,e)exp(-iflt) , (13)

and we shall assume the equilibrium distribution
*0(J) to ba Maxvell-Boltzmann:5

•0(J) - A axp(-Ho(J)/o2) . (U)

In terms of the variables p and 4, clearly, +0(p,*)
« exp(-p /2a - tto(+)/o ), showing that a represents
the one-standard deviation spread in revolution fre-
quency among particles in the bunch. From Eq. (2) it
follows that a ia related to the energy apraad ac

via

The constant A in Eq. (14) is determined from the
normalization condition of Eq. (7).

To proceed we now insert Eqs. (12) and (13) into
the Vlasov Eq. (11), and linearize the result dropping
terms second-order in ti» obtaining
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_J

Ti + u s ( J ) IT" X(J.»).

where x(J,8) - x(J.8+2») Is defined by

(16)

(17)

and ro(.J) - d*o/dj.
can ba written:

Tha pariodle solution of Eq. (16)

x( J-8I

where we have defined

Q(J) » O/i* (J) (19)

Eq. (18) haa tha important property that it axpraasas
tha parturbad distribution #i(J,9) in tana* of tha
Fourier coaffielanta Pn of tha U n a charge danaity.
Sine*, on tha othar hand, tha U n a charge density is
darivabla from tha distribution according to Gq. (8),
ona is lad to tha following infinite sac of linear
aquations dateralning tha Fourier coefficients of the
perturbed U n a charge density:

synchrotron oscillation frequency, driven by perturb-
ing alectromagnetlc fields having wavelengtha short
compared to the bunch length. Let L denote the rrai
bunch length measured in radiana. We aaaume a broad-
band high frequency impedance satisfying Z » Z ,

n I!Q
for |n-n<,|<4, where n o»A»l/L. the bandwidth A
is of the order of the inverse range of the wake
field.

Assuming ImQ(J)»l in Eq. (21), we nay expand the
function to(J,<H-6') in a Taylor expansion about 8'-0.
Then performing the change of integration variables:

(J,9) + (•,•) and a1 • u,(J)5, we derive the fol-
lowing asymptotic representation for T ^ , valid for
no - 4<m,n<n0 + A:

-lei

where

h(x) - J CdCexp(-C2/2 -

h Ufrg) B(m-n) , (24)
I of

(25)

and 0(n) is tha normalized Fourier coefficient of the
unperturbed bunch density, p o(+)' exp(-Do(^)/o ) ,
I.e.

P " " n : -

where the matrix Is given by

•0(J)

l-exp(2»iQ(J)) _

d6*xp(in*o(j,e+e')-im*o(j,8))

(20)

/ de'axp(-iQ(J)e«)

(21)

with 2*K - and Zn(nuo+0).

The eoharant frequency SI is determined by the con-
dition that the matrix T have an eigenvalue equal to
unity, and the coherent perturbation to the line charge
density is the corresponding eigenvector. A represen-
tation of T in term* of synchrotron modes follows upon
defining the coefficients Fu(n,J) by

exp(in*0(J,9)) I rB(n,J)exp(iM9) (22)

(23)

This axpanaloa Is useful when one synchrotron mod* dom-
inates, however, when many synchrotron modes contribute
the representation of Eq. (21) is preferrable.

and applying Eq. (22) to Eq. (21), yielding

F*(m,J)F,i(n,J)

Mtcr—ava Instability

.1Ha cam now enema Wamg end Pellegrini1 •' treatment
of tha microwave instability to a Nsn-Csuaslan bunch
lataracting with a non-harmonic IF potential. The
microwave instability-is characterized by coherent
memee with growth vatea large compared to the

8(n) - Jd*po(*)exp(-ln*) (26)

In Eq. (24) we hevs used Eq. (IS) to express a in
terms of oE, and we have denoted the average bunch
currant by Ig.

When all algenvaluaa of T ^ have magnitude less
than unity, there can be no solution to Eq. (20), and
this fact allows the derivation of a stability crite-
rion. Since B(m-n) is sharply peaked about a m , the
width of the peak being of the order i/L«A, the larg-
est eigenvaluea of !,„ should be well approximated
by extending Eq. (24) to the entire range —<a,n<-.
Within this approximation, the threshold of the insta-
bility is determined by the largest eigenvalue, A M X ,

of the matrix P(m-n). Using the fact that |h(x) |_< 1

for b x ^ °> "• '"• Chat there exists no coherant
frequency with Isu»o aa long aa

< 1 . (27)

When the bunch length is short compared to ehe circum-
ference of the ring, L « l , we find

(28)

Therefore, in Eq. (27), wa raplacs I0
Am«x ^v the

peak current Ipaak ot ch" b u n c h» obtaining the
Boussard stability criterion, derived originally on
tha baala of an intuitive physical arguaent. Bouasard
noted that when the perturbing electromagnetic fields
have wavelength* short compared to the bunch length,
tha bunch looks like a coaating beam with current

Ipeak*
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Landau Cavity

A Landau cavlty*>1 operate* at a Multiple of
Che fundamental RF frequency, with its voltage and
phase chosen such that for small amplitude oscilla-
tions the RF "potential energy" defined in Eq. (4)
becomes U<j(*) - bf*/4, with b>0. The use of such a
cavity results in a non-Gaussian bunch density,
po(f)« exp(-U0(+)/a ), and an increase of the m s
bunch length. Hence, the use of the Landau cavity re-
duces Che peak current and allows the threshold
(expressed in terms of average current) of Che micro-
wave 'instability to be increased* Also, because of
the nonlinear restoring force, the Landau cavity pro-
duces a large spread of synchrotron oscillation fre-
quencies within the bunch. This provides stability,
via Landau damping, against coupled bunch instabili-
ties.

Neglecting the effect of the ring's impedance,
the synchrotron oscillations in the presence of the
Landau cavity are described by [see Eq. (6)]:

•0<J,8) r cn(2K8/») (29)

where cn(x) is the Jacobi elliptic function of modulus
1c - 1//JT end K - K(l//2) is the elliptic integral of
the first kind. The amplitude .r is related to the
action-variable by J • 2K/b" r /3r, and t\* distribu-
tion in oscillation amplitude of the unperturbed bunch
is • (r) - A exp(-r /r ). The normalization constant
A is determined by Eq. (7), and r£ - 4a2/b. Since the
equation of motion is nonlinear, the synchrotron
frequency varies with oscillation amplitude,

As evidence that tha naglect of higher-order
synchrotron modes la justified In the derivation af
Eq. (32), consider Che limit |fl|»4u1. In this
case, when all higher-order modes are retained, one
obtains

C—)
o

lari.v2.ff
(34)

' which has the form of a superposition of coasting beam
dispersion relations. One can check that in the same
limit, Eq. (32) agrees with Eq. (34) to U accuracy.
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o
(30) Im G

Let us suppose the wavelengths of the perturbing
electromagnetic fields are long compared to the bunch
length. We use the synchrotron mode expansion of Eq.
(23), and asswing nr«l, we approximate

Fw(n,J) lnr« (31)

with ir/«u - /In eosh[(u-l/2)*J for u odd, and ^ - o
for u even. When Eq. (31) is used, the matrix T be-
comes of rank one, and we can derive the dispersion
relation

4.30w;eI Z.ff(fl)

2 » E O ( A M I >
2

with

1 C"x(q)

(32)

(33)

The neglect in Eq. (32) of synchrotron modes with
||i|>l Is justified due to tha rapid decrease of •„
fm I in! running u, [n tint cmio <>f M equally spaced
bunches each containing N/H particles, we define the
effective impedance Z,ff(fl) corresponding to fixed
multlbunch mode number s - 0,l,2...,M-l by Z,ff(a) -
£n2(n*0+a), where the sum is restricted to n - Mj+s
(with J integer), and we consider the sum to be cut
•tEf «t n *l/L. Tha «v«rnuo currant In th» tinu la
denoted I,T - «ewo/2«. In Fig. 1, we plot Im G(q)
against HeG(q) at threshold (Imq - 0*) and above (Imq
- 0.1).

Fig. 1. Stability boundaries.



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.


