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Introduction

The idea of crab crossing, which has been proposed to allow a non-zero crossing angle
without a loss of luminosity, is based on avoiding the excitation of éynchro—betatron
resonances in a storage ring collider.! The validity of the crab crossing scheme relies
on the cancellation of kick effects at a crab cavity by those at another crab cavity
located on the other side of the interaction point (IP). For the effects to be cancelled
exactly, the energy change due to the beam-beam interaction must also be cancelled
by these two cavities. We can show, however, that the effect of the energy change
is not cancelled exactly if the dispersion, 7, and its derivative with respect to s, 7/,
are non-zero at the crab cavities. Consequently, the crab crossing scheme may induce
synchro-betatron resonances with, and even without, the beam-beam effect. .We show
an exaniple of stopbands due to synchro-betatron resonances when only crab kicks are
taken into account. We also present a stability criterior. that can be used to determine

tolerable values of n and 7/, or the crossing angle, when beam-beam effects are included.

Matrix Analysis

The first step is to calculate the transformation matrix of a crab kick for non-zero
dispersion at the crab cavity. Here we assume that the crossing is done in the horizontal
blane. We define the longitudinal coordinate, 7, by the longitudinal position relative
] g » Ty p

to the center of the bunch, and the horizontal displacement of a particle, 2, measured
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from the beam axis. Their canonical conjugates are the horizontal angle, 2/, and the
relative energy deviation, 6, respectively. We restrict ourselves to the case where the
kick is linear in these coordinates. The transformation matrix for zero dispersion is

already known: it is given by
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with 8, = /B%B., ¢ is half the crab crossing angle, B; and f. are the beta functions

at the IP and at the crab cavity, respectively. The non-zero (4,1)element of the matrix
K is essential to ensure symplecticity.? The emergence of this term may be understood
as follows: symplecticity means that the equations of motion can be derived from a
Hamiltonian(say, H).

b _ oM _ ‘
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Therefore,
H=azr+- . ‘ (4)
Then, the equation of motion of energy is
a5 _ o _
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When there is non-zero dispersion, the betatron motion and the synchrotron motion
are coupled. The transformation matrix from the pure transverse (#,z’) and the pure

longitudinal (7,8) coordinates to the mixed coordinate (z,z’,7,6) is®
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The transformation matrix of a crab kick for non-zero dispersion, T, is then given by

T1 = EKEMI. ‘ (7)



The explicit form is
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The transformation matrix from the crab cavity(say, #1) to the IP, Ry, is given by
0 B 0 0
-L 0 00
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‘ 0 0 10 (9)
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where the phase advance between crab cavity #1 and the IP is /2. Here, we have
assumed that the Twiss parameter « is zero at both the crab cavity and the IP for
simplicity. (This assumption is satisfied in Ritson’s design of a crab crossing scheme
that will be described later.) Similarly, the transformation matrix from the IP to the
second crab cavity on the other side of the IP, where Twiss parameters are mirror

symmetrical to those at crab cavity #1 with respect to the IP, is given by
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The transformation matrix of a kick at crab cavity #2 is
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where we have assumed(as is usually the case) that the dispersion at crab cavity #2 is
equal to that at crab cavity #1, while its derivative changes its sign.
The transformation matrix from crab cavity #2 to crab cavity #1 through the rest

of the ring is
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where ‘ )
par = 27(Qy - 5)
with the horizontal tune Qg, ¢21 = 27Q, with the synchrotron tune @, «, is the

(13)

momentum compaction factor, and 0 = 2—”0Qi where C is the circumference. In the
above formulation, we have neglected the synchrotron phase advance between crab
cavities, which is smaller than that of the rest of the ring by a factor of ~ Q,/(2Q).
Now, we have all the transformation matrixes for the whole ring excluding the effect
of the beam-beam interaction(denoted BBI). The effect of the BBI cannot be written as
a simple transformation matrix'since it includes higher-order nonlinear forces. waever,

it can be expressed by an inhomogeneous equation as
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where F' is the beam-beam kick of a particle integrated over the incoming bunch.

Let us conceptually divide the ring into two parts: the first part goes from crab
cavity #1 to #2 including their kicks, and the second part includes the rest of the ring.
This is schematically shown in Fig. 1. The first part is expressed by

Tz X RQ x BBI x R] X T1 (15)
Namely,
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Figure 1: Schematic configuration of the ring with crab cavities.

It looks complicated, but reduces to a simple form if we insert 7 = 1’ = 0 into the
above equation:
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"T'he effect of the crab kicks is cancelled, and the energy change due to the BBI disap-
pears. As a matter of fact, if both n and n’ at crab cavity #2 are reversed in sign and
equal in magnitude to those at crab cavity #1, we obtain the same result as above. This
explains the physical origin of the remnant of crab kick effects. Namely, in order for the
kick effects generated by the two cavities to cancel each other, it is essential that the
physical coordinates of a particle,  and 7, are transformed to —« and 7 (when the BBI
is neglected) as the particle advances {rom crab cavity #1 to #2. The decoupled pure

coordinates, £ and 7, are transformed to —& and 7. Thus, the physical coordinates, =

5



and 7, can transform as required only when 7 and 7’ both change sign at the two crab
cavitics (see Eq.(6)).

Synchro-betatron Resonances Induced by Crab Kicks

The transformation (16) suggests that synchro-betatron resonances may be excited
even without the beam-beam interaction(F' = 0). The stability of motion can be exam-
ined by calculating eigenvalues of the total transformation matrix in the ring, A x C. If
ﬁl1e absolute value of an eigenvalue is greater than one, the particle motion is unstable.
Figure 2 shows an example of the stopband with a crossing half-angle of 20 mrad as a
function of n at the crab cavities and the fractional part of the horizontal tune, §Q,.
The parameters used are summarized in Table 1. They are pertially taken from Ritson’s
design of an IP with crab crossing.* Arbitrarily, n’ has been set to zero. Actually, the
stopband has only a weak dependence on 7/, since n’ changes its sign at the two cavities
and therefore its effect is nearly cancelled.

Table 1. Parameters of the sample crab crossing design after Ritson.
Circumference, C' (m) 2200
Bunch length, o, (cm) - 1.0
Beta function at IP S} (m) 0.4
Beta function at the crab cavities, A, (m) 19
Emittance, €, (nm-rad) 100
Crab crossing half-angle, ¢ (mrad) 20
Synchrotron tune, @, 0.040
Momentum compaction factor, a, 0.00115

We can see the stopbands at tunes

§Q. ~ 0, (18)
§Q, ~ 0.5, (19)
5@1““@)3 ~ 0. (20)

Since we assume that a crab kick is linear in z and 7, only the linear resonance

Qs — Qs = 0 appears. In reality, a crab kick may include nonlinear terms in z and
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Stopband due to Crab Kicks
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igure 2: Stopband due to synchro-betatron resonances excited by crab kicks only.



7, so nonlinear resonances may also be excited. With these parameters, the unstable
region spreads out over the entire tune range and has a weak tune dependence when 7
becomes larger than ~ 17 m. A similar stopband pattern is observed in the analysis of
the mode-coupling beam instability due to a localized impedance,®® where the change
of stopband pattern is explained by the cause of instability changing from a resonance

to a mode-coupling instability.

Beam-beam Effects and Tolerances

Next, let us consider the effects of the beam-beam interaction. The changes in 7 and
6 arising from the BBI (see Eq.(16)) are a source of synchro-betatrcn resonance. Let
us compare these longitudinal coordinate changes with that due to a non-zero crossing

angle without the crab scheme.” The energy change due to the crossing angle 2¢ is
A = Fsinep. ' (21)

In the present case with the crab scheme, the energy change is much smaller than
F'sin ¢, since g-sing < 1. Therefore, the 7 change is likely to give the main contri-
bution to synchro-betatron resonances. Otherwise, the effects will be negligible. The
7 change, 1’ I cos psin ¢, is equivalent to an energy change of E%F cos ¢ sin . Thus,
the effective crossing angle that gives the same strength of synchro-betatron resonance

as produced by the crossing angle ¢ without a crab scheme, is

'’
SiN ey s R Fcoscpsin ©, (22)
which may be approximated by
'
Pess R =P (23)

The maximum tolerasle crossing angle that will excite weak enough synchro-betatron

resonances is given by
*

i (24)

20,
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~where o7} is the rms horizontal beam size at the IP and o, is the rms bunch length. The
condition (24) expresses the situatiun where two beams are still well overlapping, so
that the crossing angle may not be well defined for particles whose orbits have angular
divergence from the betatron oscillation. If we insert Eq. (23) into Eq. (24), we obtain

a tolerance for the dispersion times its derivative at a crab cavity or alternatively, for



the crossing angle when the dispersion and its clope are given:

o ol '
' < 5;—7 (25)

With the parameters in Table 1, this criterion becomes numerically

nm' < 1.27 m, | (26)
Conclusions

The present analysis in terms of a matrix formulation can predict only linear synchro-
betatron resonances, as shown in Fig. 2, when the effects of crab kicks are considered
without the beam-beam interaction. In reality, however, the intrinsic nonlinearity of
the electromagnetic field in crab cavities will induce nonlinear resonances as well. This
nonlinearity may be enhanced by various effects: not only by errors in the crab cavity
performance, but also by dynamic effects such as a beam entering a crab cavity off
axis. The latter may be another source of synchro-betatron resonances by itself, just
as in the case of non-zero dispersion. So far, most tolerance studies for a crab crossing
scheme have been done in terms of errors in crab cavity performance. Further work on

the beam dynamics effects may also be needed.
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