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Introduction

The idea of crab crossing, which has been proposed to allow a non-zero crossing angle

without a loss of luminosity, is based on avoiding the excitation of synchro-betatron

resonances in a storage ring collider. 1 The validity of the crab crossing scheme relies

on the cancellation of kick effects at a crab cavity by those at another crab cavity

located on the other side of the interaction point (IP). For the effects to be cancelled

exactly, the energy change due to the beam-beam interaction must also be cancelled

by these two cavities. We can show, however, that the effect of the energy change

is not cancelled exactly if the dispersion, 71, and its derivative with respect to s, r]',

a,re non-zero at the crab cavities. Consequently, the crab crossing scheme may induce

synchro-betatron resonances with, and even without, the beam-beam effect. We show

an exan@e of stopbands due to synchro-betatron resonances when only crab kicks are

taken into account. We also present a stability criterion that can be used to determine

tolerable values of 77and r]', or the crossing angle, when beam,beam effects are included.

Matrix Analysis

The first step is to calculate the transformation matrix of a crab kick for non-zero

dispersion at the crab cavity. Here we assume that the crossing is done in the horizontal

plane. We define the longitudinal coordinate, r, by the longitudinal position relative

• to the center of the bunch, and the horizontal displacement of a particle, x, measured
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from the beam axis. Their canonical conjugates are the horizontal angle, x t, and the

relative energy deviation, 6, respectively. We restrict ourselves to the case where the

kick is linear in these coordinates. The transformation matrix for zero dispersion is

already known' it is given by

x' 0 1 a 0 ' z t

r = 0 0 1 0 r (1) .

5 afterakick a 0 0 1 6 before a kick

-K

where tan qv

a- /_r (2)

with _ - __¢?_ _p is half the crab crossing angle,/_ and /_ are the beta functions
at the IP and at the crab cavity, respectively. The non-zero (4,1)element of the matrix

K is essential to ensure symplecticity. 2 The emergence of this term may be understood

as follows' symplecticity means that the equations of motion can be derived from a

Hamiltonian(say, 7-/).
dx' 07"t

d--s- Ox - aT (3)

Therefore,

7-I= azr +.... (4)

Then, the equation of motion of energy is

d6 O_
- = ax +.... (5)ds Or

When "lhere is non-zero dispersion, the betatron motion and the synchrotron motion

are coupled. The transformation matrix from the pure transverse (S:,z') and the pure

longitudinal (., 6) coordinates to the mixed coordinate (x,z', r, 6)is a

z I 0 1 0 r/' x'
"-- .t

r -,rl' r_ 1 o _- (6)
6 0 0 0 1

a

-E

The transformation matrix of a crab kick for non-zero dispersion, T1, is then given by

T_ = EKE -1. (7)



The explicit form is

1 - aT] 0 0 -aT]2

-2a71' 1 + a_ a -a_T]'
T1 = (8)

arlr/ -a_ 2 1 - aT? 0

a 0 0 l+ar/

The transformation matrix from the crab cavity(say, _:1) to the lP, R1, is given by

l0
1 0 0 0

R1 = e_ (9)0 0 1 0

0 0 0 1

where the l)hase advance between crab cavity #1 and the lP is 7r/2. tiere, we have

assumed that the Twiss parameter a is zero at both the crab cavity and tt!e IP for

simplicity. (2'his assumption is satisfied in Ritson's design of a crab crossing scheme

that will be described later.) Similarly, the transformation matrix fl'om the IP to tile

second crab cavity on the other side of the IP, where Twiss parameters are mirror

symmetrical to those at crab cavity #1 with respect to the IP, is given by

l0 /
_1!_ 0 0 0

R2 = _r (10)0 0 1 0

0 0 0 1

The transformation matrix of a kick at crab cavity #2 is

Ila"°°a' lT2 = 2a71_ 1 + arI a aTl_'
-a_T?' --arl2 1 - arI 0 (1 1)

a 0 0 l+ar/

where we have assumed(as is usually the case) that the dispersion at, crab cavity #2 is

equal to that at crab cavity #1, while its derivative changes its sign.

. The transformation matrix from crab cavity #2 to crab cavity #1 through the rest

of the riIlg is

. COS/121 _c sin l.t,l 0 0

- _ cos #21 0 0
A = (12)

0 0 cos _b21 -_ sin 4'21

0 0 f_ sin (_21 COS @21
otp



where
1

,_, = 2_(G-- _) (13)

with the horizontal tune Q., ¢2a = 27rQs with the synchrotron tune Qs, av is the

momentum compaction factor, and _/ = _ where C is the circumference. In theC

above formulation, we have neglected the synchrotron phase advance between crab ",

cavities, which is smMler than that of the rest of the ring by a factor of _ Qs/(2@:).

Now, we have ali the transformation matrixes for the whole ring excluding the effect

of the beam-beam interaction(denoted BBI). The effect of the BBI cannot be written as

a simple transformation matrixsince it includes higher-order nonlinear forces. However,

it can be expressed by an inhomogeneous equation as

° /
x t 0 1 0 0 x' / -/;'cos 2qo

- ' + (14)
r| 0 0 1 0 T 0_

5 afterBBI 0 0 0 1 5 beforeBBI F sin qpcos _o

I

where F is the beam-beam kick of a particle integrated over the incoming bunch.

Let us conceptually divide the ring into two parts: the first part goes from crab

cavity #1 to #2 including their kicks, and the second part includes the rest of the ring.

This is schematieMly shown in Fig. 1. The first part is expressed by

T2 x R2 x BBI x R1 x T1 (15)

Namely,

0 0 /
x _ 6a2717]_ -1 - 2at/- 2a2712 -2a2r/ 2ar/r]t + 4a2r/2_]'

r 2aTlrI' - 4a2r]2r/ 2a2r]3 1 2at/+ 2a2712 --2a2r]37I'

5 #2 ,._ 2a271 0 0 1 + 2ar/-4- 2a2_2 .,
=C

x' -2r/F sin _ cos _ + -_F sin 2
x + _ (16)

r rv/F cos _ sin _ .

6 #1 , _/;' sin2 _
=B



[.P.

Crab cavity #1
Crab cavity art 1

Figure 1: Schematic configuration of the ring with crab ca,vities.

lt looks complicated, but reduces to a simple form if we insert 7]= 7]' = 0 into the

above equation:

/xi/1000/ /
z' 0 - 1 0 0 z'

_2

r 0 0 1 0 r

#2 0 0 0 1 6 #_

( /o
+ o (_7)
[ 0

The effect of the crab kicks is cancelled, and the energy change due to the Biti disaI:-.

pea,rs. As a matter of fact, if both 7/and 71' _t crab cavity #2 are reversed in sign and

- equM in magnitude to those at crab cavity # 1, we obtMn the same reslllt a.s above. This

explMns the physical origin of the remnant of crab kick effects. Namely, in order for the

. kick effects generated by the two cavities to cancel each other, it is essentiM that the

physical coordinates of a particle, z and r, are transformed to -z and r (when the BBI

is neglected) ns the particle advances from crab cavity #1 to #2. The decoupled pure

coordinates, 2 and _, are transformed to -2 and _. Thus, the physical coordinates, x



and r, can transt'orm as required only when 71and 71'both change sign at the two crab

caviti c'.s(see Eq.(6)).
,',

Synchro-betatron Resonances Induced by Crab Kicks

The transformation (16) suggests that synchro-betatron resonances may be excited

even without the beam-beam interaction(F= 0). The stability of motion can l:,eexam-

ined by calculating eigenvalues of the total transformation matrix in the ring, A x C. If

the absolute value of an eigenvalue is greater than one, the particle motion is unstable.
*p'I. lgure 2 shows an example of the stopband with a crossing half-angle of 20 mrad as a

'function of r/ at the crab cavities and the fractional part of the horizontal tune, aQ,.

The parameters used are summarized in Table 1. They are partially taken from Ritson's

design of an IP with crab crossing. 4 Arbitrarily, r/has been set to zero. Actually, the

stopband has only a weak dependence on r/, since r/changes its sign at the two cavities

and therefore its effect is nearly cancelled.

Table 1. Parameters of the sample crab crossing design after Ritsorl

C,ircumference, C (m) 2200

Bunch length, a_ (cre) 1.0

Beta function at IP fl_*(m) 0.4

Beta function at the crab cavities, fie (m) 19

Emittance, e_ (nm-rad) 100

Crab crossing half-angle, _p(mrad) 20

Synchrotron tune, Q., 0.040

Momentum compaction factor, ap 0.0011,5

We can see the stopbands at tunes

5Q_ _ 0, (18) "

5Q_ _ 0.5, (19)

o. (20)

Since we assun-le that a crab kick is linear in :c and 7-,only the linear resonance

5Q_ - Q_ _ 0 appears. In reality, a crab kick may include nonlinear terms in x and
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Figure 2' Stopband due to synchro-betatron resonances excited by crab kicks only.



r, so nonlinear resonances may also be excited. With these parameters, the uIlstable

region spreads out. over the entire, tune range alld has a we_k tune dependence when 71

becomes larger than ,-_17 m. A similar stopband pattern is observed in the analysis of

the mode-coupling beam instability due to a localized impedance, s,6 whine the change

of stopband pattern is explained by the cause of instability changing from a resona.nce

to a mode-coupling instability.

Beam-beam Effects and Tolerances

Next, let us consider the effects of the beam-beam interaction. The changes in r and

arising from the BBI (see Eq.(16)) are a source of synchro-betatrcn resonance. Let

us compare these longitudinal coordinate changes with that due to a non-zero crossing

angle without the crab scheme, r The energy change due to the crossing angle 2qois

/X5- F sin _o. (21)

In the present case with the crab scheme, the energy change is much smaller than

Fsin _o, since ,_t_sin _, << 1 Therefore, the r change is likely to give the main contri-J_F i

bution to synchro-betatron resonances. Otherwise, :oheeffects will be negligible. The

r change, 7171'Fcosqosin_o, is equivMent to an energy change of _-cF cosqosinqo, Thus,
the effective crossing angle that, gives the same strength of syncliro-betatron resonance

as produced by the crossing angle qowithout a crab scheme, is

r/71'
Sill 99e]S _ -_, cos _sin 99, (22)

which may be approximated by
rp/'

_/S _ aTC9°. (23)
r"_.[hc maximum tolera )le crossing angle that will excite weak enough synchro-betatron

resonances is given by

(_SS)m_ _ a; (24)
2(is

where ct; is the rms horizontal beam size at the IP a.nd _, is the rms bunch length. The

condition (24) expresses the situatiun where two beams are still well overlapping, so

that the crossing angle may not be well defined for particles whose orbits have angular "
9 tdivergence from the betatron oscillation. If we insert Eel. (..3) into Eq. (24), we obtain

a tolerance for the dispersion times its derivative at. a crab cavity or alternatively, for



the crossi,lg angle when the dispersion and it,s _lope a,rc', given:

r/Tl'< c_;c,,C. (2,5)
- 2o'.,

\'Vit,h the parameters in _l.able,1, this criterion becomes numerically
#

7p/_< 1.27 m. (26)
,t

Conclusions

The present anMysis in t,erms of a matrix formuli_tion call predict only linear synchro-

betatron resonances, as shown in t lg. 2 when the effects of cra,b kicks are considered

wil,hout, the beam-beam interaction. In reality, however, the intrinsic nonlinearity of

the electromagnetic field in crab cavities will induce nonlinear resona, nces a.s well. This

nonlinea, rity may be enhanced by various effects' not only by errors irl file crab cavity

performa, nce, but also by dynamic effects such as a beam ent,ering a crab cavity oil:

axis. The la,tier may be another source of synchro-betatron resonances by itself, just

a,s in the case of l_..on-zerodispersion, So far, most tolerance studies for a crab crossiDg

sclteme have been done in terms of errors in crab cavity performance. Further work on

the beam dynamics effects may also be needed.
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