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Abstract

The first successful application of a microscopic analogy to create a skeleton
cellular automaton and analyze it with statistical mechanical tools, was the
work of Frisch, Hasslacher and Pomeau on the Navier-Stokes equation in two
and three dimensions. This has become a very _arge research area with lattice
gas models and methods being used for both fundamental investigations into the
foundations of statistical mechanics and a large number of diverse applications.
Thin present research was devoted to enlarging the fundamental scope of lattice
gas models and proved quite successful.

Since the beginning of this proposal, cellular automata have been constructed
for statistical mechanical models, fluids, diffusion and shock systems in fun-
damental investigations. In applied areas, there are now excellent lattice gas
models for con.plex flows through porous media, chemical reaction and com-
bustion dynamics, multiphase flow systems, and fluid mixtures with natural
boundaries. With extended cellular fluid models, one can do problems with
arbitrary pairwise potentials. Recently, these have been applied to such prob-
lems as non-newtonian or polymeric liquids and a mixture of immiscible fluids
passing through fractal or spongelike media in two and three dimensions. This
proposal has contributed to and enlarged the scope of this work.

Work Accomplished

The original FHP model [16,3] is a model for the simplest fluid, for if any of
the fundamental ingredients are removed, one cannot derive the Navier-Stokes
equations. In the study of fluids by lattice g_s methods, the first aim is extend-
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statistics[11,12]. Even in limited models one can study complex phenomena in-
volving multi-component fluids with interfaces and systems with quite complex
boundaries.

There have been many patchwork attempts at lattice gas models in both
these directions but recently there has been genuine progress in finding the
most fruitful method of enlarging the scope of lattice gas models, useful for

both problems.

The FHP model in its original form is a statistical mechanics of hard sphere
particles of zero radii and gives an ideal gas law for an equation of state. Ef-
fective interactions in the fluid build up by the usual collective motion effects.
There is no notion of a fundamental pairwise potential built into the model at
a fundamentM level since model contains no microscopic transition process[3].
Much more work remains to be done on such generalized schemes which open
up lattice gas models to the study of more realistic flows. One should keep in
mind that the computational efficiency of lattice gas models in three dimen-
sions increases as the fourth power of the Reynolds coefficient, so significantly
improving that number implies a rapid gain in simulation power.

Clearly, such primitive models are a first step. The problem is particularly
acute in three dimensions, and we have designed experimental three dimensional
lattice gas fluid models with as few as sixteen bits as well as working on opti-
mizing lookup table access for the standard twenty-six bit model by simulated
annealing techniques on rule space to find the smallest number of equivalence
classes of rules.

Multicomponent Models and Models with Complex Bound-
aries.

The other kinds of systems that are exceptionally well modeled by even ordinary
lattice gases are variations on two phase immiscible fluid flow with an interface.
One can study this alone or add to it complex boundaries made of porous struc-
tures, which is especially valuable for three dimensional studies of flow through
porous media. These models extend the range of phenomena lattice fluids can
simulate and mathematically model to porous media, froths, minimal surface
problems, fingering phenomena and general two fluid instabilities, leading to a
study of the dynamics of fluid mixtures. In many cases, these phenomena were
accessible before this only by experiment.

The simplest two phase immiscible fluid model with surface interfaces is a
contracted version of the extended neighborhood model discussed above [19].
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In outline, one introduces two copies of the FHP hexagonal gas in two di-
mensions and makes them dis_;inguishableby introducing tags say red and blue
colors. In each phase separately, we have the usual incompressible Navier-Stokes
equations. The colored fluids now cour le only through interface boundary con-
ditions; that the normal component of "nterfacevelocity equals the component
of velocity locally normal to the boun_ary and that the stress difference at the
_nterfaceis equal to the surface tension

These are implemented by introducing a flux of colored particles and a color
field which is the weighted sum of the differencebetween red and blue particles
at neighboring sites. One now asks that the workdone against the color field by
the color flux be a minimum. Such a model preserves color mass separately and
has total momentum conservation. This usually defines an equivalence class of
solutions to the minimization problem and collisions are chosen from this class
with equal weight. This simple model describes the interface dynamics of a two
fluid immiscible system very well and is computationally efficient [19].

There is considerable evidence [21]that such a model accurately captures the
puzzling features of pattern formation in the early stages of Ragleigh-Bernard
convection in which one looks at stochastic effects on the system near the con-
vective onset an observation which should be further explored.

These models need considerable development and we intend to do so since
the range of complex phenomenon they simulate is both large and important.
Recent experimental runs with porous media boundary conditions taken from
actual porous rock samples show agreement with experimental measurements
on pressure profiles to within a few percent.

Lattice Gases Which Dynamically Alter the Geometry of
the Lattice.

A central issue in cellular automata formulations of physical systems is whether
they can ever capture the dynamics of systems which have no natural collision
model underlying the physics. Additionally many physical systems have some
version of gauge invariance built into them. Plasmas, for example, contain the
Maxwell equations as an integral part of their dynamics and we must deal with
the electromagnetic sector of these models in an accurate way.

The example above of the extended neighborhood lattice gas had new cel-
lular automata sites capable of fission and fusion with some probability [36].
Imagine this lattice gas automaton as a two layered gas, a layer containing indi-
visible particles scattering as in the original hexagonal FHP model, and a layer
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containing only the new species of active partic!es.

One considers this layer of active particles as defining the vertices of a tri-
angulation and takes the dual graph so that points go to faces and faces to
vertices in the usual way. Then the annihilation and creation of active particles
goes over to the creation and destruction of edges in the dual graph which has
a dynamics given by the original gas rules. This is a special example of a new

class of general lattice gases which dynamically alter the geometry of the spaces
on which they were originally defined. There are applications to fields as diverse
as field theory, computational geometry, image processing and-random surface
theory.

This is a class of novel lattice gases which will be important to our under-
standing of cellular automata in general and may have many applications to
mathematics, physics and computer science. Fundamental and applied studies
of various cellular automata are usually done on a lattice of fixed geometry.
This includes all of the discrete models that simulate field theories ordinarily
described by partial differential equations. There are two reasons for this: The
first is simplicity - fixed lattices are simple to work on; the second is that lattice
topology is usually assumed to decouple from the dynamics of discrete systems.
Dynamics is thought of as contained in the evolution of site variables that oc-
cupy the lattice and in these alone. This is unsatisfactory for many reasons:

Intuitively, physics uses lattices which are closer to randomly arranged than
regular. Since we are unable to explore random lattices directly, a cellular au-
tomaton that develops a random structure can smoothly take us to that regime.
Regular lattice arrangements also produce shadows of themselves - their sym-
metry appears in the macroscopic field theory either if one is not careful to
adjust the automaton to wash it out or if the correlations length on the lattice
is finite [3,11].

On fixed lattices, dynamical models where a collision process is the funda-

mental one, naturally split up into two distinct operations: Free streaming to
vertices, and then a collision. The transcription of collision dominated models as
a one step cellular automaton forms an automaton with a large neighborhood.
These are quite difficult to study [42]. Both the Navier-Stokes automaton and

, dynamic Ising-like models are examples.

A new class of automata emerges if one allows the geometry of the lattice
to be dynamical, in the sense of a dynamical variable [43]. Then we have a
generalized automaton, which one might think of as adynamical triangulation
of a manifold coupled to spin matter [44]. The most general case has no prede-
termined idea of an embedding manifold or of triangulation.
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This is class of lattice gases where site values and links between points are
treated with equal weight. One can move from a bit description to a link de-
scription indifferently. In this way, we have a duality between state va.riables
and the geometry of the lattice. By studying the possible classes of lattice
gases, whose evolution modifies the automaton connectivity in a self-consistent
way, one encounters extraordinary new mathematical objects. Topological lat-
tice gases consist of site updating in the usual sense of cellular automata, and
operations which annihilate and create links, according.to lists of updating rules.

Dimension is a topological invariant, which rneans'_t cannot change under
continuous evolution. Topological lattice gases, are not continuous so one can
have automata which build up dimensionality, in the Hausdorff scaling sense,

as part of their dynamics. This behavior has been observed in classes of these
objects[45,5].When dimensionalitybecomes stableovera certainlengthscale,

topologicallatticegasesdynamicallygenerateafundamentallength,asthatdis-
tanceoverwhich an effectivedimensionhas acceptablefluctuations.By choos-

ingotherscalingquantities,variousfundamentallengthscalescanbe introduced
intoa model in a purelydynamicalway.This isa powerfulmechanism,useful

inmany problems.

Topologicallatticegasesopen anew degreeoffreedomindiscretedynamics.

The closestanalogtosuchsystemsistheRegge calculusformulationofclassical

generalrelativity[46,47]wherematterand a simplexdescriptionofa manifold
arecoupledand leadself-consistentlyto the classicalEinsteinequations[48].

Those aremore complexsystemsthanusuallystudied,but whichmay be func-
tionallysimpler-thereismore room forfixedpointequationsand adjustable

parameters.

The applications for these systems are important: Self-adjusting grids and

site rules which are faithful to dynamics, simulation of complex self-organizing
behavior of every kind and new algorithmic attacks on complex systems. In
a physical setting, these models are ideal for any theory described by a fiber
bundle structure with a connection. This includes all the general gauge models
- Maxwell, Yang-Mills, classical and quantum gravity, plasmas and extended

objects such as field theories built of random strings and surfaces [49,50,53].
This idea has already been explored to create totally discrete models for two di-
mensional quantum gravity. It produces the same results as quite sophisticated
continuum quantum field theory techniques. By using these topological cellular
automata ideas we were able to see an order of magnitude speedup in conver-

gence of simplex grid problems ordinarily done by Metropolis techniques.J51].

Collision dominated automata, which are discrete field theory models for
many complex systems, in the world of ordinary length scales and energies of a
few electron volts, can be written as cell complex automata with small neigh-
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borhoods.We foundthatitisquitepossiblethatby dynamicallychangingthe

topologyofthespaceastheautomatonevolves,unusuallycompact and efficient

computationalalgorithmswillbe found formany nonlinearextendedsystems

[52].

Finally,topologicallatticegaseshavea greatdealtoteachabout new ways
, to organize the architecture of parallel computers, whether they are physical or

virtual architectures. These automata are potentially_very rich structures and
we propose to study them both by analytic methods and computer simulations.
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