

176
4-29-83
SP

①

LBL--91-Suppl.

1366

DE83 011015

I-9064

LBL-91
Supplement
UC-37
March 1983

MAJOR DETECTORS IN ELEMENTARY-PARTICLE PHYSICS

G. Gidal, B. Armstrong, A. Rittenberg

*Particle Data Group**
Lawrence Berkeley Laboratory
Berkeley, CA 94720, U.S.A

Abstract

This report is the first edition of a loose-leaf compendium of the properties and performance characteristics of the major detectors of elementary-particle physics.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

*The Berkeley Particle Data Group is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the U.S. National Science Foundation under Agreement No. PHY-8022530.

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE.
It has been reproduced from the best
available copy to permit the broadest
possible availability.

Introduction

With the 1983 issue of LBL-91 we introduce a supplement -- a folio of descriptions of the world's major elementary-particle-physics detectors. Modern high-energy physics usually involves the use of massive, costly, carefully engineered, large solid-angle detectors. These detectors require a long lead time for construction, are often integrated with an accelerator, accumulate data over many years, and are in reality a combination of numerous subsystems. As was the case with bubble chambers, many experiments are performed with the same data, or with data taken after relatively minor changes or additions to the detector configuration. These experiments are often reported in journals whose space limitations make repeated full descriptions of the detector impossible. The detailed properties and performance of the detector are usually described in a fragmented series of papers in more specialized, technologically oriented journals. New additions are often not well documented.

Several detectors often make similar measurements and physicists want to make quick comparisons of their respective capabilities. Designers of new large detectors and even of smaller experiments need to know what already exists and what performance has been achieved.

To aid the physics community, the Particle Data Group has produced this brief folio of the world's major large detectors. It is in looseleaf form to allow periodic updates and additions. This first edition has some notable omissions: in particular, the bubble chambers and any associated spectrometers, and the still-somewhat-tentative LEP, SLC, and TRISTAN detectors. We apologize to those whose detectors have been left out of this edition. Suggestions for inclusion in future editions are welcome.

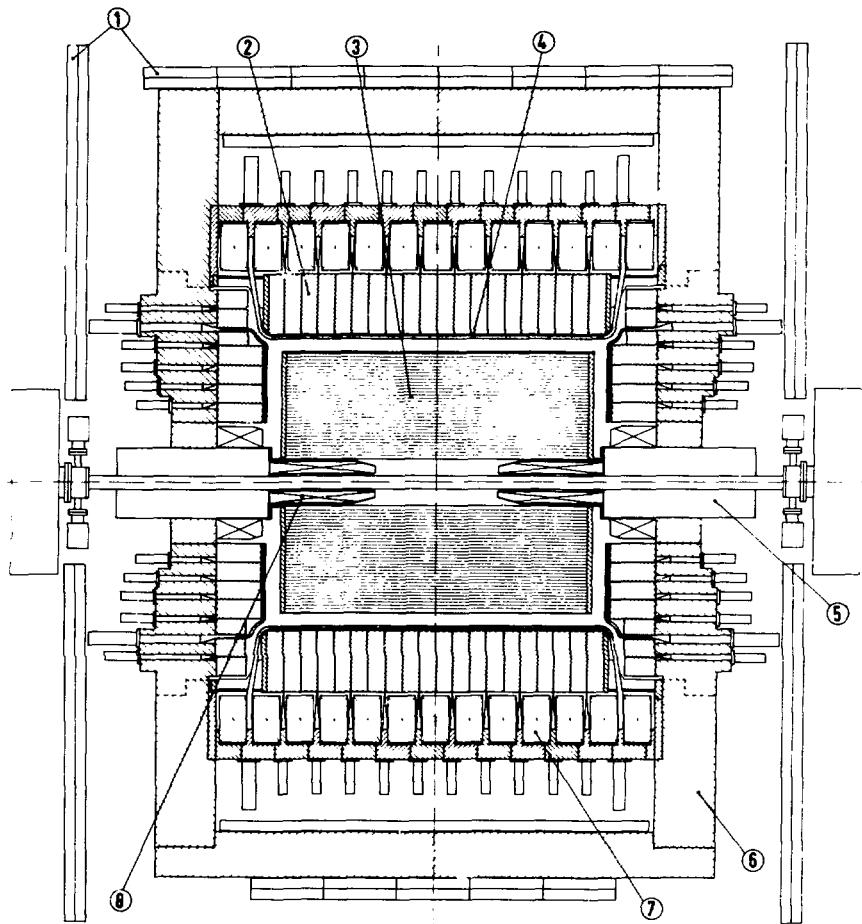
None of this would have been possible without the help of the physicists working with each detector who took the time to summarize its properties and to supply us with the appropriate drawings. We thank them again and ask all experimenters to help us make this an accurate, up-to-date, and useful compendium.

Notes

- Depending on the state of completion of the detector, the performance characteristics may be actual or projected. No attempt is made to distinguish them.
- Expressions of energy and momentum resolution are correct only if E is in GeV/c^2 and p in GeV/c .
- For further information, please contact the experimental group itself. Current spokesmen for particular experiments can be found in the Spokesman Index of LBL-91.
- In the Table of Contents, the experiments column refers to the summaries in the March 1983 edition of LBL-91. Experiments completed before 1979 are not included.

Table of Contents

Detector	Experiment
ARGUS	DESY-ARGUS
Axial Field Spectrometer (AFS)	CERN-R-807
Brookhaven Neutrino Detector	BNL-734, -775
CCFR Neutrino Detector	FNAL-616, -652
Collider Detector at Fermilab (CDF)	FNAL-CDF
CDHS Neutrino Detector	CERN-PS-169, CERN-WA-001, -054, -068
CELLO	DESY-PETRA-CELLO
CHARM Neutrino Detector	CERN-PS-181, CERN-WA-018, -065
CLEO	CESR-CLEO
Crystal Ball	SLAC-SP-024, -030, DESY-CRYSTAL-BALL
CUSB	CESR-CUSB
DELCO	SLAC-PEP-020
EMC	CERN-NA-002, -009, -028
FNAL-605	FNAL-605
FNAL Multiparticle Spectrometer	FNAL-557, -580, -623, -672
FNAL Neutrino Detector	FNAL-594, -649
FREJUS Detector for Nucleon Decay	P-DECAY-FREJUS
Homestake Detector	P-DECAY-HOMESTAKE
HPW Detector for Nucleon Decay	P-DECAY-HPW
High Resolution Spectrometer (HRS)	SLAC-PEP-012
IMB	P-DECAY-IMB
JADE	DESY-PETRA-JADE
Kamiokande Detector for Nucleon Decay	P-DECAY-KAMIOKA
LASS	SLAC-E-135
MAC (MAgnetic Calorimeter)	SLAC-PEP-006
MARK II	SLAC-SP-029, SLAC-PEP-005
MARK III	SLAC-SP-031, -032
MARK-J	DESY-PETRA-MARK-J
MD-1	VEPP (not in LBL-91)
MPS II	BNL-747, -751, -769, -771
Multimuon Spectrometer	FNAL-640
NUSEX Detector for Nucleon Decay	P-DECAY-NUSEX
OMEGA	CERN-WA-049, -055, -056, -057, -058, -060, -063, -067, -069, -070, -071, -072, -074, -076
PLUTO	DESY-PETRA-PLUTO, -PLUTO-2
SFM	CERN-R-400 series
Tagged Photon Spectrometer	FNAL-516
TASSO	DESY-PETRA-TASSO
TPC	SLAC-PEP-004
UA1	CERN-UA-01
UA2	CERN-UA-02


ARGUS

LOCATION	DORIS II e^+e^- ring DESY, Hamburg, W. Germany
COLLABORATION	DESY, Univ. Dortmund, Univ. Heidelberg, IPP Canada, Univ. Kansas, Univ. Lund, ITEP Moscow, Univ. South Carolina
MAGNET	0.8 Tesla solenoid, 13 copper coils Diameter 2.8 m, length 2.9 m
MINIBETA	Quads integrated and compensated inside magnet
TRACKING	Cylindrical drift chamber Radius 15 to 85 cm, length 200 cm 5940 drift cells with $18 \times 18.8 \text{ mm}^2$ cross section 36 cylindrical layers, 18 of which at stereo angles varying from 40 to 80 mrad Propane-methylal at 1 atm. dE/dx : 10% FWHM $\sigma_p/p = 1.2\% p$ $\sigma_\theta = 3.4 \text{ mrad}$
SHOWER COUNTERS	Barrel arranged as 20 rings, 64 counters in each ring 40 cm deep, 12.5 X_0 sandwich of 1 mm lead and 5 mm scintillator, BBQ readout lightguides between coils $\sigma_E/E = 8\%/\sqrt{E}$, $\sigma_\theta = 11 \text{ mrad}$ Endcaps 2 \times 240 counters Solid angle 96% in total
TIME OF FLIGHT	Barrel of 64 counters, radius 96 cm Endcaps 2 \times 48 counters TOF resolution 270 ps Solid angle 92%
MUON DETECTION	1744 proportional tubes with $6 \times 6 \text{ cm}^2$ cross section Layer behind shower counters and coil Layer behind the return yoke Solid angle 85%
VERTEX CHAMBER	Radius 5 to 14 cm Length 1 m (in preparation)

REFERENCES

1. ARGUS, a new detector for DORIS, DESY F15/Pro 148, October 1978.

ARGUS

1. Muon chambers
2. Shower counters
3. Drift chamber
4. Time of flight counters
5. Mini beta quadrupole
6. Iron yoke
7. Solenoid coils
8. Compensation coils

XBL 831-7896

Axial Field Spectrometer (AFS)

LOCATION

ISR (pp, p \bar{p} , αp , $\alpha\alpha$ -beams, \sqrt{s} from 22 to 63 GeV)
CERN, Geneva, Switzerland

MAGNET

Open axial field magnet, 0.5 Tesla
Unobstructed aperture: azimuthal $0 < \phi < 2\pi$, polar $0^\circ \leq \ell < 15^\circ$
and $40^\circ \leq \theta \leq 140^\circ$

TRACKING

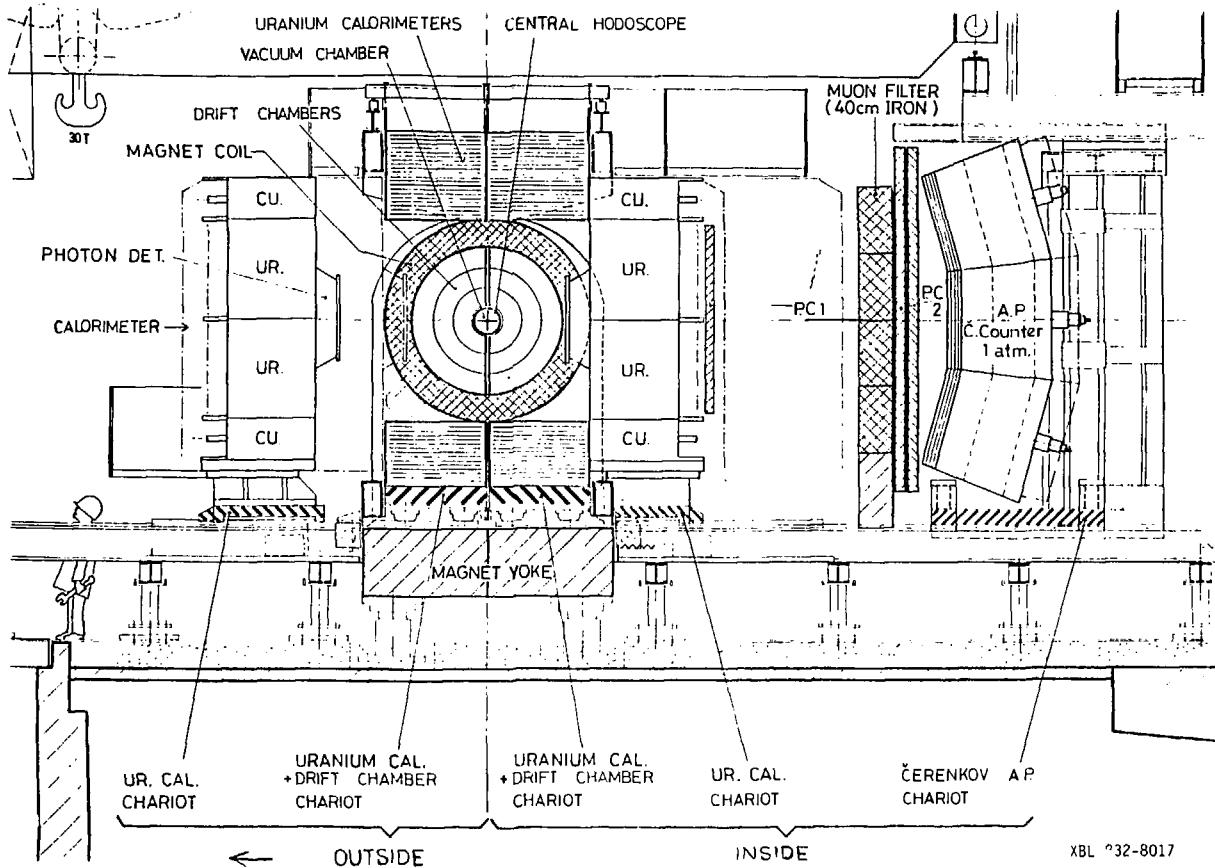
Cylindrical drift chamber
1.4 m long, extending radially from 20 cm to 80 cm
4° sectors with 42 sense wires each
Argon/ethane (50/50 vol%) at 1 atm.
 $\sigma = 220 \mu\text{m}$ (averaged), $\sigma_z = 1.4 \text{ cm}$ (averaged)
 $\sigma (dE/dx) = 11\%$, $\pi/K/p$ separation in the region of
 $300 < p < 800 \text{ MeV}/c$, electron/ π separation for $p < 100 \text{ MeV}/c$
 $\text{e}_p/p = 0.02 p$

SHOWER COUNTERS

Two walls of 600 NaI crystals each
5.25 X_0 , vacuum photo diode readout, noise $\simeq 1 \text{ MeV}$,
coverage 1.3 sterad
 $\sigma_E/E = 9\%$ for 1 GeV electrons (incl. U-calorimeter)
Hadron calorimeter, coverage ~ 8 sterad
Uranium/copper-scintillator with wavelength shifter readout,
 $20 \times 20 \text{ cm}^2$ 'towers', twofold longitudinal segmentation
Electrons: $\sigma_E/E = 16\%/\sqrt{E}$, $\sigma_x = \sigma_y = 1 \text{ cm}$
Hadrons: $\sigma_E/E = 37\%/\sqrt{E}$, $\sigma_x = \sigma_y = 3-10 \text{ cm}$ (dep. on angle)
 e/π energy response = 1.15
 e/π separation 1:50 at 2 GeV for 75% electron acc.

MUON IDENTIFICATION

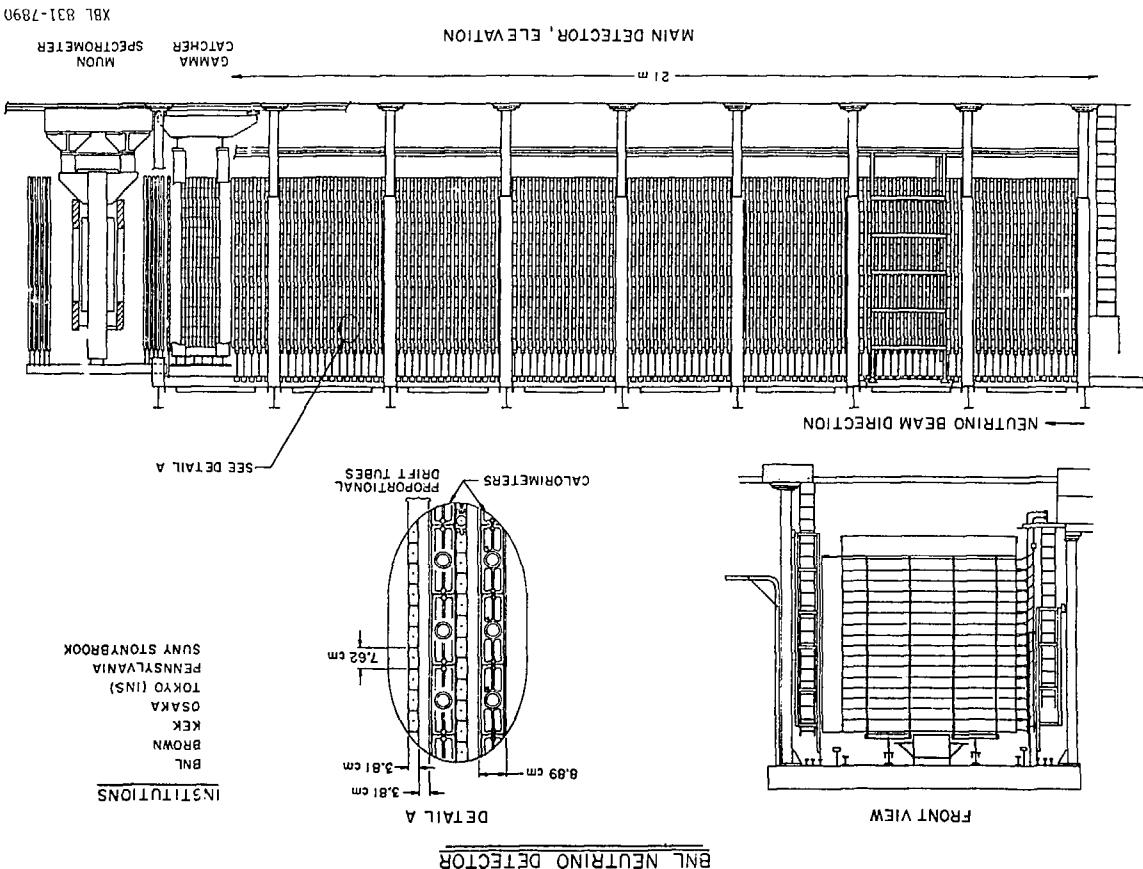
Filter consisting of uranium calorimeter and 40 cm of iron
Two planes of MWPC and Cerenkov counters covering 1 sterad,
 $P_{\text{threshold}} = 2 \text{ GeV}/c$


TRIGGER

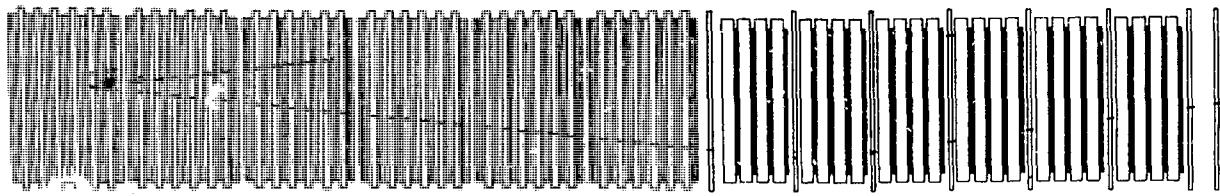
Parallel triggers based on analog computation of event topology and particle composition (e.g., hadrons vs. electrons, jets vs. single particles)
Both calorimeter information and drift chamber tracking information used
Typical trigger selectivity: $1:10^6$

REFERENCES

1. H. Gordon et al., Nucl. Instr. & Meth. **196** (1982) 303.
2. O. Botner et al., Nucl. Instr. & Meth. **196** (1982) 315, Nucl. Instr. & Meth. **179** (1981) 45, and IEEE NS **28** (1981) 510.


Axial Field Spectrometer (AFS)

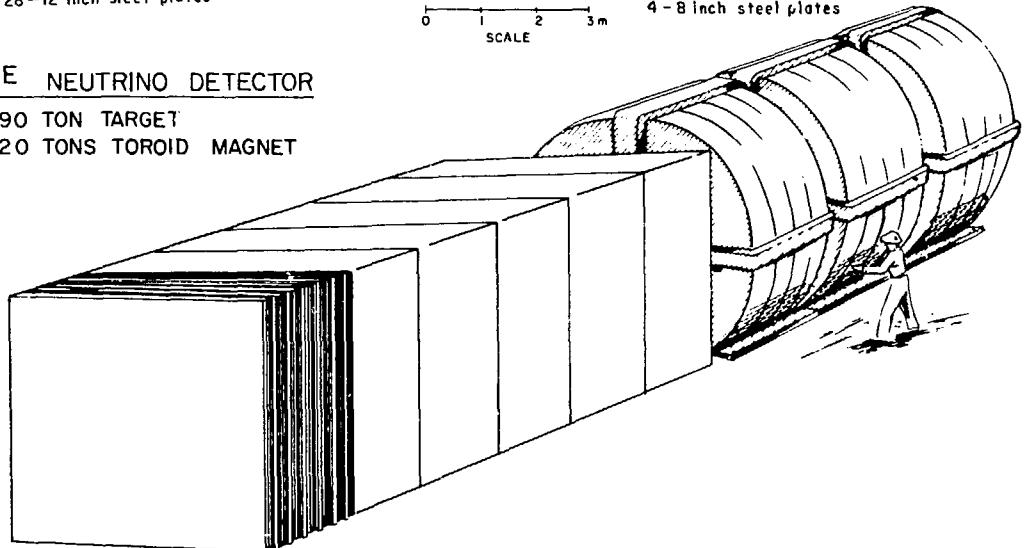
Brookhaven Neutrino Detector


LOCATION	Brookhaven National Laboratory Upton, NY, USA
INCIDENT BEAM	Neutrino, horn focussed from 28 GeV Protons 110 m from proton target
ASSEMBLY	Modular construction, each module consisting of a plane of calorimeter and two planes (x,y) of tracking proportional drift tubes 112 Modules + γ -catcher + spectrometer Weight: 172 + 30 metric tons
CALORIMETER (LIQUID SCINTILLATOR)	
	Active area $4.22 \times 4.09 \text{ m}^2$, thickness 7.9 cm Weight (liquid & acrylic) 1.35 metric tons 16 cells/module, 2 Amperex 2212A phototubes/cell 1 pulse height measurement/2 time measurements per tube readout
PROPORTIONAL DRIFT TUBES (PDT)	
	Active area $4.2 \times 4.2 \text{ m}^2$ Thickness (x and y) 7.6 cm, 54 x wires, 54 y wires 1 pulse height measurement/2 time measurements per wire readout
GAMMA CATCHER	10 standard calorimeter modules with 1 radiation length of lead between each module 30 metric tons target mass
MUON SPECTROMETER	$2\text{m} \times 2\text{m}$ aperture muon spectrometer $\langle \int B dl \rangle = 70 \text{ MeV/c}$ $(\Delta p/p)^2 = [0.10^2 + (0.067p)^2] p$

Brookhaven Neutrino Detector

CCFR Neutrino Detector
(Columbia-Chicago-Fermilab-Rochester)

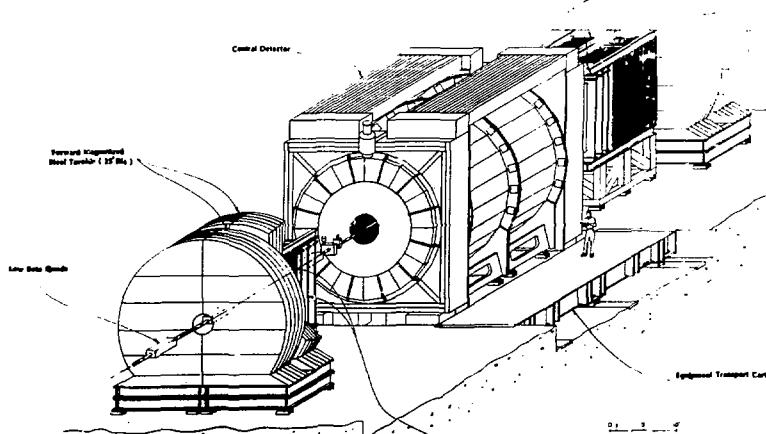
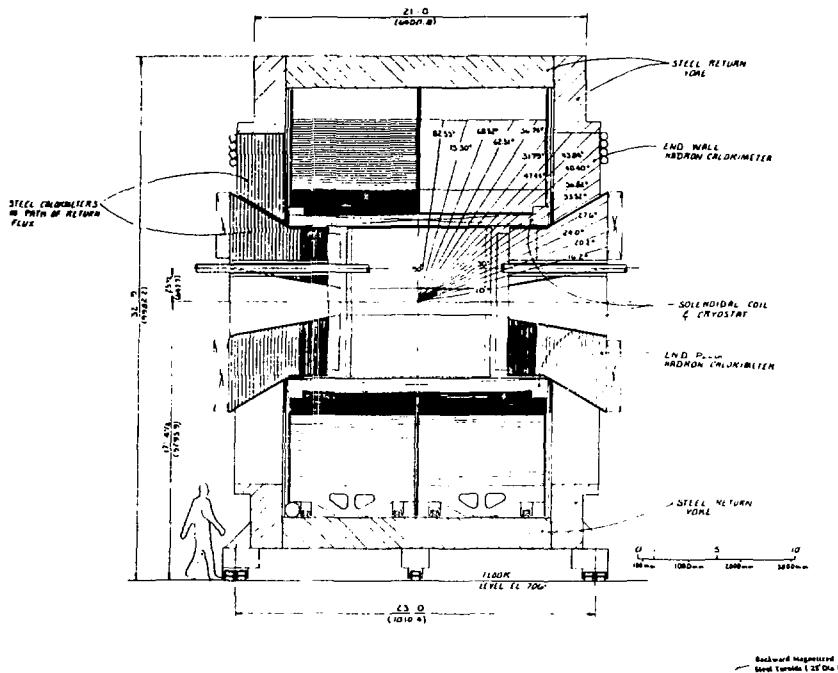
LOCATION	Fermilab Neutrino Area, Lab E Batavia, IL, USA
TARGET	8 m \times 3 m \times 3 m Fe tracking calorimeter
MAGNETS	35 m diameter iron toroids, instrumented with acrylic scintillator every 20 cm steel Three toroids, each with 1.6 m steel along beam direction
TARGET CALORIMETRY	10 cm steel separation between 2.5 cm liquid scintillator planes with BBQ wavelength shifting bars on side Four 2-in. phototubes per counter $\sigma/E = 0.84/\sqrt{E}$
TARGET TRACKING	20 cm steel separation between 3 m \times 3 m drift chambers, each with x and y planes Chambers have 24 cells in each plane: 12 cm transverse for each cell, with two-wire readout (no left-right ambiguity) $\sigma = 200 \mu$ positional accuracy Multi-hit readout with measurement of leading and trailing edges Linear output available for charge vs. time readout
TOROID TRACKING	Same drift chambers located as shown in figure $\Delta p/p \approx 0.11$, dominated by multiple scattering
BEAM	Dichromatic neutrino beam (Tevatron) $p_{\text{sec}} \lesssim 700 \text{ GeV}$
INTENSITY MONITORS	Neutrino lab facility providing calibrated ion chamber monitoring of momentum-selected hadron beam Additionally, rf cavity monitors, Cerenkov counter, and muon monitors for redundant measures of flux


TARGET CART:
7 Drift chambers
14 Scintillators
28-12 inch steel plates } 115 tons each,
Total of 6

0 5 10 feet
0 1 2 3 m
SCALE

TOROID MAGNET UNIT:
4 Drift chambers
4 Scintillators
4-8 inch steel plates } 70 tons each,
Total of 6

LAB E NEUTRINO DETECTOR

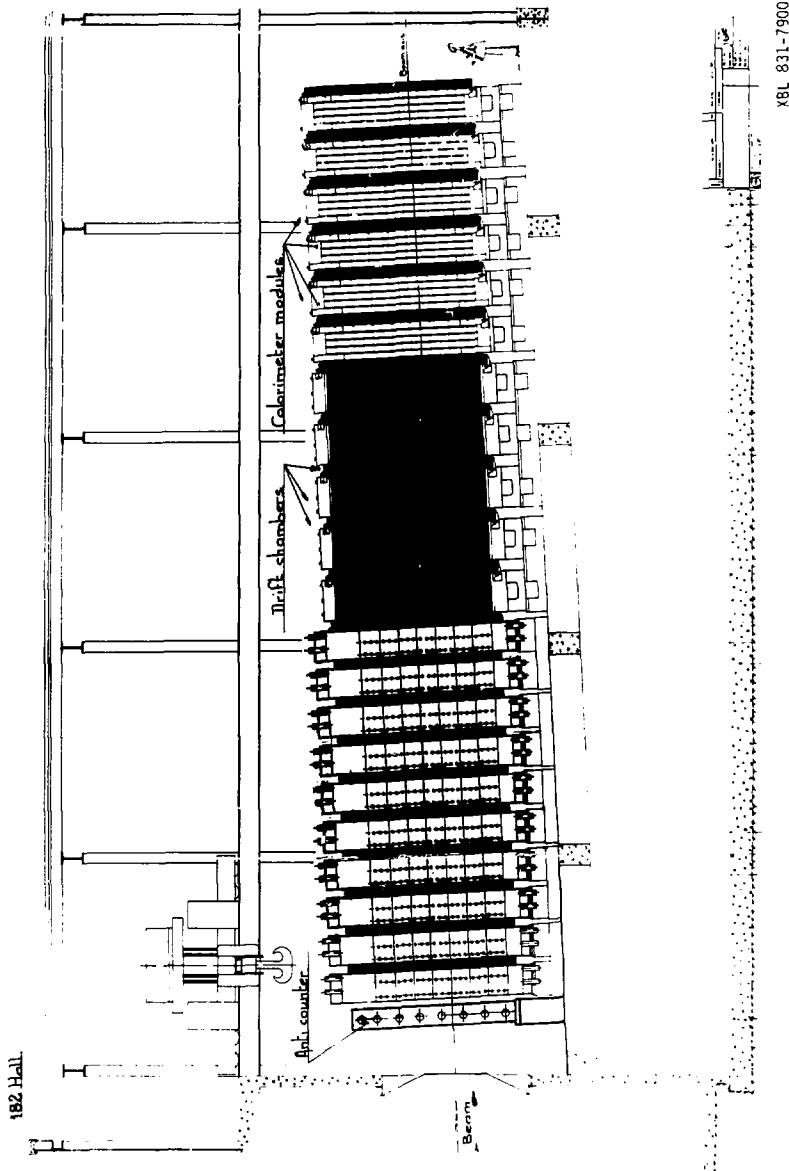


690 TON TARGET
420 TONS TOROID MAGNET

Collider Detector at Fermilab (CDF)

LOCATION	BO $\bar{p}p$ collision area Fermilab, Batavia, IL, USA
MAGNET	1.5 Tesla superconducting solenoid 5 m long \times 3 m diameter
TRACKING	Cylindrical drift chamber 11 double planes of axial wires, half-cell staggered 8 planes of 3.4° small angle stereo wires 15.7 mm cell size 10,080 total sense wires
SHOWER COUNTERS	
CENTRAL REGION	0.6 X_0 Pb, 0.6 cm scintillator with wave shifter readout arranged in towers of constant rapidity intervals 33 layers 1 layer of wire chamber for shower localization $\sigma_E/E = 14\%/\sqrt{E}$ 48 modules total
END PLUG	0.7 X_0 Pb, resistive plastic proportional tubes with cathode pad readout arranged in towers of constant rapidity intervals 30 layers (21 X_0 total thickness) 1 layer of strip readout for localization $\sigma_E/E \simeq 29\%/\sqrt{E}$ Spatial resolution $\simeq 3$ mm at 40 GeV
SMALL ANGLE	40 layers of 0.57 X_0 Pb, proportional tubes Construction similar to end plug
HADRON CALORIMETRY	
CENTRAL	2.5 cm steel, 1 cm scintillator with wave shifter readout, arranged in towers of constant rapidity intervals and matched to shower counters 34 layers (5 absorption lengths) $\sigma/E \simeq 5.5\% + 62\%/\sqrt{E}$
END WALL	5 cm steel, 1 cm scintillator Construction similar to central modules $\sigma/E \simeq 6\% + 77\%/\sqrt{E}$
END PLUG	5 cm steel, resistive plastic proportional tubes with cathode pad readout Pads are arranged in towers of constant rapidity intervals and matched to shower counter 20 layers $\sigma/E \simeq 11\% \text{ at } 100 \text{ GeV}$
SMALL ANGLE	5 cm steel, resistive plastic proportional tube readout similar in construction to end plug
MUON DETECTION	4 layers of drift tubes outside hadron calorimeter in central region Toroids and drift chambers in small angle region
TRIGGER	3 level trigger Analog energy cluster finder for level 1 (fast) trigger Fastbus-based trigger processor for higher levels

Collider Detector at Fermilab (CDF)

XBL 832-8022

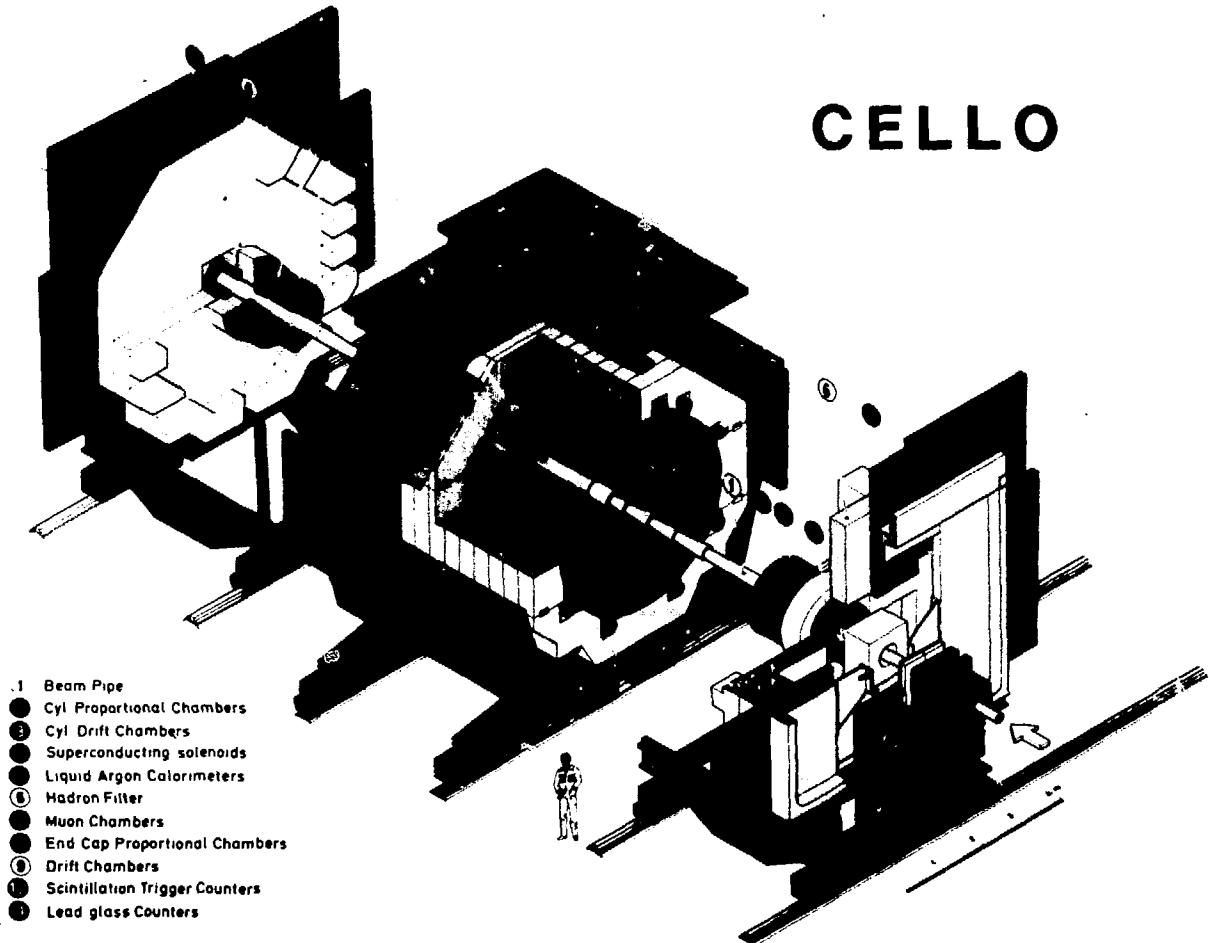

CDHS Neutrino Detector

LOCATION	CERN SPS CERN, Geneva, Switzerland
MAGNET	21 Fe-toroids, diameter 3.85 m $\langle B \rangle = 16.5 \text{ kG}$ First 10 toroids have 50 cm, the rest 75 cm of iron in beam direction
TRACKING	21 planar drift chambers with 3 planes (y, u, v) each, after each toroid $\Delta p_\mu / p_\mu \approx 9\%$ on average, for $p_\mu > 5 \text{ GeV}$, dominated by multiple scattering in toroids
CALORIMETER	Toroidal magnets are iron-scintillator sandwiches First 10 toroids have 20 plates of 2.5 cm iron thickness, 5 toroids with 15 plates of 5 cm, and 6 toroids with 5 plates of 15 cm iron each In the first 10 toroids scintillators are in x and y direction In the last 11 toroids scintillators are only in x direction $\Delta E/E = 0.5/\sqrt{E}, 0.7/\sqrt{E}, 1.3/\sqrt{E}$ corresponding to sample thickness

REFERENCES

1. M. Holder et al., Nucl. Instr. & Meth. **148** (1978) 235.
2. H. Abramowicz et al., Nucl. Instr. & Meth. **180** (1981) 429.

CDHS Neutrino Detector

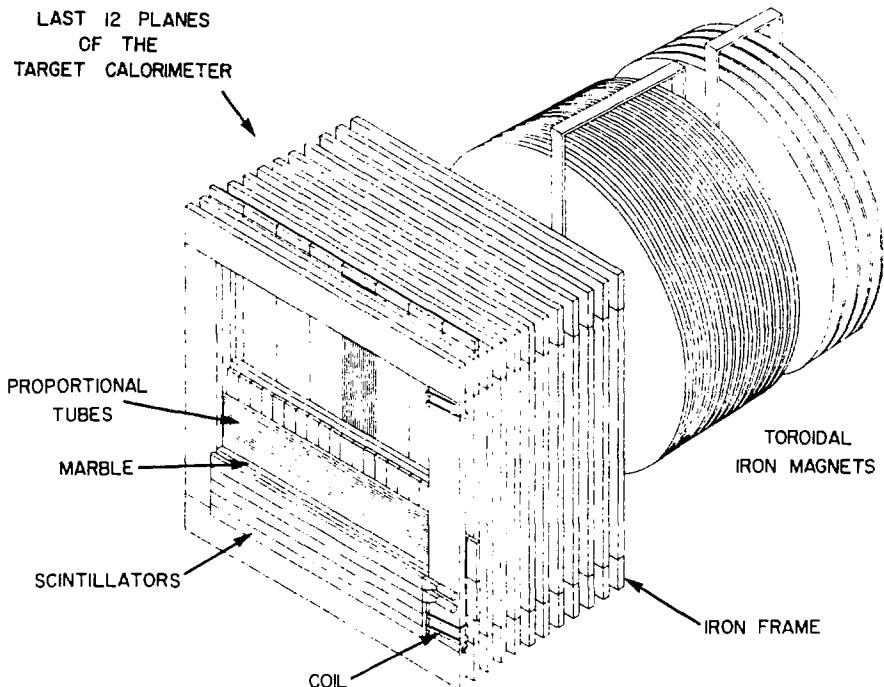

CELLO

LOCATION	PETRA e^+e^- rings DESY, Hamburg, W. Germany
COLLABORATION	DESY, Hamburg KfK und Universität, Karlsruhe MPI, München LAL, Université de Paris XI, Orsay Université de Paris VI CEN, Saclay
MAGNET	1.3 Tesla superconducting thin ($0.49X_0$) solenoid 0.75 m inner bore radius 3.8 m length
TRACKING	5 cylindrical proportional chambers with cathode strips 7 cylindrical drift chambers 8 planar end-cap chambers 2 cylindrical layers of drift tubes (vertex detector installed end 1982) Tracking down to $\theta = 150$ mrad $\sigma_p/p = 2\% p \sin \theta$ ($p > 2$ GeV, $\theta > 30^\circ$) $\sigma_z = 0.4$ mm centroid measurement on cathode strips
EM CALORIMETRY	20 lead-liquid argon modules ($20X_0$) down to $\theta = 130$ mrad 5 layers in depth for shower sampling $\sigma_E/E = 13\%/\sqrt{E}$ $\sigma_\theta = 4$ mrad
MUON DETECTION	32 planar proportional chambers (covering 92% of 4π) $\sigma_{\text{position}} = 6$ mm $p_{\text{cut-off}} = 1.4$ GeV
FORWARD DETECTORS	Pb-glass blocks + scintillators 50 $\theta < 100$ mrad
TRIGGERS	Charged-track trigger in $r\phi$ ($p_T > 200$ MeV) and $r\pi$ projections Calorimetric triggers

REFERENCES

1. H.J. Behrend et al., CELLO Collaboration, Phys. Scripta **23** (1981) 610.

CELLO

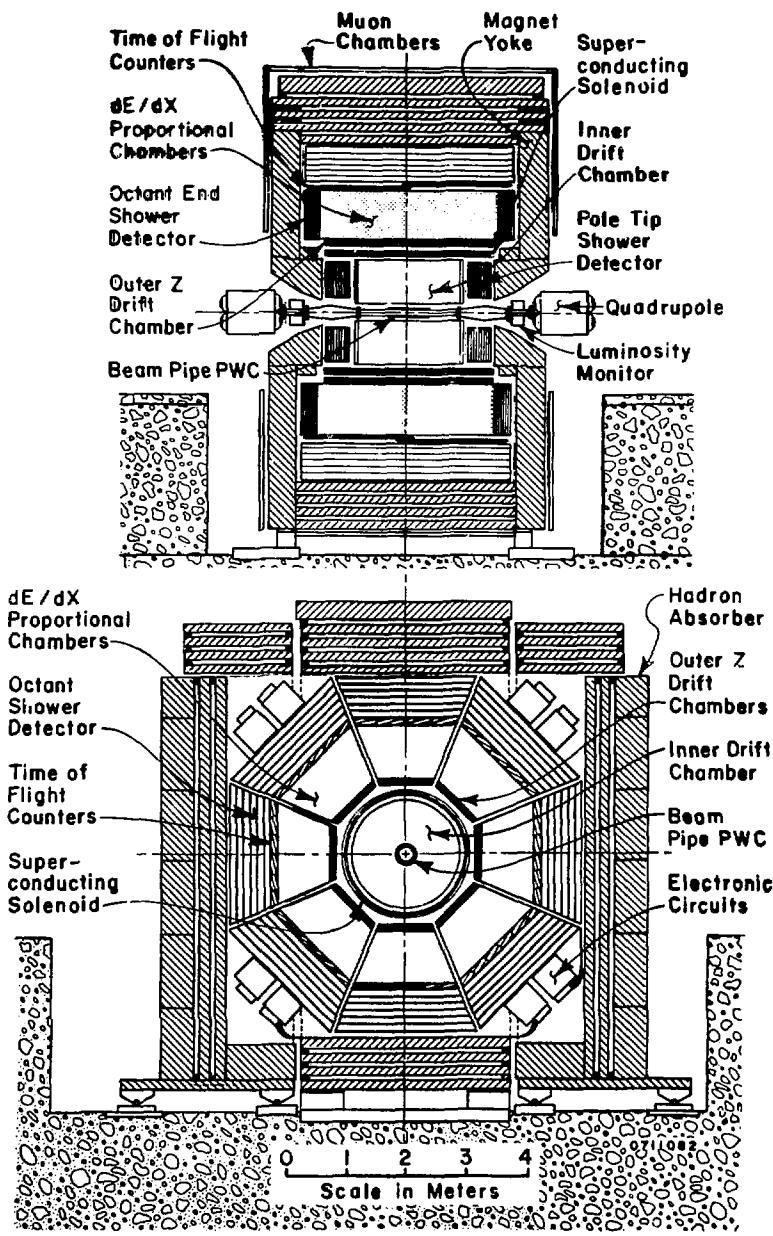


CELLO

CHARM Neutrino Detector

LOCATION	400 GeV Proton Synchrotron Neutrino Beam Facility CERN, Geneva, Switzerland
FINE GRAIN TARGET CALORIMETER	78 modules ($1X_0$ and $0.28\Lambda_{abs}$ each), each consisting of a target plate (marble) $3 \times 3 \text{ m}^2$ and 8 cm thick, 128 proportional drift tubes, 4 m long and $3 \times 3 \text{ cm}^2$ cross section, 256 streamer tubes (digital readout) and 20 scintillators $3\text{m} \times 0.15\text{m}$ at 90° with respect to the proportional tubes 100 tons fiducial volume
TRIGGER	At least one hit in any four planes of scintillator Trigger efficiency of 100% at $E_h = 2 \text{ GeV}$
MUON TRACKING	A minimum track length of 18 target modules is required, corresponding to muon range of 1 GeV and filtering through $5.2 \Lambda_{abs}$ For magnetic charge and momentum analysis, a $p_\mu > 2 \text{ GeV}/c$ is required
PERFORMANCE	$\sigma(E_h)/E_h \sim 0.45/\sqrt{E_h}$ $\sigma(E_{elm})/E_{elm} \sim 0.20/\sqrt{E_{elm}}$ $\sigma(\theta_\mu) \sim 2-5 \text{ mrad}$ ($E_\mu \sim 150 - 50 \text{ GeV}$) $\sigma(\theta_h) \sim 18 \text{ mrad}$ at $E_h \sim 100 \text{ GeV}$ $\sigma(\theta_e) \sim 10 \text{ mrad}$ at $E_{elm} \sim 15 \text{ GeV}$
MUON SPECTROMETER	45 cm wide, 8 cm thick magnetized Fe frames surrounding each calorimeter module Acts as coarse calorimeter for leakage Following the calorimeter is a forward muon spectrometer consisting of iron disks with toroidal magnetic field Tracking and calorimetry in frame and end magnets by proportional drift tubes $\sigma(p_\mu)/p_\mu \sim 15-20\%$
REFERENCES	<ol style="list-style-type: none">1. A.N. Diddens et al., Nucl. Instr. & Meth. 178, (1980) 27.2. C. Bosio et al., Nucl. Instr. & Meth. 176, (1980) 189.3. M. Jonker et al., Nucl. Instr. & Meth. 200, (1982) 183.

CHARM Neutrino Detector

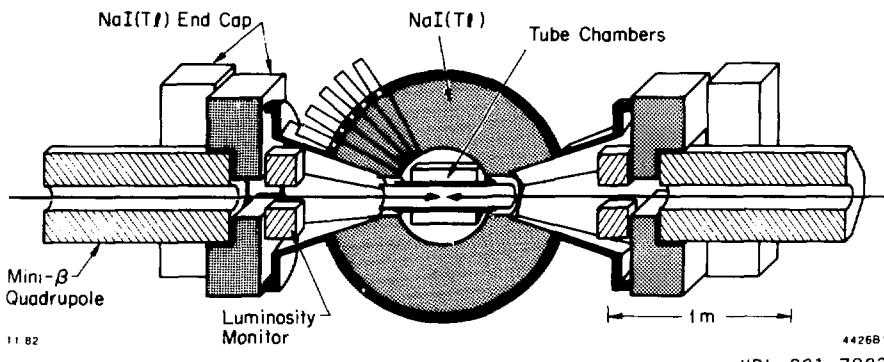

XBL 831-7886

CLEO

LOCATION	CESR e^+e^- ring Wilson Laboratory, Cornell University, Ithaca, NY, USA
MAGNET	1.0 Tesla (superconducting)
TRACKING	Proportional chamber + drift chamber $(\Delta p/p)^2 = (0.012p)^2 + (0.006/\beta)^2$
SHOWER COUNTERS	12 X_0 of Pb-proportional tube sandwich $\Delta E/E = 0.17/\sqrt{E}$ $\Delta\theta = 6$ mrad
END CAP SHOWER COUNTERS	10 X_0 of Pb-proportional tube sandwich $\Delta E/E = 0.39/\sqrt{E}$ $\Delta\theta = 6$ mrad
PARTICLE IDENTIFICATION	Time-of-flight counters $\sigma = 400$ ps (π , K, p separation) dE/dx chambers $\sigma = 5.8\%$ (e, π , K, p separation)
MUON DETECTION	4–10 interaction lengths of iron $p_{\text{cutoff}} \approx 1.5$ GeV/c
LUMINOSITY MONITOR	8 scintillator + shower counter telescopes at 39–70 mrad from the beam line

REFERENCES

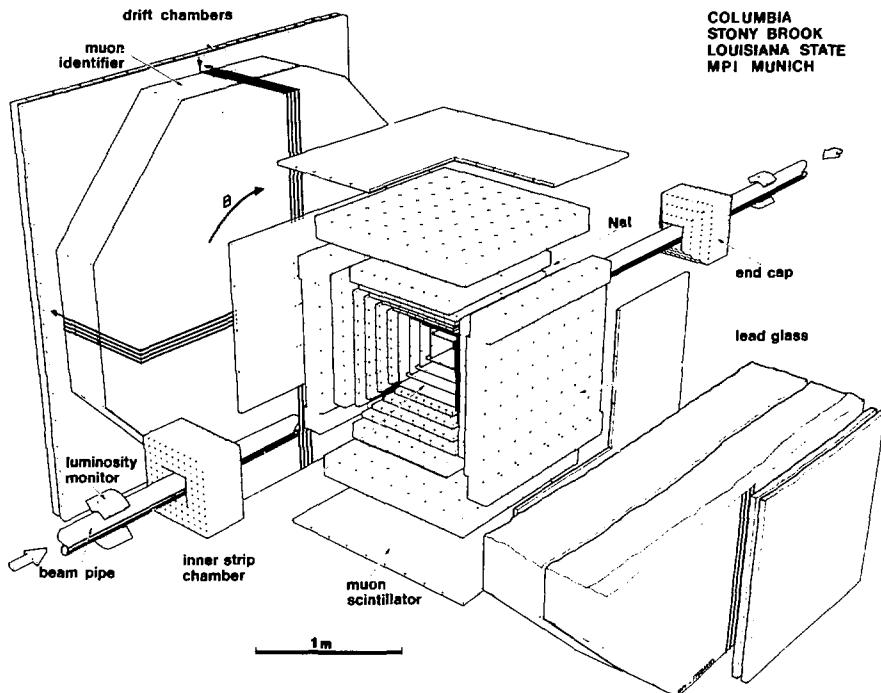
1. The CLEO Collaboration, CLNS 82/538 (1982).
2. E. Nordberg and A. Silverman, The CLEO Detector, CLNS, CBX 79-6 (1979), unpublished.


Crystal Ball

LOCATION	DORIS e^+e^- ring DESY, Hamburg, W. Germany
SCINTILLATOR	16 X_0 of NaI(Tl)
(MAIN ARRAYS)	(1 nuclear absorption length) Segmentation: 672 truncated triangular pyramidal crystals Solid angle covered = 93% of 4π Resolution on γ or e: $\sigma_E/E = 0.026/E^{1/4}$ $\sigma_\theta = 1$ to 2° , depending on energy $\sigma_\phi = \sigma_\theta/\sin\theta$
(ENDCAP ARRAYS)	NaI(Tl) - 40 hexagonal crystals, extending solid angle coverage to 98% of 4π
TRACKING	3 double layers of drift tubes with charge division readout (340 tubes total) $\sigma_\phi = 1^\circ$ - 2° $\sigma_z = 1$ - 2% of length (66 cm inner layer, 33 cm outer layer) Solid angle covered = 98% of 4π (inner layer), 75% of 4π (outer layer)
LUMINOSITY MONITOR	4 scintillator + shower counter telescopes

REFERENCES

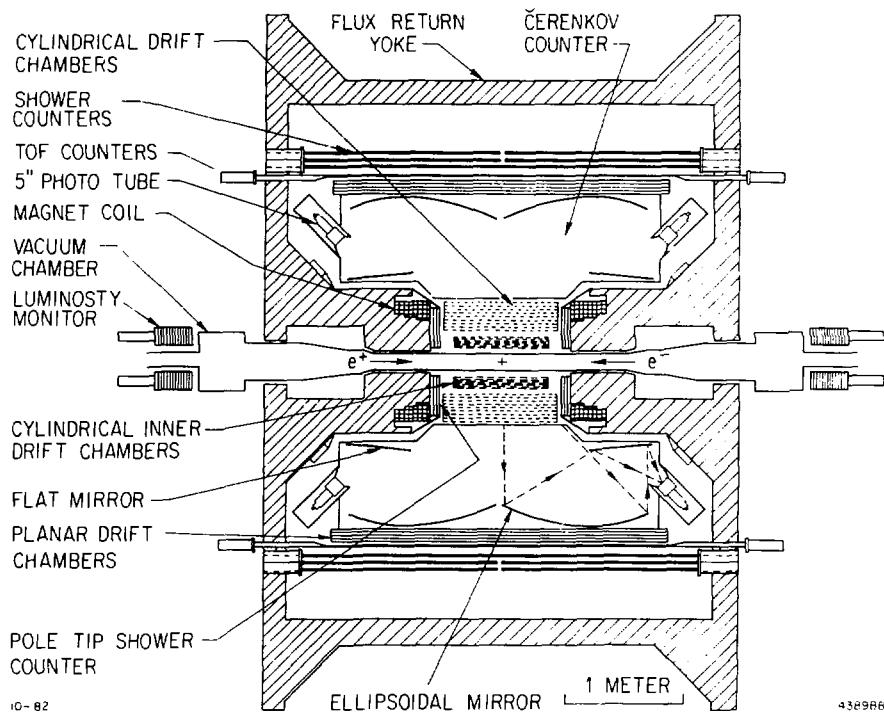
1. M. Oreglia et al., Phys. Rev. **D25** (1982) 2259.
2. R. Chestnut et al., IEEE Trans. Nucl. Sci. **NS 26** (1978) 4395.
3. G.I. Kirkbride et al., IEEE Trans. Nucl. Sci. **NS 26** (1979) 1535.
4. Proposal of the Crystal Ball collaboration to the DESY Physics Research Committee, PRC 81/09, June 30, 1981.


Crystal Ball

CUSB

LOCATION	CESR e^+e^- ring Wilson Laboratory, Cornell University, Ithaca, NY, USA
COLLABORATING INSTITUTES	Columbia University, SUNY at Stony Brook, Max Planck Institute at Munich, Louisiana State University, Cornell University
TRACKING	Proportional chambers with cathode strip (9 mm) readout (inner strip chambers) 16 chambers in 4 planes, $47^\circ < \Delta\theta < 132^\circ$, $\Delta\phi = 2\pi$, 2 track efficiency $> 95\%$, $\sigma_{\text{along wire}} = 0.8$ mm, $\sigma_{\text{perp wire}} = 1.2$ mm, $\Delta\Omega = 62\%$
CENTRAL CALORIMETER	Segmented NaI(Tl) array with interspersed strip chambers (not shown) surrounded by lead-glass array, PM readout 332 NaI(Tl) crystals (580 liters), $9X_0$, in 5 radial layers, 32 ϕ sectors, 2 θ sectors 16 proportional chambers with cathode strip (1 cm) readout located in 4 planes between NaI(Tl) layers, $\Delta\Omega = 64\%$, $\sigma_{\text{shower}} = 0.6$ cm 256 lead-glass blocks in four 8x8 arrays surrounding the NaI(Tl) array, $7X_0$, $\Delta\Omega = 60\%$, $\sigma_E/E = 4\%/\sqrt{E}$
END CAPS	Segmented NaI(Tl) array with interspersed scintillator hodoscope 16 \times 16 $\theta-\phi$ scintillator hodoscopes in each endcap 168 NaI(Tl) crystals (70 liters), $8X_0$, in 3 radial layers, $\langle\sigma_E/E\rangle = 12\%$, $\Delta\Omega = 28\%$, $\sigma_\theta = 80$ mrad, $\sigma_\phi = 35$ mrad/ \sqrt{E}
MUON IDENTIFICATION	Dimuon identification with 35 scintillation counters surrounding lead-glass arrays, $\Delta\Omega = 42\%$ Single muon identifier: 2 magnetized (15 kG) iron toroids (60 and 90 cm thick) with scintillator trigger after 60 cm of iron, 2 planes of drift chambers in front and 4 planes in back of each toroid (400 wires), $\Delta\Omega = 25\%$, $p_{\text{cutoff}} = 1$ GeV, $\sigma_p/p = 25\%$
LUMINOSITY MONITOR	2 scintillators and lead-scintillator shower counters 45 mrad $< \Delta\theta < 90$ mrad, $\Delta\phi = 61\%$ of 2π
REFERENCES	<ol style="list-style-type: none">1. P. Franzini and J. Lee-Franzini, Phys. Rep. 81 (1982) 241.2. The CUSB Detector, A15 at the XXIst International Conference on High Energy Physics, Paris (1982).

CUSB

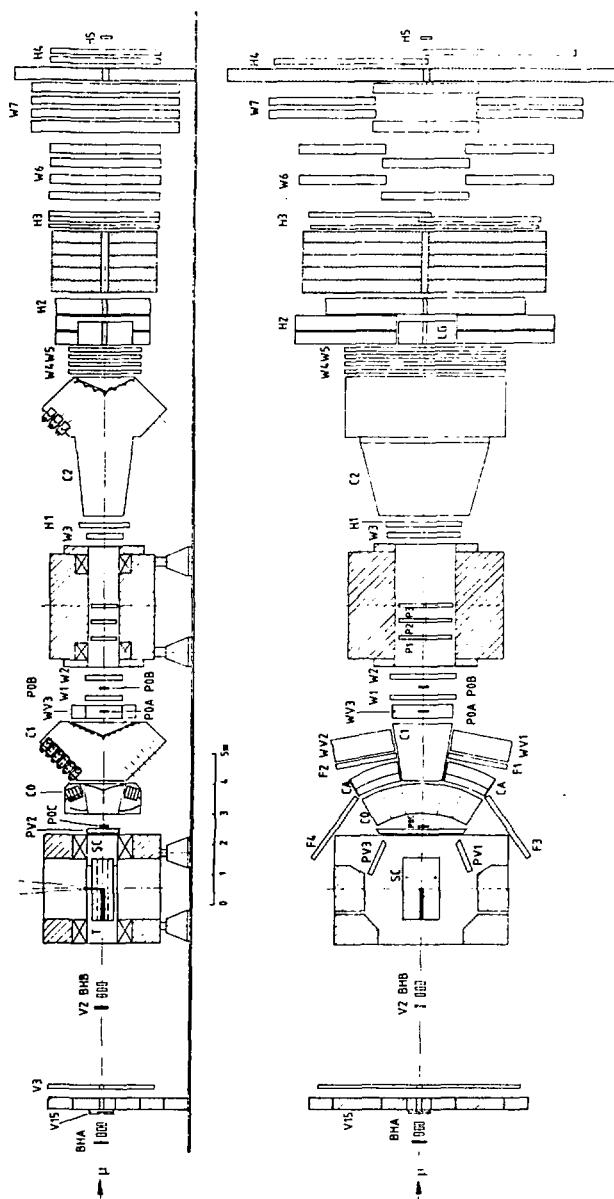


XBL 831-7894

DELCO

LOCATION	PEP e^+e^- ring SLAC, Stanford, CA, USA
MAGNET	Open-geometry (aperture $ \cos\theta < 0.78$) Pole-tip diameter 101 cm, separation 125 cm $B_0 = 3.3$ kG, $\int B dl = 1.8$ kG-m
TRACKING	Central (cylindrical) drift chambers: 94 cm maximum wire length, 12-49 cm radius Low mass ($2.3\% X_0$) Depth (z) measurement by narrow angle stereo 16 points on tracks with $ \cos\theta < 0.69$ Outer (planar) drift chambers: 285 cm wire length, 160 cm \langle radius \rangle Depth measurement by wide angle stereo 6 points on tracks with $ \cos\theta < 0.65$ Multiple hit digital electronics (4 ns bin width) $\sigma_p/p = \sqrt{(2\% p)^2 + (6\%)^2}$
CERENKOV COUNTER	1 atm. isobutane threshold counter ($\gamma_t = 19.1$) 36 cells each with (pTP-coated) 5" RCA 8854 quantacon Radiator length 55-110 cm, $\langle p.e. \rangle = 18$, $\langle N_0 \rangle = 80 \text{ cm}^{-1}$ $\sigma_t = 300$ ps Acceptance $ \cos\theta < 0.62$
SHOWER COUNTERS	Barrel ($ \cos\theta < 0.62$) : 48 Pb-scintillator counters, $6X_0$ Pole-tip ($0.79 < \cos\theta < 0.98$) : 36 Pb-scintillator BBQ counters, $5X_0$
TIME OF FLIGHT	52 counters 324 cm length, 180 cm \langle radius \rangle $\sigma_t = 350$ ps Acceptance $ \cos\theta < 0.67$
LUMINOSITY MONITOR	12 Pb-scintillator BBQ counters, $16X_0$ Acceptance 25-68 mrad relative to beam axis
REFERENCES	

1. W. Bacino et al., Phys. Rev. Lett. **40** (1978) 671.
2. W.E. Slater et al., Nucl. Instr. & Meth. **154** (1978) 223.
3. D. Ouimette et al., IEEE Trans. NS **29**, No. 1 (1982) 290.

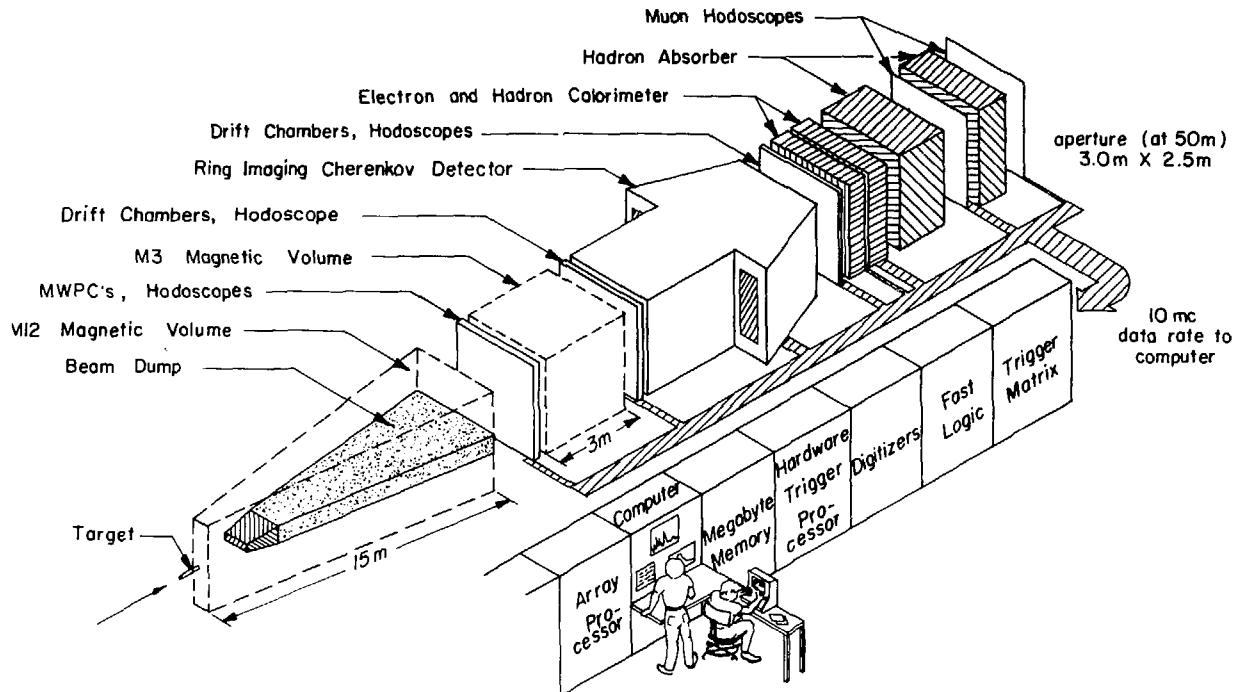

10-82

XBL 831-7897

EMC

LOCATION	CERN-SPS Geneva, Switzerland
BEAM	SPS muon beam line M2 $E_\mu = 120\text{--}280 \text{ GeV}$ (400 GeV protons) Intensity $1\text{--}5 \times 10^7 \mu/\text{pulse}$ 1.6 sec pulse, rep. rate 11 sec Beam momentum $\Delta p = 4.5\%$ Halo 6% Intensity monitor hodoscope Beam hodoscope
TARGET	NA2: 6 m H_2/D_2 , 4.75 (2.75) m iron-scintillator NA9: 1 m H_2/D_2 , heavy targets NA28: heavy targets
MAGNET	Forward Spectrometer (FS) 15 kG, $Bdl = 5.18 \text{ T}\cdot\text{m}$ Vertex Spectrometer (VS) 16 kG, $Bdl = 4 \text{ T}\cdot\text{m}$, superconducting
TRACKING	FS: Drift chambers, proportional chambers VS: Streamer chamber, proportional chambers, drift tubes $\sigma_p/p \sim (20 + 1.1p) \times 10^{-4}$ (FS) $\sigma_p/p \sim 1/5 (10 + 9p) \times 10^{-3}$ (VS)
TRIGGER	Scintillator hodoscopes + veto hodoscopes on scattered μ crossing 2.5 m iron absorber
PARTICLE IDENTIFICATION	Gas Cerenkov counter (FS + VS) (neon, nitrogen, neopentane) Aerogel Cerenkov counter (VS) TOF Hodoscopes (VS) Lead-glass array (FS) $\sigma_E/E = 20\%/\sqrt{E}$ Hadron calorimeter (FS) $\sigma_E/E = 120\%/\sqrt{E}$
REFERENCES	<ol style="list-style-type: none">1. O.C. Allkofer et al., Nucl. Instr. & Meth. 179 (1981) 445.2. J.P. Albanese et al., to be published in Nucl. Instr. & Meth.

EMC



XBL 832-8140

FNAL-605

LOCATION	ME External Proton Beam, FNAL Batavia, IL, USA
INCIDENT BEAMS	External Proton Beam, Pions (Future)
MAGNETS ¹	SM12 Dipole: 15 m long by 1.2 m high by 0.9 m gap SM3 Dipole: 3 m long by 1.6 m high by 1.5 m gap
TRACKING	STATION 1: 6 planes MWPC 2 mm wire spacing STATION 2: 6 planes DC 1 cm cell size STATION 3: 6 planes DC 2 cm cell size
CERENKOV COUNTER ²	Ring-imaging Cerenkov: intended to identify hadrons up to 200 GeV/c 15 m of helium gas at atmospheric pressure 8 m focal length mirrors Multistep PWC ultraviolet photon detector utilizing triethylamine and calcium fluoride windows
CALORIMETRY ³	Electron calorimeter: 18 radiation length lead-scintillator sandwich array longitudinally segmented at 2, 4, 8, and 13 rad. lengths to optimize pion rejection Resolution of 15%/ \sqrt{E} Hadron calorimeter: iron-scintillator sandwich 12 2.5-cm plates followed by 20 5-cm plates, each section read out with wavelength shifter bars Resolution of 70%/ \sqrt{E}
MUON DETECTION	Absorber wall of zinc and concrete followed by crossed proportional tube hodoscopes
REFERENCES	<ol style="list-style-type: none">1. R.W. Fast et al., submitted to the 7th International Magnet Conference, 1981, Karlsruhe, Germany.2. H. Glass et al., submitted to IEEE Transactions, 1982 Nuclear Science Symposium.3. Y. Sakai et al., and J. Hanson et al., submitted to IEEE Transactions, 1980 Nuclear Science Symposium.

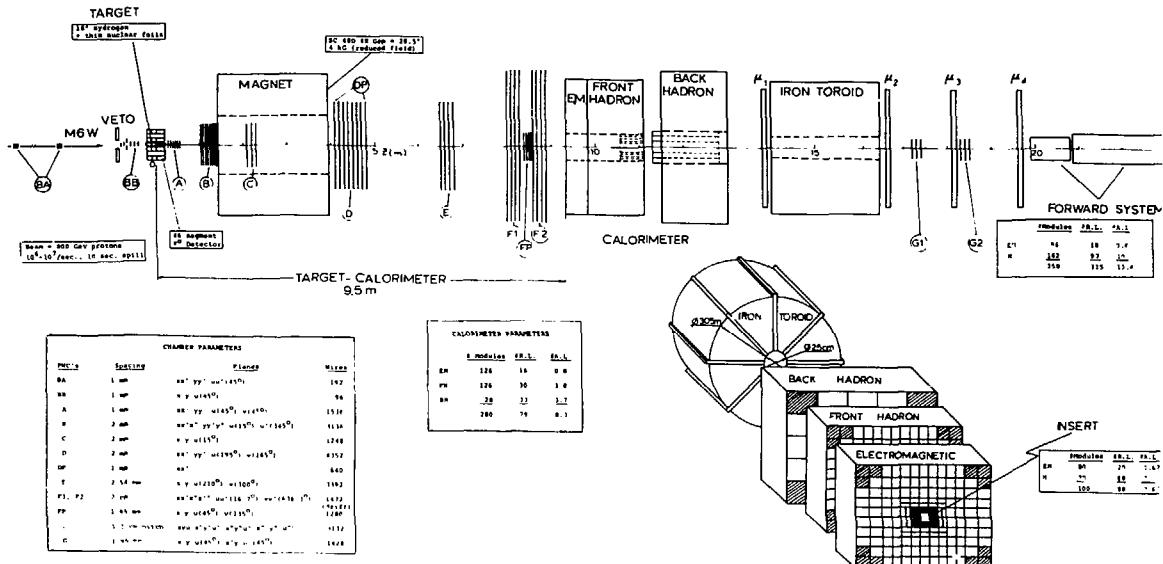
Fermilab 605: Precision Spectrometer for High P_T Particles.
Fermilab, Stony Brook, University of Washington,
Columbia, Saclay, CERN, Kyoto, KEK.

FNAL-605

XBL 831-7892

FNAL Multiparticle Spectrometer

LOCATION	Fermilab, meson area, MT beam line (old N6W) Batavia, IL, USA
MAGNET	16.9 kG (superconducting) p_{\perp} kick ~ 0.7 GeV/c
TRACKING	PWC + drift chambers $\sigma_p/p = (0.003 \sqrt{1+(p_0/\Gamma)^2})p$
RECOIL DETECTOR	46 segments Pb glass $\Delta\phi = 2\pi$
CENTRAL CALORIMETER	EM Pb-scintillator, $16X_0$, $\sigma_E/E = 20\%/\sqrt{E}$, 206 elements Hadron Fe-scintillator, $3.8X_0$, $\sigma_E/E = 70\%/\sqrt{E}$
MUON DETECTION	Fe toroid, 2.5 m thick 18 kG
FORWARD CALORIMETER	EM Pb-scintillator, $16X_0$, 96 elements Hadron Fe-scintillator, $10X_0$, 162 elements


REFERENCES

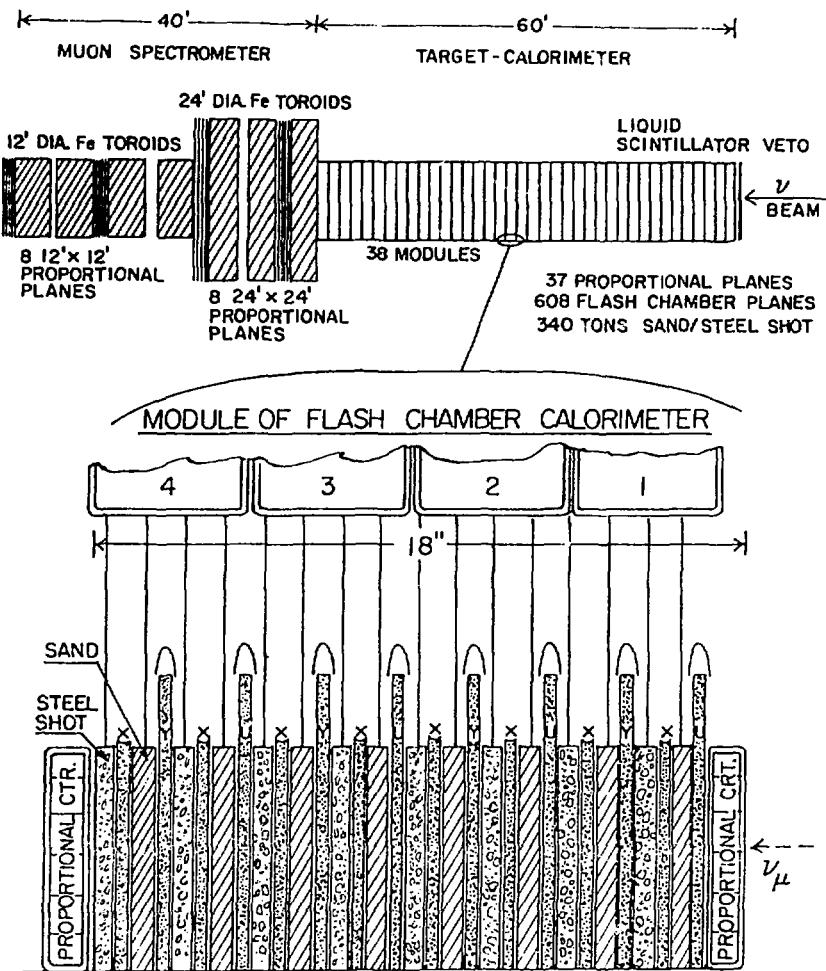
1. P. Rapp et al., Nucl. Instr. & Meth. **188** (1981) 285.

FNAL Multiparticle Spectrometer

MPS LAYOUT FOR E557/E672 1983-1984

Arizona - Cal Tech - Fermilab - INHEP (Tverughov) - Illinois (Chicago) - Indiana - Maryland - George Mason - Rutgers

XBL B31-7887

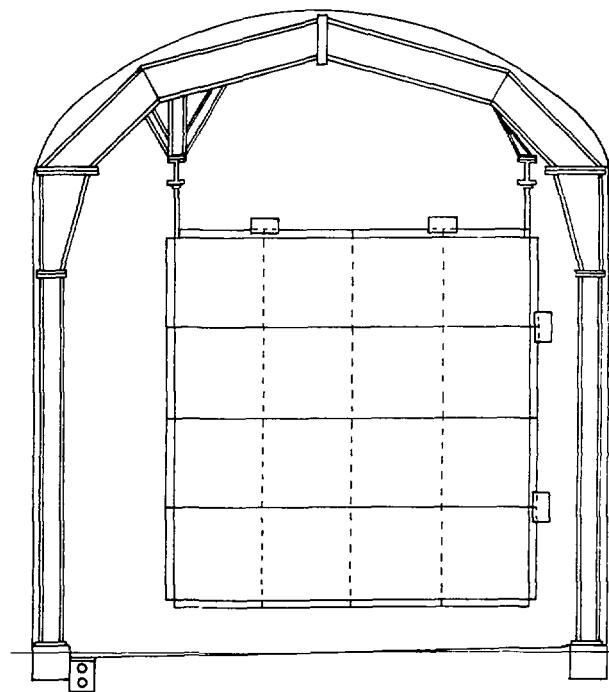
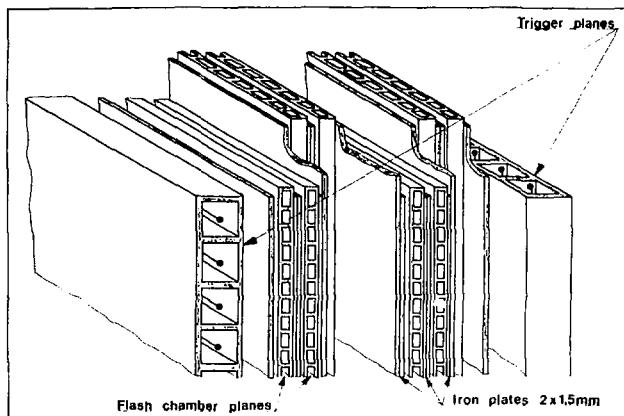

FNAL Neutrino Detector

LOCATION	FNAL neutrino beam line, Lab C Batavia, IL, USA
CALORIMETER	608 flash chambers, $3.66 \times 3.66 \text{ m}^2$ sensitive area, and 37 proportional tube chambers Half are with horizontal cells and the other half at ± 10 degrees from the vertical Between each flash chamber there are 1.6-cm thick alternating planes of iron shot and sand, giving a total tonnage of 340 tons Showers are sampled every 22% of X_0 and every 3% of λ_{abs} The angular resolution for electrons and hadrons is: $\sigma_e = 3.5 + 53/E_e \text{ mrad}$ $\sigma_h = 6 + 640/E_h \text{ mrad}$ The energy resolution is: $\sigma_E/E = 10\% \text{ for } 5 \leq E \leq 100 \text{ GeV}$ for both electrons and hadrons
TRIGGER COUNTERS	Proportional chambers, $3.66 \times 3.66 \text{ m}^2$ throughout the calorimeter every 16 flash chambers
MUON DETECTION	Magnetized iron toroids 7.32 m diameter and 3.66 m diameter interspersed with drift chambers $\sigma_p/p = 10\% \text{ for } p < 300 \text{ GeV/c}$

REFERENCES

1. D. Bogert et al., IEEE Trans. Nucl. Sci. **NS 29** (1982) 363.
2. J. Bofill et al., IEEE Trans. Nucl. Sci. **NS 29** (1982) 400.

FNAL Neutrino Detector

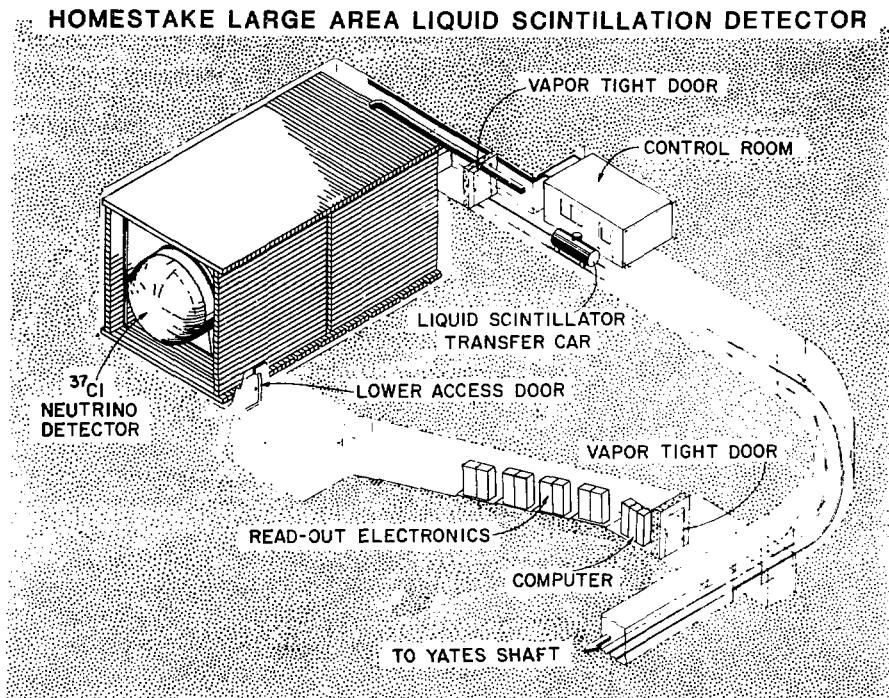


FREJUS Detector for Nucleon Decay

LOCATION	FREJUS Tunnel, 4500 m water-equiv.-depth Modane, France
TRACKING-PLASTIC	Flash chambers $0.5 \times 0.5 \text{ cm}^2$ section Neogal (70% neon, 30% helium) 1 atm. Crossed planes (1024 tubes) of $6 \times 6 \text{ m}^2$ Iron sampling 3 mm between F.C. planes Capacitive strips readout Energy resolution $15\%/\sqrt{E}$ for electrons 12-20% for muons-pions around 0.3 GeV/c
TRIGGER	Geiger tubes $1.5 \times 1.5 \text{ cm}^2$ section Argon-ethyial-freon 1 atm. Crossed planes (344 tubes) of $6 \times 6 \text{ m}^2$
MASS	8 tons per module (8 F.C. planes, 1 Geiger plane) Detector modular, mass up to 1.5 kt Average density ~ 2 Fiducial mass up to 1 kt
SENSITIVITY	10 events fully identified/year for nucleon lifetime of 10^{31} years

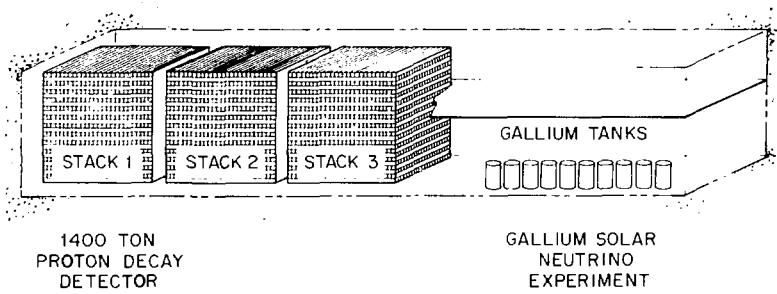
REFERENCES

1. P. Bareyre et al., (Orsay, Palaiseau, Saclay), Proposal to Study the Instability of the Nucleon Lifetime with a Modular Flash Chamber Detector (1980).
2. R. Barloutaud, Nucleon Decay Experiment with a Modular Flash Chamber Detector (Proceedings of the ICOBAN Conference, Bombay (1982).

FREJUS Detector for Nucleon Decay



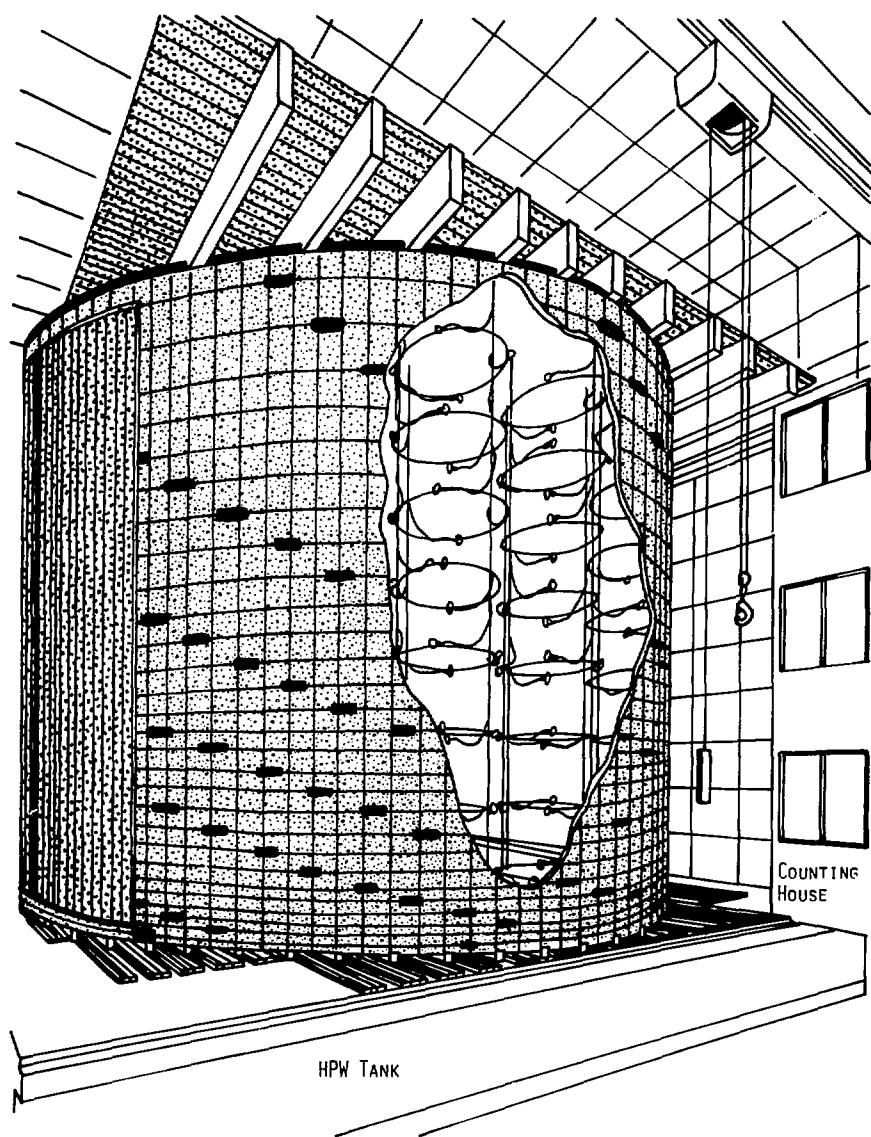
XBL 832-8016


Homestake Detector

LOCATION	Homestake Gold Mine Lead, SD, USA
COLLABORATION	University of Pennsylvania, Brookhaven National Laboratory
DETECTOR	Deep underground liquid scintillation detector together with a surface air shower array of 100 counters, each 1.2 m \times 2.4 m, deployed over one square kilometer Liquid scintillator modules - PVC housings 30 cm \times 30 cm \times 8 m viewed by two hemispherical 13 cm photomultipliers Depth: 4200 m.w.e. (1480 m rock)
PHASE 1:	250 detector modules arranged into a hollow box of dimensions 8 m \times 8 m \times 16 m Each of the four long faces consists of 50 detector modules, while the two end faces contain 25 modules each Spatial resolution: 15 cm Energy resolution: 7.8% per module for minimum ionizing track Energy threshold: 1/25 minimum ionizing (2 MeV) Time resolution: 1.3 ns Detector mass: 170 tons Operational: August 1983
PHASE 2:	1878 detector modules (same as those in phase 1) arranged in 3 stacks, each 8 m \times 8 m \times 8 m The detector elements are arranged with alternate layers in crossed directions Tracking chambers are interspersed between the scintillator elements Parameters are as in phase 1 except for the following: Spatial resolution: 1 cm Nucleon decay modes: All modes except those with more than one neutrino Muon \rightarrow electron decay detection efficiency: 90% Detector mass: 1400 tons Nucleon lifetime sensitivity: 5×10^{32} yr

Homestake Detector

NEW HOMESTAKE UNDERGROUND LABORATORY



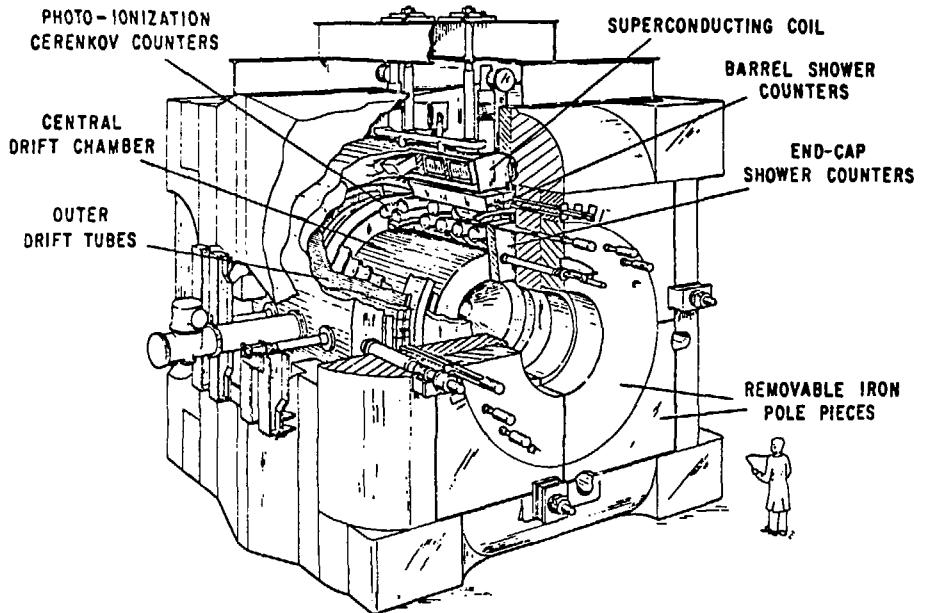
XBL 832-8406

HPW Detector for Nucleon Decay

LOCATION	Silver King Mine, Park City, UT, USA Elevation 2135 meters; overburden 1500 MWE; adit 4,500 meters; temperature 8.3°C
VOLUME	800 metric tons in a Hypalon-lined cylindrical wooden tank 12 m diameter, 7.3 m height All inside surfaces covered with teflon-coated aluminum mirrors
DETECTORS	704 EMI 5" photomultipliers with nearly 4π acceptance distributed throughout the volume on a 1 m grid Electronic cabling and cool dry air are available to each base via polyethylene tubes
SHIELD	Proportional wire chambers cover top, sides, and 70% of bottom
ELECTRONICS	ADC and multi-TDC on each PMT Data flow controlled by LSI 11/23 near detector Communication to trailer via M-baud fast link, slow links 4,500 m away to outside LSI 11/23, PDP 11/45
REFERENCES	<ol style="list-style-type: none">1. J.A. Gaidos et al., Proceedings of the 1982 Summer Workshop on Proton Decay Experiments, Argonne National Laboratory (1982).2. J.A. Gaidos et al., Neutrino '81 Conference, University of Hawaii (1981).3. R. Morse et al., Third Workshop on Grand Unification, University of North Carolina (1982).

HPW Detector for Nucleon Decay

XBL 832-8015


High Resolution Spectrometer (HRS)

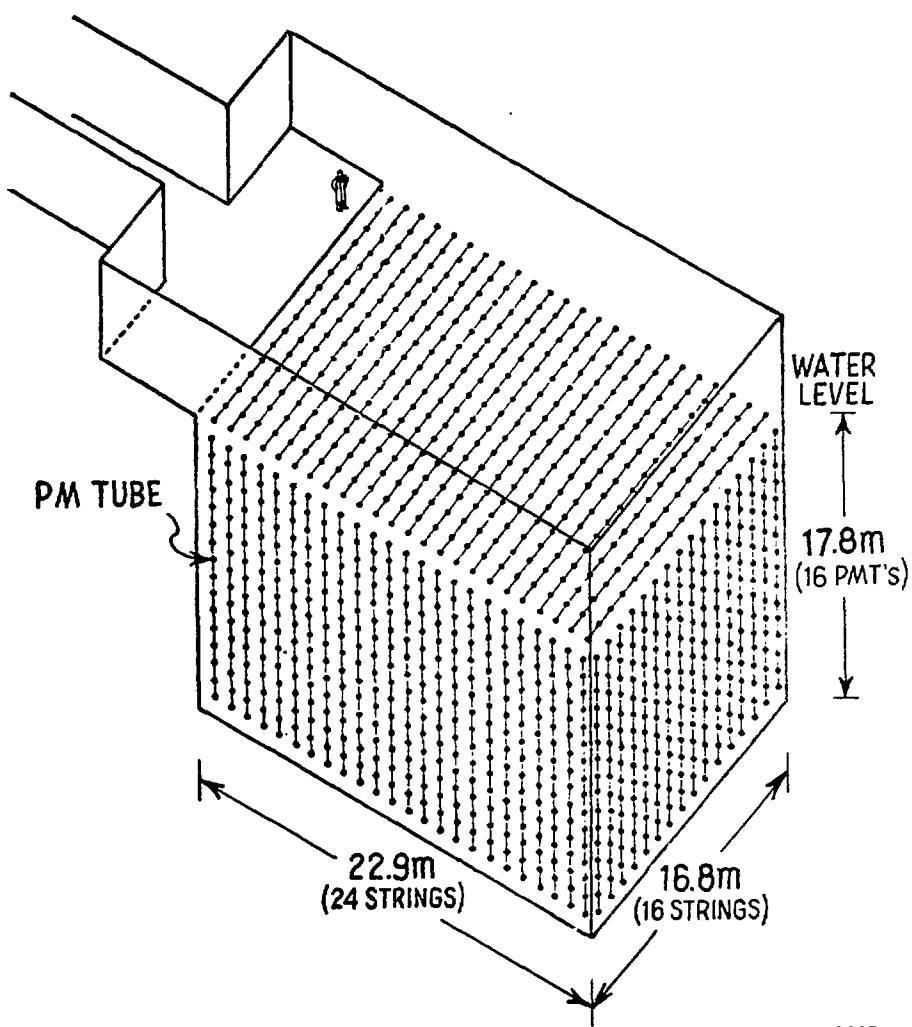
LOCATION	PEP e^+e^- ring SLAC, Stanford, CA, USA
MAGNET	16 kG (superconducting) Diameter = 4 m, length = 3.8 m
TRACKING	Inner cylindrical drift chamber (15 layers): 2.53 m long at 0.21–1.02 m radius Outer drift tubes (2 layers): 3.66 m long at 1.90 m radius Resolution $\sigma_p/p < 0.1\%$ p for p = 14.5 GeV/c
SHOWER COUNTERS	40 Modules $11X_0$ Pb-scint. sandwich inside the coil; 1 layer PWC $\sigma_E/E = 16\%/\sqrt{E}$ 2 samples in depth
END CAPS	40 Modules $8X_0$ Pb-scint. sandwich Wave shifter readout; 1 layer PWC $\sigma_E/E = 20\%/\sqrt{E}$
TIME OF FLIGHT	From front $3X_0$ of shower counter at $r = 1.95$ m $\sigma_\tau = 170$ ps for Bhabhas $\sigma_\tau = 350$ ps for hadrons
PHOTO-IONIZATION CERENKOVS	704 segments in 11 toroids 15 atmospheres give $(K, p)\pi$ separation between 1 and 4 GeV/c
LUMINOSITY MONITOR	Telescope with Pb-glass at 32–60 mradians

REFERENCES

1. D. Rubin et al., Nucl. Instr. & Meth. **203** (1983) 90.
2. J. Chapman et al., Nucl. Instr. & Meth. **158** (1979) 387.
3. J. Chapman et al., IEEE Trans. on Nuc. Sci. **NS 29** (1982) 332.
4. N. Harnew and D. Meyer, Nucl. Instr. & Meth. **186** (1981) 513.

High Resolution Spectrometer

HIGH RESOLUTION SPECTROMETER
ARGONNE - INDIANA - LBL - MICHIGAN - PURDUE - SLAC

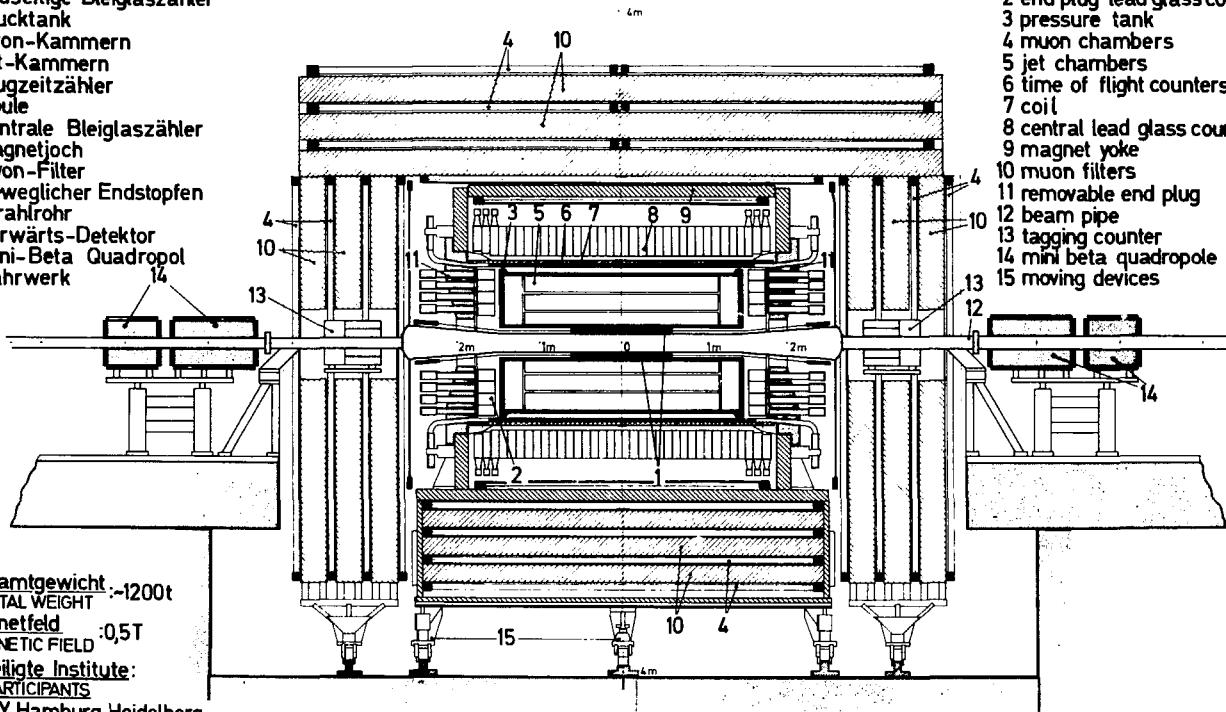

XBL 831-7884

IMB Detector for Nucleon Decay

(Irvine-Michigan-Brookhaven Water Cerenkov Detector)

LOCATION	Airport Harbor Salt Mine, Morton-Thiokol Corporation Painesville, OH, USA Latitude = 41.72°, longitude = 81.27°
SHIELDING	1940 feet overburden 1570 m water equivalent Cosmic ray muon rate = 2.7 Hz Cosmic ray neutrino rate $\sim 1/\text{day}$ ($2:1 = \nu_\mu:\nu_e$) Stopping muon rate $\sim 3\%$ Dimuon rate $\sim 3\%$
ACTIVE MEDIUM	Pure water Transmission length > 40 m at 440 nm ≥ 20 m at 330 nm and 550 nm Cerenkov angle = 41° (at $\beta = 1$)
DETECTORS	2048 5"-diameter, hemispherical PM tubes PM threshold $\sim 1/4$ photoelectron PM noise rate = 1.5 kHz median Dynamic range recorded per PM: fast time = 512 ns (1 ns least count) slow time = 7 μ s (15 ns least count) pulse height ~ 200 photoelectrons ($\sim 1/4$ pe least count)
THRESHOLD	> 25 MeV dE/dx at $\beta = 1$
SENSITIVITY	~ 4 MeV dE/dx at $\beta = 1$ produces 1 photoelectron Efficiency for $\mu \rightarrow e$ detection = 60%
DETECTOR LAYOUT	Regular, rectangular array at ~ 1 m spacing on 6 faces; 16 \times 24 PM's on 4 faces, 16 \times 16 PM's on 2 faces Totally absorptive face behind PM's ~ 0.5 m water behind PM's
MASS	Total = 8000 tons ($17.8 \text{ m} \times 18.7 \text{ m} \times 23.9 \text{ m}$) Fiducial for $p \rightarrow e^+ \pi^0 = 3300$ tons = 2×10^{33} nucleons ($13 \text{ m} \times 14 \text{ m} \times 19 \text{ m}$)
RESOLUTION	For $p \rightarrow e^+ \pi^0$ depositing ~ 225 photoelectrons: vertex $\Delta r = 0.6$ m energy $\Delta E/E = \pm 10\%$ opening angle $\Delta\sigma = 15^\circ$ Similar vertex and energy resolutions for $\mu^+ K^0$ with $K^0 \rightarrow \pi^0 \pi^0$
OPERATIONAL	August 1, 1982 Duty cycle $\sim 70\%$

IMB Detector for Nucleon Decay


IRVINE - MICHIGAN - BROOKHAVEN DETECTOR

JADE

LOCATION	PETRA e^+e^- rings DESY, Hamburg, W. Germany
MAGNET	4.8 kG solenoid; normally conducting, water-cooled, Al coil; thickness $0.5X_0$ Diameter = 2 m, length = 3.5 m
TRACKING	Cylindrical drift chamber (JET chamber) 2.36 m long at 21–79 cm radius Argon-methane-isobutane at 4 atm. 48 points on tracks with $ \cos\theta < 0.83$ ≥ 8 points over 97% of Ω charge division gives $\Delta z = 1.6$ cm dE/dx to $\pm 6\%$ for Bhabhas $\sigma_p/p = 4\%$ for $p < 2$ GeV/c = 1.8% for high p = 1.3% for high p with event vertex used in track fit
SHOWER COUNTERS	
BARREL	2604 tapered modules of Pb-glass 30 cm deep, arranged in 31 rings, 84 wedges per ring (central 6 rings Schott SF6, $17.3X_0$, remainder SF5, $12.5X_0$) $\Delta E/E = 6\%/\sqrt{E}$ $\sigma_\theta = 0.6^\circ$, $\sigma_\phi = 0.6^\circ$
END CAPS	192 elements of Pb-glass (SF5) as in barrel
MUON DETECTION	618 single wire drift chambers, arranged in 4 or 5 planes, interspersed with absorber (magnet flux return + 3 layers of iron-loaded concrete; total thickness 785 g/cm^2) Covers 93% of Ω
TIME OF FLIGHT	42-counter scintillator hodoscope ($r = 95$ cm) between JET chamber and magnet coil In conjunction with beam crossing signal, gives TOF resolution = 400 ps
LUMINOSITY MONITOR	35–75 mrad Pb-scintillator sandwich, 50 cm deep ($20X_0$), arranged in 8 sectors, each divided into 3 concentric rings giving equal Bhabha rates BBQ light guides on both sides of each ring element (40 scintillator slices, 1 cm deep)
OTHER COUNTERS	24-counter scintillator hodoscope surrounding beam pipe ($r = 15$ cm) for background monitoring 20-counter forward scintillator hodoscope, between end caps and muon detector, for forward muon triggering

MAGNETDETEKTOR **JADE**

- 1 Strahlrohrzähler
- 2 Endseitige Bleiglaszähler
- 3 Drucktank
- 4 Myon-Kammern
- 5 Jet-Kammern
- 6 Flugzeitzählern
- 7 Spule
- 8 Zentrale Bleiglaszähler
- 9 Magnetjoch
- 10 Myon-Filter
- 11 Beweglicher Endstopfen
- 12 Strahlrohr
- 13 Vorwärts-Detektor
- 14 Mini-Beta Quadropol
- 15 Fahrwerk

- 1 beampipe counters
- 2 end plug lead glass counters
- 3 pressure tank
- 4 muon chambers
- 5 jet chambers
- 6 time of flight counters
- 7 coil
- 8 central lead glass counters
- 9 magnet yoke
- 10 muon filters
- 11 removable end plug
- 12 beam pipe
- 13 tagging counter
- 14 mini beta quadropole
- 15 moving devices

Gesamtgewicht :~1200t
 TOTAL WEIGHT

Magnetfeld :0,5T
 MAGNETIC FIELD

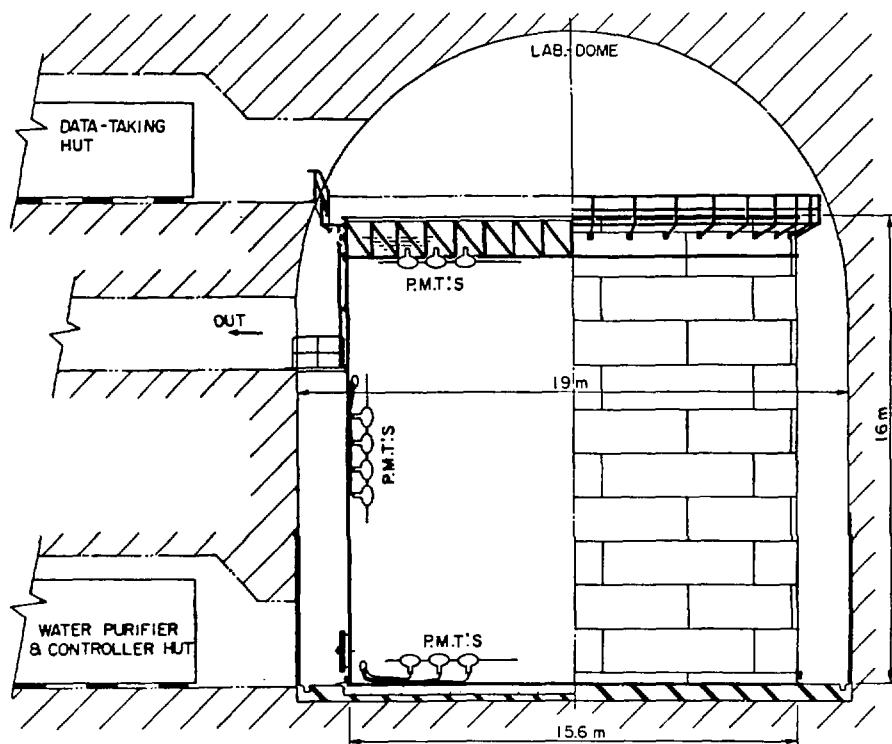
Beteiligte Institute:
 PARTICIPANTS

DESY, Hamburg, Heidelberg,
 Lancaster, Manchester,
 Rutherford Lab, Tokio

35162

XBL 832-8308

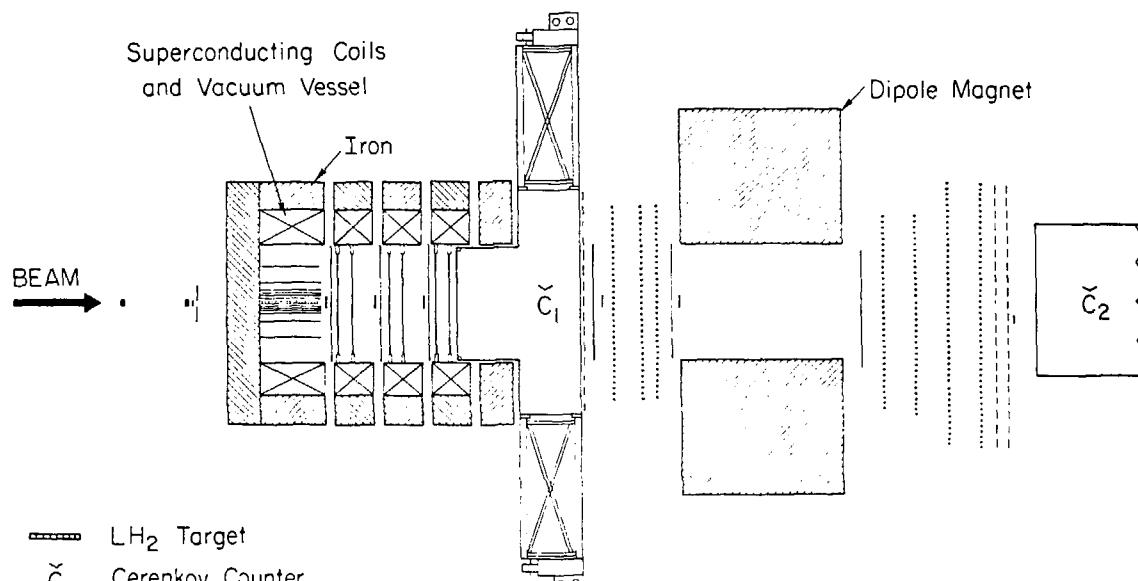
JADE


Kamiokande Detector for Nucleon Decay

LOCATION	1000 m underground in Kamioka mine Gifu prefecture (~300 km west of Tokyo). Japan
WATER CONTAINER	Steel tank of cylindrical shape, 15.6 m diameter \times 16 m high, containing 2900 m ³ of pure water
WATER PURIFIER	50 μ filter-20 μ filter-ion exchange purifier-0.45 μ filter-UV sterilizer-0.22 μ filter
CERENKOV LIGHT DETECTOR	1050 \times 20" diameter photomultipliers, R1449X, distributed over the inner surfaces of the water tank at 1 PM/m ² Photocathode covers 20% of the entire surface Expected energy resolution of $p \rightarrow e\pi^0$ event is 4% Equipped with transient digitizers to record μ -e decays and/or successive nucleon decays, if such existed
DATA TAKING	PDP 11/60

REFERENCES

1. T. Suda et al., Neutrino '81 Conf., Hawaii (July 1981).
2. K. Takahashi et al., Third Workshop on Grand Unification, Univ. of North Carolina (April, 1982).
3. M. Koshiba et al., 21st Int. Conf. on High Energy Physics, Paris (July 1982).


Kamiokande Detector for Nucleon Decay

XBL B31-7885

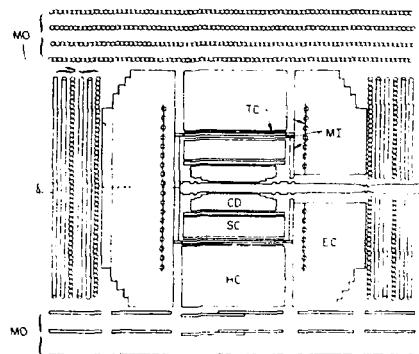
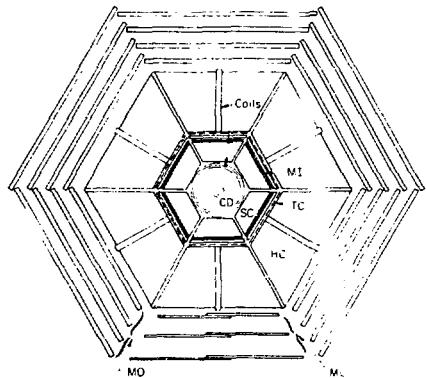
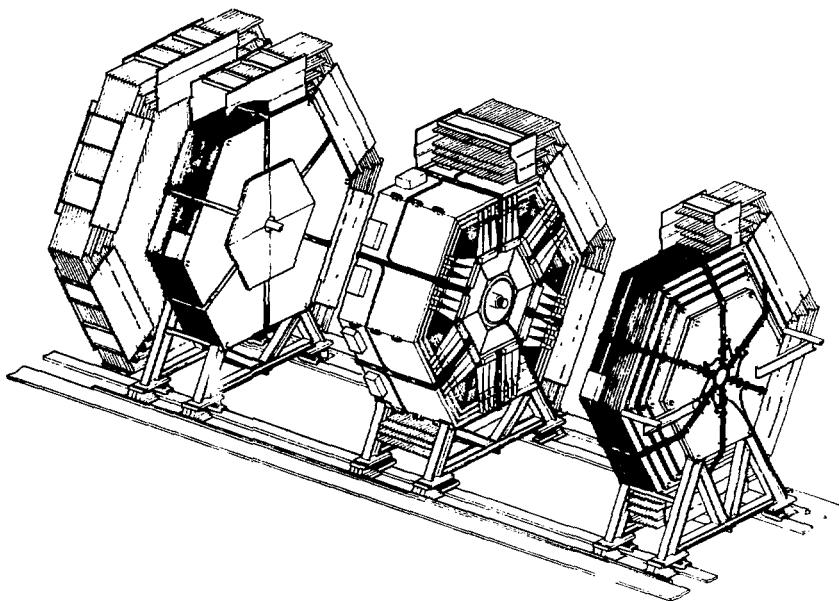
LASS

LOCATION	SLAC, Stanford, CA, USA
BEAM	An R.F. separated hadron beam Beam momentum up to 16 GeV/c Typical K/π ratio of 60:1 at 11 GeV/c
BEAM LINE	Two high-pressure Cerenkov counters
INSTRUMENTATION	10 planes of 1 mm anode spacing proportional chambers Momentum and position measuring scintillation hodoscopes
MAGNETS	Solenoid magnet with a 1.85 m diameter open bore and a 22.4 kG central field parallel to the beam axis Dipole magnet having an aperture 2 m wide \times 1 m high, and a field integral of 30 kG-m
TRACKING	Essentially 4π coverage consisting of: Solenoid: Low P_L /high P_T : 6 cylindrical MWPC's, each having 2 mm anode wire spacing and cathode readout having strips at $\pm 10^\circ$ High P_L /low P_T : 9 planes of 1 mm anode wire spacing MWPC 12 planes of 2 mm anode wire spacing MWPC 6 planes of cathode strip readout 3 planes of pattern readout Resolution: anode: $\sigma \simeq \frac{\text{wire spacing}}{2} \times \frac{1}{\sqrt{12}}$ cathode: $\sigma \simeq 200 \mu$ Dipole: Conventional dipole spectrometer having 21 coordinate measurements and a scintillation counter hodoscope at the dipole entrance, and 17 coordinate measurements at its exit Momentum resolution $\Delta p/p = 6.5 \times 10^{-4} p + 1.15 \times 10^{-3}$
PARTICLE IDENTIFICATION	C_1 : a 38 sector, air pressure Freon 114 filled Cerenkov counter having a pion threshold of ~ 3 GeV/c C_2 : an 8 cell, high pressure Freon 12 filled Cerenkov counter having a setable pion threshold of ~ 2 GeV/c TOF: a 24 element scintillation counter hodoscope having πK separation up to 1 GeV/c, and a $(\pi, K)/p$ separation up to 2.5 GeV/c
REFERENCES	<ol style="list-style-type: none"> 1. D.L. Blockus, PhD. Thesis, The Johns Hopkins Univ., 1980. 2. L.S. Durkin, PhD. Thesis, SLAC, Report-238, 1980. 3. A.K. Honma, PhD. Thesis, SLAC, Report-235, 1980. 4. G. Aiken et al., Design and Performance of the New Cathode Readout Proportional System -- LASS: SLAC PUB-2642, 1980. 5. S.L. Shapiro et al., IEEE Nucl. Sci. NS 23 (1976) 264, and <i>ibid</i> p. 269. 6. F.C. Winkelmann et al., Design and Operation of SLAC Beam Line 20-21-22, SLAC, Report-160, 1973.

1-83
12/086

XBL 832-8063

LASS




MAC (MAgnetic Calorimeter)

LOCATION	PEP e^+e^- storage ring SLAC, Stanford, CA, USA
MAGNETS	5.7 kG solenoid, 7.5 cm thick Al coil Diameter = 1 m, length = 2.3 m 17 kG iron toroids, 1 m thick
TRACKING	Cylindrical drift chamber 2.2 m long, 12-45 cm tracking radius Argon - 10% methane at 1 atm. 10 layers, double sense wires ≥ 5 points on tracks over $\Delta\Omega = 95\%$ of 4π 3° stereo gives $\Delta z = 4$ mm dE/dx to $\pm 15\%$ $\sigma_p/p = 6.5\% p$
MUON DETECTION	Muon tracking chambers 4 planes of 10 cm diameter drift tubes surrounding magnetized iron toroids $\sigma_p/p = 30\%$ $\Delta\Omega = 97\%$ of 4π
SHOWER DETECTORS	Barrel: 14 X_0 of Pb - proportional chamber sandwich $\sigma_E/E = 20\%/\sqrt{E}$ z-coordinate from charge division $\sigma_\phi = 0.8^\circ$, $\sigma_\theta = 1.3^\circ$ Endcaps: 14 X_0 of Fe - proportional chamber sandwich $\sigma_E/E = 45\%/\sqrt{E}$ ϕ -coordinate from cathode strips $\sigma_\phi = 2^\circ$, $\sigma_\theta = 1.5^\circ$ Total: $\Delta\Omega = 97\%$ of 4π
HADRON CALORIMETER	5.5 λ_{abs} of Fe - proportional chamber sandwich $\sigma_E/E = 75\%/\sqrt{E}$ $\sigma_\theta = 2^\circ$; $\sigma_\phi = 1^\circ$ (barrel), 4° (endcap) $\Delta\Omega = 97\%$ of 4π
TIME OF FLIGHT	144 scintillation counters (72 barrel, 72 endcaps) $r = 1.3$ m $\Delta t = 1$ ns $\Delta\Omega = 97\%$ of 4π
LUMINOSITY MONITOR	4 scintillator/shower counter telescopes at 32 mrad horizontally

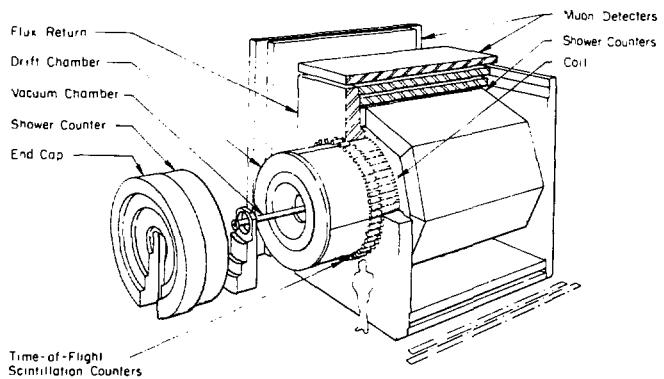
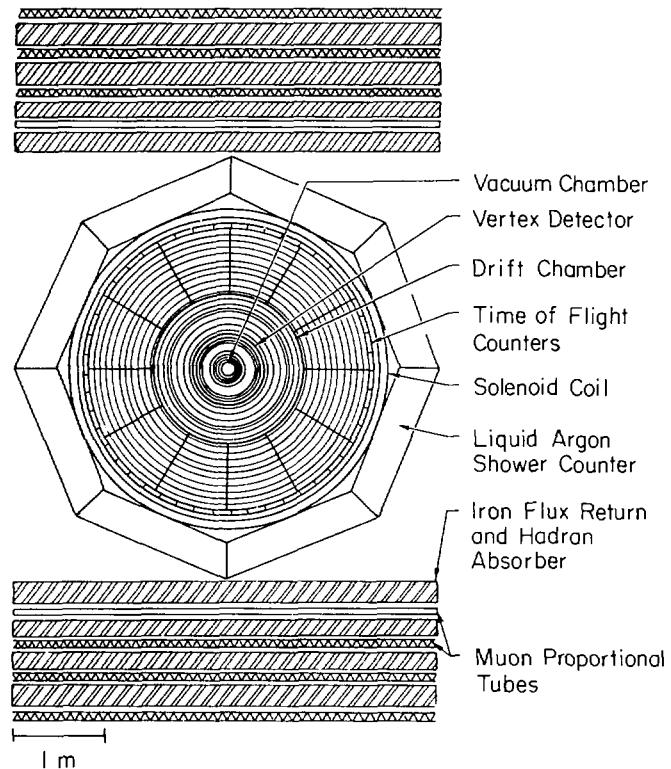
REFERENCES

1. R.L. Anderson et al., IEEE Trans. NS 25, (1978) 340.
2. W.T. Ford, SLAC-PUB-2894, March 1982 (Proceedings SLAC International Conference on Instrumentation for Colliding Beams).

MAC (MAgnetic Calorimeter)

MAC Detector Components:

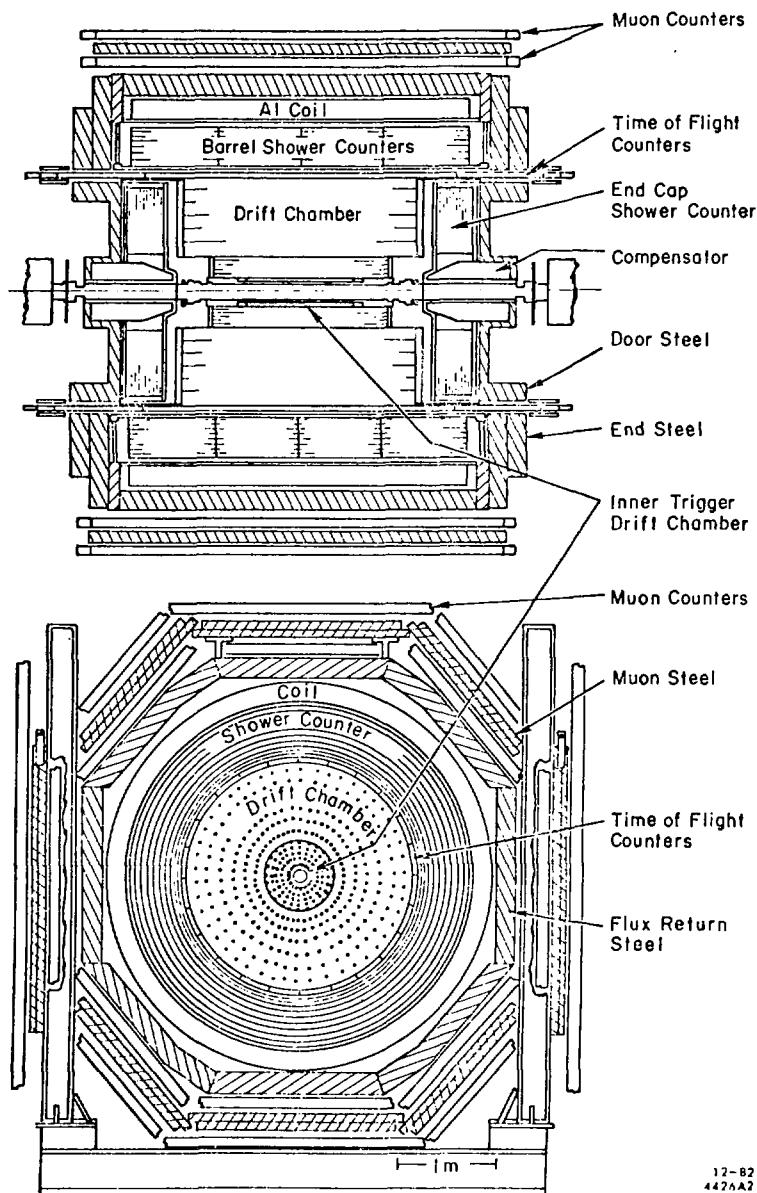
CD - Central Drift Chamber
SC - Shower Chamber (Central)
TC - Trigger/TOF Scintillators
HC - Hadron Calorimeter (Central)



EC - End-cap Shower and
Hadron Calorimeters
MO, MI - Muon Drift Chambers
Coils - Solenoid and Toroid

XBL 831-7898

MARK II

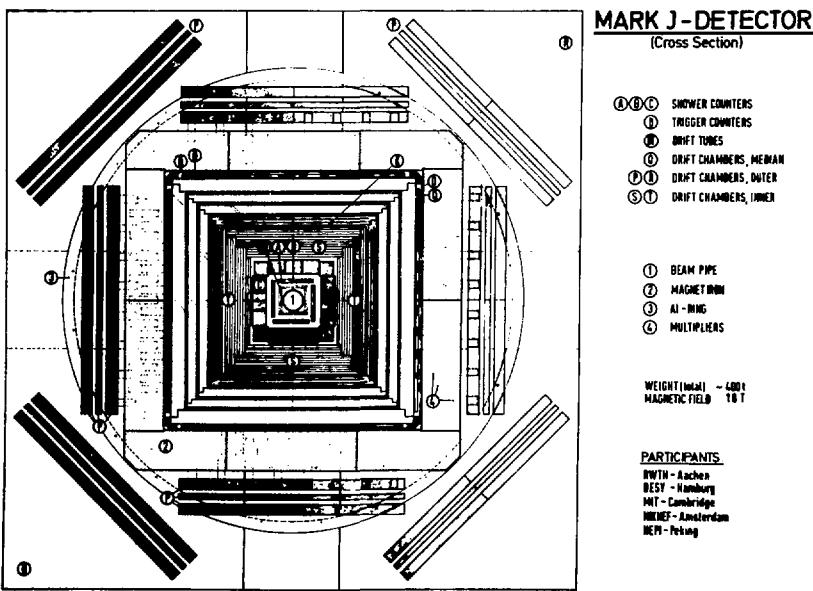
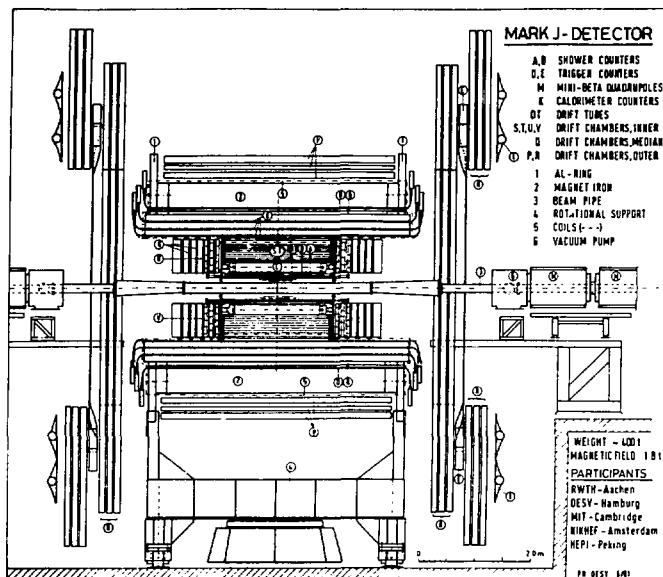
LOCATION	PEP e^+e^- storage ring SLAC, Stanford, CA, USA
MAGNET	4.6 kG Al coil solenoid, 1.5 m radius (currently running at 2.3 kG)
TRACKING	<p>Central drift chamber:</p> <p>Active length = 2.64 m, inner radius = 0.41 m, outer radius = 1.45 m 6 axial layers, 10 stereo layers ($\pm 3^\circ$) 50% ethane, 50% argon $\sigma \simeq 200 \mu$</p> <p>Vertex drift chamber:</p> <p>Cylindrical drift chamber, 1.2 m long, inner radius = 10 cm, outer radius = 35 cm Only axial wire layers (4 near $r = 12$ cm, 3 near $r = 30$ cm) $\sigma \simeq 100 \mu$ Be beam pipe ($0.006 X_0$) Combined $(\Delta p/p)^2 = (0.015)^2 + (0.01 p)^2$ Tracks extrapolated to interaction point within 100μ</p>
SHOWER COUNTERS	<p>8 modules of Pb-liquid argon ($15 X_0$ each), arranged in octagon outside coil Covers 64% of 4π 2 mm Pb sheets separated by 3 mm liquid argon gaps 37 layers ($0.4 X_0$ sampling) are ganged to provide 6 samples in depth Readout in 3.8 cm wide strips in ϕ, θ, u directions $\Delta E/E \simeq 13\%/\sqrt{E}$</p>
TIME OF FLIGHT	<p>48 scintillation counters read out at both ends Cover 75% of 4π 1.50 m flight path at $\theta = 90^\circ$; $\sigma = 340$ ps K, π separation up to 1.35 GeV/c at 1σ level</p>
END CAPS	2 layers Pb-proportional chamber ($5 X_0$) with 4 successive cathode strip readouts (θ , ϕ , R-spiral, L-spiral) 50% argon, 50% ethane
MUON DETECTION	Proportional tubes interleaved with steel absorber (4 layers each for total thickness of 1 m) covering 55% of 4π
SMALL ANGLE TAGGING	6 planar drift chambers followed by shower counters
LUMINOSITY MONITOR	Octagonal shower counters cover $22 \text{ mrad} < \theta < 80 \text{ mrad}$ contain 18 layers $1/4''$ Pb and $1/2''$ scintillator, read out with BBQ wave shifter, front 5 layers separately from back 13 $\Delta E/E = 15.5\%/\sqrt{E}$ 3 sets of scintillation counters
REFERENCES	<ol style="list-style-type: none"> 1. G.S. Abrams et al., Phys Rev. Lett. 43 (1979) 477, and <i>ibid</i> 481. 2. W. Davies White et al., Nucl. Instr. & Meth. 160 (1979) 227. 3. G.S. Abrams et al., IEEE Trans. Nucl. Sci. NS 25 (1978) 1, <i>ibid</i> 309, and NS 27 (1980) 59. 4. J.A. Jaros, Proc. Int. Conf. on Instrumentation for Colliding Beam Physics, SLAC-250 (1982).


MARK II

MARK III

LOCATION	SPEAR e^+e^- storage ring SLAC, Stanford, CA, USA
MAGNET	4.0 kG conventional aluminum coil
TRACKING	Drift chamber, O.D. 229 cm, length 234 cm 8 layers of cells, 2 stereo, 4 charge division 4 \times 32 1-wire cells in trigger layer 12 \times 32 sense-wire cells in inner dE/dx layer 16 \times layer number, 3 sense-wire cells in outer layers 89% argon, 10% CO_2 , 1% methane $(\Delta p/p)^2 = (1.5\%)^2 + (1.5\% p)^2$
SHOWER COUNTER	24 layers of Pb-gas proportional chamber sandwich ($12X_0$ total) A cylindrical array of 1.3 cm \times 2.9 cm \times 3.5 m cells, 320 per layer readout at both ends with charge division; the inner 6 layers are read individually, and the outer 18 in groups of 3 80% argon, 20% methane $\sigma_\phi = 6$ mrad; $\sigma_\theta = 14$ mrad at 45° ; $\sigma_E/E = 18\%/\sqrt{E}$
END CAPS	24 layers of Pb-gas proportional chamber sandwich ($12X_0$ total) An array of rectangular 1.2 cm \times 2.6 cm wide aluminum proportional tubes are glued between 1/2 X_0 layers of Pb 80% argon, 20% methane $\sigma_x = 0.8$ cm; $\sigma_y \sim 2-4$ cm
TIME-OF-FLIGHT	48 \times 15 cm \times 5 cm \times 3.2 m Pilot F scintillation counters mounted in a cylindrical array around the drift chamber, read out by Amperex XP2020 photo-multipliers on each end of the scintillators $\sigma_t \simeq 150-170$ ps
MUON DETECTION	2 double layers of 5 cm diameter, 4.2 m long proportional tubes mounted outside a 20 cm Fe flux return and separated by an additional 13 cm of Fe absorber The array covers 2/3 of the solid angle $\sigma_\phi = 7$ mrad; $\sigma_\theta = 30$ mrad
TRIGGER	Uses timing information from 2 layers of the inner trigger chamber and a chronotron circuit to restrict the trigger to a ± 45 ns interval Three layers of unfitted tracking information from the drift chambers are used to define tracks Triggering is on one track plus time-of-flight information or 2 tracks, solid angle $\simeq 80\%$
LUMINOSITY MONITOR	4 scintillator + shower counter telescopes at 25 mrad

MARK III

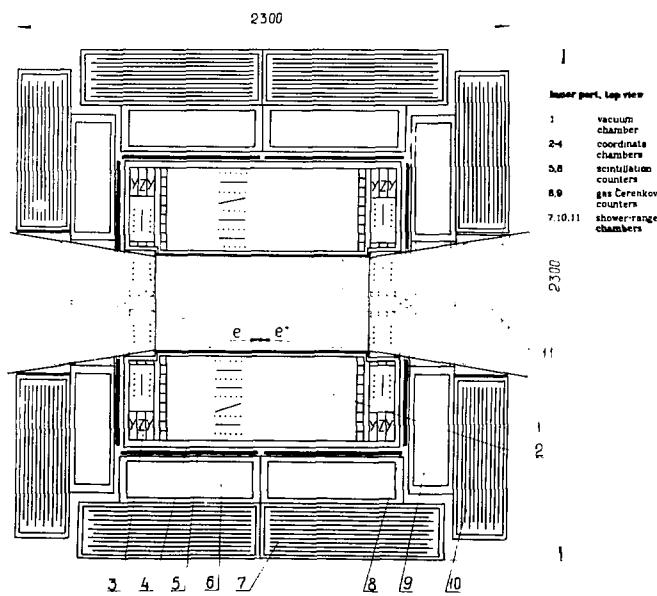
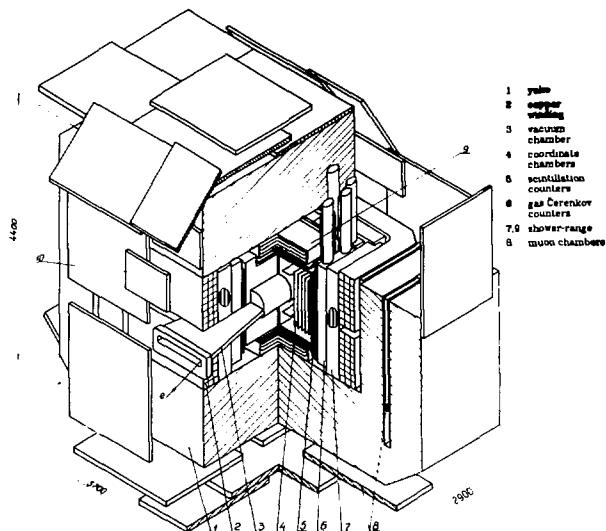


MARK-J

LOCATION	PETRA e^+e^- rings DESY, Hamburg, W. Germany
DETECTOR	Calorimetric, specialized for μ -detection and asymmetry measurements Can rotate around the beam $\phi \pm \pi$ and $\theta \pm \pi/2$ Decay path ~ 20 cm
MAGNET	Toroid, 500 T ₀ , iron magnetized to 17 kG 5 concentric squares of 87 cm thickness No field at beam; polarity can be changed
CENTRAL TRACKING	4000 drift tubes in 4 layers orthogonal to beam from 11-17 cm radius Vertex reconstruction to 3 mm
SHOWER COUNTERS	60 modules Pb-scintillator parallel to beam with double-sided readout 3 concentric layers of 3-12 X_0 completely overlapping in ϕ ; $12 < \theta < 168^\circ$ coverage $\Delta E/E \approx 12\%/\sqrt{E}$
CALORIMETER	192 scintillators in 7 layers of magnetized iron Resolution $\leq 20\%$ at 30 GeV, detecting charged and neutral energy flow 12 layers of drift chamber in front No magnetic analysis
MUON DETECTOR	Trigger by 24(48) counters with 400 ps resolution Tracking: 12 layers of drift chamber before magnet, 2 within and 10 behind magnet Minimal pulse height followed through in 3 layers of shower + 7 layers of calorimeter counters Low cutoff: 1.3 GeV

REFERENCES

1. The MARK-J Collaboration (Aachen, DESY, MIT, NIKHEF, Peking), Phys. Rep. **63** (1980) 1.

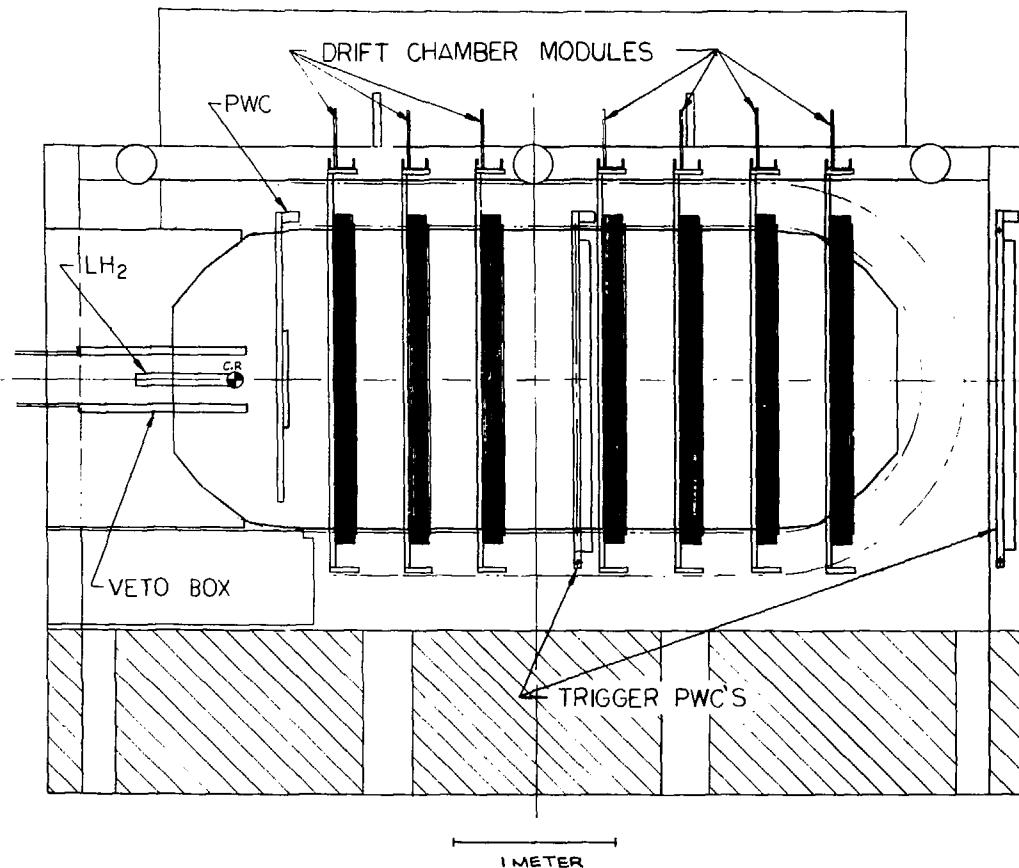
MARK-J

MD-1

LOCATION	VEPP-4 e^+e^- rings Novosibirsk, USSR
MAGNET	\vec{B} transverse to orbit plane $B \propto E_b$, $B_{\max} = 16$ kG $B = 12$ kG at $E_b = 5$ GeV
TRACKING	MWPC, $s = 2+4$ mm $\sigma_p/p = (5+10)\%$ p
SCINTILLATION COUNTERS	24 counters, $40 \times 40 \times 1$ cm ³ $\sigma_A/A = 20\%$ ($\beta = 1$), $\sigma_{TOF} = 0.4$ ns
CHERENKOV	8 counters, $160 \times 70 \times 20$ cm ³ , 60% of Ω Gas: ethylene, $P = 25$ atm. $(p_\pi)_{\text{thresh}} = 0.7$ GeV/c, $(p_k)_{\text{thresh}} = 2.5$ GeV/c $\epsilon(\beta=1) = 98\% \rightarrow \epsilon(\beta < \beta_{\text{th}}) < 0.1$ $\epsilon(\beta=1) = 60\% \rightarrow \epsilon(\beta < \beta_{\text{th}}) < 5 \times 10^{-3}$
SHOWER-RANGE CHAMBERS	14 chambers, $10 \times (13$ mm Fe + 10 mm MWPC) Gas: Ar + 20% CO ₂ , $P = 1$ atm. $\sigma_E/E = (40+15)\%$ at $E_\gamma = 0.15 + 5$ GeV $\epsilon_\gamma = 50\%$ at 150 MeV, $\epsilon_\gamma \geq 90\%$ at $E_\gamma \geq 250$ MeV $\sigma_\theta \approx \sigma_\phi \sim 1+2^\circ$
MUON DETECTION	MWPC, $(p_\mu)_{\text{thresh}} = 0.75+2.1$ GeV/c
SCATTERED ELECTRON	MWPC with $s = 4$ mm and with delay
TAGGING SYSTEM	Line readout with $\sigma = 0.1$ mm For $E = E_b$, $\theta = 12+100$ mrad For $\theta = 0$, $(E_b-E)/E_b = 0.1+0.5$ $\sigma_E/E = 1+1.5\%$
LUMINOSITY MONITOR	1. $ee \rightarrow ee\gamma$, NaI(Tl) counters 2. $ee \rightarrow ee$ at small angles, scintillation counters
REFERENCES	

1. S.E. Baru et al., Preprint INF 77-75, Novosibirsk, 1977.
2. S.E. Baru et al., Inter. Conf. on Instrumentation for Colliding Beam Physics, SLAC, 1982.

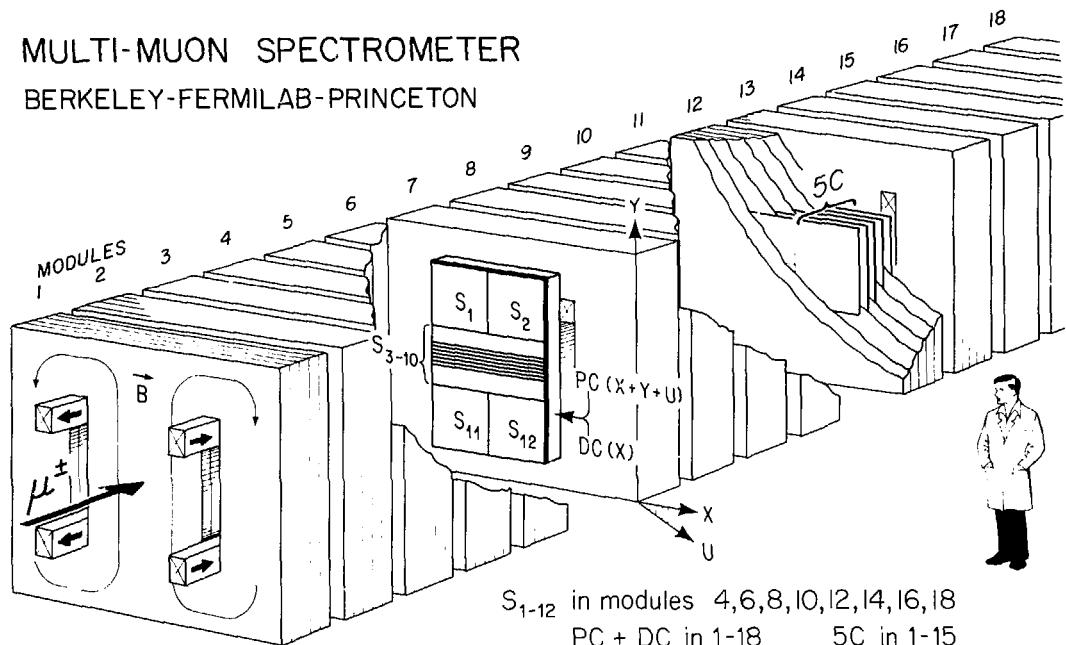

MD-1

XBL 832-8021

MPS II

LOCATION	AGS, Brookhaven National Laboratory Upton, NY, USA
BEAMS	High energy unseparated beam, 10-25 GeV/c Medium energy unseparated beam, K to 6 GeV/c, \bar{p} to 9 GeV/c Beam Flux $\approx 2 \times 10^6$ /pulse
MAGNET	"C" magnet, max field 10 kG Pole area 460 cm \times 180 cm; height 120 cm
MAIN DETECTORS	Narrow cell drift chamber modules Drift distance 0.3 cm Active area 173 cm W \times 100 cm H Resolution $\approx 250 \mu\text{m}$ 7 anode planes (XXX'YY'UV) per module 7 modules available - actual location determined by experiment
EXTERNAL EQUIPMENT	Atmospheric pressure Cerenkov counter hodoscope 540 cm W \times 200 cm H γ_r (Freon 114) ≈ 20 High pressure Cerenkov counter hodoscope (60 psi max) 350 cm W \times 120 cm H Typical $\gamma_r \approx 10$ Scintillation counter hodoscope 112 counters, each 6.4 cm W \times 200 cm H 3-gap drift chamber (XXX') 400 cm W \times 120 cm H 2.5 cm drift distance
TRIGGER ELEMENTS	3 PWC's, 0.25 cm between anode wires Can be used to count clusters "RAM-TRIGGER": a 2 million bit, three-dimensional look-up memory to select angle and momentum
REFERENCES	<ol style="list-style-type: none">1. S. Eiseman et al., "The MPS II Drift Chamber System", paper presented at the IEEE 1982 Nuclear Science Symposium, Washington D.C. (Sept. 20-22, 1982). Proceedings to be published in IEEE Transactions on Nuclear Science. BNL-32011.2. E.D. Platner et al., Nucl. Instr. & Meth. 140 (1977) 549.

MPS II


XBL 832-8064

Multimuon Spectrometer

LOCATION	Muon Laboratory, FNAL Batavia, IL, USA
COLLABORATION	Lawrence Berkeley Laboratory, Fermilab, Princeton University
MAGNET	Solid iron spectrometer serves as analyzing magnet, target, hadron absorber, and hadron calorimeter Magnet size $2.5 \text{ m} \times 2.5 \text{ m} \times 16 \text{ m}$ Fiducial volume $1.8 \times 1 \times 12 \text{ m}^3$ Field is 2 Tesla, uniform to 3% and mapped to 0.2% Magnet constructed of 10-cm thick plates with gaps between for instrumentation
TRACKING	19 multiwire proportional chambers, $1.8 \text{ m} \times 1.0 \text{ m}$ active area, 3 coordinate (x,y,z) readout, $\sigma_x = 900 \mu\text{m}$, $\sigma_y = \sigma_z = 1500 \mu\text{m}$ 19 drift chambers, $1.8 \text{ m} \times 1.0 \text{ m}$, $\sigma_x = 250 \mu\text{m}$ Momentum resolution $\sigma_p/p \sim 8\%$
HADRON CALORIMETER	75 counters of plastic scintillator, each $1 \text{ m} \times 0.8 \text{ m}$, downstream of each 10-cm thick iron plate $\sigma_\nu/\nu = 1.4/\sqrt{\nu}$ where ν is the hadron shower energy in GeV
TRIGGER	Parallel triggers using 8 banks of scintillator hodoscopes separated by 1 m of iron, and energy deposition in hadron calorimeter Apparatus is triggered by single muon scattered at large angle ($\theta \geq 20 \text{ mrad}$) Multimuon triggering is fully sensitive in the forward direction Two-muon trigger requires energy deposition in the calorimeter; three-muon triggers have no calorimeter requirement
REFERENCES	<ol style="list-style-type: none">1. G. Gollin et al., IEEE Trans. Nucl. Sci. NS 26 (1979) 59.2. G. Gollin et al., Phys. Rev. D24 (1981) 559.3. W.H. Smith et al., Phys. Rev. D25 (1982) 2762.

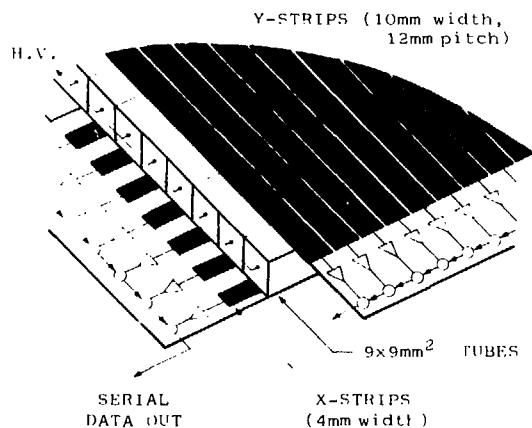
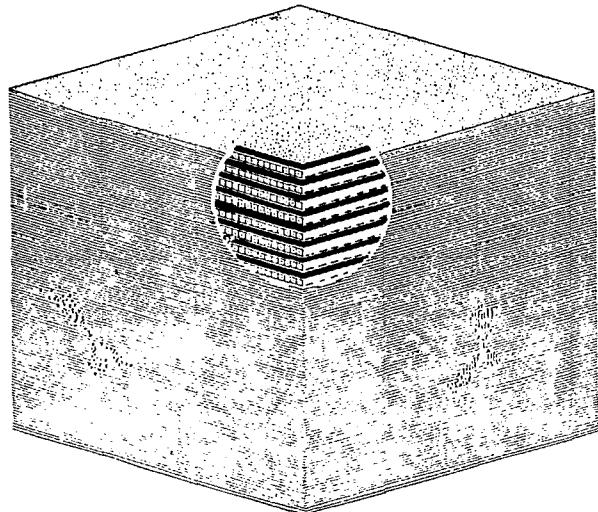
MULTI-MUON SPECTROMETER

BERKELEY-FERMILAB-PRINCETON

Multimuon Spectrometer

XBL 795-9605

NUSEX Detector for Nucleon Decay



LOCATION	Mont Blanc Laboratory Italian-French border
SHIELDING DEPTH	~5000 m.w.e.
DETECTOR	Digital tracking calorimeters; 1 cm iron interleaved with plastic streamer tubes: i34 layers
MASS	150 tons (average density: 3.5 g/cm ³)
VOLUME	(3.5m) ³
SENSITIVE ELEMENTS	48,880 plastic streamer tubes with resistive cathode Cell 9 × 9 mm ² , 100 μ m wire, gas mixture Ar+CO ₂ +n-pentane (1+2+1), HV = 3900 V External pick-up strips for x and y streamer localization on each tube layer
READOUT	81,472 readout channels Discriminator (~3 mV/50 Ω threshold); shift register memory
SPATIAL RESOLUTION	$\sigma_x \sim \sigma_y \sim 3$ mm
ENERGY RESOLUTION	$\sigma_E/E \sim 20\%/\sqrt{E}$ for e.m. showers
TIME RESOLUTION	100 ns for the single streamer
$\mu \rightarrow e$ DETECTION EFFICIENCY	40%
MINIMUM TRIGGER	4 contiguous planes

REFERENCES

1. G. Battistoni et al., Phys. Lett. **118B** (1982) 461.
2. G. Battistoni et al., Nucl. Instr. & Meth. **176** (1980) 297.

NUCLEON STABILITY EXPERIMENT

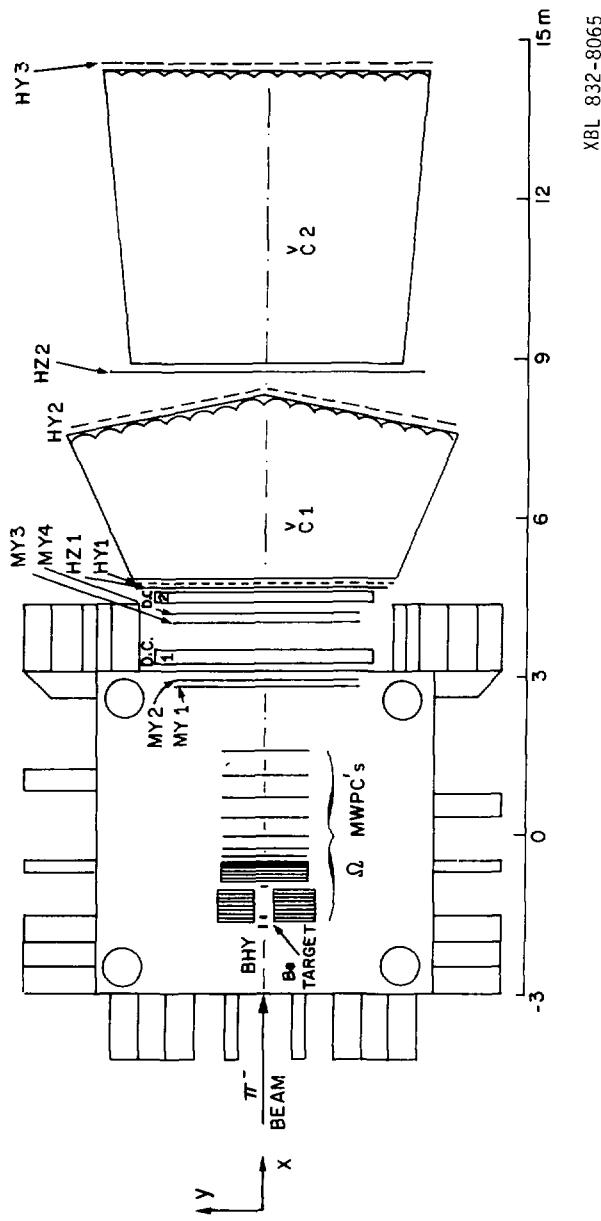
FRASCATI - MILANO - TORINO - CERN

XBL 832-8141

NUSEX Detector for Nucleon Decay

OMEGA

LOCATION	West area, 450 GeV secondary beam CERN, Geneva, Switzerland
MAGNET	18 kG (superconducting) Field volume: height, 150 cm; diameter ($1/2$ field), 400 cm
TRACKING	Proportional chambers inside field $\sigma_p/p = 10^{-3} p$ + level arm drift chambers $\sigma_p/p = 2 \times 10^{-4} p$
PARTICLE IDENTIFICATION	Two threshold Cerenkov counters 30 cells each
FUTURE DETECTORS	50 μ m pitch microstrips for measurement of beam and decay vertices Ring image Cerenkov (5 m gas radiator) Photon calorimeter $4 \times 4 \text{ m}^2$, $27X_0$, 1 cm bins $\sigma_E/E = 15\%/\sqrt{E}$

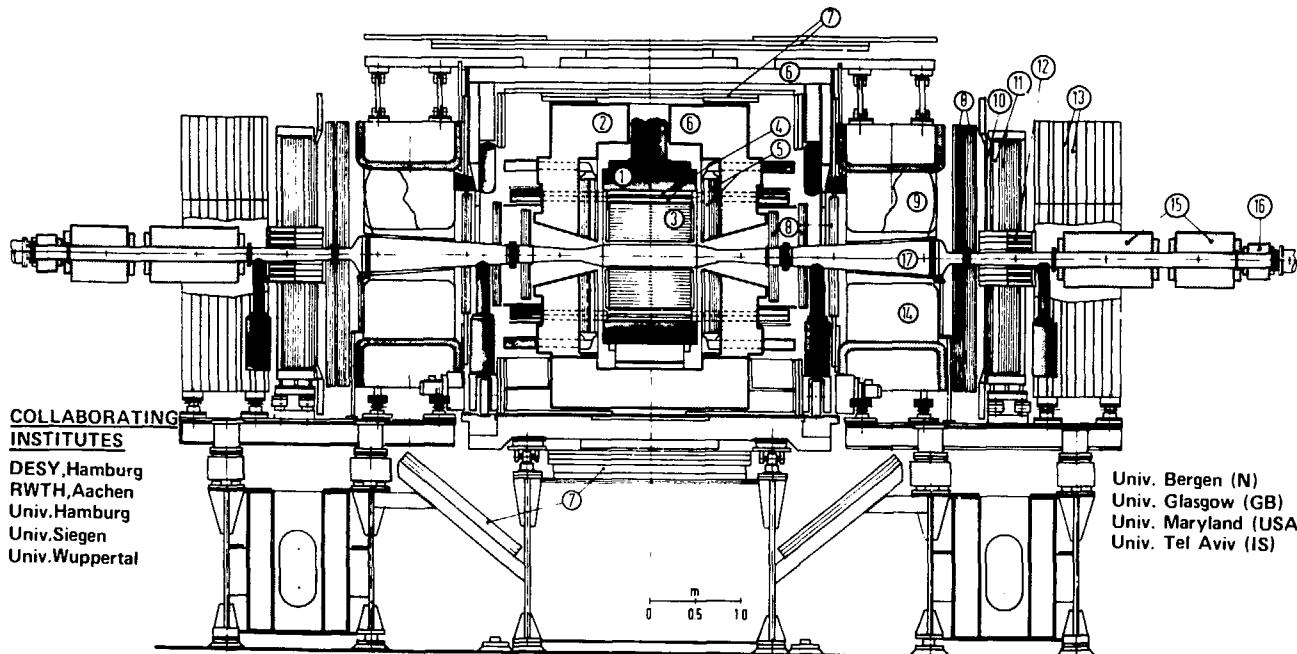

REFERENCES

1. W. Beusch et al., CERN/SPSC/77-70 and CERN/SPSC/T-17.

FIGURE CAPTION

OMEGA spectrometer layout shown (1983) is for experiment WA77 (H... = hodoscopes, M... = multiwire proportional chambers, DC = drift chambers, C... = gas Cerenkov counters. Target: here Be, usually H₂, also emulsions for photoproduction of unstable particles).

OMEGA


PLUTO

LOCATION	DORIS e^+e^- ring (1974-1978) PETRA e^+e^- ring (1978-1982) DESY, Hamburg, W. Germany
MAGNET*	16.5 kG (superconducting)
TRACKING	13 proportional chambers + cathode readout $\sigma_p/p = 3\% p$ for $p > 3 \text{ GeV}/c$
SHOWER COUNTERS	$8.6X_0$ of Pb-scint. sandwich $\sigma_E/E = 35\%/\sqrt{E}$ Double layer helix tubes $\sigma_\phi = 1.3^\circ$, $\sigma_\theta = 1.4^\circ$
END CAPS	$10.3X_0$ Pb-scint. sandwich, 12° segments (ϕ) $\sigma_E/E = 19\%/\sqrt{E}$ One layer MWPC $\sigma_\theta = 1^\circ$
MUON DETECTION	100 cm iron including coil and flux return yoke $p_{\text{cutoff}} = 1.4 \text{ GeV}/c$
FORWARD SPECTROMETERS	SAT (29-57 mrad) $19.5X_0$ Pb-scint. sandwich, 30° segments (ϕ) $\sigma_E/E = 18\%/\sqrt{E}$, $\sigma_\theta = 2 \text{ mrad}$, $\sigma_\phi = 20 \text{ mrad}$ 4 planes PWC in front LAT (70-260 mrad) 18 Pb-scint. sandwiches, $14.5X_0$ $\sigma_E/E = 11\%/\sqrt{E}$ 4 layer; proportional tubes Analyzing septum magnets with drift chamber telescopes before and after $\sigma_p/p = 2.5\%$ Time-of-flight counters
*FOOTNOTE	All data concern the 1981/82 version of the detector

REFERENCES

1. J. Burmester et al., Phys. Lett. **64B**, (1976) 369.
2. O. Achterberg et al., Nucl. Instr. & Meth. **156**, (1978) 287.
3. C. Berger et al., Phys. Lett. **81B** (1979) 410 and Phys. Lett. **89B** (1979) 120.
4. L. Criegee and G. Knies, Phys. Rept. **83** (1982) 151.

PLUTO Detector (1981)

COLLABORATING INSTITUTES

DESY, Hamburg
 RWTH, Aachen
 Univ. Hamburg
 Univ. Siegen
 Univ. Wuppertal

PLUTO

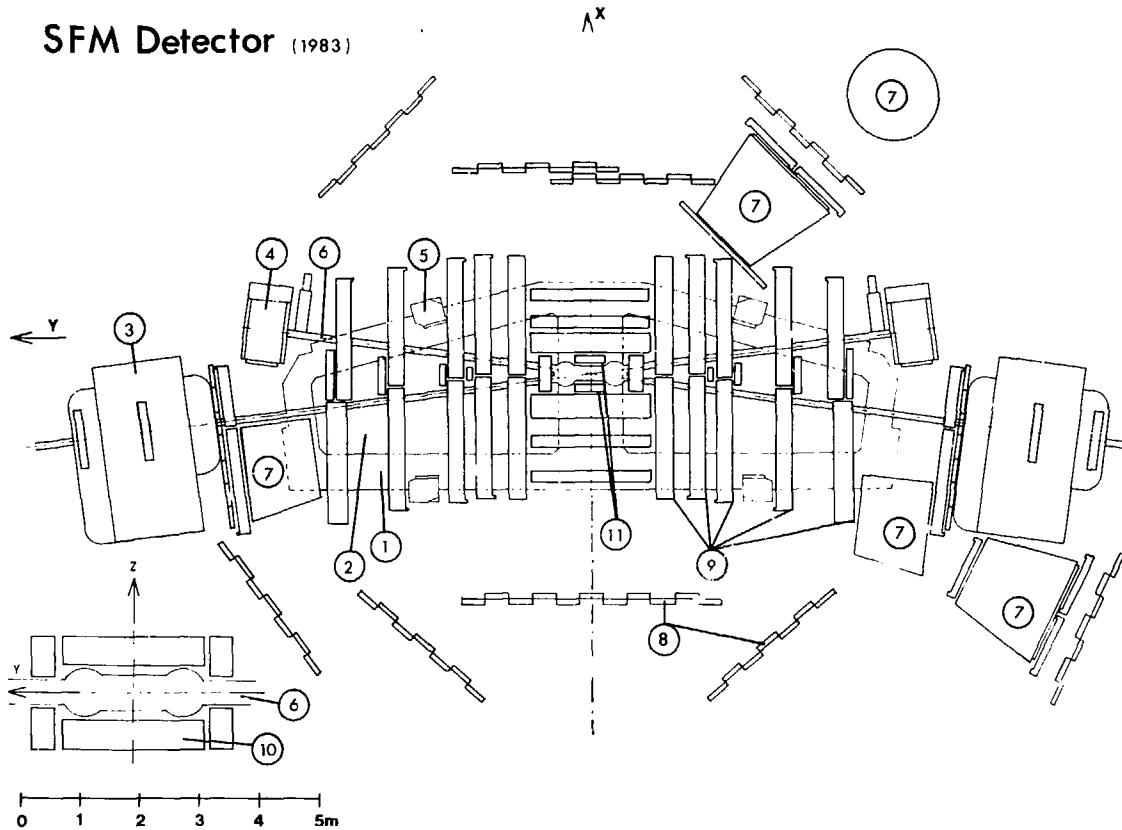
- 1. Superconductive coil
- 2. Magnet yoke
- 3. Cylindrical driftchambers
- 4. Barrel shower counter with helix-tubes
- 5. Endcap shower counters with proportional chambers
- 6. Hadron absorber
- 7. Muon chambers
- 8. Forward drift chambers
- 9. Cerenkov counter
- 10. TOF counters
- 11. Large angle tagger (LAT) with proportional tubes
- 12. Small angle tagger (SAT)
- 13. Forward muon detector
- 14. Septum magnet
- 15. Mini beta quadrupoles
- 16. Correction quadrupole
- 17. Vacuum pipe

33528
 F 33/PR- kn (1980)

XBL 832-8307

SFM

LOCATION	ISR pp storage ring CERN, Geneva, Switzerland
MAGNET	10 kG split field magnet Gap 1.1 m, length 10 m
TRACKING	MWPC system, 70,000 wires Argon-isobutane-methylal
PARTICLE IDENTIFIER	Time-of-flight system, 74 scintillators Atmospheric and high pressure Cerenkov counters dE/dx chambers (momentum below minimum ionizing)

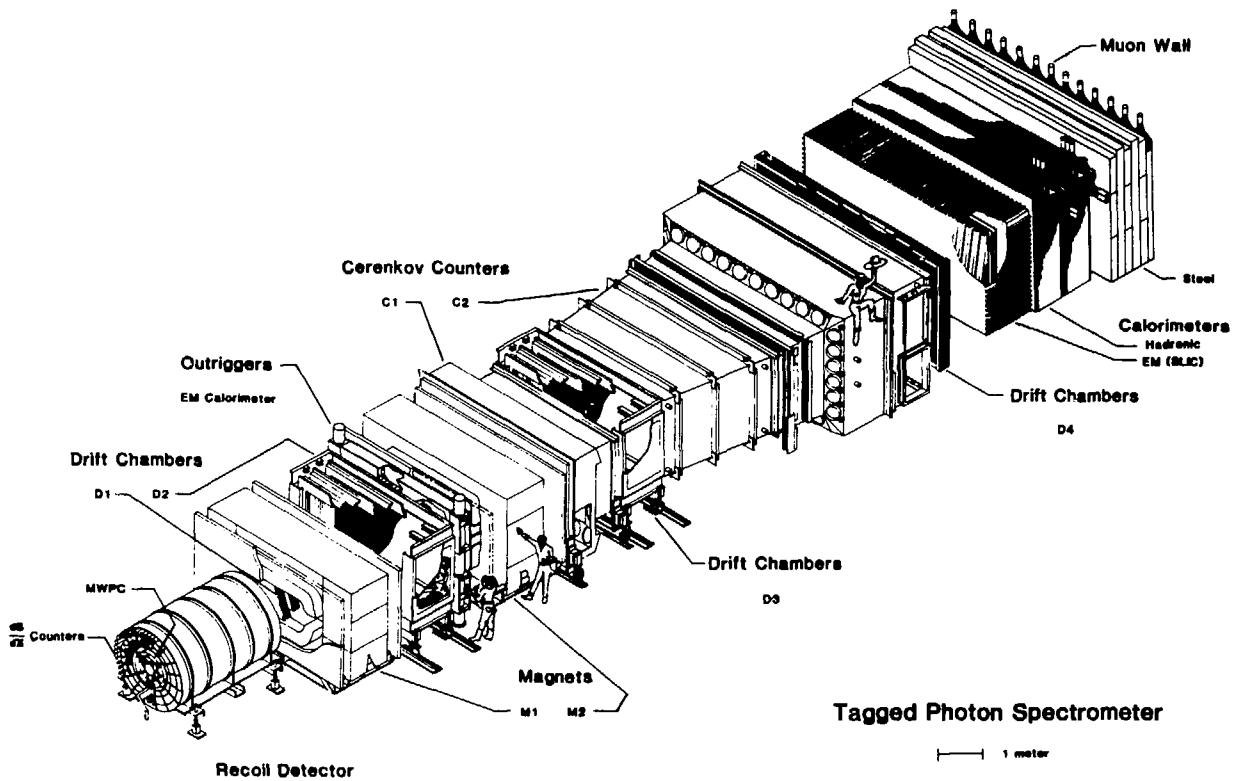

REFERENCES

1. R. Bouclier et al., Nucl. Instr. & Meth. **115** (1974) 235.
2. R. Bouclier et al., Nucl. Instr. & Meth. **125** (1975) 19.
3. W. Bell et al., Nucl. Instr. & Meth. **125** (1975) 437.

FIGURE CAPTION

1. MAIN MAGNET COIL
2. MAIN MAGNET YOKE
3. LARGE COMPENSATOR MAGNET
4. SMALL COMPENSATOR MAGNET
5. NON-MAGNETIC PILLAR
6. VACUUM CHAMBER
7. CERENKOV COUNTER
8. TIME-OF-FLIGHT COUNTER
9. MWPC FORWARD DETECTION SYSTEM
10. MWPC CENTRAL VERTEX DETECTOR
11. MWPC ENERGY LOSS DETECTOR

SFM Detector (1983)

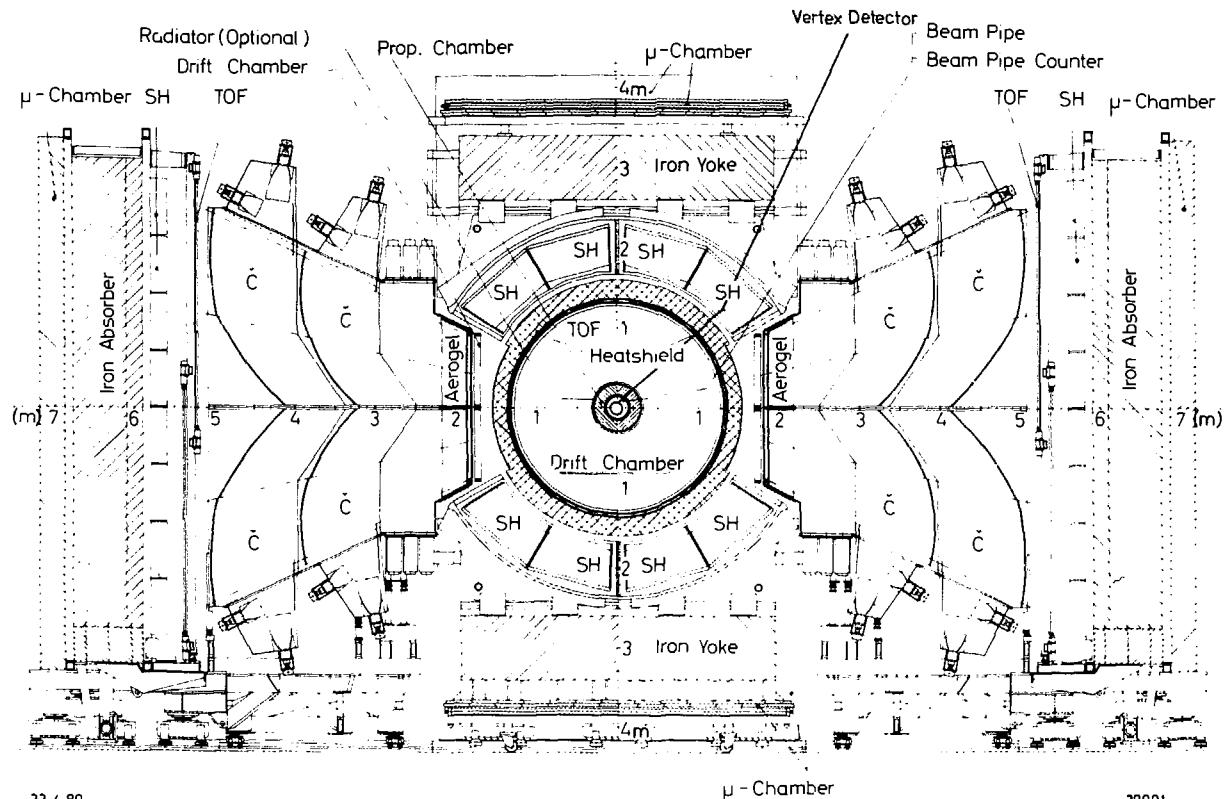


831-7889

Tagged Photon Spectrometer

LOCATION	Tagged Photon Lab., Proton East Fermilab, Batavia, IL, USA
MAGNETS	<ol style="list-style-type: none"> 1. 80.9 cm gap, 183 cm wide, 100 cm long 7.1 kG-m (can be increased to 14.2 kG-m) 2. 85.7 cm gap, 183 cm wide, 100 cm long 14.2 kG-m
RECOIL DETECTOR	$\Delta\phi = 5.9 \text{ rad}$, Δz (scintillator) = 210 cm at radius 54 cm Cyl. proportional chamber with cathode readout: $\sigma_\theta = 5 \text{ mr}$, $\sigma_\phi = 15 \text{ mr}$ 2 layers plastic + 2 layers liquid dE/dx scintillators in 15 azim. sectors $0.06 < t < 1.2 \text{ GeV}^2$, $\sigma_t/t = 5\text{--}10\%$ End to end timing — $\sigma_z = 10 \text{ cm}$
FORWARD SPECTROMETER	Tracking: 29 drift chamber planes <ol style="list-style-type: none"> 2 magnets: $\theta_x < 170 \text{ mr}$ and $\theta_y < 72 \text{ mr}$ $\sigma_\theta = 1.0 \text{ mr}$, $\sigma_p/p^2 = 5.0 \times 10^{-4} \text{ GeV}^{-1}$ 1 magnet: $\theta_x < 350 \text{ mr}$ and $\theta_y < 36 \text{ mr}$ $\sigma_\theta = 2.7 \text{ mr}$, $\sigma_p/p^2 = 60 \times 10^{-4} \text{ GeV}^{-1}$ Charged particle identification: 2 atm. press. Cerenkov detectors N_2 and 20% N_2 — 80% He mixture, 20 segments each Separation: π vs K or p $6 < p < 36 \text{ GeV}$ π vs K vs p $20 < p < 33 \text{ GeV}$ Neutral Detection: Electromagnetic - Pb-liqu. scint. (SLIC): u,v,y readout, $60 \times 0.16 \text{ cm}$ Pb samples $\sigma_\theta = 0.3 \text{ mr}$, $\sigma_E/\sqrt{E} = 12\%$ ($ \theta_x < 134 \text{ mr}$ and $ \theta_y < 67 \text{ mr}$) Pb-plastic scint. (Outtrigger): x,y readout, $16 \times 0.64 \text{ cm}$ Pb samples $\sigma_\theta = 2.0 \text{ mr}$, $\sigma_E/\sqrt{E} = 20\%$ ($ \theta_x < 157 \text{ mr}$ and $ \theta_y = 58\text{--}160 \text{ mr}$) Hadronic - Fe-plastic scint. (Hadrometer): x,y readout, 36 total samples (2.5 cm Fe each) $\sigma_\theta = 2 \text{ mr}$, $\sigma_E/\sqrt{E} = 70\%$ Muon detector hodoscope: 30 counters following $\sim 200 \text{ cm}$ Fe
BEAM	300 GeV e^- with γ tagging system ($0.45 < E_\gamma/E_e < 0.95$ $\sigma_\gamma \simeq 3\text{--}6 \text{ GeV}$)
BUILDERS	Tagged Photon collaboration: Fermilab, Carleton Univ., Toronto Univ., Univ. of California at Santa Barbara, Univ. of Colorado
REFERENCES	<ol style="list-style-type: none"> 1. J. Appel et al., Tagged Photon Magnetic Spectrometer Facility Report, Fermilab, 1977. 2. V.K. Bharadwaj et al., Nucl. Instr. & Meth. 155 (1978) 411. 3. T. Nash, Proceedings Top. Conference Applic. of Microprocessors to HEP Experiments, Geneva, May 1981, p. 132. 4. J. Martin et al., <i>ibid</i>, p. 164. 5. E. Barsotti et al., IEEE Trans. Nucl. Sci. NS 26 (1979) 686. 6. A.L. Duncan, Ph.D. Thesis, Univ. Colorado, 1982 (COLO-HEP-57).

Tagged Photon Spectrometer


Tagged Photon Spectrometer

1 meter

XBL 831-7899

TASSO

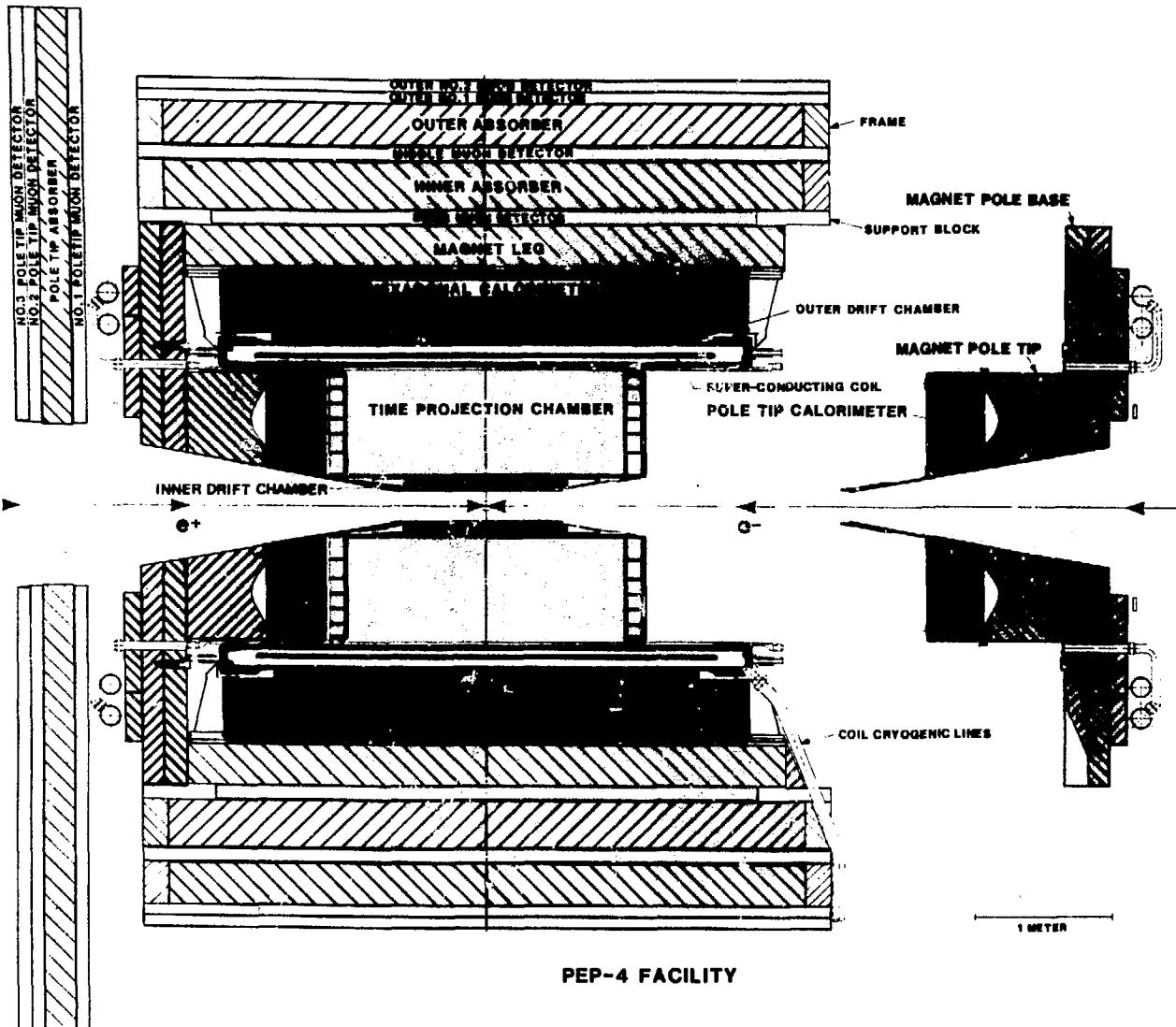
LOCATION	PETRA e^+e^- rings DESY, Hamburg, W. Germany
MAGNET	Solenoid, 5 kG, $R_i = 135$ cm, $L = 440$ cm, $d = 10$ cm Al
TRACKING	Vertex detector, drift chamber, 8 layers, cell size 0.71–0.87 cm, 720 signal wires. $R_i = 6.5$ cm, $R_o = 16.1$ cm, $L = 60$ cm Cyl. proportional chamber, 4 anode layers, wire spacing ~ 3 mm, 1920 signal wires. 8 cathode layers, 960 channels, $R_i = 17$ cm, $R_o = 29$ cm, $L = 140$ cm Cyl. drift chamber, 15 layers, 9 with 0° , 6 stereo, cell size 3.2 cm, 2340 signal wires. $R_i = 30$ cm, $R_o = 130$ cm, $L = 323$ cm, using all chambers $\sigma_p/p < 17\%$ for $p > 2$ GeV/c
TIME-OF-FLIGHT	Between drift chamber and coil, 48 counters, $390 \times 17 \times 2$ cm ³ , $\sigma_{TOF} = 270$ –450 ps depending on z
SHOWER COUNTERS NEAR CENTRAL DETECTOR	Liquid argon-lead with towers pointing to I.P.: towers for energy measurement, strips for position measurement Barrel $42^\circ < \theta < 138^\circ$: $\phi: 30^\circ$ – 150° , 210° – 330° ; 0.2 cm Pb, 0.5 cm argon, $14X_0$. 5088 front towers, 1248 back towers, 4592 strips for z , ϕ , dE/dx $\sigma_E/E = (0.11 + \frac{0.02}{E-0.5})/\sqrt{E}$, $E > 1$ GeV; $\sigma_\theta = \sigma_\phi = 2$ mrad Endcap $12^\circ < \theta < 30^\circ$, $150^\circ < \theta < 168^\circ$, $\phi: 0$ – 360° , 0.2 cm Pb, 0.3 cm argon, $12.6X_0$. 1444 front towers, 872 back towers, 840 strips for R and ϕ
HADRON ARMS	For particle identification up to high momenta: $50^\circ < \theta < 130^\circ$, $-26^\circ < \phi < 26^\circ$, $154^\circ < \phi < 206^\circ$; following coils are: Plane drift chamber, 8 layers Aerogel Cerenkov counter, $n = 1.024$, $d = 13.5$ cm, 32 cells Freon 114, $n = 1.0014$, 1 atm., 64 cells CO ₂ , $n = 1.00043$, 1 atm., 64 cells threshold momenta (GeV/c) π K p Aerogel 0.6 2.2 4.2 Freon 114 2.6 9.3 17.8 CO ₂ 4.8 16.8 32.0 Time-of-flight, 96 counters, $\sigma = 450$ ps Shower counters: lead-scintillator with wavelength shifter readout, $7.4X_0$. 128 counters, $\sigma/E = 17\%$
MUON DETECTION	Behind magnet yoke (50–80 cm Fe) and behind hadron wall (87 cm Fe). 4 layers of proportional tube chambers, 4×4 cm ²
FORWARD DETECTOR	25–115 mrad, scintillation hodoscope, proportional tube chambers, lead-scintillator shower counter
REFERENCES	<ol style="list-style-type: none"> 1. TASSO Collaboration, R. Brandelik et al., Phys. Lett. 83B (1979) 261, 108B (1982) 71, and 113B (1982) 98. 2. H. Boerner et al., Nucl. Instr. & Meth. 176 (1980) 151. 3. K. Bell et al., Nucl. Instr. & Meth. 179 (1981) 27. 4. H. Burkhardt et al., Nucl. Instr. & Meth. 184 (1981) 319.

22.4.80

μ - Chamber

29991

TASSO

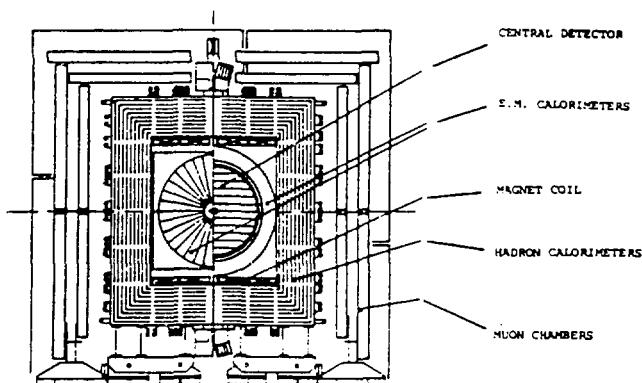
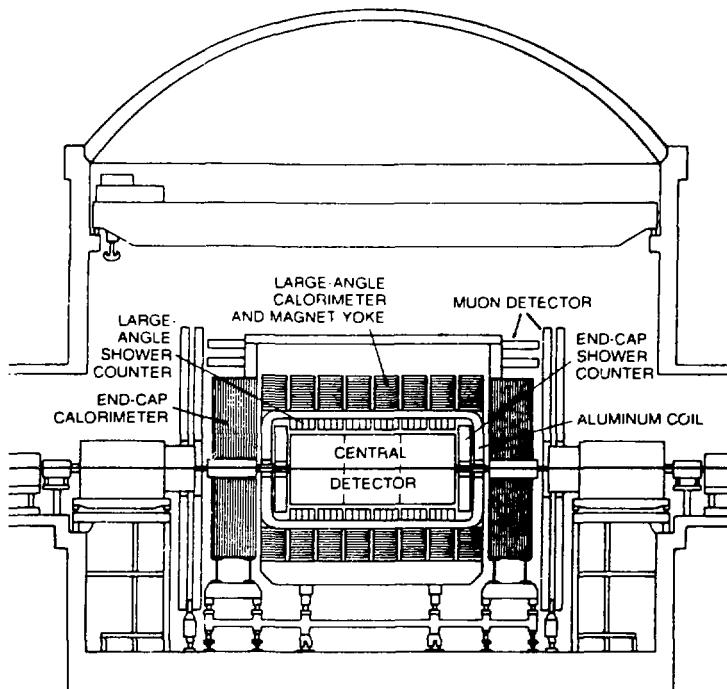

XRI 831-7895

TPC

LOCATION	PEP e^+e^- ring, Interaction Region (IR) 2 SLAC, Stanford, CA, USA
MAGNET	1982-83: 4 kG Al coil solenoid (1.32 X_0 coil package) 1984: 14.5 kG superconducting coil (0.86 X_0 package) Diameter = 2.15 m, length = 3.0 m
TRACKING	Time Projection Chamber (TPC) 2.0 m long (in z) at 30 to 100 cm radius (r) Argon-methane (80%-20%) at 8.5 atm. Max. drift 1.0 m in 20 μ sec, 75 kV/m drift electric field 183 proportional wire hits on tracks with $ \cos \theta < 0.71$, each wire gives r, z and amplitude for six 60° sectors at each end and provides dE/dx meas. by multiple ionization sampling 15 3-dim. space points from induced cathode signals on several of 13,824 channels to give r, ϕ , and z (from the drift time), for $ \cos \theta < 0.71$ ≥ 2 3-d points and ≥ 15 wire hits over 97% of 4π sterad Track pair resolution of 1-2 cm $dE/dx \pm 3.5\%$ for Bhabhas $\pm 4.0\%$ for tracks in jet events with ≥ 120 samples $\sigma_p/p^2 = \pm 3.6\%$ for $p \geq 2$ GeV/c position resolution in bending plane is 190 microns and in axial (z) direction 340 microns; presently low magnet field and drift distortions increase σ_p/p^2 Inner drift chamber at 13 to 19 cm radius 8.5 atm Ar-CH ₄ (80%-20%), 150 microns in bend plane 1.2 m long covering 95% of 4π , with 4 axial layers Outer drift chamber at 1.19 to 1.24 m radius 1 atm Ar-CH ₄ (80%-20%), 200 microns in bend plane 3 m long covering 77% of 4π , with 3 axial layers
POLE-TIP CALORIMETER	Gas, proportional mode, sampling Pb-laminate calorimeter 2 modules, 13.5 X_0 deep, at z = 1.1 m, covering 18% of 4π Argon-methane (80%-20%) at 8.5 atm; total of 51 samples Three 60° stereo views, each with 13 and 4 samples in depth Projective strip geometry with 8 mrad angular segment $\sigma_E/E = \pm 11\%/\sqrt{E}$, below 10 GeV $\pm 6.0\%$ for Bhabhas at 14.5 GeV
HEXAGONAL CALORIMETER	Gas, limited Geiger mode, sampling Pb-laminate calorimeter 6 modules, 10 X_0 deep, 4.2 m long at 1.2 m radius Argon-ethyl bromide (96%-4%) at 1 atm. Solid angle coverage of 75% (90% including PTC) 3 correlated 60° stereo views using wire and cathode signals in 40 samples (27 and 13 samples in depth) Projective strip geometry with 9 mrad angular segment $\sigma_E/E = \pm 14\%/\sqrt{E}$, below 1 GeV $\pm 12\%$ for Bhabhas at 14.5 GeV
MUON DETECTOR	Magnet flux return + 2 layers iron, total 810 g/cm Triangular, double layer, extruded Al proportional tubes Argon-methane (80%-20%) at 1 atm. 3 layers with axial wires and 4th layer at 90 deg. Endcap with 3 layers provides 98% of 4π sterad coverage Resolution = 1 cm, expect 3 mm when operated as drift tube
TRIGGER	≥ 2 charged over 85% of 4π sterad; neutral energy of ≥ 4 GeV, or energy in two or more calorimeter modules of ≥ 1.5 GeV; ≥ 1 charged and neutral energy of ≥ 750 MeV or energy in two or more calorimeter modules of ≥ 1.5 GeV

REFERENCES

1. TPC: H. Aihara et al., IEEE Trans. NS 30 (1983).
2. IDC: W. Gorn et al., IEEE Trans. NS 26 (1979) 67.
3. HEX: H. Aihara et al., IEEE Trans. NS 30 (1983).
4. MUON: J. Bakken et al., IEEE Trans. NS 30 (1983).
5. TRIG: M. Ronan et al., IEEE Trans. NS 29 (1982) 427



UA1

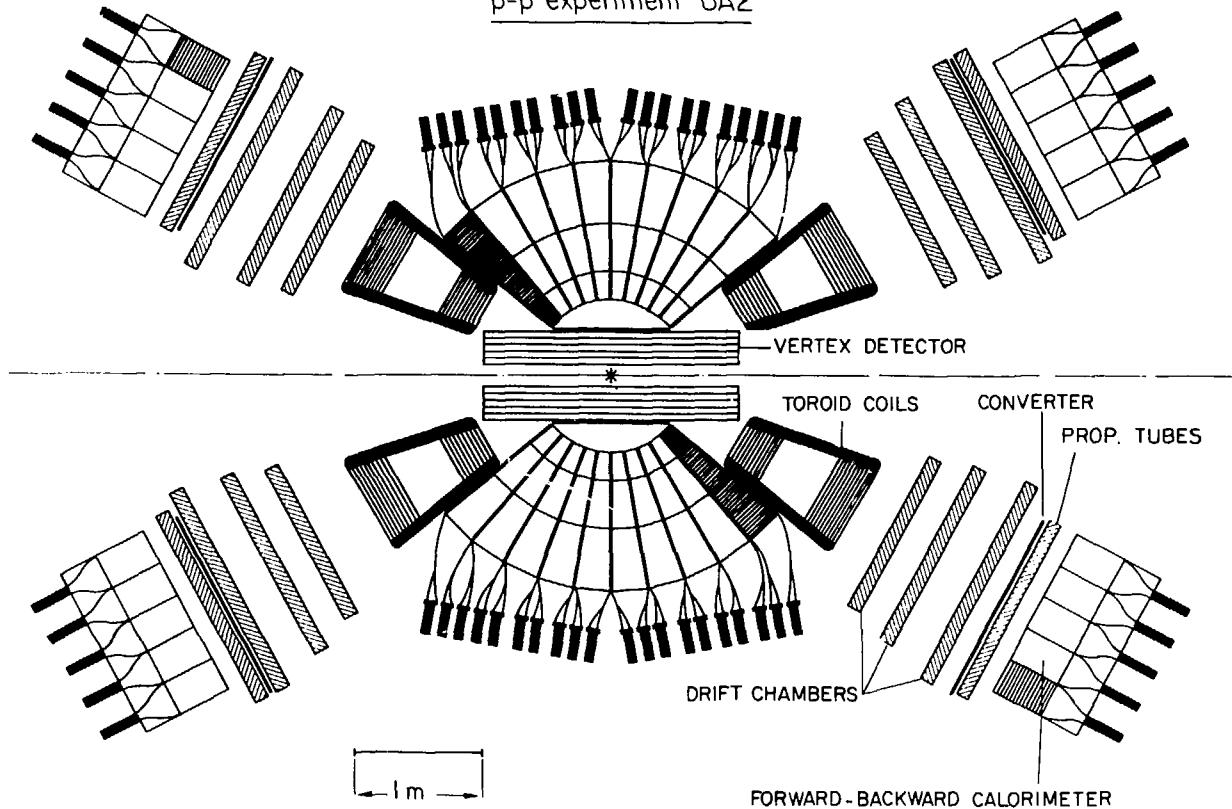
LOCATION	CERN SPS $\bar{p}p$ Collider CERN, Geneva, Switzerland
MAGNET	Dipole field up to 0.7 Tesla, Al coils Magnetic volume = $7.0 \times 3.5 \times 3.5 \text{ m}^3$
CENTRAL DETECTOR	Cylinder (6 m long, 2.2 m diameter) made of 6 independent modules containing drift chambers with 18 cm drift space Covers $5^\circ < \theta < 175^\circ$ 60% ethane - 40% argon 3-dimensional readout by continuous digitization in drift direction and charge division along wires Average of 110 space points per track $\sigma \approx 250 \mu\text{m}$ in drift plane $\sigma \approx 2\%$ of wire length along wire $\sigma \approx 6\%$ for dE/dx
ELECTROMAGNETIC CALORIMETERS	Pb-scintillator sandwich ($26X_0$) with BBQ readout Gondolas ($25^\circ < \theta < 155^\circ$) and Bouchons ($5^\circ < \theta < 25^\circ, 155^\circ < \theta < 175^\circ$) $(\sigma_E/E)^2 = (0.15/\sqrt{E})^2 + (0.016)^2$ $\sigma_x = 4 \text{ cm}/\sqrt{E}$ (θ direction) $\sigma_y = 16 \text{ cm}/\sqrt{E}$ (ϕ direction) $\sigma_E/E_t = 0.12/\sqrt{E_t}$
HADRON CALORIMETERS	Fe-scintillator sandwich with BBQ readout based on the laminated return yoke of the magnet 16 samplings (5 cm Fe, 1 cm scint. each) in barrel, 23 samplings in endcaps $\Delta E/E \approx 0.8/\sqrt{E}$
MUON DETECTION	Large-area drift tube chambers (8 layers) Angular resolution $\sigma = 1 \text{ mrad}$
FORWARD DETECTORS	$0.2^\circ < \theta < 5^\circ$ and $0 < \phi < 2\pi$ Rapidity acceptance $3.4 < y < 7.4$ Endcap chambers Trigger counters (4 cm thick scint.) Electromagnetic calorimeter (4 modules Pb-scint., $7.2X_0$ each) EM shower chambers between first and second EM modules (proportional chambers delay line readout) Hadron calorimeter (6 modules, $1.7 \lambda_{\text{abs}}$ each), based on compensating magnet steel Hadron shower chamber between first and second hadron calorimeter modules
ROMAN POTS	8 small drift chambers, 4 on each arm at $\pm 22 \text{ m}$ from collision point, which enter the SPS vacuum pipe vertically

REFERENCES

1. G. Arnison et al., Phys. Lett. **107B** (1981) 320.
2. M. Calvetti, The UA1 Central Detector, Proceedings of Int. Conf. on Instrumentation for Colliding Beam Physics, SLAC-250 (Feb. 17-23, 1982).
3. M. Barranco-Luque et al., Nucl. Instr. & Meth. **176** (1980) 175.
4. M. Calvetti et al., Nucl. Instr. & Meth. **176** (1980) 217.

UA1

XBL 832-8020


UA2

LOCATION	CERN SPS $\bar{p}p$ Collider CERN, Geneva, Switzerland
COLLABORATION	Univ. Bern, CERN, NBI Copenhagen, LAL Orsay, Univ. and INFN Pavia, CEN Saclay
CENTRAL DETECTOR	
TRACKING	$20^\circ < \theta < 160^\circ$, 2π in ϕ 4 cylindrical multiwire proportional chambers (MWPC) with helicoidal cathode strips at $\pm 45^\circ$ readout 2 cylindrical JADE type drift chambers at atmospheric pressure with charge division and multihit readout Vertex resolution $\sigma = 1$ mm in all coordinates 1 cylindrical scintillator hodoscope, 24 strips
SHOWER COUNTERS	$40^\circ < \theta < 140^\circ$, 2π in ϕ Preshower counter is a cylindrical MWPC with pulse height readout on wires and helicoidal cathode strips behind a $1.5 X_0$ W cylinder 17 X_0 Pb-scint. sandwich em calorimeters 4 abs. length Fe-scint. sandwich hadronic calorimeters, BBQ readout Tower structure with cell $\Delta\phi \times \Delta\theta = 15^\circ \times 10^\circ$ and 3 longitudinal segments $\sigma_E/E = 14\%/\sqrt{E}$ em and $\sigma_E/E \sim 60\%/\sqrt{E}$ hadronic showers
FORWARD-BACKWARD SPECTROMETERS	
MAGNET	Toroidal magnet, 0.38 T-m $20^\circ < \theta < 37.5^\circ$ and $142.5^\circ < \theta < 160^\circ$, 80% of 2π in ϕ 12 spectrometer sectors on each side
TRACKING	9 drift chamber planes ($\pm 7^\circ$, 0°) per sector 5 cm drift space $\sigma_p/p \sim 0.006$ p
SHOWER COUNTERS	Preshower counter with 4 layers of multilayer proportional chambers behind $1.4 X_0$ lead-steel converter, $\sigma_x = \sigma_y = 5$ mm 24 + 6 X_0 lead-scint. sandwich electromagnetic calorimeters, BBQ readout, cell size $\Delta\phi \times \Delta\theta = 15^\circ \times 3.5^\circ$, two longitudinal segments $\sigma_E/E = 15\%/\sqrt{E}$

REFERENCES

1. UA2 Collaboration, M. Banner et al., contribution to the International Conference on Experimentation at LEP, Uppsala, 15-20 June 1980.
2. V. Hungerbühler, Proceedings of the Moriond Workshop on Lepton Pair Production, ed. by J. Tran Thanh Van (Frontières, 1981), p. 223.
3. UA2 Collaboration, Proceedings of the 2nd International Conference on Physics in Collisions, Stockholm, 2-4 June 1982, and CERN-EP/82-107.

p- \bar{p} experiment UA2

UA2

XBL 831-7888