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Abstract:

A treatment of nuclear masses and deformations is described which combines the
Droplet Model with the folding model surface and Coulomb energy integrals. An ac-
ditional exponential term, inspired by the folding model, but treated here as an an
independent contribution with two adjustable parameters, is included. With this
term incorporated, the accuracy of the predicted masses and fission barriers was
improved significantly, the ability of the Droplet Model to account for isotope
shifts in charge radii was retained, and the tendency of the 0Oroplet Model to over-
predict the surface-tension squeezing of light nuclei was rectified.

1. Introduction
For almost fifty years the Bethe-Neiszcker,l’z) or Liquid Drop Model (LDM),
nuclear mass formula has been spectacularly successful in predicting the binding
energy of atomic nuclei. Even in its simplest form the accuracy over the whole
periodic table is within a percent or so (10 MeV out of 1000 MeV). The invention
of the two-part approach for adding shell corrections3’4) and various other re-

5_9)) have led to an order of magnitude improvement in the

finements (see refs.
accuracy (predictions within 1 MeV). In addition, the LDM and its associated re-
finements have been applied to predictions of nuclear radii, fission barriers, and
dynamical situations such as giant monopole and dipole resonances.

The work described here was undertaken in order to combine the features of two

10’11). In ref. 10) (and in earlier

different approaches to improving the LDM
work cited there) a Droplet Model (DM} was developed that introduced the possi-
bility of nuclear compression (or dilatation) and the possibility of a neutron skin
for nuclei with a substantial neutron excess. The introduction of these degrees of
freedom allowea the LDM expansion of the binding energy in terms A'll3 and 12
(where I = (N-Z)/A) to be carried to one higher order in a consistent way. The
folding model approach of ref. 11) had other virtues. The use of a finite range
force for calculating the surface energy automatically generates various correc-

tions necessary for bringing the calculated fission barriers into better agreement
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with the measured values. In addition we have recently begun te investigate the
possible importance of exponential terms similar to those associated with the fold-
ing integralslz).

In the next section we describe how th2 folding model surface energy and an
improved calculation of the Coulomb energy can be incorporated into the DM. Sec-
tion 3 presents the complete mass formula consisting of DM terms and various other
contributions, such as the odd-even mass difference, the Wigner term and the bind-
ing of the atomic electrons. A subsequent section is devoted to comparisons be-
tween the calculated and measured values of masses, deformations, fission barriers,
radii and isotope shifts.

2. Finite Range Droplet Model
In ref. 13) the general Droplet Model (DM) expression for the energy of a
nucleys is written as a function of the neutron skin thickness and bulk density
degrees of freedom for arbitrary nuclear shapes. Then the specific form of the OM
needed for predicting masses, radii, etc. is obtained by analytic minimization of
the energy with respect to these new degrees at freedom. The Finite Range Droplet
Model {FRDM) can be derived in exactly the same way. Since the basic elements of

13), we will use the same notation

the discussion are identical to those in ref.
here and address only those points where the finite range approach brings in some-
thing new. Familiarity with the earlier work will be assumed.

The volume terms are the usual DM ones,

2

1 (K?2 - 2Les

[-a, + 5 + 3 + Mg A ) (1)

The first important difference is that the DM surface energy term, a2A2/3(

in eq. (35) of ref. 13
the basis of the folding model, 2,

E 33
F(x,shape) = 2-8) = 45,05, R 2)

1 d(x F
Fsz(x,shape) =5 ——ai——— .

1+ ZE)BS
) is replaced by an analogous term which can be derived on
2/3(F *+ &F ,e), where,

—_

In this expression the two volume integrations are over a uniform density distribu-
tion of volume % nR% and x» = R/a, £ = IFi - ;élla, a = range. Finally, it should be
noted that eq. (2) is simply the generalization of the expression,

11) that is necessary when adapting

a I (r ,a,A,shape), from eq. (2.3) of ref.
the f01d1ng approach to the OM where the nuclear volume is allowed to varv

The DM surface energy also depends on the neutron excess. From studying the
derivation in ref. 13) we were able to determine that this dependence could also
be incorporated inte the folding model by making the replacement, ¢ ~ (FS/BS)Qﬁ

where BS is the ysual ratio of the surface area to that of a sphere of egual
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volume. The quantity B also appears in the auxiliary expression, 3?Bs =

2(I - A‘/3, that relates the bulk and jlobal nuclear asymmetries (& and I) to tne
average skin thickness T.
The Coulomb energy was calculated using the expression, clz A'1/3( -'EFcz),

where the shape dependence is included and the diffuseness correction is calcu]ated
11
)s

3 3
Fc(x,shape) = [f =[1-(1+ 2)e 1dE 1%5 .

exactly by using the folding integral of ref.

’ d(r /) (3)
F -.(x,shape) = -xz <
c2\"? - dx ’

and x» = R/aden, £ = l;l - ;Zlfaden’ 3oy = Fange of the density folding function.

In addition to the revised s.rface and Coulomb energy expressions with their
corresponding dependences on shape (through the folding integrais) and scale
(through the terms linear in E) we added a new term,

1/3
<A T, (4)

with two new adjustable parameters C and y.
This type of exponential term, non-analytic in the Droplet Model expansion

'1/3, appears in folding-type expressions for the interaction energy.

parameter A
It becomes important quantitatively for nuclear configurations in which portions of
the surface approach each other to within the range of the folding function. A
well-known exampie is the proximity potential representing the interaction energy
of two nuclei abcut to come into contact. For a single nucleus this type of term
becomes important when the nucleus is small enough so that one side of the nucleus
can feel the effect of the surface on the other side (i.e. the absence of nuclear
matter beyond a certain distance). The usual Yukawa or Yukawa-exponential folding
integrals have in them this type of term, but we found that adding an independent
contribution of the type of eq. (4) had striking advantages.
Once the DM has been reformulated along the lines described above, the next

step is to mi?;mize the energy with respect to variations in e and s just as was

).

done in ref. When the new expressions given abave are used the final form

of the FRDOM part of the ma>s formula is given by,

[-a) + 082 + 1 (k&% - 8% + a5

+ (2, + 3 (FP)F B r )23 ; (5)
+ a3A1/3B‘ va, o 2f 1’3 - 2%l 3 - cs2%(8 B IF ) ,

where
T - 2 te@za?3(e 8 sF UL + 3 (J/Q)A‘“3(s £ )] (6)



1/3 5

AT 4§

- ~-1/3 2,-4/3
£ = [-2a2A F52 +Ce + clz A Fcz]/K (7)
3. The Complete Mass Formula

In addition to the FRDM of egs. (5-7) the expression for the atomic mass

defect includes the terms,
2.39
MZ +MN - a7 , (8)

where MH and Mn are the mass defects of the hydrogen atom and of the neutron,
respectively. The last term represents the binding energy of the atomic electrons.

Also included are the terms,

1 + I:AA"I/2 - % GA-I] Z and N odd
A . for Z = N odd 1 1

Wizl + t Q7 8 A Z or N odd (9)
0 , Otherwise

- [AA-1/2 - %-GA_l] Z and N even ,

which are a "Wigner term" and a conventional even-odd correctionlo).

Three other terms that are included are,
4/3 -1/3
B i e, (10)

The first of these is an exchange correction to the Coulomb energy, the secord is
related to a small charge asymmetry of tihe nuclear force, and the last is a small
correction to the Coulomb energy from the proton form factorll).

Finally, we have also included the shell, pairing and zero point energies from

ref. 11),

E +E (11)

s s + E :
shell pairing zero point ’

but with additional effects added in two regions. For radium and some nearby
nuclei we added a correction associated with the octupole degree of freedom
originally proposed by Leander,14) and in the actinide region we used an analytic
approximation (fitted to two points from ref. 11) and to some later studies we
have made) for including the effect of an °6P6 term in the single particle
potential. The greatest effect this term.has is -1.4 MeV and the values we used
were taken from the expression,

2 2
(Z - 100)¢ , (N - 150)
aE, = = R e

Ps

when the value is regative. MWhan the quantity on the right hand side is positive
aE is set to zero.

A preliminary set of values for the various coefficients that enter the final
mass formula are,



a1 = 16.2663 MeV ro = 1.16 fm
3,2
aZ = 23.0 MeV C]. = -g (e /Y‘O)
1 2,9 1
3, = 2.5 MeV & =87 cl(.ér + TJ.)
J =325 MeV g =7 32?3
n =29.4 MeV cg = 3% (c%/O)
K =240 MeV
C =230 MeV ¥ =1.27
33 =L=M=0 (12)
MH = 7.289034 MeV Mn = 8.071431 MeV
a, = 1.433 «x 10'5 MeV W =34 MeV
s =12 MeV s =20 MeV
1 2.2,.3,,145
c, =0.428 MeV fo =-g (rpe"ivy)i=g)
a = 0.68 fm gap = (0.99/+/7) fm
2 en
e” = 1.4399764 MeV fm rp = 0.8 fm
4. Results

Of the preliminary parameters listed in eqg. (12) only 9 were actually adjusted
in the final fit to masses and fission barriers. These were the primary coeffi-
cients 3, 25, 2, J and Q; the two new coefficients C and y in the phenomen-
ological exponential term, and the Wigner and charge asymmetry coefficients W and
C,e The quantity ro Was not easy to vary because of the way the fittina pro-
gram was originally organized, and comparisons of measured and calculated charge
radii suggest that its value should probably be about 1% larger. The quantity ac-

1
tually minimized was S = oy /N;IZ (.'sm,.)z + E (1 - a) /NEIZ)Ahi)Z, where the sums
i ; i

are over the Nm mass deviations am, and the Nb barrier deviations Ahi. We
used a weight of a« = 0.8 but found that the fit was rather insensitive to this
choice.

The data set to which our fitting procedure was applied consisted of 1323
masses (with N and Z = 8 or greater, and experimental errors less than 1 MeV) from
the 1977 compilation of Wapstra and Bosls) supplemented by 165 additional masses
from ref, 16) The set of 28 fission barriers was the same as the one used earlier
by Moller and Nixll).

The r.m.s. deviation that we obtained was 0.676 MeV for the masses gnd 1.13%
Mev for the fission barriers. The upper part of fia., 1 compares the measured and
caiculated deviations from the smooth part of the mass formula {the shell effect).
The bottem part of fig. 1 displays the difference between the two, which is also
the difference between calculated and measyred atomic masses . There is no svste-
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matic long-range structure (either along or across the valley of beta-stability) as

far as we can tell. The measured and calculated fission barriers are compared in
fig. 2.
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Fig. 1 Comparison of measured and calculated Fig. 2 Comparison of measured and
ground-state shell effects for 1488 ) calculated fission-barrier
nuclides. heights for 28 nuclei.

The key to the substantially improved results we have obtained here seems to be tha

empirical, exponential term of eq. (4). We had hoped that all finite range effects

would be adequately represented by the folding model surface energy expression but
this was nat the case. Fig. 3 serves to illustrate this point. The quantity plot-
ted here versus A-1/3 is (Ao/oo)bu]k, which is the fractional deviation of the
central density of a nucleus from the nuclear matter value. For the icealized case

of N = Z nuclei without Coulomb energy the FRDM expression for this quantity is,

-1/3

1/3
(a0l0g )y ypic = 6(ap/KIATF - 3(cik)e™ . (13)

Tﬁe solid line in the figure is the old DM prediction abtained by keeping only the
first term and setting FSZ = 1. Inclusion of the fqp folding model term (using
eq. {2)) produces a small reduction in Ao/oo that is negligible on the se2le of
this figure. The dashed line illustrates the much more dramatic affect which is
produced by including the second term in eg. (13). The behavior of this complets
expressicn corresponds very closely to that found in earlier Thomas-Fermi calcu-
lations. (Ses fig. 30 of ref. 17}.) It also correspends quite closel
behavior we have noted recently in studies of Hartree-Fock calculation

0 tha
Y. This
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is all the more remarkable when we recall that the coefficients of this new pheno-
menological term were determined solely from a least squares fit to masses and fis—
sion barriers. No considerations regarding density distributions governed thes,
determination.
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18 448- 1599 0 1‘ . N 1
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Proton number
Fig. 3 Fractional deviation of the Fig. 4 The slope AR, (times A2/3) of
central density versus A-1/3 the equivalent sharp change radius
predicted by the model for versus neutron number is plotted
hypothetical uncharged nuclei against the charge number 7 of the
with N = Z. isotopic sequence being considered.

Earlier DM fits to masses had suffered from a disturbing tendency of some of
the parameters (notably K and L) to take on unphysical values unless they were
constrained. The fit that resulted from fixing the values of such quantitieslo)
gave values of J and Q that resulted in poor mass predictions for nuclei far from
stability. Discussions of these discrepancies often centered around the asymptotic
nature of the DM expansion, and this is just the point that is being addressed by
eq. (4). Its inclusion {which must be regarded as empirical at this point) results
in substantial improvement in the predictions, elimiration of the problem of un~
physical parameter values. and significant improvement for nuclei far from
stability.

We find that the quantity L is approximately zero (and not well determined).
This result also characterizes a number of Skryme forces whose nuclear as ymmetry
properties have been studied in detailla). We also find that the value of Q has
increased substantially over earlier determinations. The increase in Q and re-
“iction in L combine to leave nearly unchanged the predictions of the model for
isotope shifts in nuclear charge radii. In fig. 4, fram ref. I‘g), the guantity

plottad against the charge number ? is A2’3

times the slope governing the increasing
size of the charge distribution with increasing neutron number, sRn. As can be
seen in the figure, the Liguid Drop Model predicts that this quantity should be a

censtant, (r0/3), which is 2bouwt twice as large as the measured values for nuclei
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throughout the periodic table. The Droplet Model of ref. 10) is represented by
the dashed line in the figure, and the predictions of the FRDM described here are
given by the dot dashed line.

It is interesting to note that the further developments of the Droplet Model
that are described here are bringing the values of the coefficients more in line
with those associated with the Skyrme force Hartree-Fock calculations discussed by

F. Tondeur in these proceedings.

5. Final Remarks

The development of nuclear mass formulae since the thirties has been charac-
terized by a dramatic improvement in the treatment of shell effects in the sixties
and by a more gradual improvement in the smooth part of the equations. Very
roughly speaking, the standard Liquid Drop formula considered energy terms of order
A and A2/3, the Droplet Model extended the expansion to order A1/3, and ref.
11) brought out a significant improvement in the fits associated with an a0
térm (a constant), In the past few years the folding model has also begun to focus
attention on the existence of an exponential, non-analytic term in A'l/3
sible to a Draplet Model type of expansion in this parameter (see also
Grammaticoszo)). The developuent described in the present paper, based on
including an adjustable exponential term of this type, demonstrates the practical
utility of such a term and its relation to the problem of surface-tension squeezing

of light nuclei. It seems to us that the limit of a useful Droplet Model type of
1/3

, inacces-

power expansion in A” is probably reached around A°, and that future efforts
should concentrate on a better understanding of the "exponential," non-analytic
term. This term focuses attention on a spec’fic feature of a light system, for
which the range of the interaction begins to be comparable with its size. This is
the opposite extreme from the 1imit underlying the standard (leptodermous) treat-
ment of saturating systems. Such non-analytic terms might be described as dealing
with "desaturating" effects, which begin to dominate for small (holodermous) sys-
tems. A general discussion of sich terms and their incorporation in mass formulas

is an outstanding problem for the future.

The authors wish to acknowledge stimulating discussions with J. R. Nix con-
cerning a number of important features of this work and the continued critical
interest of J. M. Pearson and F. Tondeur in the Droplet Model and its limitations.
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