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An essential aspect of the inverse moment method for computing MHD
equilibria’ is the appropriate parameterization of magnetic flux
surfaces. Let (R,4,Z) denote a cylindrical coordinate system, where ¢
is the toroidal angle. Then, 8 closed flux surface p = const may be

represented in the form

R = R(p.0,9) ,
Z=12(p,9,9) ,

(1)

where © is a poloidal angle, 0 € 6 < 2n; R(® + 2n, ¢) = R(6,9); and
Z(6+ 2v, ¢) = Z(0,¢). Both R and Z may be expanded in double Fourier

series in © and ¢:

R= Z [R;ncos(me - n¢) + R3,sin(mb - nd) ]
(2)
Z-= Z [Z,ﬁncos(me - nd) + Zapsin(md - n¢)] .

The MHD force balance equation!:?

is subsequently used to determine the
Fourier coefficients Ry,.(p) and Z, (o) appearing in Eq. (2).

A difficulty with the representation given by Eq. (2) arises from
the nonuniqueness of the poloidal angle ©. Note that the form of

Eq. (2) is invariant under transformations given by

0=06" +A(p.0".9) . (3

where A is a periodic function of 8° and ¢ satisfying |dA/d®’| < 1.

Thus, the Fourier series for flux surfaces described in (0,4)
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coordinates have the same form as those in (6”,4). Hence, Eq. (2) does
not provide a unique representation. [0f course, the values of the
expansion coefficients will be different in the (6,4) and (0%,¢)
systems.] Although any finite truncation of the moment equations used
to determine (Ry., Z,,) mey have a unique solution, the nonuniqueness
of Eq. (2) implies that such truncations will ©oe numerically
ill-conditioned as the Iimit of infinitely many -equations is
approached.

In practice, the threshold for ill-conditioned behavior and the
consequent lack of numerical convergence may be ss few as three
poloidal harmonics [m 2 2 in Eq. (2)], the exact number depending
weakly on the complexity of the flux surface topology. Figure 1
il lustrates the numerical consequences for MHD equilibria when a unique
poloidal angle is not prescribed. Three toroidal cross sections of o
12-period, helical-axis torsatron are shown. The top row of graphs
show equilibrium magnetic flux surfaces (solid contours), computed
using the method described in Ref. 2, for which no constraint was
applied to the R and Z spectra. The bottom row is composed of similar
results for the case when © is unique. The dashed lines are contours
of constant ©. In all of the graphs, the harmonics m =0, 1, 2 end
n=-12, 0, 12 were retained in the Fourier series for R and Z. In the
top row of Fig. 1, the physically relevant flux contours were nearly in
equilibriun when the computation ended. It was not possible, however,
to converge the MHD force residuals any further. This was due to the
random motion of the © contours, which reflected the nonuniqueness of

Eq. (2). In contrast, the bottom row of Fig. 1 illustrates an
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Fig. 1. Equilibrium magnetic flux  surfaces for a
helical-axis, 12-field-period torsatron. The solid lines are flux
contours, and the dashed lines are constant poloidal angle
contours. The top row shows the consequences of solving an
ill-conditioned set of equations, namely, the wavy motion of ©
contours. The bottom row is an equilibrium obtained when © is

uniquely prescribed.
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equilibrium solution for which the engle coordinate was prescribed by
the representation in Eq. (8) and a numerical stationary state was
achieved. Thus, the apparently random waviness of the © contours is @
graphical signature of poor numerical convergence due to an
underdetermined system of equations.

It is, therefore, desirable to employ Fourier series expansions of
Eq. (1) that ere both unique and guaranteed to exist for a certain
class of flux surface topologies. The poloidal angle © can be
determined in several ways to yield a unique representation. For
example, a prescription for the angular variation of the transformation
Jacobian between ?lux and cylindrical coordinates defines © uniquely.
This is the "straight® magnetic field line coordinate system.® Such an
angle choice, however, is generally incompat.ible2 with rapid
convergence of the series in Eq. (2).

The convergence properties of Eq. (2) may be improved by using a
geometric description of the flux surfaces. A polar representation of

the form

R = Ro(4) + r(p.8.4)cos 6,

= Zo(¢) + r(p,0,¢)sin ©

(4)

provides such a description, where Ry(¢) and Zy(¢) are periodic
functions of ¢ that describe the axis of the polar system and r is the
polar radius, which has a Fourier expansion of the form given in

Eq. (2). The angle 8 is also uniquely defined by Eq. (4):



-1 |2 - Zo(9)
0 = tan 1 [R—_W.I . (5)

[Equation (4) is limited to starlike domains, since r is assumed to be
s single-valued function of 6.] Once the polar axis is determined, the
angle 6 is independent of r, and hence © is an Eulerian angle variable.

There are several difficulties with Eq. (4) that can cdegrade the
convergence rate for the series expansion of r. These are related to
the location of the mean flux surface position {m = O components of
Eq. (4)] and mean radius [m = 1 components of Eq. (4)] as functions of
p. Suppose that at the surface p = ppy, Eq. (4) represents the
elliptical flux surface p§ = (R - RG)Z + Z2/c2. Define A = Ry - Ry <
pg/2. First, consider the case k = 1 (circular surface) but A2 # 0,
Then

r=a+ (pg - 82, 32)1/2 ) (82)

where 8 = A cos €. For A <K 1, the m = 1 component of r approximates a
shift A relative to the magnetic axis. Next, consider the case k # 1,

A=0. Then

r = bpp(l + € cos 29)‘1/2 , (8b)

where b = [2/(1 + n.Q)]l/2 and € = (k2 - 1)/(k2 + 1). For € << 1, the
m = 2 component of r approximates the effect of elongation. However,
when either 24/py or € approaches unity, corresponding to a significant

shift or elongation, respectively, the spectrum of r given in Eq. ()
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will begin to broaden substantially, and the single mode approximations
for shift and elongation cease to be valid.

This spectral broadening can be eliminated by allowing the center
and ellipticity of each flux surface to be represented exactly.
Introducing the complex quantity ¢ = R + iZ = ¢ + r exp(i6), where &,
= Rg + iZg, Eq. (4) can be recast as follows:

¢ =34 + 3 p.d)e 10+ 7(o,0,4)el®, (7)

where r and ¥ are real. Note that §y and §; are functions of the local
surface p [§0(0,¢) = go(¢0] but are independent of 6. The quantity

is. defined to be the m = 0 component of g,
SEERE (82)

where the loop integral is over one complete period in ©. Equation

(8a) and Eq. (7) together represent a constraint on F:
[Fei®d6=0. (8b)

Since ¥ is real, this implies that there is no m = 1 component of F.
If N denotes the nurher of toroidal modes with nonzero mode numbers,
then Eq. (8b) is composed of 2(N + 1) mode amplitudes of ¥, which are

replaced in Eq. (7) by the same number of Jy modes. In a similar way,

q=dee®2. (8c)
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Together with Eq. (7), this implies the additional constraint on F:
[re?i®de=0. (8d)

Thus, there is no m = 2 component of 7. Once again, the number of
amplitudes in Eqs. (8c) and (8d) is the same, so that no information is
lost or introduced in going from the polar form in Eq. (4) to Eq. (7).
In this way, the angle © remains unique.

It is convenient now to display the real form of Eq. (7) for the

original cylindrical coordinates:

N
R= Zb(Rﬁncos nd + R§,sin nd)
n=
N
+Z [Rfacos(6 - nd) + Rfpsin(® - nd)] + F cos @,
n=-N
N
Z= z(ZSn“S nd + Z§asin no)
n=
N
+ " [REpcos(® - nd) - Rfysin(® - m)] + Fsino,
n=-N
N
F= Zo(rancos n + rysin nd)
n=
N
+ Z [r’%ncos(me - np) + rﬁnsin(me - n¢)] . (9)
m=3; n

The m = 0 components of ¥ combine with the Ry, and Ry, terms in Eq. (9)
to yield exact shifted ellipses, while the remaining m 2 3 terms of F

represent perturbations of elliptical topology. Near the meynetic ‘s
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(p = 0) where the flux surfaces degenerate to ellipses,? Rin ~ P rop ™
p, and rp, < 0(p2) for m 2 3. In contrast to the original polar
representation, Eq. (4), the poloidal angle 6 in Eq. (98) is o
Lagrangian coordinate, depending on F as well as on the surface
geometry.

An obvious extension of the resummation process given by Eq. (7)
is to project out terms of the form 3, (p,¢)exp(-ik®), thus ennihilating
the (k + 1)th mode amplitudes of F. As k + ®, only the m = 0 terms of

F survive, and the (Ry,, Z,,) coefficients for m 2 2 are then related

as fol lows:
Ren = ~Zan » (100)
Rgn = Zgn. (10b)

The Riemann mapping theorem can be used to pr-ve that the
representation given by Eq. (10) is wunique and describes any
sufficient!y smooth, closed flux surface. Consider the closed curve
obtained by the intersection of a flux surface with the plane ¢ = ¢y.
Let v = R + iZ denote this curve in the complex v plane, and consider
also the plane of the complex variable w = p exp(i6). By the mapping
theorem, there is a unique function v = F(w) that maps the interior of
the unit circle |w| < 1 onto the exterior of the curve in the v plane

such that w

0 maps to infinity in the v plane and the positive real
axis near w = 0 maps to the positive real axis near infinity in the v

plane. Then, F(w) has a Laurent expansion,
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2
F(w) =—;l+ Zb (ap + ibplw" , (11)

h=
where a, and b, are real. (Previously,! because of the assumed

vertical symmetry of the Tlux surfaces, it could be argued that b, =
0.) Setting w = exp(-i8) in Eq. (11) and separating real and imaginary
parts yields a representation for the curve in the v plane that is the

map of the unit circle:

R=ay+ (a_y +8y)cos & + bysin 8 + }:; (a,cos n@ + bysin n6) ,
n=

Z=by+ (e_; - 281)sin® + bjcos 8 + Z; (-a,sin n + b,cos n0) -
"~ (12)

Allowing a, and b, to be periodic functions of ¢ and introducing
Fourier series in ¢, it follows that Eq. (12) is equivalent to the
representation given in Eq. (10).

In practice, it is sometimes desirable to represent the boundary
flux surface in a different form from Eq. (9). In this case, it is

still possible to use the representation in Eq. (8) for the

Lerburtgtiorﬁﬁ and 7 from the scaled boundary shape, where R=R -
Rp(p.6,9), 7=12- Zp(p,9,¢), and the p dependence of (Rp,Zy,) is chosen
so that R(p = 1) = Z(p = 1) = 0 and Ry(p = 0) = Zy(p = 0) = 0. For
example, scaling the boundary Fourier coefficients by p", for m 2 1,

would achieve this behavior.
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ABSTRACT

By rearranging terms in a polar representation for the cylindrical
spatial coordinates (R,4,Z), a renormalized Fourier ueries moment
expansion is obtained that possesses superior convergence properties in
mode number space. This convergent spectral representation also
determines a unique poloidal angle and thus resolves the
underdetermined structure of previous moment expansions. A conformal
mapping technique is used to demonstrate the existence and uniqueness

of the new representation.
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