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An essential aspect of the inverse moment method for computing MHD 

equilibria1 is the appropriate parameterization of magnetic flux 

surfaces. Let (R,<J>,Z) denote a cylindrical coordinate system, where $ 

is the toroidal angle. Then, a closed flux surface p = const may be 

represented in the form 

R = R(p,e,d>) , 

Z = Z(p,e,4>) , 

where 0 is a poloidal angle, 0 < 0 < 2ir; R(9 + 2K, 4>) = R(8,4>); and 

Z(0 * 2ir, <(») = Z(0,4>). Both R and Z may be expanded in double Fourier 

series in 0 and <t>: 

R = Y j [RmncosC"»e - nc|)) + ^n 3 '^" 1 9 ~ "*)] 

( 2 ) 
1 ~ Z J K n ® 0 8 ^ - + Z m n 5 ' " ^ ~ " • ) ] • 

The MHO force balance e q u a t i o n 1 i s subsequently used to determine the 

Fourier coefficients R ^ p ) and Z^,n(p) appearing in Eq. (2). 

A dif f iculty with the representation given by Eq. (2) arises from 

the nonuniqueness of the poloidal angle 0. Note that the form of 

Eq. (2) is invariant under transformations given by 

9 = 9 ' + A(p,0',4>) , (3) 

where A i s a periodic function of 9 ' and $ sa t i s fy ing |dA/d0'| < 1. 

Thus, the Fourier s e r i e s for flux surfaces described in (0,$) 
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coordinates have the same form 8S those in (9',<J>). Hence, Eq. (2) does 

not provide a unique representation. [Of course, the values of the 

expansion coefficients will be different in the (6,4>) and (0',<|>) 

systems.] Although any f in i te truncation of the moment equations used 

to determine (Rmn, Zmn) may have a unique solution, the nonuniqueness 

of Eq. (2) implies that such truncations will be numerically 

ill-conditioned as the limit of infinitely many equations is 

approached. 

In practice, the threshold for ill-conditioned behavior and the 

consequent lack of numerical convergence may be as few as three 

poloidal harmonics [m > 2 in Eq. (2 ) ] , the exact number depending 

weakly on the complexity of the flux surface topology. Figure 1 

i l lustrates the numerical consequences for MHD equilibria when a unique 

poloidal angle is not prescribed. Three toroidal cross sections of a 

12-period, helical-axis torsatron are shown. The top row of graphs 

show equilibrium magnetic flux surfaces (solid contours), computed 

using the method described in Ref. 2, for which no constraint was 

applied to the R and Z spectra. The bottom row is composed of similar 

results for the case when 9 is 'inique. The dashed lines are contours 

of constant 9. In a l l of the graphs, the harmonics m = 0, 1, 2 and 

n = -12, 0, 12 were retained in the Fourier series for R and Z. In the 

top row of Fig. 1, the physically relevant flux contours were nearly in 

equilibrium when the computation ended. I t was not possible, however, 

to converge the MHO force residuals any further. This was due to the 

random motion of the 6 contours, which reflected the nonuniqueness of 

Eq. (2) . In contrast, the bottom row of Fig. 1 i l lustrates an 
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Fig. 1. Equilibrium magnetic flux surfaces for a 

helical-axis, 12—field-period torsatron. The solid lines are flux 

contours, and the dashed lines are constant poloidal angle 

contours. The top row shows the consequences of solving an 

ill-conditioned set of equations, namely, the wavy motion of 0 

contours. The bottom row is an equilibrium obtained when 0 is 

uniquely prescribed. 
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equilibrium solution for which the angle coordinate was prescribed by 

the representation in Eq. (9) and a numerical stationary state was 

achieved. Thus, the apparently random waviness of the 6 contours is a 

graphical signature of poor numerical convergence due to an 

underdetermined system of equations. 

I t is, therefore, desirable to employ Fourier series expansions of 

Eq. (1) that are both unique and guaranteed to exist for a certain 

class of flux surface topologies. The poloidal angle 6 can be 

determined in several ways to yield a unique representation. For 

example, a prescription for the angular variation of the transformation 

Jacobian between flux and cylindrical coordinates defines 9 uniquely. 
A 

This is the "straight" magnetic f ie ld line coordinate system. Such an 

angle choice, however, is generally incompatible2 with rapid 

convergence of the series in Eq. (2). 

The convergence properties of Eq. (2) may be improved by using a 

geometric description of the flux surfaces. A polar representation of 

the form 

R = R0(<(>) + r(p,9,4»)cos 9 , 
(4) 

Z = Zofo) + r(p,9,4>)sin 9 

provides such a description, where R Q ( 4 > ) and Z Q ( 4 > ) are periodic 

functions of 4> that describe the axis of the polar system and r is the 

polar radius, which h8s a Fourier expansion of the form given in 

Eq. (2). The angle 8 is also uniquely defined by Eq. (4): 



& 

(5) 

[Equation (4) is limited to star I ike domains, since r is assumed to be 
a single-valued function of 3.] Once the polar axis is determined, the 
angle 0 is independent of r, and hence 0 is an Eulerian angle variable. 

There are several difficulties with Eq. (4) that can c'egrade the 
convergence rate for the series expansion of r. These are related to 
the location of the mean flux surface position [m = 0 components of 
Eq. (4)] and mean radius [m = 1 components of Eq. (4)] as functions of 
p. Suppose that at the surface p = PQ, Eq. (4) represents the 
elliptical flux surface p(j = (R - R q ) 2 + Z2/tc2. Define A = R0 - RQ < 

pg/2. First, consider the case K. = 1 (circular surface) but A 2 ? 0. 

where a = A cos 0. For A « 1, the m = 1 component of r approximates a 
shift A relative to the magnetic axis. Next, consider the case k, 1, 

A = 0. Then 

where b = [2/(1 + ic2)]1/2 and e = (K 2 - l)/(ic2 + 1). For e « 1, the 
m = 2 component of r approximates the effect of elongation. However, 
when either 2 A / P Q or e approaches unity, corresponding to a significant 
shift or elongation, respectively, the spectrum of r given in Eq. (6) 

Then 

(6a) 

r = bp0(l + 6 cos 29)-1/2 , (6b) 
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wil l begin to broaden substantially, and the single mode approximations 

for shi f t and elongation cease to be valid. 

This spectral broadening can be eliminated by allowing the center 

and e l l i p t i c i t y of each flux surface to be represented exactly. 

Introducing the complex quantity £ = R + iZ = + r ®xp(i0), where 

= RQ + IZQ, Eq. ( 4 ) can be recast as follows: 

= 56(P,<W + 3l(P.<We"i0 + F(p,e.4.)eie . (7) 

where r and r are real. Note that Ô anc' a r e functions of the local 

surface p [?Q(0,(J>) = <5Q(<(>)] but are independent of G. The quantity Zq 

is. defined to be the m = 0 component of 

where the loop integral is over one complete period in 0. Equation 

(8a) and Eq. (7) together represent a constraint on r: 

/ r e i G d© r 0 . (8b) 

Since r is real , this implies that there is no m = 1 component of r . 

I f N denotes the number of toroidal modes with nonzero mode numbers, 

then Eq. (8b) is composed of 2(N + 1) mode amplitudes of r , which are 

replaced in Eq. ( 7 ) by the same number of modes. In a similar way. 

e , = £ e e '© d e (8c) 
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Together with Eq. (7), this implies the additional constraint on F: 

J > e 2 i e d 6 = 0 . (8d) 

Thus, there is no m = 2 component of r. Once again, the number of 

amplitudes in Eqs. (8c) and (8d) is the same, so that no information is 

lost or introduced in going from the polar form in Eq. (4) to Eq. (7). 

In this way, the angle 6 remains unique. 

I t is convenient now to display the real form of Eq. (7) for the 

original cylindrical coordinates: 

N 

R = ^ ( R 5 n c o s n4> + R|jnsi n n4>) 

N 

+ V [Rfncos(0 - n4>) + Rfnsin(e - n<Jj) ] + r cos 9 , 
n=-N 
N 

I = ^ ( Z f j n c o s n4> + Z§nsin n<|>) 

N 

+ V * [Rfncos(9 - n<J>) - Rjnsin(9 - ntj>>] + r sin 9 , 
n=-N 
N 

N 

+ Z [rmncos(m® " "*> + pmris' n(m® " "•>] • (9> 
m=3; n 

The m = 0 components of r combine with the Rgn and R^n terms* in Eq. (9) 

to yield exact shifted ellipses, while the remaining m > 3 terms of r 

represent perturbations of el l ipt ical topology. Near the mt^netic : s 
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(p = 0) where the flux surfaces degenerate to ellipses,1 Rjn ~ p, rQn ~ 

p, and rmn < 0(p2) for m > 3. In contrast to the origins! polar 

representation, Eq. (4), the poloidal angle 6 In Eq. (9) is a 

Lagrangian coordinate, depending on F as wo 11 as on the surface 

geometry. 

An obvious extension of the resummation process given by Eq. (7) 

is to project out terms of the form ^^(p«4>)exp(—ik0), thus pnnihi lating 

the (k + l ) th mode amplitudes of F. As k », only the m = 0 terms of 

r survive, and the (Rmn, Z ^ ) coefficients for m > 2 are then related 

as follows: 

^mn = ~^mn » 

Rs = Zc 
"mn *-fwr 

(10a) 

(10b) 

The Riemann mapping theorem can be used to pr^ve that the 

representation given by Eq. (10) is unique and describes any 

sufficiently smooth, closed flux surface. Consider the closed curve 

obtained by the intersection of a flux surface with the plane cj> = ()>Q. 

Let u = R + iZ denote this curve in the complex v plane, and consider 

also the plane of the complex variable u = p exp(16). By the mapping 

theorem, there is a unique function v = F(u>) that maps the interior of 

the unit circle |u| < 1 onto the exterior of the curve in the v plane 

such that u = 0 maps to infinity in the v plane and the positive real 

axis near u = 0 maps to the positive real axis near infinity in the u 

plane. Then, F(u) has a Laurent expansion, 
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F(W) V (an + i b > " , (11) + Zjj(8n + 

where an and bn are real. (Previously,1 because of the assumed 

vertical symmetry of the flux surfaces, i t could be argued that bn = 

0 . ) Setting to = exp(-iG) in Eq. (11) and separating real and imaginary 

parts yields a representation for the curve in the v plane that is the 

map of the unit circle: 

R = ag + (a_i + a^Jcos 0 + bjsin 0 + ^ ^ (ancos n0 + bnsin n0) , 

Z = bq + (a_i - a^)sin 0 + b^cos 0 + (-ansin n0 + bncos n©) ' 
n=i 

(12) 

Allowing an and bn to be periodic functions of (J) and introducing 

Fourier series in c|>, i t follows that Eq. (12) is equivalent to the 

representation given in Eq. (10). 

In practice, i t is sometimes desirable to represent the boundary 

flux surface in a dif ferent form from Eq. (9) . In this case, i t is 

s t i l l possible to use the representation in Eq. (9) for the 
(W INI M 

perturbations R and Z from the scaled boundary shape, where R = R -

Rjj(p,0,(j>), Z = Z - Zj,(p,0,<|>), and the p dependence of (R^Zj,) is chosen 

so that R(p = 1) = Z(p = 1) = 0 and Rb(p = 0) = Zb(p = 0) = 0. For 

example, scaling the boundary Fourier coefficients by pm, for m > 1, 

would achieve this behavior. 
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ABSTRACT 

By rearranging terms in a polar representation for the cylindrical 

spatial coordinates (R,(|),Z), a renormalized Fourier series moment 

expansion is obtained that possesses superior convergence properties in 

mode number space. This convergent spectral representation also 

determines a unique poloidal angle and thus resolves the 

underdetermined structure of previous moment expansions, A conformal 

mapping technique is used to demonstrate the existence and uniqueness 

of the new representation. 
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