

ORNL/TM-9302

DE85 000866

Fusion Energy Division

A CONVERGENT SPECTRAL REPRESENTATION FOR
THREE-DIMENSIONAL INVERSE MHD EQUILIBRIA

S. P. Hirshman

H. Weitzner
New York University
New York, New York 10012

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Date Published - October 1984

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-84OR21400

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

wp

An essential aspect of the inverse moment method for computing MHD equilibria¹ is the appropriate parameterization of magnetic flux surfaces. Let (R, ϕ, Z) denote a cylindrical coordinate system, where ϕ is the toroidal angle. Then, a closed flux surface $\rho = \text{const}$ may be represented in the form

$$\begin{aligned} R &= R(\rho, \theta, \phi) , \\ Z &= Z(\rho, \theta, \phi) , \end{aligned} \tag{1}$$

where θ is a poloidal angle, $0 \leq \theta \leq 2\pi$; $R(\theta + 2\pi, \phi) = R(\theta, \phi)$; and $Z(\theta + 2\pi, \phi) = Z(\theta, \phi)$. Both R and Z may be expanded in double Fourier series in θ and ϕ :

$$\begin{aligned} R &= \sum [R_{mn}^c \cos(m\theta - n\phi) + R_{mn}^s \sin(m\theta - n\phi)] \\ Z &= \sum [Z_{mn}^c \cos(m\theta - n\phi) + Z_{mn}^s \sin(m\theta - n\phi)] . \end{aligned} \tag{2}$$

The MHD force balance equation^{1,2} is subsequently used to determine the Fourier coefficients $R_{mn}(\rho)$ and $Z_{mn}(\rho)$ appearing in Eq. (2).

A difficulty with the representation given by Eq. (2) arises from the nonuniqueness of the poloidal angle θ . Note that the form of Eq. (2) is invariant under transformations given by

$$\theta = \theta' + \lambda(\rho, \theta', \phi) , \tag{3}$$

where λ is a periodic function of θ' and ϕ satisfying $|d\lambda/d\theta'| < 1$. Thus, the Fourier series for flux surfaces described in (θ, ϕ)

coordinates have the same form as those in (θ', ϕ) . Hence, Eq. (2) does not provide a unique representation. [Of course, the values of the expansion coefficients will be different in the (θ, ϕ) and (θ', ϕ) systems.] Although any finite truncation of the moment equations used to determine (R_{mn}, Z_{mn}) may have a unique solution, the nonuniqueness of Eq. (2) implies that such truncations will be numerically ill-conditioned as the limit of infinitely many equations is approached.

In practice, the threshold for ill-conditioned behavior and the consequent lack of numerical convergence may be as few as three poloidal harmonics [$m \geq 2$ in Eq. (2)], the exact number depending weakly on the complexity of the flux surface topology. Figure 1 illustrates the numerical consequences for MHD equilibria when a unique poloidal angle is not prescribed. Three toroidal cross sections of a 12-period, helical-axis torsatron are shown. The top row of graphs show equilibrium magnetic flux surfaces (solid contours), computed using the method described in Ref. 2, for which no constraint was applied to the R and Z spectra. The bottom row is composed of similar results for the case when θ is unique. The dashed lines are contours of constant θ . In all of the graphs, the harmonics $m = 0, 1, 2$ and $n = -12, 0, 12$ were retained in the Fourier series for R and Z . In the top row of Fig. 1, the physically relevant flux contours were nearly in equilibrium when the computation ended. It was not possible, however, to converge the MHD force residuals any further. This was due to the random motion of the θ contours, which reflected the nonuniqueness of Eq. (2). In contrast, the bottom row of Fig. 1 illustrates an

ORNL-DWG 84-3188 FED

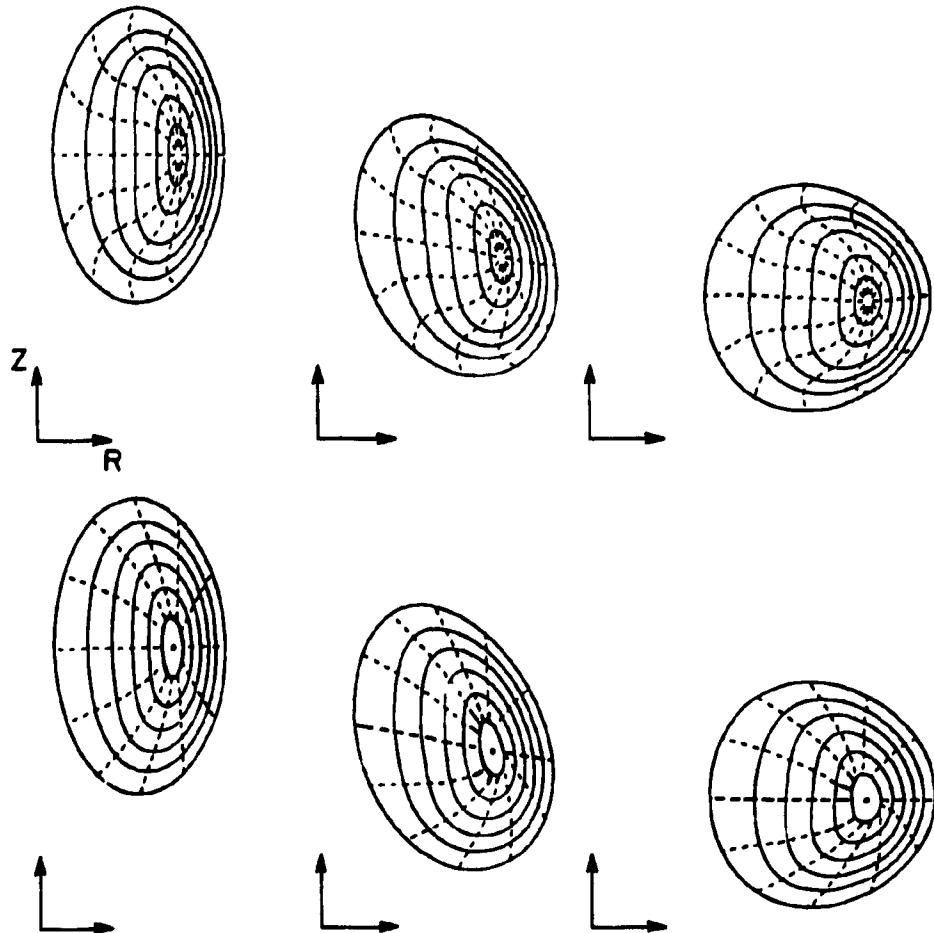


Fig. 1. Equilibrium magnetic flux surfaces for a helical-axis, 12-field-period torsatron. The solid lines are flux contours, and the dashed lines are constant poloidal angle contours. The top row shows the consequences of solving an ill-conditioned set of equations, namely, the wavy motion of θ contours. The bottom row is an equilibrium obtained when θ is uniquely prescribed.

equilibrium solution for which the angle coordinate was prescribed by the representation in Eq. (9) and a numerical stationary state was achieved. Thus, the apparently random waviness of the θ contours is a graphical signature of poor numerical convergence due to an underdetermined system of equations.

It is, therefore, desirable to employ Fourier series expansions of Eq. (1) that are both unique and guaranteed to exist for a certain class of flux surface topologies. The poloidal angle θ can be determined in several ways to yield a unique representation. For example, a prescription for the angular variation of the transformation Jacobian between flux and cylindrical coordinates defines θ uniquely. This is the "straight" magnetic field line coordinate system.³ Such an angle choice, however, is generally incompatible² with rapid convergence of the series in Eq. (2).

The convergence properties of Eq. (2) may be improved by using a geometric description of the flux surfaces. A polar representation of the form

$$\begin{aligned} R &= R_0(\phi) + r(\rho, \theta, \phi) \cos \theta, \\ Z &= Z_0(\phi) + r(\rho, \theta, \phi) \sin \theta \end{aligned} \tag{4}$$

provides such a description, where $R_0(\phi)$ and $Z_0(\phi)$ are periodic functions of ϕ that describe the axis of the polar system and r is the polar radius, which has a Fourier expansion of the form given in Eq. (2). The angle θ is also uniquely defined by Eq. (4):

$$\theta = \tan^{-1} \left[\frac{z - z_0(\phi)}{R - R_0(\phi)} \right]. \quad (5)$$

[Equation (4) is limited to starlike domains, since r is assumed to be a single-valued function of θ .] Once the polar axis is determined, the angle θ is independent of r , and hence θ is an Eulerian angle variable.

There are several difficulties with Eq. (4) that can degrade the convergence rate for the series expansion of r . These are related to the location of the mean flux surface position [$m = 0$ components of Eq. (4)] and mean radius [$m = 1$ components of Eq. (4)] as functions of ρ . Suppose that at the surface $\rho = \rho_0$, Eq. (4) represents the elliptical flux surface $\rho_0^2 = (R - R_0)^2 + z^2/\kappa^2$. Define $\Delta = R_0 - R_0' < \rho_0/2$. First, consider the case $\kappa = 1$ (circular surface) but $\Delta^2 \neq 0$. Then

$$r = a + (\rho_0^2 - \Delta^2 + a^2)^{1/2}, \quad (6a)$$

where $a = \Delta \cos \theta$. For $\Delta \ll 1$, the $m = 1$ component of r approximates a shift Δ relative to the magnetic axis. Next, consider the case $\kappa \neq 1$, $\Delta = 0$. Then

$$r = b\rho_0(1 + \epsilon \cos 2\theta)^{-1/2}, \quad (6b)$$

where $b = [2/(1 + \kappa^2)]^{1/2}$ and $\epsilon = (\kappa^2 - 1)/(\kappa^2 + 1)$. For $\epsilon \ll 1$, the $m = 2$ component of r approximates the effect of elongation. However, when either $2\Delta/\rho_0$ or ϵ approaches unity, corresponding to a significant shift or elongation, respectively, the spectrum of r given in Eq. (6)

will begin to broaden substantially, and the single mode approximations for shift and elongation cease to be valid.

This spectral broadening can be eliminated by allowing the center and ellipticity of each flux surface to be represented exactly. Introducing the complex quantity $\xi = R + iZ = \xi_0 + r \exp(i\theta)$, where $\xi_0 = R_0 + iZ_0$, Eq. (4) can be recast as follows:

$$\xi = \xi_0(\rho, \phi) + \xi_1(\rho, \phi) e^{-i\theta} + \bar{r}(\rho, \theta, \phi) e^{i\theta}, \quad (7)$$

where r and \bar{r} are real. Note that ξ_0 and ξ_1 are functions of the local surface ρ [$\xi_0(0, \phi) = \xi_0(\phi)$] but are independent of θ . The quantity ξ_0 is defined to be the $m = 0$ component of ξ ,

$$\xi_0 \equiv \oint \xi \frac{d\theta}{2\pi}, \quad (8a)$$

where the loop integral is over one complete period in θ . Equation (8a) and Eq. (7) together represent a constraint on \bar{r} :

$$\int \bar{r} e^{i\theta} d\theta = 0. \quad (8b)$$

Since \bar{r} is real, this implies that there is no $m = 1$ component of \bar{r} . If N denotes the number of toroidal modes with nonzero mode numbers, then Eq. (8b) is composed of $2(N + 1)$ mode amplitudes of \bar{r} , which are replaced in Eq. (7) by the same number of ξ_0 modes. In a similar way,

$$\xi_1 \equiv \oint \xi e^{i\theta} \frac{d\theta}{2\pi}, \quad (8c)$$

Together with Eq. (7), this implies the additional constraint on \bar{r} :

$$\int \bar{r} e^{2i\theta} d\theta = 0 . \quad (8d)$$

Thus, there is no $m = 2$ component of \bar{r} . Once again, the number of amplitudes in Eqs. (8c) and (8d) is the same, so that no information is lost or introduced in going from the polar form in Eq. (4) to Eq. (7). In this way, the angle θ remains unique.

It is convenient now to display the real form of Eq. (7) for the original cylindrical coordinates:

$$\begin{aligned} R &= \sum_{n=0}^N (R_{0n}^c \cos n\phi + R_{0n}^s \sin n\phi) \\ &\quad + \sum_{n=-N}^N [R_{1n}^c \cos(\theta - n\phi) + R_{1n}^s \sin(\theta - n\phi)] + \bar{r} \cos \theta , \\ Z &= \sum_{n=0}^N (Z_{0n}^c \cos n\phi + Z_{0n}^s \sin n\phi) \\ &\quad + \sum_{n=-N}^N [R_{1n}^s \cos(\theta - n\phi) - R_{1n}^c \sin(\theta - n\phi)] + \bar{r} \sin \theta , \\ \bar{r} &= \sum_{n=0}^N (r_{0n}^c \cos n\phi + r_{0n}^s \sin n\phi) \\ &\quad + \sum_{m=3; n}^N [r_{mn}^c \cos(m\theta - n\phi) + r_{mn}^s \sin(m\theta - n\phi)] . \end{aligned} \quad (9)$$

The $m = 0$ components of \bar{r} combine with the R_{0n} and R_{1n} terms in Eq. (9) to yield exact shifted ellipses, while the remaining $m \geq 3$ terms of \bar{r} represent perturbations of elliptical topology. Near the magnetic 's

($\rho = 0$) where the flux surfaces degenerate to ellipses,¹ $R_{1n} \sim \rho$, $r_{0n} \sim \rho$, and $r_{mn} \leq O(\rho^2)$ for $m \geq 3$. In contrast to the original polar representation, Eq. (4), the poloidal angle θ in Eq. (9) is a Lagrangian coordinate, depending on \mathbf{r} as well as on the surface geometry.

An obvious extension of the resummation process given by Eq. (7) is to project out terms of the form $\xi_k(\rho, \phi) \exp(-ik\theta)$, thus annihilating the $(k + 1)$ th mode amplitudes of \mathbf{r} . As $k \rightarrow \infty$, only the $m = 0$ terms of \mathbf{r} survive, and the (R_{mn}, Z_{mn}) coefficients for $m \geq 2$ are then related as follows:

$$R_{mn}^c = -Z_{mn}^s, \quad (10a)$$

$$R_{mn}^s = Z_{mn}^c. \quad (10b)$$

The Riemann mapping theorem can be used to prove that the representation given by Eq. (10) is unique and describes any sufficiently smooth, closed flux surface. Consider the closed curve obtained by the intersection of a flux surface with the plane $\phi = \phi_0$. Let $\nu = R + iZ$ denote this curve in the complex ν plane, and consider also the plane of the complex variable $\omega = \rho \exp(i\theta)$. By the mapping theorem, there is a unique function $\nu = F(\omega)$ that maps the interior of the unit circle $|\omega| < 1$ onto the exterior of the curve in the ν plane such that $\omega = 0$ maps to infinity in the ν plane and the positive real axis near $\omega = 0$ maps to the positive real axis near infinity in the ν plane. Then, $F(\omega)$ has a Laurent expansion,

$$F(\omega) = \frac{a-1}{\omega} + \sum_{n=0}^{\infty} (a_n + i b_n) \omega^n , \quad (11)$$

where a_n and b_n are real. (Previously,¹ because of the assumed vertical symmetry of the flux surfaces, it could be argued that $b_n = 0$.) Setting $\omega = \exp(-i\theta)$ in Eq. (11) and separating real and imaginary parts yields a representation for the curve in the ν plane that is the map of the unit circle:

$$R = a_0 + (a_{-1} + a_1) \cos \theta + b_1 \sin \theta + \sum_{n=2}^{\infty} (a_n \cos n\theta + b_n \sin n\theta) ,$$

$$Z = b_0 + (a_{-1} - a_1) \sin \theta + b_1 \cos \theta + \sum_{n=2}^{\infty} (-a_n \sin n\theta + b_n \cos n\theta) . \quad (12)$$

Allowing a_n and b_n to be periodic functions of ϕ and introducing Fourier series in ϕ , it follows that Eq. (12) is equivalent to the representation given in Eq. (10).

In practice, it is sometimes desirable to represent the boundary flux surface in a different form from Eq. (9). In this case, it is still possible to use the representation in Eq. (9) for the perturbations \tilde{R} and \tilde{Z} from the scaled boundary shape, where $\tilde{R} = R - R_b(\rho, \theta, \phi)$, $\tilde{Z} = Z - Z_b(\rho, \theta, \phi)$, and the ρ dependence of (R_b, Z_b) is chosen so that $\tilde{R}(\rho = 1) = \tilde{Z}(\rho = 1) = 0$ and $R_b(\rho = 0) = Z_b(\rho = 0) = 0$. For example, scaling the boundary Fourier coefficients by ρ^m , for $m \geq 1$, would achieve this behavior.

REFERENCES

1. L. Lao, S. P. Hirshman, and R. M. Wieland, "Variational Moment Solutions to the Grad-Shafranov Equation," *Phys. Fluids* 24, 1431 (1981).
2. S. P. Hirshman and J. C. Whitson, "Steepest Descent Moment Method for Three-Dimensional MHD Equilibria," *Phys. Fluids* 26, 3553 (1983).
3. A. Bhattacharjee, J. C. Wiley, and R. L. Dewar, "Variational Method for Three-Dimensional Toroidal Equilibria," *Comput. Phys. Commun.* 31, 213 (1984).

ORNL/TM-9302
Dist. Category UC-20

INTERNAL DISTRIBUTION

1. R. A. Dory	19. J. L. Dunlap
2. B. A. Carreras	20. M. J. Saltmarsh
3. W. A. Cooper	21. G. H. Neilson
4. E. C. Crume, Jr.	22. E. A. Lazarus
5. L. Garcia	23. J. F. Lyon
6. W. A. Houlberg	24. D. J. Strickler
7. J. A. Rome	25. J. Sheffield
8. D. J. Sigmar	26-30. S. P. Hirshman
9. S. E. Attenberger	31-32. Laboratory Records Department
10. L. A. Charlton	33. Laboratory Records, ORNL-RC
11. J. A. Holmes	34. Document Reference Section
12. D. K. Lee	35. Central Research Library
13. R. Morris	36. Fusion Energy Division Library
14. J. K. Munro	37. Fusion Energy Division Publications Office
15. J. S. Tolliver	38. ORNL Patent Office
16. W. I. van Rij	
17. R. M. Wieland	
18. M. Murakami	

EXTERNAL DISTRIBUTION

- 39-43. H. Weitzner, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
44. Office of the Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge Operations Office, P. O. Box E, Oak Ridge, TN 37830
45. J. D. Callen, Department of Nuclear Engineering, University of Wisconsin, Madison, WI 53706

46. R. W. Conn, Department of Chemical, Nuclear, and Thermal Engineering, University of California, Los Angeles, CA 90024
47. S. O. Dean, Director, Fusion Energy Development, Science Applications, Inc., Gaithersburg, MD 20780
48. H. K. Forsen, Bechtel Group, Inc., Research Engineering, P. O. Box 3985, San Francisco, CA 94205
49. R. W. Gould, Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125
50. D. G. McAlees, Exxon Nuclear Co., Inc., 777 108th Avenue, NE, Bellevue, WA 98489
51. P. J. Reardon, Brookhaven National Laboratory, Upton, NY 11973
52. W. M. Stacey, School of Nuclear Engineering, Georgia Institute of Technology, Atlanta, GA 30332
53. G. A. Eliseev, I. V. Kurchatov Institute of Atomic Energy, P. O. Box 3402, 123182 Moscow, U.S.S.R.
54. V. A. Glukhikh, Scientific-Research Institute of Electro-Physical Apparatus, 188631 Leningrad, U.S.S.R.
55. I. Spighel, Lebedev Physical Institute, Leninsky Prospect 53, 117924 Moscow, U.S.S.R.
56. D. D. Ryutov, Institute of Nuclear Physics, Siberian Branch of the Academy of Sciences of the U.S.S.R., Sovetskaya St. 5, 630090 Novosibirsk, U.S.S.R.
57. V. T. Tolok, Kharkov Physical-Technical Institute, Academical St. 1, 310108 Kharkov, U.S.S.R.
58. R. Varma, Physical Research Laboratory, Navrangpura, Ahmedabad 385609, India
59. Bibliothek, Max-Planck-Institut fur Plasmaphysik, D-8046 Garching bei Munchen, Federal Republic of Germany
60. Bibliothek, Institut fur Plasmaphysik, KFA, Postfach 1913, D-5170 Juelich, Federal Republic of Germany
61. Bibliotheque, Centre des Recherches en Physique des Plasmas, 21 Avenue des Bains, 1007 Lausanne, Switzerland
62. Bibliotheque, Service du Confinement des Plasmas, CEA, B.P. No. 8, 92 Fontenay-aux-Roses (Seine), France

63. Documentation S.I.G.N., Departement de la Physique du Plasma et de la Fusion Controlee, Centre d'Etudes Nucleaires, B.P. 85, Centre du Tri, 38081 Cedex, Grenoble, France
64. Library, Culham Laboratory, UKAEA, Abingdon, Oxon, OX14 3DB, England
65. Library, FOM-Instituut voor Plasma-Fysica, Rijnhuizen, Jutphaas, The Netherlands
66. Library, Institute of Physics, Academia Sinica, Beijing, Peoples Republic of China
67. Library, Institute of Plasma Physics, Nagoya University, Nagoya, Japan
68. Library, International Centre for Theoretical Physics, Trieste, Italy
69. Library, Laboratorio Gas Ionizatti, Frascati, Italy
70. Library, Plasma Physics Laboratory, Kyoto University, Gokasho Uji, Kyoto, Japan
71. Plasma Research Laboratory, Australian National University, P.O. Box 4, Canberra, A.C.T. 2000, Australia
72. Thermonuclear Library, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki, Japan
73. J. F. Clarke, Associate Director for Fusion Energy, Office of Fusion Energy, Office of Energy Research, Mail Stop G-258, U.S. Department of Energy, Washington, DC 20545
74. D. B. Nelson, Acting Director, Division of Applied Plasma Physics, Office of Fusion Energy, Office of Energy Research, Mail Stop G-258, U.S. Department of Energy, Washington, DC 20545
75. W. Sadowski, Fusion Theory and Computer Services Branch, Office of Fusion Energy, Office of Energy Research, Mail Stop G-258, U.S. Department of Energy, Washington, DC 20545
76. N. A. Davies, Tokamak Systems Branch, Office of Fusion Energy, Office of Energy Research, Mail Stop G-258, U.S. Department of Energy, Washington, DC 20545

77. E. Oktay, Tokamak Systems Branch, Office of Fusion Energy, Office of Energy Research, Mail Stop G-258, U.S. Department of Energy, Washington, DC 20545
78. M. N. Rosenbluth, University of Texas, Institute for Fusion Studies, RLM 11.218, Austin, TX 78712
79. Theory Department Read File, c/o D. W. Ross, University of Texas, Institute for Fusion Studies, Austin, TX 78712
80. Theory Department Read File, c/o R. C. Davidson, Director, Plasma Fusion Center, NW 18-202, Massachusetts Institute of Technology, Cambridge, MA 02139
81. Theory Department Read File, c/o F. W. Perkins, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
82. Theory Department Read File, c/o L. Kovrizhnykh, Lebedev Institute of Physics, Academy of Sciences, 53 Leninsky Prospect, 117924 Moscow, U.S.S.R.
83. Theory Department Read File, c/o B. B. Kadomtsev, I. V. Kurchatov Institute of Atomic Energy, P.O. Box 3402, 123182 Moscow, U.S.S.R.
84. Theory Department Read File, c/o T. Kamimura, Institute of Plasma Physics, Nagoya University, Nagoya, Japan
85. Theory Department Read File, c/o C. Mercier, Euratom-CEA, Service des Recherches sur la Fusion Contrôlée, Fontenay-aux-Roses (Seine), France
86. Theory Department Read File, c/o T. E. Stringer, JET Joint Undertaking, Culham Laboratory, Abingdon, Oxon OX14 3DB, England
87. Theory Department Read File, c/o K. Roberts, Culham Laboratory, Abingdon, Oxon OX14 3DB, England
88. Theory Department Read File, c/o D. Biskamp, Max-Planck-Institut für Plasmaphysik, D-8046 Garching bei München, Federal Republic of Germany
89. Theory Department Read File, c/o T. Takeda, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki, Japan
90. Theory Department Read File, c/o C. S. Liu, GA Technologies, Inc., P.O. Box 81608, San Diego, CA 92138

91. Theory Department Read File, c/o L. D. Pearlstein, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
92. Theory Department Read File, c/o R. Gerwin, CTR Division, Los Alamos National Laboratory, P.O. Box 1883, Los Alamos, NM 87545
93. C. Handy, Department of Physics, Atlanta University, Atlanta, GA 30314
94. I. Bernstein, Yale University, New Haven, CT 06420
95. A. Bers, 38-260, Massachusetts Institute of Technology, Cambridge, MA 02139
96. O. Betancourt, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
97. A. Bhattacharjee, Columbia University, New York, NY 10027
98. J. Cordey, Culham Laboratory, UKAEA Research Group, Abingdon, Oxon OX14 3DB, England
99. J. DeLucia, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
100. P. Garabedian, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
101. H. Goedbloed, Plasma Fusion Center, NW 18-243, Massachusetts Institute of Technology, Cambridge, MA 02139
102. H. Grad, Magnets-Fluid Dynamics Division, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
103. J. M. Greene, GA Technologies, Inc., San Diego, CA 92138
104. L. Hall, L-830, Lawrence Livermore National Laboratory, P.O. Box 5511, Livermore, CA 94550
105. L. Ibanez, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
106. S. C. Jardin, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
107. W. Kerner, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012
108. L. L. Lao, TD-512, GA Technologies, Inc., San Diego, CA 92138

109. K. M. Liang, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
110. R. W. Moses, MS 642, Los Alamos National Laboratory, Los Alamos, NM 87545
111. H. Mynick, Princeton Plasma Physics Laboratory, Princeton, NJ 08544
112. P. H. Rutherford, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
113. A. Schliuter, c/o A. Boozer, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544
114. V. D. Shafranov, I. V. Kurchatov Institute of Atomic Energy, P.O. Box 3042, 123182 Moscow, U.S.S.R.
115. J. L. Shohet, Stellarator-Torsatron Laboratory, University of Wisconsin, Madison, WI 53708
116. A. M. M. Todd, Grumman Aerospace Corporation, 105 College Road East, Princeton, NJ 08540
117. Y. M. Treve, 125 San Rafael Avenue, Santa Barbara, CA 93109
118. J. C. Wiley, Institute of Fusion Studies, RLM 11.222, University of Texas, Austin, TX 78712
- 119-222. Given distribution as shown in TID-4500, Magnetic Fusion Energy (Category Distribution UC-20)

ABSTRACT

By rearranging terms in a polar representation for the cylindrical spatial coordinates (R, ϕ, Z) , a renormalized Fourier series moment expansion is obtained that possesses superior convergence properties in mode number space. This convergent spectral representation also determines a unique poloidal angle and thus resolves the underdetermined structure of previous moment expansions. A conformal mapping technique is used to demonstrate the existence and uniqueness of the new representation.