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Abstract 
A nonvariational ideal MHD stability code (NOVA) has been developed. In 

a general flux coordinate (*,9,c) system with an arbitrary Jacobian, the NOVA 
code employs Fourier expansions in the generalized poloidal angle 9 and 
generalized toroidal angle c directions, and cubic-B spline finite elements in 
the radial I|I direction. Extensive comparisons with these variational ideal 
MHD codes show that the NOVA code converges faster and gives more accurate 
results. An extended version of NOVA is developed to integrate non-Hermitian 
eigenmode equations due to energetic particles. The set of non-Hermitian 
integro-differential eigenmode equations is numerically solved by the NOVA-K 
code. We have 3tudied the problems of the stabilization of ideal MHD internal 
kink modes by hot particle pressure and the excitation of "fishbone" internal 
kink modes by resonating with the energetic particle magnetic drift 
frequency. Comparisons with analytical solutions show that the values of the 
critical 8u from the analytical theory can be an order of magnitude different 
from those computed by the NOVA-K code. 

Presented as Invited Talk, 7th Intl. Conf. on Finite Element Methods in Flow 
Problems, Univ. of Alabama, Huntaville, ALA, April 3-7, 1989. 
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I. Introduction 
Linear stability analysis of magnetohydrodynamic (MHD) modes in 

axisymmetric toroidal plasmas is crucial to thermonuclear fusion research. In 
particular, ideal MHD instabilities are thought to play an important role in 
limiting the 8-values of tokamaK plasmas and causing tokamak disruptions. The 
mathematical problem is to solve the two-dimensional eigenmode equations and 
obtain the growth rates of the MHD instabilities. Exact solutions are 
impossible to obtain without the use of numerical computations. A number of 
two-dimensional normal mode codes [1-7] have been developed extensively to 
study the dependence of ideal MHD instabilities on a variety of parameters 
relating to the geometry as well as the pressure and current profiles. As 
practical tools, they are used to aid in the design of new experiments and in 
the analysis of experimental data. Mo3t of these ideal MHD codes [1-6] 
utilize a Lagrangian formalism [8] for linearized perturbations and involve 
the use of the linear Galerkin procedure, which reduces the problem to the 
minimization of an algebraic quadratic form with respect to a certain set of 
variational parameters. The variational calculation is then reduced to the 
determination of eigenvalues and eigenfunctions of the matrix eigenvalue 
problem. 

Nonetheless, the inherent limitation of these variational codes is that 
because Of their variational nature, they cannot be extended to the stability 
calculations of the non-Hermitian eigenmode equations, such as in the cases of 
ideal MHD with equilibrium fl0W3, resistive MHD and kinetic MHD, etc., where 
variational energy principles cannot be established. In particular, present-
day tokamak experiments and future fusion reactors will involve energetic 
particles that will have significant effects on the MHD modes. In the high-
power, nearly perpendicular neutral beam injection experiments, bursts of 



-3-

large amplitude m=n=1 MKD fluctuations, dubbed "fishbones" were observed in 
the Mirnov coil and x-ray signals [9J. These fishbone bursts are found to be 
correlated with the reductions of neutron emissivity which represent 
significant losses of energetic beam ions, and thus play an important role in 
limiting the 8-values of tokamak devices. In future tokamak reactors, a~ 

particles may destabilize the toroidicity induced shear Alfv^n modes [10,M] 
and their consequences are yet to be determined. For the low frequency MHD 
waves, the energetic particle dynamics are not governed by MHD fluid equations 
because » < u d, where a^ is the magnetic drift frequency. Instead their 
dynamics are governed by gyrokinetic equations and the resultant eigenmode 
equations are non-Hermitian integro-differential equations. 

In this paper, we present a nonvariational MHD stability code (NOVA). 
The ideal <£HD version of the NOVA code has previously been published E7]. All 
these variational ideal MHD stability codes [1-6] employ linear finite 
elements in the minor radius direction, which are the lowest order finite 
elements allowed for representing the displacement vector %. Since they are 
in quadratic form, the numerical errors in the eigenvalues, «, scale as N , 
where N is the total number of the radial computational grid points. 
Therefore, our nonvariational approach requires higher order finite elements 
to achieve better accuracy and faster convergence. For example, with cubic B-
spline finite elements [12-15] the errors in u> scale as N . In general a 
flux coordinate (4ite,c) system with an arbitrary Jacobian, the NOVA code 
employs Fourier expansion in the poloidal angle 9 direction, as in the PEST 
code, and cubic B-spline finite elements in the radial <|i direction. An 
arbitrary nonuniform ili-mesh is set up to provide the option of zoning the mesh 
to allow more finite elements near rational surfaces, the plasma edge, and the 
magnetic axis. In comparison with these existing variational ideal MHD 
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stability codes [1-6], the NOVA code converges faster and gives more accurate 
results. 

In the following, we first briefly describe in Sec. II the anisotropic 
MHD equilibrium and present a class of generalized toroidal coordinate systems 
which can greatly improve the representation of various MHD instabilities. In 
Sec. Ill, we formulate the kinetic MHD eigenmode equations and the correspon­
ding boundary conditions for our nonvariafcional treatment. The numerical 
methods which involve cubic-B spline finite elements, are described in 
Sec. IV. Convergence studies of the ideal MHD version of the MOUA code are 
presented for the analytical Solovev equilibria [16], and detailed 
comparisons, as presented with other variational codes [17], are given in 
Sec. V. In Sec. VI we study the effects of neutral beam injections on the 
internal kink mode and the excitation of fishbone modes. Me establish the 
correctness of the NOVA-K code (kinetic version of NOVA) by both convergence 
studies and qualitative agreements with numerical solutions of a simplified 
analytical dispersion [18]. However, comparisons with analytical results show 
that the critical values of the energetic particle beta for the stabilization 
of the ideal MHD internal kink and the destabilization of the resonant 
fishbone mode can be an order of magnitude different from those computed by 
the KOVA-K code. In addition, a necessary condition for the excitation of 
fishbone mode, B > B c r i t , is found, where B is the total plasma beta and 6 c r i t 

is the critical beta for the ideal MHD internal kink instability. This is 
contrary to the analytical results that show that 6 c_ i t = 0. In Sec. VII, we 
summarize the principal conclusions of this work. 

II. Anisotropic Toroidal MHD Equilibrium and Flux Coordinate System 
We consider stationary anisotropic ideal MHD equilibria satisfying 
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3 x 8 = v-P = VP^ + ?•[(?!!-P^JegSg] , 

V x 3 = 3, and 7-S = 0 , (1) 

where e B i B/B, and J, B and P are the equilibrium current, magnetic field, 
and pressure tensor, respectively. P is obtained by specifying the particle 
guiding center distribution for each species F(e,u,^_) where energy e = v 2/2 

2 
and magnetic moment \i = v /2B are the constants of motions, and (i is the 
magnetic flux position of the guiding center. The parallel and perpendicular 
pressures are given by 

(2) 

From Eq. (1), we obtain the perpendicular momentum balance equation 

V i(B 2/2 + ?L) = fc[B2 + (Pj^-P,)) , (3) 

and the parallel momentum balance equation 

8-vPy = (P^P^eg-vB , (4) 

where K = e B - ' e n *-s fcne curvature. Note that Eq. W is automatically 
satisfied if F(e,u,*g) is used. 

In terms of the flux coordinate system (<i,8,5), the equilibrium with 
nested magnetic surface can be written as 
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B - Vi x V* + q(4>) 7* « 76 , (5) 

where 2**J is the poloidal flux within a magnetic surface, q is the safety 
factor, 9 is the generalized poloidal angle, and ? is the generalized toroidal 
angle. For axisymraetric equilibria, B can also be expressed as 

5 - 7* x V* + gv* , <6) 

where * is the toroidal angle in cylindrical (X,*,Z) coordinates. Then, t; is 
related to • by 

C = » - q 5(8,iii) , (7J 

where S(a,ili) is periodic in 9 and is determined by 

qU - |f) -- g//X 2 , (8) 

with / = (V+ % 76-Vy)* being fie Jacobian. The ?• component of Eq. (1) gives 

S-7G = 0 , (9) 

where G(*) = eg, and o = 1 + {P^P )/B . The 7* component of Eq. (1) leads to 

l
v 2 ' a 3<i B a 

^ - a i z o ( 1 0 ) 

which will be used to solve <i if P..(ip,B), G(*i), and appropriate boundary 
conditions are specified. For isotropic equilibria, Eq. (10) reduces to the 
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Crad-Shafranov equation with <r = 1 and G = g. 
Along a flux surface in the poloidal plane we have 

dfi X l ' 

where ds is the element of arc length along a constant (*,̂ ) line. 
Specification of / therefore, determines the 8 coordinate. In this paper, we 
choose the Jacobian in the form 

/<X,Z) -- - r-r , (12) 
e(*)|TO| JB K 

where i,J,k can be freely specified and a(\l>) is given by the requirement that 
e increases by 2n during one poloidal circuit. The form of / in Eq. (12) is 
a trivial generalization of that used in the PEST-2 code [6]. Thus, from Eq. 
(11) we have 

$ds(|7*|J V / X 1 _ 1 ) 

For the choice i = 2, J = k = 0, the (4i,a,c) coordinate represents the PEST-1 
coordinate. For i = j = 1, k = 0, we have the equal arc length coordinate 
system, and a Hamada-like coordinate system i3 obtained by letting i = J = k = 
0. The choice i = J = 0, k -2 is used for the Hamiltonian representation of 
the magnetic field [19]. 

The general flux coordinate system constructed here is not orthogonal and 
its metric is complicated because v^-vc * 0, ve-vc t 0, ve-v4> * 0, and |?;| » 
1/X . However, c is still an ignorable coordinate for axisynimetric 
equilibria, and the perturbed quantities can be represented by a single mode 
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varying as exp{-in;). 

III. Formulation of Eigenmode Equations 

We will consider an axisymmetrio toroidal plasma consisting of core and 

hot components with S h < B 0 and T h >> Tfl. The ideal MHD description is 

adopted for the core plasma and the gyrokinetie description neglecting the 

Finite-Larmor-radius correction is employed for the hot component. Summing 

the colli!5ionles3 equations of motion for each species, we obtain 

t» at = 7Sp + ?-5ph + 6 x 3 + § x (7x6) , (14) 

where t is the usual fluid displacement vectjr, 8 is the perturbed magnetic 

field, 6p is the perturbed sore plasma pressure, Gph is the perturbed hot 

plasma pressure tensor, and o is the total plasma mass density. The following 

ideal MHD relations hold 

«p +5-VP + T P 7-£ J 0 , rc * c a c s ' 

S = 7 * (5j_ « 8) , 

&£ = iw t x 8 , (15) 

where SE is the perturbed electric field, Y S = 5/3, and P c is the core plasma 

pressure. fipV is obtained from the perturbed hot plasma distribution function 

,„ re» i u a a i _, ,,,, 
S F h B Ir S " T aP Foh + 8 h ' ( 1 6 ) lnt 3e B 8uJ oh 
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whcre g n is governed by the gyrokinetic equation, with g n - exp(-iut), 

T, ̂ Oh ;,. V l V b i [3r7-i(u-u,d)lgh = -i(SV) 1 ^ l(*" - P ' + e l - ( 1 7 ) 

where u = -{Tui/roh)atnFoh/ae, <ii*T s -i(T/ntj.(we)eB x vinF Q h-v, u d = -iVj-v , 
^d = <eB/oic)>[v£nB(wB)+ KvJ, » is the electrostatic potential, and A, is 

the parallel vector potential. Since SE,. = 0, we have uA./c = -ieE-?«. For 
low-B plasma we also have s£ • - v « . 

Considering MHD perturbations with frequencies much smaller than the hot 
particle transit and bounce frequencies, Eq. (17) can be readily solved for 
both the trapped and utitrapped particles. For the untrapped particles 

T 

For the trapped particles, we have T 
gh, = ( — ) ^ [• + -7-7 ^ • ^ H *°<-' • < 1 C» 
ht v iii ' T l »-<u>.> u e ' u. 

w- uiu et'_^ . û ,* m. jib̂  

where <A> denotes the bounce average of A and is given by 
<A> = $Adl/|v.|/$dl/|v.| . From Eqs. (16), (18), and (19), we obtain 

«p h = - tjv[*J * <P, - P ^ ^ B e B ] • s^l + (dp",, - six) ^ , (20) 

where «p and 5p. are due to trapped hot particles with 

«Pj \VII ' 
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If we decompose the displacement vector as 

V * 5 s ( 5 " V»> 5 b S 

K - o + 5 • — p i (22) 
|7*| 2 B^ B* 

then after some complicated algebra, we obtain from Eqs. (14) and (15) the 
following set of two-dimensional integro-differential equations: 

V* • [7Sp1 + V • 5p h] = [a2a%. + |V<)|26 • 5 ( 1] 

+ a . ( (23xg+7B2) p; •<3.8-|»*|as> ^ s ] g 
B B 

+ ^ - (23,S+7B2> « P l * <|v*| 2s - J-B) i H i f s . 7 £ 

B^ B 

+ i f • (2J*5 + VB") Y P V-5 , ( 2 3 ) 
B^ 3 

,* . „ a - |v*|2 ft • [M?£) * !g- • - f t ) ] * , 

_ M l ! S P i . ,„|2 Ve (,.fc 
B 3 

- M 2 [*4* - t ^ V *f* .v^.(fep]«,i, ( 2u) 
B 9 B B 

B B B 

• I" (4*1 «P, * ^f • "P,] * (H 1 ) • V«Ph , (25) 



-11-

2 
{ ( ! T & ) ».f • ̂  [-^ S-7(v.|)]} • (lafi) - ( i & S i ^ 

B u p B B B 

* ¥ i t p ; - ^ - < J - 8 ) ) L . s l , ( 2 6 ) 
u p | Vi|i | B 

where S = (5 < 7*)/|Vili| -V x (§ x vij)/|v*| ) is the negative local shear, 

P;=3Pc/3*,«p155pc+b-B,$()4-|J'l>, and Ks-l-B*Vi>/\Vi>\2, 

For anisotropic equilibria, B-v-Sp^ contains 3̂ /̂3<i» and 3? /a* terms 

which are proportional to (P.. - P ). , and (Bxv<|i)-'*Sp*h contains only surface 

operators. But v^"V-fij5h contains all radial derivative terms 35^/341, 3$ /3\ii, 

aSpj/a*, and 3(7-t)/3*. The integral operators in Eqs. (23)-(26) are related 

to trapped particle bounce averages in the B direction.' Since Eq. (25) does 

not have radial operators, Eqs. (23)-(26) are basically a third-order equation 

in 3/3(1. However, if the (P - P ) terms can be neglected, such as in the 

case of low B̂ , (i.e., B n << B c ) , then Eq. (26) involves only surface operators 

and Eqs. (23)-(26) form a second-order equation in 3/ai> as in the ideal MHD 

case. Equations (23)-(26) can be formally solved by inverting Eqs. (25) and 

(26) to obtain zg and ?•? in terms of 4pj and 5^, and substituting them into 

Eqs. (23) and (24). This procedure is similar to that employed for the ideal 

MHD NOVA code. Equations (23) and (2U) can now be combined to form a second-

order equation in a/3*. In the following, we shall consider a h << B c and 

neglect the pressure anisotropy terms, i.e., the (P. - P . ) h terms. These 

pressure anisotropy terms will be included in future work. Then, we have 

§-V-6ph . 6.V(SP8 - tL-W ) - («p - «p ] f-VB 
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7«-7-Sph « VV-vfiPj^ - 5j_-?Pih) + (*P, " S p J ^ - 2 • (27) 

In a general flux coordinate system {i|r,6,;>, e is still an ignorable 
coordinate for axisymmetric equilibria and we represent the perturbed quanti­
ties by a single mode varying as exp(-inc), where n is the toroidal mode 
number. In terms of the new velocity space coordinates (e,A,o), we have 

a - 1/2 h ., 
j A = I / 2 , f dec J d A

 1 / 2 , 
o o o h [ 1 - A / h ] " 

where o = 11, the pitch angle A = yB 0/e, B 0 is the vacuum magnetic field at X 
s R, and h = B0/B(<»,eJ. On a flux surface, untrapped particles correspond to 
0 < A < h^n(*")i and trapped particles to h^^C*} < A < h at a given e, where 
h,̂ . (v) = Min [h(a,i|i)] on the * surface. The bounce-average magnetic drift 
frequency is 

K.+K <vy«.Sa) A Pi , . . nmce ,l <J s r. A i c A < U j> = — — < — * = [1 - = H r -
\nf 2 h B1 •d ' - - i ^ — t ' - a J - 5 h > • < 2 8 > 

where K^ = 2K*7«l> and K 3 = 2K*(BxVi)/B . The perturbed trapped particle 
pressures are 

(6 p i \ ,._ - c / - h .. 3F„u/3e 
I . o3/2^ m r _, 5/2 r da oh 

sp,/ min 

* <(<u - *,) [2(1-§£) ̂  • * - (£) »-?J > I 1 , (29) 
W - & 
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where 

«• = i(«B " ' F o h " 7 ) / [ u c ( 3 F o / 3 E ) ] " 

The boundary condition at the magnetic axi3 is i^ = 0. For fixed 
boundary modes the boundary condition is 5. : 0 at the plasma-wall 
interface. For free boundary modes the boundary condition at the plasma-
vacuum interface is given by bv«7>li = B-7^, where b is the vacuum magnetic 
field which must be solved from the divergence-free equation v • b v = 0. 

IV. Numerical Methods 
The eigenmode equations, Eqs. (23) - (26), are solved by the Galerkin 

method, where the eigenfunction is represented by a linear superposition of a 
finite subset of a complete set of basis functions. We first represent the 
perturbed quantities by a finite Fourier series in 8, 

1(5,3,c) = I ijii) exp li(me-nc)] , (30) 
m 

where the summation over m is truncated to a total number of I poloidal 
harmonics, and n is the toroidal mode number. The elimination of e and v-t 
proceeds by finding the algebraic Fourier matrix representation of the surface 
operators. Introducing the bracket notation for an operator E, 

Em'm s <=>' IE|m> s ̂ - £de [exp(-im'e) ]E[exp(ime)] , (3D 

Eqs- (25) and (26) reduce to 
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£ , I s ) = F . ( 1 I , (32) 

where E and F represent the poloidal operators of the left- and right-hand 
sides of Eqs. (25) and (26), respectively, and the Fourier indices m 1 and m 
have the same truncated domain. Note that the evaluation of the algebraic 
matrix operations, Em<m etc., involves convolutions that occur in evaluating 
operator products. To avoid aliasing errors, a larger truncated Fourier 
series domain than L, say L*, is imposed and is increased until the results 
are satisfactorily converged. ^ m < m can fce inverted to obtain $ s n ] and (7 • t ) m 

in terms of £ p 1 m and 5^ m and then by eliminating 5p l m in favor of S^. 
Equations (23) and (24) are reduced to a set of L second order differential 
equations. 

17 Hm'm 17 Sn + Hm'm IF 5m * Hm'm *m + 3r [ V m V ' ° • < 3 3 ) 

where the H's are algebraic L * L matrices and are functions of r only, where 
r = (i>/i>tot)^2 and ^ = Ej,m(r) i s a vector of dimension I. The explicit 
expressions of the H's are too tedious and complicated to present in full 
detail here. The boundary conditions at the magnetic axis are now modified to 
Sn, - 0 for m 2 t 1 and H m/ar = 0 for m 2 = 1. 

Equation (33) is integrated by employing cubic B-splines [7] to 
approximate the eigenfunction 5 m(r). The cubic spline has the advantageous 
property of minimum curvature among all third order polynomials [12]. For a 
given partition of N-grid points, a = {r1 < r 2 ... < r N ] , the function Sra(r) 
is approximated ay piecewise cubic polynomials in each subinterval. 
( r ^ r ^ ) . The polynomials and their first two derivatives are required to be 
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continuous at the grid points. Since a cubic polynomial is determined by four 
coefficients and there are N-1 intervals, there are a total of 4{M-1) unknowns 
to define a cubic spline function. There are 3(N-2) constraints at the (N-2) 
interior points so that the cubic spline function is determined by N+2 
parameters. The most convenient cubic spline representation is the basis set 
of B-spline finite elements [13-15] (Uk|lc=ltN+2}, which are local piecewise 
cubic polynomials occupying four grid intervals with continuity up to second-
order derivatives and are shown in Fig. I for the uniform grid point case. It 
can be easily shown that every cubic spline can be expressed as a linear 
combination of B-spline elements. In order to define uniquely the N+2 B-
spline elements, we assume that at each end of the grid partition there are 
three extra grid points extending outside the computational domain. This 
extended partition is unsatisfactory, and the problem is resolved by letting 
the exterior points coalesce at the end points, i.e., r_2 = r_1 - r Q = r 1 and 
rN+3 = rN+2 = rN+1 = rM* A typical set of cubic B-spiine finite elements for 
a uniform grid partition is shown in Fig. 2(a), and Fig. 2(b) shows an example 
of cubic B-spline finite elements for a nonuniform grid partition. 

The eigenfunction $m(r) is interpolated by the representation 

where S m(r) is the cubic spline approximation of 5 m(r). For the given values 
of E m(r) at the N-grid points, Eq. (34) is not uniquely defined because there 
are N+2 parameters 5 m k. Uniqueness i3 obtained by imposing two boundary 
conditions for S m(r), and in this paper we require that S m(r) = s

m''1"^ a t t h e 

end grid points. To implement these two extra boundary conditions, we inter­
polate the first and the last four grid points by cubic [ -igrange polynomials 
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S^fr) and require that S m(r) = s
r a( r) a t t h e e n d points r = r1 and r M[l4]. ftt 

least for a uniform grid partition, this scheme preserves the asymptotic error 
scaling of H [7,15] and has the advantage of not requiring extra four 
function evaluations. 

,1 Operating on Eq. (33) with the projection operator, 0^ = j dr U^ and 
interpolating the known functions H' 1', H ' 2 % H ' 3 ) , and H ™ ' in terms of the 
sane cubic B-spline finite elements, we obtain a set of algebraic equations: 

in, K 

wh^re 

and 

,,, N+2 ,,, . 
m m ,̂ . m m j (36) 

Mote M̂ jj is a (N+2)L * (N+2)L matrix with nonvanishing elements along its L 2 

7-banded diagonals. After Imposing the boundary conditions to modify the 
matrix M, the nontrivial solution of Eq. (35) can be obtained by requiring 

f(«) = det|M(u)| = 0 . (37) 

The eigenvalue problem is nonlinear in <u and its numerical solutions can be 
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found by iterative procedures. Convergence is assumed if | [f (OJ ,) -
f(u )]/f(u ) | < e-p and/or |o>p+i - " p| < eg, where e 1 and e 2 are appropriate 
small numbers, and p denotes the iteration step. When the eigenvalue 
iteration is converged to the required accuracy, Eq. (35) is used to construct 
the eigenvectors t and Py For this purpose, the matrices of Eqs. (23)-(26) 
for each surface are saved in disk files when they are computed during the 
calculation of the matrix elements of M ^ * . 

The Iteration is computationally expensive because the matrix inversion 
must be carried out for Eqs. (25) and (26) at each iteration for each 
surface. Consequently, the execution time scales as the total number of 
radial grid points N as well as lr for the matrix inversion. Finally, to be 
consistent we have also employed cubic B-spline finite elements to obtain the 
equilibrium quantities from the mapping codes. 

Next, we consider the vacuum solution of J-bv i 0 with the vacuum region 
surrounded by a conducting wall. For the n^O nx>de3, we represent 6 V * v*. 
Then in terms of the Green's theorem we have 

2* x{x g) = /dsfc • [Wx t|i s) » tx(5 t) - x<x t)v tG(x t|x 3)], (38) 

where we have chosen the Green's function G to satisfy 

7t G { J t l S s ) = 4 l , s ( * t _ *s } ' ( 3 9 ) 

and G(i e|5 s) = |$ t - $ a| . j?3 can be either on the plasma-vacuum interface 
or on the wall, and the integral extends over both surfaces in Eq. (38). With 
the boundary conditions vx -'* = B-V£. on the plasma-vacuum interface and 
V)c-d5H = 0 on the wall, Eq. (38) can be solved to obtain x on both surfaces by 
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the method of collocation [20]. 
For the n = 0 mode, the magnetic field cannot be described by a single-

valued scalar potential. Instead, we follow the procedure of Lust and 
Martensen [21] and define 

b = V K * a . W x fa • a,v* , (iiO> 

where a< and a 2 are constants related to the perturbed quantities, x can be 
obtained by the same procedure as for the n i 0 modes with the additional 
constraint £xd8 = 0 due to the singular nature of the matrix in Eq. (38) for 
the n - 0 mode, o can be solved by taking v* • V * !$ = 0 and we have 

fl a = v • f^f) = 0 . (41) 

The boundary conditions are a = 1 on the plasma-vacuum interface and a = 0 on 
the wall. Equation (41) again can be solved in terms of the Green's theorem 

4<r 2a(xJ ds. 
— 2- = $ — | • [G(x t|x s> v ta(5 f c) - a(3 t)v tG(; t|; s)] , (42) 

3 X t 

where the Green's function G satisfies 

3 

ana is given by 

4tX. . 
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where P ! ^ 2
 i s t n e a s s o c i a t e d generalized Legendre function, 

and 

t*f+x?*<W*i 
r2 

(46) 

To determine a 1 and &2 w e fake use of the property 

f Vx - 74d^x = J Vx • (?* x 7ot)d x = 0 . 

Then, with the aid of the boundary conditions A x d3 = 0 on the wall and 
A » 7* = L B on the plasna-vacuum interface, where A is the vector potential 
defined by t>v - ? x A, we obtain 

<f(*xVa) • (n <5}ds 
ai = — ; h— 2 • W ) 

J | v«»7o rd J x 

and 
$v>-{t| xS)d3 

2 ; | v « | 2 d 3 x 

where s denotes the plasma surface and n_ i -?*i/jv*|. After we solve the 
vacuum-magnetic field b y in terms of c^, we obtain the boundary condition for 
solving Eqs, (23)-(26) at the plasma-vacuum interface: 

'P, = 5V " S = I , *L- V exp ti(m9 ' nc)1 • (U9) 

m,m' 
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Note that 6p, is related to 5̂ , and ae^/S* in Eqs. (23)-(24). This concludes 
our discussion on the vacuum solutions. 

V. Convergence Studies 
To illustrate the convergence properties of the NOVA code, we first 

consider the analytical Solovev equilibria [16] which have been used 
previously [17] for extensive comparisons of variational ideal MHD stability 
codes. Our ideal MHD results will be compared with the previous results, 
which provide a series of cross checks essential for validating such a large, 
complex code. The Solov^v equilibria which satisfy the Grad-Shafranov 
equation, Eq. (10), for isotropic equilibria with g' = 0, are given by 

HB 2 
* = —~- [X2Z2 • I- (X2-R2)J , (50) 

EETq(O) M 

(1+E2)B 
F(*>) = ~ - (*„-*) , (51) 

2»ER*q(0> ° 

<*<*> * fiBo * xfvTT ' ( 5 2 ) 

where (X,$,Z) is s. cylindrical coordinate system, B Q is the toroidal field at 
the magnetic axis X = R, P(*i> is the plasma pressure, and q(4>) is the safety 
factor with the contour of integration along a line of constant i> and *. The 
system is characterized by the following parameters: the ellipticity E, the 
inverse aspect ratio e = [+ Bq(o)/ffER 2B 0] 1 / 2, and q(0). The wall position is 
specified by A = (4i w/* B) 1 / 2, and 2wlig is the total poloidal flux in the 
plasma. 

To achieve the correct eigenvalue and an accurate representation of the 
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corresponding eigenfunction, in principle one requires a very ljrge number of 
basis functions. Since this number is United by the computer memory and 
computing time, it is necessary to extrapolate from the lower order 
representations to obtain the asymptotic eigenvalue. Fortunately, we need 
only a few points because the extrapolation formulas are simple. 

Numerical convergence is shown below for the pmall aspect ratio, 
elliptical case with the parameters: fi = B Q = 1, E = 2, e - 1/3, q(0) = 0.3, 
A - 1, and n = 2. We employ a uniform r-mesh of N grid paints and retain the 
poloidal harmonics m = [-L 0,L 0], For the equal arc-length 0 coordinate, the 
convergence curves of the eigenvalue (Y = - <" ) are shown in Fig.3- Here Y 
is normalized in terras of tujj = B 2(0)/n(0)q 2(1)R a. The eigenvalue y 2 scales as 
Y 2 = y 2 + c 1 exp(-CQ/2) for fixed N and as y 2 = Y | * CjW"^ for fixed L Q , 

where T^ and y \ are the converged values for fixed N and L Q, respectively. 
The results from the PEST code show that Y scales as Y = i\ + D, exp (-L/2) 
for fixed N, where L = 2L 0 + 1, and for fixed L, as Y 2 = Y2. + D 2 N ~ 2 - N o C e 

that if we use the PEST e-coordinate, the growth rate from our code also 
scales as y 2 - Y? + C,exp(-L/2). Convergence curves from the PEST code are 
also shown in Fig. 3. Detailed comparison between the results of our code and 
those of the PEST code indicates that ICjl - \H^\ and |C 2| << |D 2|. Even with 
N = 5, our code converges in L 0 with an error of les3 than 1% of its converged 
value. On the other hand, comparable accuracy from the PEST code would 
require at least three times as many linear finite elements. Tue 
eigenfunction S^ and the plasma flow pattern for this case are shown in Figs. 
(4a) and (4b), respectively. Comparisons of the converged values of the 
square of the growth rate from different Solovev equilibria obtained from 
various ideal MHD stability codes [17] are summarized in Table I. For most of 
the cases, our results are roughly between those of the PEST [1] and EHATO [2] 
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codes. These small discrepancies may be due to the different napping codes 

used in these stability codes. 

VI. Energetic Particle Effects on the Internal Kink Modes and Excitation of 
Fishbone Modes 

The n=1 ideal MHD internal kink mode is usually unstable for tokamak 

plasmas with C > 6 c r i t and q(0) < 1 so that the q - 1 surface lies within the 

plasma. The growth rate of this mode is typically a factor of e 0
2 smaller 

than the more dangerous external kink, where e Q is the. inverse aspect ratio. 

The stabilization of the internal kink and ballooning modes by an energetic 

particle component mirror-trapped on the unfavorable-curvature side of the 

tokamak has been proposed by flosenbluth et al. [22] Their stabilization 

mechanism requires that the hot particles drift across field lines rapidly 

i.e., <ud> >> |<n| and (U)»/<IDCJ>) > 0. The stabilizing kinetic energy of the 

hot particles may bring the plasma into the second stability region, where the 

stability may improve with increasing B. They also argue that when <ud> is 

not large enough, marginal stability occurs with a real frequency close to 

<i»d>. Chen et al. [18] further showed that for 6 n > S^crit a n d ("V <">£}>) > > 

1, the trapped energetic ions can resonantly destabilize a new branch of 

internal kink mode (called fishbone mode) with a real frequency comparable to 

<uj> and that the growth rates are of the same order as the ideal internal 

kink values. This fishbone mode was used to explain the experimental 

observations of large amplitude bursts of m=n=1 MHD fluctuations in tokamak 

experiments with high-power, nearly perpendicular neutral beam injections. 

These previous analytical theories [13,22] of energetic particle effects 

on the internal kink mode were performed for large aspect ratio tokamak 

plasmas with circular, concentric magnetic surfaces, and the radial plasma 

displacement 5 was taken as the cylindrical solution of the m = n = 1 mode 
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with c = constant for q < 1 (or r < r 3 ) , and £ r = 0, otherwise. In addition, 
there are other approximations made in calculating energetic particle 
contributions to 6W, such as, 1-q(0)=0, (<nt/<tud>) > 0 for the whole minor 
radius, ana no toroidal couplings of neighboring poloidal harmonies. Those 
approximations can be quite erroneous for realistic finite aspect ratio 
tokamaks. Therefore, the analytical theory, although it preeiiot.ed the 
excitation of the fishbone mode, failed to give quantitative predictions of 
the critical 6 h for both the stabilization of the internal kink and the 
excitation of the fishbone mode. Furthermore, when mora realistic particle 
velocity distribution functions of the a particles are considered, the 
qualitative conclusions of the analytic theory may become invalid. In fact, 
the behavior of MHD modes depends strongly on both the energetic particle 
distributions and the plasma equilibria, and it is important to have a 
numerical code (e.g., HOVA-K code) that compute1- the stability of low-n MHD 
modes for realistic energetic particle distributions and plasma equilibria. 

In this section we will present numerical studies of the effects of 
energetic particles on thj n=1 internal kink rode by using the HOVA-K code. 
We will first establish tlse numerical convergence of the N0VA-K code. Then by 
comparing the numerical results with the analytical theory [18], we will point 
out the usefulness of the numerical calculations. We will assume B„ >> 8 h, so 
that the equilibrium i3 approximately isotropic and is determined by the core 
component only. We first consider an equilibrium with circular plasma surface 
computed from a flux equilibrium code with the profiles P„(y) = P0('-y ) 2 , 
q(y) = q(0) + y([qt1) - q(0) + (y - 1)(q'(1) - q(1) * q(0)) (1-yg>/(y-y3)/(y-

y s ] , where: y 3 •- [q'(1) - q(1) + q(0)]/rq'{0) + q'(1) - 2(q{1) - q{0))], 
y = t/Aili, 44) = vii m - *0, ^Hn is evaluated at the iimiter, and <\>0 is 
evaluated at the magnetic axis. The parameters ire Aip - 0.061, <8> a v = 
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0.625S, R = 1.13, R/a = 3.1, P 0 = 0.018, q(0) = 0.8, q(1) = 2.85, q'(0) = 
13.32 and q'(t) = 106.6, and <S p o l> = 2 <P>/<B^ol> = 0.1278. Figure 5 shows 
the flux surfaces of the equilibrium, and Figs. 6{a) - 6(c) show the radial 
dependencies (r = (4>/AI|I)1/'2) of the trapped particle pitch-angle space bounded 
by h m i n and h r a a x, the hot particle diamagnetic drift frequency, and the 
bounce-averaged magnetic drift frequency <ud> for A Q = 1,1, respectively. 
Also plotted in Fig. 6(a) is the curve of <ud> = 0. Between the \ = h m a x ( r ) 
and <wd> = 0 curves, we have <u>d> < 0, and between the <wd> = 0 and A = b^ m i n 

curves, <u(j> > 0. Particles with A < h m i n , are untrapped. For A - h^j, 
particles are barely trapped, and for A = \A*. particles are deeply trapped at 
e=0. It is clear that for a given pitch angle A 0, <wd> may change from being 
negative to positive as r changes, which means that (ui)i/<u)d>) also varies from 
being positive to negative. If the trapped particles are destabilizing to a 
certain MHD mode for (u»/<ud>) > 0 in a certain radial region, the trapped 
particles in the radial region with (u#/<m£j>) < 0 would be stabilizing. Thus, 
the net effect of hot trapped particles must be integrated over the entire hot 
particle population with proper weightings of different poloidal harmonics, 
which can only be achieved by numerical solution of nonvariational codes such 
as the NOVA-K code. 

For ICRF-hested plasmas the energetic particle distribution is 
approximated by a Haxwellian in energy and a delta function in pitch angle A, 

2irT. -3/2 m he 
F o nU,A,*) = n h{«) [— - ) exp(-f-) «U-A 0) , (53) 

n h 

where T n is the hot particle temperature. For neutral-bean-heated plasmas, 
F o n is taken as a slowing-down distribution in energy and a delta function in 
pitch angle, i.e., 
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/nh(i(i) S(A-A g) 
\ 3/2 + £3/2 ' e " eb • 

F o h(e fA,*) = \ e ° ' (54) I ° - e > % • 

where e b is the neutral beam injection energy, and e c is the cutoff energy 
where the beam ions lose an amount of energy to the core ions equal to that 
lost to electrons. For a-particies, we will employ the slowing-down 
distribution, Eq. (53), but with uniform pitch angle distribution, and e b is 
the a-particle born energy. It should be emphasized that the NOVA-K can 
calculate stability for numerical hot particle distributions obtained from 
Fokker-Planck code calculations. The flux surface-averaged hot particle 
density is typically of the order of 10 times the core density and T n(or e b) 
ranges between 30 and 100 keV. %((•) i s assumed to. have the same functional 
dependence as P_(1») for simplicity. Since both <u« and <UJ> are proportional 
to T^ or (e^), we will introduce a temperature scaling factor Gj. in u* and 
<<ud>. If C T - 0, u# h = <u(i> : 0 and the eigenmode equations, Eqs. (23) -
(26), correspond to the Kruskal-Oberman energy principle [231. For C T » <•>, 
Eqs. (23) - (26) correspond to the case studied by Rosenbluth et al.[22]. 
From Eq. (29), we see that both sp and 6p. are proportional to n n{«)T n. 
Therefore, we will set nn(<p)Th = ahpc^^ a n d v a r y a h t o c n a n S e t h e n o t 

particle pressure. 

In the absence of energetic particles (a n=0), the n = 1 fixed boundary 
ideal MHD internal kinlc mode 13 unstable with the growth rate Y/W A = 1.195 « 
10" , Because the eigenfunction %^ has a sharp radial variation near the q-1 
surface, the computation was carried out by using a spatially tailored r-grid 
with den3e grid packing near the q = 1 surface. Since the poloidal harmonics 
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of S^ are dominated by f < m < 3, He will use the equal arc-length e 

coordinate and keep 7 poloidal harmonics m - [-3,4] in the computation to 

ensure convergence in m. We have also checked the numerical convergence in 

radial grid points by using N=50, 75, and 100 to obtain the converged growth 

rate. Figure 7 shows the poloidal component of the eigenfunction ĉ , versus r; 

the q-profile is also shown in Fig. 7. 

In the following, we will present the results of the neutral-beam-

injected energetic particles on the stability of the n=1 internal kink modes 

and compare these results with the model dispersion relation calculation. The 

hot particle distribution is given by Eq. (54) with E C = 0, and nh(i|i) is taken 

to have the same ^ dependence as p(4>). The other fixed parameters for the 

energetic particles are e b/T c(0) = 10, R/on(0) = 100, m h/m 0 = 1, C T = 1, A 0 = 

1.1, where m c and mu are the core and hot ion mass, respectively, Pn(0) is t n e 

hot ion gyroradius at the magnetic axis, and A 0 is the pitch angle of tha 

injected beam ions. For this equilibrium, the volume-averaged hot particle 

beta, e n = 2 <ph>/<B >, is related to the total volume-averaged beta, 6 = 

2<p)/<B2), by B n = 1.38 o n8 where B = 0.625*. In varying B n (or a h) we will 

keep the total a fixed so that as B n is increased, the core plasma s c is 

decreased by the same amount. Figure 8(a) shows the a h dependence of the 

growth rates, Y/«>A> of the ideal and the resonant fishbone branches of 

internal kinks. The computations were carried out by performing convergence 

studies with N = 50, 75, and 100 nonuniform radial grid points. He see that 

the N=100 case gives approximately the converged solutions. For the ideal 

branch, the eigenfunction t;̂  becomes increasingly singular as IL > 0.035. For 

the resonant branch, t^ becomes more singular as a h < 0.07. One also realizes 

that the solutions with singular t;̂  cannot be trusted because our cubic 6-

spline finite elements do not give proper representation of the singular 5^. 
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Thi3 is the most difficult problem in attempting the numerical solutions of 

MHD modes near marginal stability with |Y/<«r| << 1 or jy/cû l << 1 when the 

eigenfunotion £^ becomes singular. The common practice of obtaining the 

behavior of the eigenvalue u (=^+ir) near marginal stability is to 

extrapolate from the u with well-behaved eigenfunctions. The two broken 

curves in Fig. 8(a) show the extrapolated values of > near marginal 

stabilities of the ideal and the resonant branches of the internal kink 

modes. Me can now conclude from Fig. 8(a) that the ideal branch of internal 

kink mode i3 stabilized by the injected energetic particles for e h > 8h-| = 

0.03K (a n = 0.036), but for a h > S h 2 = 0.0557* (ah = 0,06) the fishbone 

branch of internal kink mode is resonantly destabilized by the injected 

energetic particles. Figure 8(b) shows the negative real frequency, -{« r/u f l), 

versus a n for the corresponding cases of Fig. 8(a). As o h » 0, the real 

frequency of the resonant branch evolves into a slow sound mode of the 

continuous spectrum, which is below the shear Alfven continuous spectra. Mote 

that the shear Alfven continuous spectrum does not go to zero at the q-1 

surface due to finite values of a and the surface component of the magnetic 

curvature [10J. It is the nui slow sound branch of the continuous spectrum 

that goes to zero frequency at the q=1 surface and determines the singular 

behavior of the n=1 internal kink mode near marginal stability. 

In Figs. 9(a) and 9(b), the growth rates and the negative real 

frequencies, respectively, versus the hot particle pressure scaling factor a h 

are plotted for several values of the hot particle injection energy scaling 

factor C T. The fixed parameters are the same as in Fig. 8. For C T < O.y, the 

hot particle pressure is stabilizing for small values of a n, but becomes 

destabilizing as o n becomes larger <a h > 0.036). The destabiizing effect is 

accompanied by an increase in |u r| and is associated with <u - <uid> = 0 
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resonance. However, when C T becomes larger with C T <• 1, the ideal branch is 
stabilized for a h > a ni = 0.036 (for C^-\). But the resonant fishbone branch 
is destabilized for a h > a n 2 = 0-06 for C T = 1. For larger C T, a n 1 is 
smaller, but a n 2 becomes larger. Note that the broken curves in Fig. 9(a) are 
obtained by employing the extrapolation scheme described in Fig. 8. 

The results presented in Figs. 9(a) and 9(b) are qualitatively similar to 
those obtained from the following analytical dispersion relation [18] for the 
neutral-beam-injected energetic particle distribution given by Eq. (54): 

_i(H_) = (!»!£) . | J {- + S- (- - 1] M l - ^ ) + 1«|} , (55) 
A A d d d 

where 0 < fte(w) < <iid, a = 0 for IBI(U) > 0, a = 1 for Im(u) = 0, and a=2 for 
Im(w) < 0. ID# and u d are the typical hot particle diamagnetic drift frequency 
and the bounce-averaged magnetic drift frequency, respectively. Y^HD i s t h e 

ideal MHD growth rate in the absence of hot particles, and s n is proportional 
to the hot particle Bj,. Equation (55) predicts that if r̂ tro > 0, the ideal 
branch will be stabilized for By, > Bu^, where B h l = (8Y M H Du d/9i» Atim). At 3 n = 
6 n l, m - 0. The resonant fishbone branch will be destabilized for B h > 8^, 
where B n 2 * 8<ud/[9*ti>fl(<i>«/(Jd - D ] . At B h = flh2» <•> is purely real. Figure 
10(a) shows the growth rate and Fig. 10(b) the real frequency for the fixed 
parameter w#/u d = 10. Several values of u d = U^/Y H H D a r e u s e d - The.curves 
labeled 5 d > 3 correspond to the ideal branch. We see that for ("•H/Y^HD) -
n(u«/ud - 1) (i.e., Bjji > 6h2^' t h e i d e a i branch is unstable for all e h. For 
6h1 < sh2' t n e r e i s a stability window for 6 r 1 < 8 n < B n 2- Figure 10(a) 
clearly shows these behaviors through the variations in u d with oin/w^ being 
held fixed. We should note that the real frequency shown in Fig. 10(b) is 
somewhat different from Fig. 9(b) for the resonant branch in the limit a h < 
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a^o- This is because the analytical dispersion, Eq. (55), does not describe 
the MUD continuous spectrum that is contained in the NOVA-K code. The above 
comparison clearly demonstrates that the NOVA-K code gives correct results of 
the energetic particle effects on the n=1 internal kink mode. 

Next, we examine the validity of the approximations made in the 
analytical theory of Chen et al.[l8] Our calculations show that although the 
analytical theory gives qualitatively correct results, it fails to provide the 
correct values of the critical hot particle betas for both the stabilization 
of the ideal branch and the destabilization of the resonant fishbone branch. 
To make comparisons on the values of critical B h, we impose similar 
approximations, as done in Ref. 18 in computing the perturbed hot particle 
pressures Sp and Sp. defined by Eq. (9), by retaining only the m=1 poloidal 
harmonics and taking 1-q(0) = 0. For the same parameters as in Figs. 8(a) and 
8(b), the computed eigenvalues u versus Sj, are shown in Fig. 11. By comparing 
Figs. 8 and 11, we see that the qualitative behavior of the nil mode with 
analytical approximations is quite similar to that of Fig. 8 obtained without 
approximations. However, the horizontal B^ 3cale of Fig. 11 13 about a factor 
of 4 smaller than that of Fig. 8. Thus, the analytical approximations have 
produced an error in Bui and e_p by roughly a factor of 4 in this particular 
example. The error is mainly due to the omission of higher poloidal harmonics 
in Sp. As seen in Fig. 7, the amplitudes of the m=2 and 3 ars not negligible 
outside the q=1 surface. Also from Fig. 6 with A = 1.1, (u»/<ud>) < 0 for r > 
0.85, and thus the m=2,3 harmonics have opposite contributions to stability 
from the m=1 harmjnic. Thi3 calculation tells us that we must employ the 
NOVA-K ?ode to compute the correct values of the critical B h 1 and 3_p-

Another important conclusion from the calculations of the NOVA-K code, 
that is different from that of the analytical theory, is that a necessary 
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condition to excite the resonant fishbone mode is 9 > 8 C, where a c is the 
ideal MHD critical 8 for the n=1 internal kink. It ca^ be easily seen from 
the analytical dispersion relation, Eq, (55), that the critical a ^ is 
independent of r^HD' a n c* t n e r e *-3 n o constraint on the total plasma s. Our 
conclusion is derived by computing the stabilities of several equilibria with 
decreasing 6. As 6 is decreased, the growth rates of both the ideal branch 
and the resonant fishbone branch also decrease. For a £ S c, no instabilities 
are found by the NOVA-K code. 

VII. Summary and Conclusion 
In this paper we have presented a nonvariational MHD stability code 

(NOVA) which provides accurate and efficient numerical solutions of the 
magnetohydrodynamic stability of axisymmetric toroidal plasmas. In a general 
flux coordinate system (i|>,9,t) the code makes use of cubic B-spline finite 
elements in the minor radius ty direction and Fourier expansions in the 
poloidal e and toroidal c directions. The ideal MHD eigenmode equations are 
reduced to a set of coupled second-order differential equations in the * 
direction. With the cubic B-spline finite elements, the problem is reduced to 
solving a matrix equation with nontrivial solutions. Extensive comparisons 
with existing variational codes [1-6] show that the ideal version of the NOVA 
code can produce more accurate results with less computational effort. 

Since the NOVA code does not rely on the variational energy principle, 
this successful nonvariational approach has been extended to physical problems 
where the eigenmod? equations are non-Hermitian, such a3 resistive MHD [24] 
and kinetic MHD. In this paper, we have also presented the NOVA-K code which 
integrates a set of non-Hermitian integro-differential equations due to 
energetic particles by the cubic B-spline finite element ...sthods. Energetic 
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particle dynamics are governed by gyrokinetic equations and have significant 
effects on the stability of low frequency MHD modes. We have studied the 
problems of energetic particle stabilization of the n=1 internal kink mode and 
the excitation of the resonant fishbone modes by resonating with the trapped 
energetic particle magnetic drifts. Extensive comparisons with the results of 
the analytical dispersion for energetic particle distribution with single 
pitch angle have shown that, although the analytical results are qualitatively 
correct, they give incorrect values of critical s n, which can be an order of 
magnitude different from those computed by the NOVA-K code. In addition, the 
results of the NOVA-K code indicate that a necessary condition for the 
excitation of the resonant fishbone mode i3 B > 6 C, where 6 is the total 
plasma beta and flc is the critical beta for the n=1 internal kink 
instability. This necessary condition is not predicted by the analytical 
dispersion relation. 

Finally, the HOVA-K code has been employed to study the energetic 
particle effects on the internal kinks, external kinks, and toroidicity-in-
duced shear Alfven waves for various types of MKD equilibria and energetic 
particle distributions. For example, our results show that the a-particle 
distribution, which is uniform in pitch angle, has very little effect on the 
n=1 internal kink mode of Compact Ignition Tokamak (CIT) type equilibria. 
This is contrary to the results of several analytical calculations which 
either made a very improper approximation of keeping only the m=1 poloidal 
harmonic or failed to integrate over the a-particle pitch angle with self-
consistent equilibria. Therefore, we believe that the NOVA-K code is an 
indispensable tool for studying the energetic particle effects on the MHD 
modes. The results of these studies will be presented in future publications. 
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TABLE 1 

5 * 
Comparison of the Eigenvalues y for Different Solovev Equilibria 

from Various Ideal MHD Stability Codes 

e E A q(0) q(a) n Kerner PEST-1 ERATO Degtyarev MOV A 

1/6 1 2 1.791 2-0 1 0.202 0.204 0.211 0.208 

1/6 1 2 2.2387 2.5 1 0.504 0.506 0.511 0.508 

1/3 2 1 0.3 0.5224 2 0.413 0.427 0.431 0.430 0.430 

1/3 2 1 0.7 1-219 2 0.118 0.119 0.120 0.121 0.119 

1/3 2 1.2 2.0897 1 0.75 0.78 0.748 

1/3 2 - 2.0 3.4829 1 0.68 0.75 0.656 

1/3 2 » 0.6 1.0449 2 1.31 1.40 1.32 1,35 

1/3 2 - 1.0 1.7415 2 1.03 1.07 1.06 1.03'" 
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Figure Captions 

Fig. 1 Typical cubic B-spline finite element for a uniform grid. 

Fig. 2 Cubic B-spline finite elements for uniform and nonuniform partitions. 

Fig. 3 Comparisons of convergence results in both the radial and the 
poloidal directions for our nonvariational code and the PEST code. 
The SolovSv equilibrium has the parameters R = B 0 = 1 , E = 2, e = 
1/3, q(0) = 0.3, A = 1, and n = 2. The eigenvalue T is extrapolated 
numerically in both the number of poloidal harmonics and the number 
of radial finite elements. 

Fig. k (a) The poloidal harmonics of the eigenfunction 5^ versus r, (b) the 
projection of the displacement vector onto the * - 0 plane for the 
converged solution as shown in Fig. 3. The q-profile is also shown 
in F'ig. (3a). 

Fig. 5 The flux surfaces of a circular tokamak equilibrium with average beta 
6 = 0.625*, q(0) = 0.8, q(1) = 2.85, R/a = 3.^, ft = 1.43. 

Fig. 6 (a) The radial variations of the trapped particle pitch angle A space 
bounded by h,,^ and n,,,̂ . The bounce average magnetic drift 
frequency <ud> = 0 curve is also shown, and above the <ud> = 0 curve, 
the hot ion <aj£j> is negative for the n = 1 mode. A = \ \ a x 

corresponds to deeply trapped particles and A = h,,,̂  corresponds to 
barely trapped particles. (b) The hot ion diamagnetic drift 
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frequency u«u versus r for the m = 1 poloidal harmonic, (c) The hot 
ion bounce-averaged magnetic drift frequency <a(i> versus r for A = 
1.1, n=1. 

Fig. 7 Th? poloidal components of the converged n = 1 fixed boundary 
internal kink mode eigenfunotion £.,, versus r. It is computed with an 
equal arc l?ngih a-coordinate for the equilibrium described in Fig. 
5. The eigenvalue is Y - 0.01195 and t-he :;-proi'i.ie is also shown. 

Fig. 8 (a) The growth rates, (Y/KJJ), of both the ideal branch (I.B.) and the 
resonant fishbone branch (R.B.) versus a h for the aquilibrium 
described in Fig. 5. The total 8 io fixed and the hot particle 
slowing-down distribution is chosen witn A Q = 1.1, e D/T c

 = 1 0« 
R/ph(0) s 100, mh/ma = 1, C T = 1, and thus the volume-averaged e h = 
1.38aha with 8 = 0.625J. The broken curves represent the 
extrapolated growth rates near -.arginal stability. (b) The 
corresponding negative real frequencies, -(a>r/iuj), versus a^. 

Fig. 9 (a) The growth rate3, ii/a^), versus aj, for both the ideal and the 
resonant branches for several values of C T which scales <ud> and 
u#. The fixed parameters are the same as in Fig. 8. (b) The 
corresponding negative real frequencies, -(w r/u f l), versus a h. 

Fig. 10 (a) The growth rates Y/YMHD computed from the analytical dispersion 
expression, Eq. (55), versus 6 n for several values of u D = 
^VYnffjn- T h e c u r v e labelled with ig > 3 represents the ideal 
branch, (b) The corresponding real frequencies ("V/YHHD) vers" 3 6 h. 
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Fig, 11 The growth rates, (yA^K and negative real frequencies, - > r / A ) , of 
both the ideal and the resonant branches versus a h for the same 

equilibrium and fixed hot particle parameters as in Fig. 8. The 
computations are performed with analytical approximations when 
computing sp and Sp.. defined by Eq. (29). 



lj=lj=lj=0 

Typical B-Spline 

F i g . ' 

#85T0I98 

fetiztfzQ I M T \ 

i+l 



40-

4 B-SPLJNES 
#85T0I97 

A 1 1 I I 1 1 1 

Uniform Partition 
! 

1 1 

m 
1— 

kmm 

6 \A m in / 

Non Uniform Partition 

F i g . 2 



- 4 1 -

0.40-

0.39-

0.33-

N"4(xl0"3) 
*85T0!90 

0.005 0.010 
i — i — i — r 

0.371 

exp(-L0/2){x!0' ,-2\ 

F i g . 3 



- 4 2 -

#35T0I86 

0.5 I I i i y~ 

— 
m-\/ 

0.4 

13d i -o / 
/ Q>""" 

ft 

F i g . 4 ( a ) 



- 4 3 -

#85T0I96 

0.8-

06-

0.4-

0.2-
Z -

0-

-0.2-

-0.4-

-0.6-

-0.8-

-i 1 r 

J i • ' 

I 

0.2 0.4 0.6 0.8 1.0 
X 

1.2 1.4 

F i g . U { b ) 



- 4 4 -

* 8 8 T 0 I 2 8 

1.0 LI 1.2 1.3 

F i g . 5 



- 4 5 -

0.06 
#• 8 8 T 0 I 2 9 

0.06 1 1 1 J 
0.04 A 0=l. l 

0.02 
A 

S o 
V 

-0.02 

/ — 

-0 .04 — 

-0 .06 - 1 1 ~ 
0 0.2 0.4 0.6 0.8 1.0 

v^77 0 

0 0.2 0.4 0.6 0.8 
7 ^ 

F i g . 6 



#88T0I38 
2.8 1 1 1 1 1 = 

/ -

2.4 

2.0 

U 
.6 

.2 

-m = 

0.8 -/- — 

/ -
/ 

S 
/ 

/ 
/ 

/ 
/ 

q profile 

F i g . 7 



0.020 

0.016 

0.012 

J_ 
" A 

0.008 

0.OO4 

*»8TOI3T 
0.05r 

0.04 

0 .03 -

-<^> 
0.02 

~\ 1 r 

00 
R.B. 

0.01 

J I J_ 
0.04 0.08 0J2 

F i g . 8 



0.016 
(a) 

0.012 s 

3 
CT=0.2 

0.008 ICR) 

/ / 
0.004 

- J - ' • I I 
0.04 0.08 0.12 

a h 

O.I6r 

0.12 

1 L 
3 0.08-
I 

0.04 

* 8 B T 0 I 3 5 
~i 1 1 1 1 r 

<w 

C T -3.5CR) 

J 

l(R) -

/ 

0.04 0.08 

f i g . 9 



0.10 0.20 
01 

0.28 0 

(b) 

F i g . 10 

#88T0I0I 
1 1 

w D=7.5 

5 

3 -

' ' J S 2 ~ 

^ ^ - — y\ 

~^~^*r i i 
0.10 

fii 
0.20 0.28 



-50 -

0.016 
#88T0 I 36 

0.004H 

0.03 

F i g . 11 



EXTERNAL DISTRIBUTION IN ADDITION TO UC-20 

Or. Frank J. Paoloni, Univ of Wollongong, AUSTRALIA 
Prof. M.H. Brennan, Univ Sydney, AUSTRALIA 
Plasm Research Lab., Australian Nat. Univ., AUSTRALIA 
Prof. I.R. Jonas, Flinders Univ., AUSTRAL.A 
Prof. F. Cap, Inst Theo . hys» AUSTR'A 
Prof. M. Heind!er,lnstitut fur Theoret i selie Physik .AUSTRIA 
H. Goossans, Astronomisen Instituut, BELGIUM 
Ecol* Royale Militaire, Lab de Phys Plasmas, BELGIUM 
Commission-Eurooean, Dg-XII Fusion Prog, BELGIUM 
Prof. R, Boucique, Laboratorium voor Natuurkunda, BELGIUM 
Or. P.H. Sakanaka, Institute Fisica, BRAZIL 
Instituto De Pasquisas Espaciasf-INPE, BRAZIL 
Documents Office, Atomic Energy of Canada Limited, CANADA 
Or. M.P. Bachynski, MPB Technologies, Inc., CANADA 
Or. H.M. Skarsgard, University of Saskatchewan, CANADA 
Dr. H. Barnard, University <•« British Columbia, CANADA 
Prof. J. Teicltmann, Univ. nf Montreal, CANAOA 
Prof. S.R. Sreenivasan, university of Calgary, CANAOA 
Prof. Tudor N. Johnston, INRS-Energle, CANADA 
Dr. C.R. James, Univ. of Alberta, CANAOA 
Dr. Peter Lukac, Komenskeho Univ, CZECHOSLOVAKIA 
The Librarian, Culham Laboratory, ENGLAND 
The Librarian, Rutherford Appleton Laboratory, ENGLAND 
Mrs. S.A. Hutchinson, JET Library, ENGLAND , 
C. Mouttet, Lab. de Physique des Mlllmix Ionises, FRANCE 
J. Radar, CEN/CADARACHE - Sat SQ6, FRANCE 
Univ. of loannina. Library of Physics Dept, GREECE 
Or. Tcai Mual, Aeadeay Bibliographic Ser., HONG KONG 
Preprint Library, Hungarian Academy of Sciences, HUNGARY 
Or. G. Oasgupra, Sana Ins* of Nuci. Phys., INDIA 
Dr. p. Kan, Institute for Plasaa Research, INDIA 
Dr. Philip Rosenau, Israel Inst. Tech, ISRAEL 
Librarian, Int'l Ctr Theo Phys, ITALT 
Prof. G. Rosragni, Univ Of Padova, ITALy 
Hiss Clelia De Palo, Assoc EURATOH-ENEA, ITALY 
Qiblioteca, instituto dl Fisica del Plasma, lTALY 
Dr. H. Tawto, Toshiba Res i Oev, JAPAN 
Prof. I. Kavekaat, Atomic Energy Res. Institute, JAPAN 
Prof. Kyoji Nlshlkana, Univ o> Hiroshima, JAPAN 
Olrec. Dept. Large Tokamak Res. JAERI, JAPAN 
Prof. Satoshi Itoh, Kyushu university, JAPAN 
Research Info Center, Nagoya University, JAPAN-
Prof. S. Tanaka, Kyoto University, JAPAN 
Library, Kyots University, JAPAN 
Prof. Nobuyuki inoue. University of Tokyo, JAPAN 
S. Mori, JAERI, JAPAN 
Librarian, Korea Advanced Energy Res. Institute, KOREA 
Prof. D.I. Choi, Adv. Inst Sci I Tech, KOREA 
Prof. B.S. Li ley. University of Walkato, NEW ZEALANO 
Institute of Plasma Physics, PEOPLE'S RErtJBLIC OF CHINA 
Librarian, Institute of Phys., PEOPLE'S REPUBLIC OF CHINA 
Library, Tslng Hua University, PEOPLE'S REPUBLIC OF CHINA 

Z. LI, Southnest Inst. Physics, PEOPLE'S REPUBLIC OF CHINA 
Prof. J.A.C. Cabral, Inst Superior Tecnico, PORTUGAL 
Or. Octavian Petrus, AL I CUZA University, ROMANIA 
Dr. Johan da Vitilers, Fusion Studies, AEC, SO AFRICA 
Prof. M.A. HeHberg, University of Natal, SO AFRICA 
C.I.E.M.A.T., Fusion Dfv. Library, SPAIN 
Dr. Lennart Stenflo, University of UMEA, SWEDEN 
Library, Royal Inst Tech, SWEDEN 
Prof. Hans Mllhalmson, Chalmers Univ Tech, SHEDEN 
Centre Phys des Plasmas, Ecole Polytech Fed, SWITZERLAND 
Bibliotheek, Fom-lnst Voor Plasms-Fysica, THE NETHERLANDS 
Or. D.D. Ryutov, Siberian Acad Sci, USSR 
Dr. G.A, Eliseev, Kurchatov Institute, USSR 
Or. V.A. Glukhikh, Inst Electiophysieal Apparatus, USSR 
Or. V.T. Tolok, mst. Phys. Tech. USSR 
Or. L.M. Kovrlzhnykh, Institute Gen. Physics, USSR 
Nuclear Res. Establishment, Julich Ltd., W. GERMANY 
Bibllothefc, Inst. Fur P.'asmaforsehung, l», GERMANY 
Dr. K. Schindler, Ruhr Unlversitat Bochum, W. GERMANY 
ASOEX Reading ftm, IPP/Mex-Planck-lnstltut fur 

Plasmephyslk, w. GERMANY 
Librarian, Max-Planck Institut, X. GERMANY 
Prof. R.K. Janev, Inst Phys, YUGOSLAVIA 


