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NUMERICAL SOLUTIONS OF MAGNETOHYDRODYNAMIC STABILITY OF AXISYMMETRIC TOROIDAL

PLASMAS USING CUBIC B-SPLINE FINITE ELEMENT METHOD *

C. Z. Cheng
Princeton Plasma Physics Laboratory PPPL--2575
P.0. Box 451, Princeton, NJ 08543 USA DEBY9 004835

Abstract

A nonvariational ideal MHD stability code (NOVA) has been developed. In
a general flux coordinate (v,9,;) system with an arbitrary Jacobian, the NOVA
code employs Fourier expansions in the generalized poloidal angle 8 and
generalized toroidal angle g directions, and cubiec-B spline finite elements in
the radial ¢ direction. Extensive comparisons with these variational ideal
MHD codes show that the NOVA code converges faster and gives more accurate
results. An extended version of NQVA is developed to integrate non-Hermitian
eigenmode equations due to energetic particles. The set of non-Hermitian
integro-differential eigenmode equations is numerically solved by the NOVA-K
code. We have studied the problems of the stabilization of ideal MHD internal
kink modes by hot particle pressure and the excitation of “filshbone" internal
kink modes by vresonating with the energetic particle magnetic drift
frequency. Comparisons with analytical seolutions show that the values of the
critical 8y, from the analytical theory can be an order of magnitude different

from those computed by the NOVA-K code.

'Presented as Invited Talk, 7th Intl. Conf. on Finite Element Methods in Flow
Problems, Univ. of Alabama, Huntsville, ALA, April 3-7, 1989.
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I. Introduction

Linear stability analysis of magnetohydrodynamic (MHD) modes in
axisymmetric toroidal plasmas is crueclal to thermonuclear fusion research. In
particular, ideal MHD instabilities are thought to play an important role in
limiting the B-values of tokamak plasmas and causing tokamak disruptioans. The
mathematical problem is to solve the two-dimensional eigenmode equations and
obtain the growth rates of the MHD instabilities. Exact solutions are
impossible to obtain without the use of numerical computations. A number of
two-dimensional normal mode codes (1-7] have been developed extensively to
study the dependence of ideal MHD instabilities an a variety of parameters
relating to the geometry as well as the presaure and current profiles. As
practical tools, they are used to ald in the design of new experiments and in
the analysis of experimental data. Most of these ideal MHD codes [1-6]
utilize a Lagrangian formalism [B] for linearized perturbations and involve
the use of the linear Galerkin procedure, which reduces the problem to the
minimization of an algebraic quadratic form with respect to a certain set of
variational parameters. The variational calculatior is then reduced to the
determination of eigenvalues and eigenfunctions of the matrix eigenvalue
problem.

Nonetheless, the inherent limitation of these variational codes is that
because of their variational nature, they cannot be extended to the stability
caleulations of the non-Hermitian eigenmode equations, such as in the cases of
ideal MHD with equilibrium flows, resistive MHD and kinetic MHD, etc., where
variational energy principles cannot be established. In particular, present-
day tokamak experiments and future fusion reactors will involve energetic
particles that will have significant effects on the MHD modes. In the high-

power, nearly perpendicular neutral beam injection experiments, bursts of



large amplitude m=n=1 MHD fluctuations, dubbed "fishbones" were observed in
the Mirnov coil and x-ray signals [9]. These fishbone bursts are found to be
correlated with the reductions of neutron emissivity which represent
significant losses of energetic beam ions, and thus play an important role in
limiting the g-values of tokamak devices, In future tokamak reactors, a-
particles may destabilize the toroidieity induced shear Alfven modes [10,!1]
and their consequences are yet to be determined. For the low frequency MHD
waves, the energetic particle dynamies are not governed by MHD fluid equations
because w < uwy, where wy 1s the magnetic drift frequency. Instead their
dynamics are governed by gyrokinetic equations and the resultant eigenmode
equations are non-Hermitian integro-differential equations.

In this paper, we present a nonvariational MHD stability code (NOVA).
The ideal #HD version of the NOVA code has previously been published [7]. All
these variational ideal MHD stability codes [1-6] employ linear finite
elements in the minor radius direction, which are the lowest order finite
elements allowed for representing the digplacement vector f. Since they are
in guadratic form, the numerical errors in the eigenvalues, w, scale as N'Z,
where N is the total number of the radial computational grid points.
Therefore, our nonvariational approach requires higher order finite elements
to achieve better accuracy and faster convergence. For example, with cubic B-
spline finite elements [12-15]) the errors in w scale as N4, In general a
flux coordinate (¥.8,z) system with an arbitrary Jacobian, the NOVA code
employs Fourler expansion in the poloidal angle 8 direction, as in the PEST
code, and cubic B-spline finite elements in the radial ¢ direction. An
arbitrary nonuniform v-mesh is set up to provide the option of zoning the mesh
to allow more finite elements near rational surfaces, the plasma edge, and the

magnetic axis. In comparison with these existing variational ideal MHD
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stability codes [1-6], the NOVA code converges faster and gives more accurate
results,

[n the following, we first briefly describe in Seec. Il the amisotropic
MHD equilibrium and present a class of generalized toroidal coordinate systems
which can greatly improve the representation of various MHD instabilities. In
Sec. II1, we formulate the kinetic MHD eigenmode equations and the correspon-
ding boundary conditions for our nonvariational treatment. The numerical
methods which involve cubic-B spline finite elements, are described in
Seec. IV. Convergence studies of the ideal MHD version of the NOVA code are
presented for the analytical Solovev equilibria [16], and detailed
comparisons, as presented with other varigtional codes [17], are given in
Sec. V. In Sec. VI we study the effects of neutral beam injections on the
internal kink mode and the excitation of fishbone modes. We establish the
correctness of the NOVA-K code (kinetic version of NOVA) by both convergence
studies and qualitative agreements with numerical solutions of a simplified
analytical dispersion [18]. However, comparisons with analytical results show
that the critical values of the energetic particle beta for the stabilization
of the ideal MHD internal kink and the destabilization of the resonant
fishbone mode can be an arder of magnitude different from thase computed by
the NOVA-K code. In addition, a necessary condition for the excitation of

fishbone mode, g > B is found, where # is the total plasma beta and Beorit

erit!
is the critical beta for the ideal MHD internal kink instability. This is
contrary to the analytical results that show that Bepit = 0. In See. VII, we

summarize the principal conclusions of this work.

I1. Anisotropic Toroidal MHD Equilibrium and Flux Coordinate System

We consider stationary anisotropic ideal MHD equilibria satisfying
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v.B s VPL + V'[(PI-PL)QBBB] '
Vx§=3, and V-E:O, (1)

where éB = E/B, and 3, E and 5 are the equilibrium current, magnetic field,
and pressure tenser, respectively. E is obtained by specifying the particle
guiding center distribution for each species F(e,u,wg) where energy e = v2/2
and magnetic moment u = VLE/EB are the constants of motions, and ¢g is the
magnetic flux position of the guilding center. The parallel and perpendicular

pressures are given by

2e-uB
deduB
= 2mm J' F . (2)
P Jga T Ty T I e

i

From Eq. (1), we abtain the perpendicuiar momentum balance equation
2 2
V(B2 4P )) = R[B® « (PL-PI)] , (3)
and the parallel momentum balance equation
B-vpI = (2P )ey-v8 1)

where R = ep-Vep is the curvature. Note that Eq. (4) is automatically

satisfied if F(e.upﬁg) is used.

In terms of the flux coordinate system (,6,z), the equilibrium with

nested magnetlic surface can be written as



6=
Bz x90+qle) oo «v8 ()
where 2my is the peloidal flux within a magnetic surface, q is the safety
factor, & is the generalized poleoidal angle, and ; is the generalized toroidal
-+
angle. For axisymmetric equilibria, B can also be expressed as

8 :-06 x 6 + g9 , {6)

where ¢ is the toroidal angle in cylindrical (X,¢,Z) coordinates. Then, i is

related to ¢ by

t=é-q8(e, , (7)
where §(8,¢) is periodic in 8 and is determined by

q(1 +%@ =g J/x% (8)
with J = (v x ve-va)'1 being the Jacobian. The V¢ component of Eq. (1) gives

B-vcg=0 , i (9)

where G{¢) = og, and 0 = 1 + (PL-PI)/BE. The v¥ component of Eg. (1) leads to

2 aPI

¥z aPp. (W) o X B GG Ty-Yg
bws=Xe [xz) IR T PR g ' (10)

which will be used to solve y if P“(w,B), G(v), and appropriate boundary

conditions are specified. For isotropic equilibria, £q. (10) reduces to the
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Grad-Shafranov equation with ¢ = 1 and G = g.

Along a flux surface in the poloidal plane we have

ds  Jlvel (1)
ds X !
wWwhere ds 1s the element of arc length along a constant (¢,v) line,
Specification of ] therefore, determines tne 8 coordinate. In this paper, we
choose the Jacobian in the form
i
f(x,2) = -—JL——E—E s (12)
e(¢)| vy} B
where i,},k can be freely specified and a(y) is given by the requirement that
6 increases by 2r during one peloidal circuit. The Form of J in Eq. (12) is
a trivial generalization of that used in the PEST-2 code (6]. Thus, from Eq.

{11) we have

a(y) = 23 . (13)

gas( oy |3~ Te%/xi"T)

For the choice 1 = 2, J = k = 0, the (¥,0,5) coordinate represents the PEST-1

coordinate. For L = § = 1, k = 0, we have the equal arc length coordinate

system, and a Hamada-like coordinate system is obtained by letting i = | = k =

0. The choice i = J = 0, k =2 i3 used for the Hamiltonian representation of
the magnetic field [19].

The general flux coordinate system constructed here 1s not orthogonal and

its metric is complicated because 7y-9z # 0O, 98-z # 0, v6-vy * 0, and |v;|2 z

1/X2. However, ¢ is still an ignorable coordinate for axisymmetric

equilibria, and the perturbed quantitiss can be represented by a single mode
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varying as exp(-inz)}.

I1I, Formulation of Eigenmode Equations

We will consgider an axisymmetric toraidal plasma consisting of care and
hot ccmponents with 8, < 8, and T, >> T,. The ideal MHD description is
adopted for the core plasma and the gyrokinetiec deseription neglecting the
Finite-Larmer-radius correction is employed for the hot component. Summing
the collisionless equations of motion for each species, we obtain

mauE = VGpc + V'Gﬁh +BxJ+Bx (0xB) (14)

where £ is the usual fluid displacement vector, B 1is the perturbed magnetic
field, 6P, is the perturbed zore plasma pressure, sﬁh is the perturbed hot
plasma pressure tensor, and p is the total plasma ma3s density. The following

ideal MHD relations hold

&p, + E.vpc + 1P, 9-£=0 ,

8 = iw € « 1B , (15)

where SE is the perturbed eleetric field, = 5/3, and P, is the core plasma

s

pressure. éﬁh is obtained from the perturbed hot plasma distribution funection

(16)



-9

whore Bn iz governed by the gyrokinetic equation, with - exp(-iwt),

eF v,A ub
[Gl.v—i(u-md)lgh = -i(;l-u|T) TOh L(e= %-!-) + Th-e—l-]' (17)

where & = -(Tu/mh)aanFoh/ae, u,T = -i(T/mhuc)éB x yenF g9, wy = -iﬁd-v '

¥y = (éB/mc):[vzns(uB)+ évf], ¢ is the electrostatic potential, and 4 is
the parallel vector potential. JSince GE“ = 0, we huave wﬂu/c =z ~iéE-V@. For
low-g plasma we alsc have sﬁl =-v0.

Considering MHD perturbations with frequencies much smaller than the hot
particle transit and bounce frequencies, En. (17) can be readily solved for
both the trapped and untrapped particles. For the untrapped particles

© - wy eF .
By = () 5— ¢ + 0(;:) . (18)

For the trapped particles, We have

~ T ,
u- dy ef.oh w wdﬂ mh“b! w
€t © w ) T [° * w-(wd> <T * e >] M 0(;—) ! (19)

where <A> denotes the ©bounce average of A and 1is given by

<> = §Adl/|vl|/§d1/|v|| . From Eqs. (i&), (18), and {19), we obtain
6y =~ 0[BT+ (P =P ) eger] +6p, T+ (any - 6F,) egey (20)

where spl and spl are due to trapped hot particles with

spL ® aFoh . nmhe aFoh mhuB
= -] adv EL £ ¥ (¢ [ (vanB)uB+Ry 2}+ub > . (21
- T w-(wd> L | |

2
spy BV



If we decompose the displacement vector as

g v E(Bxvww) 8
v s D (22)

* 2 *T2

lwl‘2 B B
then after some complicated algehra,- we obtain from Eqs. (14) and (15) the
follnwing set of two-dimensional integro-differential equations:

B8-ve

v - [vap1 £V - sﬁh] = {0t + |90|% - v ( )
¢ |

v|?

2
V;’ . {(22BevB?) P! +(3-3-]09|%s) ﬂéﬂ— S]gw}
B B

2
+ B (@3evE?) sp, + (fuel®s - 3B 8L B . we
B

B° B
e nt & 2 E
- ;5 « {2JxB + ¥B7) Yspc Vg (23)
vH - g = - |v¢-|2 (e 3 (jxﬁwa )+ — + 9 (L”
[ov} B2

2 ¥ P .
R TR LT LR 3
B B

2 _
- {ve? [E;Z" -t“;’“ (38 E;;" -vcs'»v-(gJ;Z Jegl s (24)

2 2
(42 1;‘;-}1— sge 8 v (B g )] - e B 0t

[—’ﬂ] R S R ORE R (25)
B B
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B *Yspc - §-v YsPc - § gy jx§+sz
—_—1 Y 2 [ E'V(V’E) } +* x ) . ( }5
{ 52 ) * w20 | B2 ! ( g2 g2 s
0 gy (B “ v SuBeve®y Fe
T e mmm— g —— |5 WG - o | ——— —=|E
2 o2 [52 Pyl - [ NE ( 22 ) le b
B-v 7 B
« 2 e o T (3E)) S - , : (26)
2 (e o2 ) a2 i8]

where 5 = (B « vu)/lvulz-v « (B « w/l9e]®) is the negative local shear,
PL=3P /2%, 6P 6D +b B, £,=E Ty, and £ =£-BxVy/{7¥]2,
For anisotropic equilibria, B-v-sﬁh contains agw/aw and 3£3/3w terms

N
which are propertional to (P" - )h , and (BxVy)-V-88, contains only surface

®
operators. But Vy-v-§f, contains ail radial derivative Ferms 35,730, AL /v,
a8py/ay, and 3(v-%)/3v. The integral operators in Egs. (23)-(26) are related
to trapped particle bounce averages in the 5 direction.’' Since Eq. (29) does
not have radial operators, Eqs. (23)-(26) are basicaliy a third-order equation
in 3/3y. However, if the (P“ - Pl)h terms can be neglected, such as in the
case of low B (i.e., B, < Bc), then Eq. (26) involves only surface operators
and Egs. (23)-(26) form a second-order equation in 4/3¢ as in the ideal MHD
case. Equations {(23)~(26) can be formally solved by inverting Egs. (25) and
(26) to obtain &g and v-% in terms of 4p; and §,+ and substituting them into
Eqs. (23) and (24)}. This pracedure {s similar to that employed for the ideal
MHD NOVA code. Equations (23) and (2Y) can now be combined to form a second-
order equation In 3/3v. In the following, we shall consider By << 8, and
neglect the pressure anisotropy terms, i.e., the (Pﬂ -P )h terms. These

L
pressure anisotropy terms will be ineluded in future work. Then, we have

- ~ - - ~ §
E-V-Sph a E-v(espu -E ) - {sp" - 5p1] 5VB

IIhJ
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(ExVﬁ]-V-GEh a (ExV#]-V(&pL - EJ_-vPJ_h) * (Gpl - apl)(Exvv)-R ,
vm-v-sﬁh = v-v(sp, ~ EL-va) + (dp' - apl)vv-i . (27)

In a general flux coordinate system {¢,6,z), © is still an ignorable
coordinate for axisymmetric equilibria and we represent the perturbed quanti-
ties by a single mode varying as exp(-inz), where n is the toroidal mode

number. In terms of the new velocity space coordinates (e,A,0), we have

/2 h

da
i/2

Id.3v=2/§wfdee —_—
o o o h[1-a/h]

where o = 1, the pitch angle A = pBo/S, Bo is the vacuum magnetic fleld at X
= R, and h = BOIB(U,B). On a flux surface, untrapped partieles carresgond to
Q0 <A< hmin(u), and trapped particles to hmin(*) € A $hat agiven 9, where
hmin(v) = Min [h{e,¢)] on the ¢ surface. The bounce-average magnetic drift

frequency is

. ot
s = nmoe ([Kv+Ks(V¢ Va)]r'I ) ﬁ_] - R (28)
d° " e |VU|2 . 2h 52 h !

where K, = 2K-7¢ and Ky = 2K-(Bxv¢)/B2. The perturbed trapped particle

pressures are

ép .
V. .32, T2 | da Fon’e
. M 4 CEE 172 (@ = <w>)
0 h . h{1-a/h) d
8p, min
A
A \ (&)
<o -ag) 203 F Lk - (B et ] > , (29)

2(1-8

.
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where

~

up = ileg x W -0)/[w (3F /3e)] .

The boundary condition at the magnetic axis is By = O- For fixed
boundary modes the boundary condition is €y = 0 at the plasma-wall
interface. For free boundary modes the boundary condition at the plasma-

vacuum interface is given by by V¥ = B'VEW' where b, is the vacuum magnetic

field which must be solved from the divergence-free equation v - b, = 0.

IV. Numerical Methods

The eigenmode equations, Eqs. (23) - (26), are solved by the Galerkin
method, where the eigenfunction is represented by a linear superposition of a
finite subset of a complete set of basis functions. We first represent the

perturbed quantities by a finite Fourier series in 8,
E(g,0,2) = ) Em(u) exp [i{mo-nz)] , {30}
m

where the summation over m is truncated to a total number of L poloidal
harmonies, and n is the toroidal mode number. The elimination of Eg and ¢-Z
proceeds by finding the algebraic Fourier matrix representation of the surface
operators. Introducing the bracket notation for an operator E,

édo [expi{-im'e) JE[exp(ime}] |, (31}

E z <m' [E|m> =

1
m'm 2%

Egs. (25) and (26) reduce to
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£ P,
Em'm ( 5‘) = Fmvm ) ' (32)
s-£/ m £ m

L]

where E and F represent the poloidal operators of the left- and right-hand

sides of Egs. (25) and (26), respectively, and the Faurier indices m' and m
have the same truncated domain. Note that the evaluation of the algebraic

matrix operations, Ep., ete., involves convolutions that oceur in evaluating

operator products., To avoid aliasing errors, a larger truncated Fourier

series domain than L, say L®*, is imposed and is increased until the results

are satisfactorily converged. E,., can be inverted to obtain £ and (7 - Z)m

in terms of 1 and Ewm and then by eliminating Gp1m in favor aof £mm'

Equations (23) and {24) are reduced to a set of L second order differential

equations.
a i1y a_ . (2) a (3) a .
it amar o " "mmoar m * Pom Bm T oar [Hprp 8 = 0 (33)

where the H's are algebraic L x L matrices and are functions of r only, where
r = (y/ptot)I/Z and Ep = swm(r) is a vector of dimension L. The explieit
expressions of the H's are too tedious and complicated to present in full
detail here, The boundary conditions at the magnetic axis are now modified to
Eq = 0 for m® £ 1 and ch/ar = 0 for m = 1.

Equation (33) is integrated by employing cubic B-splines [7] to
approximate the eigenfunction Em(r). The cubic spline has the advantageous
property of minimum curvature among all third order pelynomials [12). For a
given partition of N-grid points, & = {ry < rp ... < ry}, the function Eq(r)
is approximated vy piecewlse cubic polynomials 1in each subinterval

(ri”i+1)' The polynomials and their first two derivatives are required to be
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continuous at the grid points. Sinece a cubic polynomial is determined by four
coefficients and there are N-1 intervals, there are a total of 4(N-1) unknowns
to define a cubic spline function. There are 3(N-2) constraints at the (N-2)
interior points so that the cubic spline function is determined by N+2
parameters. The most convenient cubic spline representation is the basis set
of B-spline finite elements [13-15] [Uk|k=1,N+2}, which are local piecewise
cubic polynomials occupying four grid intervals with continuity up to second-
order derivatives and are shown in Fig. ! for the uniform grid point case. It
can be easily shown that every cubic spline can be expressed as a linear
combination of B-spline elements. In order to define uniquely the N+2 B-
spline elements, we assume that at each end of the grid partition there are
three extra grid points extending outside the computational doﬁain. This
extended partition is unsatisfactory, and the problem is resolved by letting
the exterior points coalesce at the end points, i.e., Fg =T_q =rg=r, and
*Ne3 T TNe2 ° FNet = ON- A typical set of cubic B-spline finite eiements for
a uniform grid pa»tition is shown in Fig. 2(a)}, and Fig. 2(b) shaws an example
of cubic B-spline finite elements for a nenuniferm grid partition.

The eigenfunction g (r) is interpolated by the representation

- N+2
Eylr) 3 1

L gm'kUk(r) s Sm(r) , (34)

where Sm(r) is the cubic spline approximation of Eqp(r). For the given values
of Em(r) at the N-grid points, Eg. (34) is not uniguely defined because there
are N+2 parameters Em,k' Uniqueness is obtained by imposing two boundary
conditions for S (r), and in this paper we require that 5;(r) = S,'(r) at the
end grid points. To implement these twc extra boundary conditions, we inter-

polate the first and the last four grid points by cubic [~grange polynomials
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§m(r) and require that S;(r) z §;(r) at the end points r = ry and ryl14]. At
least for a uniform grid partition, this scheme preserves the asymptotic error
scaling of N4 [7,15] and has the advantage of not requiring extra four
function evaluations.

Operating on Eq. (33) with the projection operator, 0, = f; dr U, and
interpolating the known functions H(]), H(2), H(3), and H(u) in terms of the

same cubic B-spline finite elements, we obtain a set of algebraic equations:

z Mu.lfklz

ook OKTmk = 0, {(35)

where

MR Nfz { w41y o 1 I! (U U, + U ,0) U dr]
L R P Ty k) Ty Y O

]
2}y 1 ’ L (3
+ T Io Uy 00, dr « bpSp Io UprU,Uy ar b

N+2
h

gD
m'm 351

(133
m'm UJ(I:‘). ete. (36}

Note Hﬁék'is a {N+2)L x {N+2)L matrix with nonvanishing elements along its L°
T-banded diagonals. After imposing the boundary conditions to modify the
matrix M, the nontrivial solution of Eq. (35) can be obtained by requiring

f(w) = det|M(w)| =0 . (3N

The eigenvalue problem is nonlinear In w and its numerical solutions can be
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found by iterative procedures. Convergence is assumed if |[f(wp,1)
f(wp)]/f(up)l ¢ €y, and/or |up+1 - upl < €5, where ¢, and e, are appropriate
small numbers, and p denotes the iteration step. When the eigenvalue
iteration is converged to the required accuracy, Eq. (35) is used to construect
‘the eigenvectors £ and P,. For this purpose, the matrices of Egs. (23)-(26)
for each surface are saved in disk files when they are computed during the
calculation of the matrix elements of N:Lk'.

The iteration is computationally expensive because the matrix inversion
must be carried out for Egs. (29) and (26) at each iteration for each
surface. Consequently, the execution time scales as the total number of
radial grid peints N as well as L2 for the matrix inversion. Finally, to he
consistent we have also employed cubie B-spline finite elements to obtain the
equilibrium quantities from the mapping codes.

Next, we conzider the vacuum solutien of v-gv = 0 with the vacuum region
surrounded by a conducting wall. For the n#0 modes, we represent Bv = Uy,

Then in terms of the Green's theorem we have
2ex(%g) = a8, - [GCH IR vox(R,) - w(F)9. 0% X)) (38)

where we have chosen the Green's function G to satisfy

G(X_|%)) = uns(X_- %) , (39)

and G(¥.|%g) = |%, - §s|'1. %y can be either on the plasma-vacuum interface

or on the wall, and the integral extends over both surfaces in Eq. (38). With
-

the boundary conditions 9x-9y = B-v;t on the plasma-vacuum interface and

vx-dﬁw = 0 on the wall, Eq. (38) can be solved to obtain x on both surfaces by
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the method of coliocation [20].
For the n = 0 mode, the magnetic field cannot be described by a single-

valued scalar potential. Instead, we follow the procedure of Lust and

Martensen [21)] and define

[ = Vx +a

v 1V¢ x Vo + azve , (1)

where a, and ay are constants related to the perturbed gquantities. y can be
obtained by the same procedure ag for the n # 0 modes with the additional
constraint §xde = O due to the singular nature of the matrix in Eq. (38) for

the n = 0 mode. o can be solved by taking Ve - v x B, = 0 and we have

*
saz9- (820 . {41)
x2
The boundary conditions are a = 1 on the plasma-vacuum interface and a = 0 on

the wall. Equation (41) again can be solved in terms of the Green's theorem

2 - »
4r%a(x ) ds R -
3 t > - - -
w7 3 [6GRIR) s - eGnsG Rl (u2)
t

where the Green's function é satisfles

ANG(E, |5.) = - 228X, - X)8(Z,- Z_) (43)
£t 7t s X 2 t s t s '
3
ang is given by
4nX

T > _ t .1
G(xtlxs) = - ByaW) (u4)
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where PlT/Z is the associated generalized Legendre function,
2 2 4 2 2 211/4

o= [(2 - 682 4 (2,0 200 2002+ )(2g - 2,)°) , (u5)

and

(x2+x%u(z_-2,)%]
W= s 't st . (46)

r2

To determine a, and ay we make use of the property
f Uy - V¢d3x = f Ix « (V¢ x Vu)d3x =0

Then, with the aid of the boundary conditions A x d§“ = 0 on the wall and

- - >
A = VW = £ B on the plasma-vacuum interface, where A is the vector potential

I
-> -
defined by bv - ¥V x A, we ebtain

§(oxva) - (n_xK)ds

a, —55—= (47)
J1vexva|“d?x
and
$ve-{n_xA)ds
- P D

a, = (48)

2 f|v¢|2d3x
where s, denotes the plasma surface and'l:lp = -%/|vv|. After we solve the

vacuum- magnetic field bv in terms of §yr W obtaln the boundary condition for

solving Eqs. (23)-(26) at the plasma-vacuum interface:

5p, = Ev -8 = mzm' ﬁmm, Emt %P {(i(me -~ nz}] . (49)
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Note that &p, is related to §, and 3§,/3¢ in Eqs. (23)-(24). This concludes

our discussion on the vacuum solutions.

V. Convergence Studies

To illustrate the convergence properties of the NOVA code, we first
consider the analytical Solovev equilibria ({16] which have been used
previously [17] for extensive comparisons of variational ideal MHD stability
codes., Our ideal MHD results will be compared with the previous results,
which provide a series of cross checks essential for validating such a large,
complex code. The Solovévy equilibria which satisfy the Grad-Shafranov

equation, Eg. {10), for isotropic equilibria with g' = 0, are given by

nB 2
b= EEE—?S; [3222 + %— (Xe-Ra)] ’ (50)
q
(1+£%)8_
F(¥) = ———2= (y-0) (51)
2#ER“q(0)
- ds
ale) = BB, § groer (52)

where (#,9,Z) 13 2 eylindrical coordinate system, B, is the toroidal field at
the magnetie axis X = R, P(v) is the plasma pressure, and q(¢) is the safety
factor Wwith the contour of integration aleng a line of constant ¢ and ¢. The
system is characterized by the following parameters: the ellipticity E, the
inverse aspeet ratio e = [qu(o)/wERZB°]1/2, and q(0). The wall position is
specified by A = (¥ /¥g)'/2, and 2twy is the total poloidal flux in the
plasma.

To achieve the correct eigenvalue and an accurate representation of the



~21-

corresponding eigenfunction, in principle one requires a very large number of
basis functions. Since this number is limited by the computer memory and
computing time, it is necessary to extrapolate from the lower order
representations to obtain the asymptotic eigenvalue. Fortunately, we need
only a few points because the extrapolation formulas are siﬁple.

Numerical convergence is shown below for the small aspect ratio,
elliptical case with the parameters: R = B, = 1, E =2, ¢ = 1/3, q(0) = 0.3,
A =1, and n = 2. We employ a unitorm r-mesh of N grid points and retain the
poloidal harmonics m = [-Lg,L,]. For the equal arc-length 0 coordinate, the

convergence curves of the eigenvalue (72 z - mE) are shown in Fig.3. Here 12

2

is normalized in terms of mﬁ z 52(0)19(0)q2(1)R2. The elgenvalue y© scales as

¥2 = 1? + C, exp(-Lo/Z) for fixed N and as 12 = yg + CzN‘u for fixed L,,
where v% and YS are the converged values for fixed N and L,, respectively.
The results from the PEST code show that 12 scales as 12 = yg + Dy exp (-L/2)
for fixed N, where L = 2L° + 1, and for fixed L, as 72 = Yﬁ + D2N‘2. Note
that if we use the PEST ©-coordinate, the growth rate from our code alseo
scales as 72 = y? + é1exp(-L/2). Convergence curves from the PEST cade are
also shoun in Fig. 3. Detailed comparison between the results of ocur code and
those of the PEST code indicates that |Cy| ~ |D,| and |Cp| << {D,]. Even with
N = 5, our code converges in L, with an error of less than 1% of its converged
value. On the other hand, comparablz accuracy from the PEST code would
require at least three times as many linear f{inite elements. Tue
eigenfunction Et and the plasma flow pattern for this case are shown in Figs.
(4a} and (4b), respectively. Comparisons of the converged values of the
square of the growth rate from different Solovev equilibria obtained from

various ideal MHD stability codes [17] are summarized in Table I. For most of

the cases, our results are roughly between those of the PEST [1] and ERATO (2]
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codes. These small discrepancies may be due to the different mapping codes

used in these stability codes.

VI. Energetic Particle Effects on the Internal Kink Modes and Excitation of
Fishbene Modes

The n=1 ideal MHD internal kink mode is usually unstable for tokamak
plasmas with & > Bg.;y 2nd gq(0) ¢ 1 so that the q - 1 surface lies within the
plasma. The growth rate of this mode is typically a faector of 502 smaller
than the more dangerous external kink, where € is the inverse aspect ratio.
The stabilizaktion of the internal kink and ballconing modes by an energetic
particle component mirror-trapped on the unfavorable-curvature side of the
tokamak has been proposed by Rosenbluth et al. [22] Their stabilization
mechanism requires that the hot particles drift across field lines rapidly
f.e., <wy> > |u| and (we/<wg>) > 0. The stabilizing kinetic energy of the
hot particles may bring the plasma into the second stability region, where the
stabllity may improve with increasing 8. They alsc argue that when <(wy> is
not large enough, marginal stability occurs with a real frequency close to
<wy>. Chen et al. [18] further showed that for 8y > Bporit and (wa/<wyg>) >>
1, the trapped energetic ions can resonantly destabilize a new branch of
internal kink mode (called fishbone mode) with a real frequency comparable to
<wy> and that the growth rates are of the same order as the ideal internal
kink values. This fishbone mode was used to explain the experimental
observations of large amplitude bursts of m=n=1 MHD fluctuations in tokamak
experiments with high-power, nearly perpendicular neutral beam injections.

These previous analytical theories [18,22] of energetic particle effects
on the internal kink mode were performed for large aspect ratio tokamak
plasmas with circular, concentric magnetic surfaces, and the radial plasma

displacement £, was taken as the cylindrical solution of the m = n = 1 mode
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with £, = constaut for g < 1 (orr s rg), and €. = 0, otherwise, In addition,
there are other approximations made in calculating energetic particle
contributions to &W, such as, 1-q{0)=0, (u./(md>) > 0 for the whole minor
radius, ana no toroidal couplings of neighboring poleidal harmonies. Those
approximations can be quite erronecus for realistic finite aspect ratio
tokamaks . Therefore, the analytical theary, although it predisted the
excitation of the fishbone mode, failed to give quantitative predictions of
the critical B, for both the stabilization of the internal kink and the
excitaticn of the fishpoone mode. Furthermore, when mor2 realistic particle
velocity distribution functions of the a particles are considered, the
qualitative conclusions of the analytic theory may become invalid. In faet,
the behavior of MHD modes depends strongly on both the energetic particle
distributions and the plasma equilibria, and it is important to have a
numerical code (e.g., NOVA-K code) that computer the stability of low-n MHD
modes for realistic energetic particle distributions and plasma equilibria.

In this section we wWill present numerical studies of the effects of
energetic particles on th: n=1 internal kink rode by using the MOVA-K code.
We will first estzblish the numerical convergence of the NOVA-X code. Then by
comparing the numerical results with the analytical theory [18], we will point
out the usefulness of the numerical calculations., We will assume By > By, S0
that the equilibrium is approximately isotropic and 1s determined by the core
component only. We first consider an equilibrium with circular plasma surface
computed from a flux equilibrium code with® the profiles Pc(y) = PO(I-ya)Z,
q(y) = q(0) + y({g(1) - q(0) + {y - D{(a'(1) - a(1) + q(0)) (1-y )}/ {y-yg)}/{y-
¥$), where yg = [@'(1) - q(1) + g(0)]/1Q'(0) + q'(1) - 2ai1) - g(O))],
y = Wb, Ay = ¥1im ~ Yor VYlim ia evaluated at the limiter, and by is

evaluated at the magnetic axis. The parameters 1ire Ay = 0.061, <Bryy =
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0.625%, R = 1.U43, R/a = 3.4, B, = 0.018, q(0) = 0.8, q(1) = 2.85, q'(0) =
13.82 and q*(1) = 106.6, and Bpor® = 2 <P>/<B§°l> = 0.4278. Figure 5 shows
the flux surfaces of the equilibrium, and Figs. 6{a) - 6(c) show the radial
dependencies (r = (v/Aw)1/2) of the trapped particle pitch-angle Space bounded
by hpin and hpo., the hot particle diamagnetic drift freguency, and the
bounce-averaged magnetic drift frequency <wyg> for A, = 1.1, respectively.
Also plotted in Fig. 6(a) is the curve of Cwy> = 0. Between the A = Mpayir)
and <wy> = 0 curves, we have <wy> ¢ 0, and between the <uwgq> = 0 and & = hyi,
curves, <wg> > 0. Particles with A < hp;pn, are untrapped. For A = hpin
partieles are barely trapped, and for A = h,, . particles are deeply trapped at
@=0. It is clear that for a given pitch angle Mgy Cug> may change from being
negative to positive as r changes, which means that {(ww/<uy>) also varies from
being positive to negative. If the trapped particles are destabilizing to a
certazin MHD mode for (m./(ud>) > 0 in a certain radial region, the trapped
particles in the radial region with (u./(md>) < 0 would be stabilizing. Thus,
the net effect of hot trapped particles must be integrated over the entire hot
particle population with proper weightings of different poloidal harmonics,
which can only be achieved by numerical seolution of nonvariational codes such
as the NOVA-K code.

For ICRF-heated plasmas the energetie particle distribution is
approximated by a Maxwellian in energy and a delta function in piten angle A,

2ﬁTh =3/2 m, e
Fopleidib) = n, (¥) ( ™ ) exp[-—T;] s(A=A ) (53)

where T, is the hot particle temperature. For neutral-beam-heated plasmas,
Fon 1s taken as a slowing-down distribution in energy and a delta function in

pitch angle, i.e,,
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(nh(-u) s(A-Ao)

v vz SN
) E2/2 . E3/2
Foh(e,n,w) = (54)
0 P € g,

where gy Ls the neutral beam injection eneérgy, and ¢, is the cutoff energy
where the beam ions lose an amount of energy to the core ions equal to that
lost to electrons. For a-particles, we will employ the slowing-down
distribution, Eq. (53), but with uniform pitch angle distribution, and e, is
the a-particle born energy. It should be emphasized that the NOVA-K can
calculate stability for numerical hot particle distributions obtained fram
Fokker-Planck code calculations. The flux surface-averaged hot particle
density is typically of the order of 10~2 times the care density and Ty(or e,)
ranges between 30 and 100 keV,. nh(vJ is assumed to have the same functional
dependence as P,(¥) for simplicity. Since both wa and <w,> are propoertional
to T, or (ep), we will introduce a temperature scaling factor Cp in we and
<wg>. If Cp - O, wm, = <wy> = O and the eigenmode equations, Eqs. (23) -
(26), correspond to the Kruskal-Oberman energy principle [23]. For Cp » =,
Egs. (23) - (26) correspond to the case studied by Rosenbluth et al.[22].
From Eg. (29), we see that both 561 and 55. are proportional to n,{9)T,.
Therefare, we will set n,(¥)T, = a,P.(¢) and vary a, to change the hot
particle pressure.

In the absence of energetic particles (ay=0), the n = 1 fixed boundary
ideal MHD internal kink mode is unstable with the growth rate YlmA = 1,195 «
1072, Because the eigenfunetion 5, has a sharp radial variation near the g=1
surface, the computation was carried out by using a spatially tailored r-grid

with dense grid packing near the g = 1 surface. Since the poloidal harmonies
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of gv are dominated by ' € m < 3, we will use the equal arc-length 6
coordinate and keep 7 poloidal harmonics m = [-2,4] in the computaticn to
ensure convergence in m. We have also checked the numerical convergence in
radial grid peints by using N=50, 75, and 100 to obtain the converged growth
rate. Figure 7 shows the poloidal component of the eigenfunction &, versus rj
the q-profile is also shown in Fig. 7.

In the folloWing, we wWill present the results of the neutral-beam-
injected energetic particles on the stability of the n=1 intermal kink modes
and compare these results with the model dispersion relation calculation. The
hot particle distributien iy given by Eq. (54) with e, = 0, and n,(¥) is taken
to have the same ¢ dependence as p(v}. The other fixed parameters for the
energetic particles are ¢ /T (0} = 10, R/pp(0) = 100, mp/m, = 1, Cp = 1, Ay =

1.1, where m, and m, are the core and hot ion mass, respectively, gh(O) is the

c
hot ion gyroradius at the magnetic axis, and A, is the pitch angle of the
injected beam ions. For this equilibrium, the volume-averaged hot particle
beta, g, = 2 <ph>/<BE>, is related to the total volume-averaged beta, B =
2<p)/<52), by 8, = 1.38 ap8 where g8 = 0.625%. In varying 8, {(or a,) we will
keep the total B8 fixed so that as 8, 1is increased, the core plasma g, is
decreased by the same amount. Figure 8(a) shows the ay, dependence of the
growth rates, y/wg, of the 1deal and the rescnant fishbone branches of
internal kinks. The computations were carried out by performing convergence
studies with N = 50, 75, and 100 nonuniform radial grid points. We see that
the N=100 case gives approximately the converged solutions. For the ideai
branch, the eigenfunction g, becomes increasingly singular as ay, > 0.035. For
the resonant braneh, £y becomes more singular as ay ¢ 0.07. One also realizes
that the solutions with singular £y cannot be trusted because our cubic B-

spline finite elementz do not give proper representation of the singular £y
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This is the most difficult problem in attempting the numerical solutions of
MHD modes near marginal stability with |y/w.| << 1 or |y/wy| << 1 when the
eigenfunction €y becomes singular. The common practice of obtaining the
behavior of the eigenvalue wu (=wr+iy) near marginal stability is to
extrapolate from the w with well-behaved eigenfunctions. The two broken
curves in Fig. 8(a) show the extrapolated values of y near marginal
stabilities of the ideal and the resonant branches of the internal Kink
modes. We can now conclude from Fig. B{a) that the ideal branch of internal

kink mode is stabilized by the injected energetic particles for 8, > B8,p =

0.031% (a, 0.036), but for 8, > Bp; = 0.05!7% (ay = 0.06) the fishbone
branch of internal kink mode is resonantly destabilized by the injected
energetic particles. Figure 8(b} shows the negative real frequency, -{w./wy),
versus o, for the corresponding cases of Fig. 8(a). As o, + 0, the real
frequency of the resonant branch evolves into a slow sgund mode of the
continuous spectrum, which is below the shear Alfvén continuous spectra. Note
that the shear Alfven continuous spectrum does not go to zero at the g=!
surface due to finite values of 8 and the surface component of the magnetic
curvature [10j. It is the m=: slow sound branch of the continuous spectrum
that goes to zero frequency at the Q=1 surface and determines the singular
behavior of the n=1 internal kink mode near marginal stability.

In Figs. 9(a) and 9(b), the growth rates and the negative real
frequencies, respectively, versus the hot particle pressure scaling factoer ay
are plotted for several values of the hot particle injection energy scaling
factor CT. The fixed parameters are the same as in Fig. 8. Far Cr < 0.4, the
hot particle pressure is stabilizing for small values of ay, but becomes
destabilizing as g, becomes larger (uh » 0.036). The destablizing effect is

accompanied by an increase in |w.| and is associated with w - <wys = O
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resonance. However, when Cp becomes larger Wwith CT ~ 1, the ideal branch is
stabilized for ay ) apq = 0.036 (for Cp=1). But the resonant fishbone branch
is destabilized for ay > opy = 0.06 for Cp = 1. For larger Cp, apg is
smaller, but a,, becomes larger. Note that the broken curves in Fig. 9(a) are
obtained by employing the extrapolation scheme described in Fig. 8.

The results presented in Figs. 9{(a) and 9(b) are qualitatively similar to
those obtained from the following analytical dispersion relation [181 for the

neutral-beam-injected energetic particle distribution given by Eq. (5%):

™

- w
S - CEB) g e - ) (gl sl (55)
where 0 < Re(w) < wy, o = 0 for Im(w) > 0, o = 1 for Im(w) = 0, and gz2 for
Im(w) < 0. we and wy are the typical hot particle diamagnetic drift frequency
and the bounce-averaged magnetic drift frequency, respectively. yyyp is the
ideal MHD growth rate in the absence of hot particles, and éh is proportional
to the hot particle B,. Equation (55) predicts that if yyyp > 0, the ideal
branch will be stabilized for éh > éh1. where §h1 s (Byyypwg/Jupum). AL éh =
;h1r w = 0, The resonant fishbone branch will be destabilized for ﬁh > ézh,
where éhz = Bug/[9mwp(we/ug = 1}]. At éh = ahz, w is purely real. Figure
10(a} shows the growth rate and Fig. 10(b) the real frequency for the fixed
parameter us/wy = 10. Several values of @q = wy/vyyp are used. The. curves
labeled &y > 3 correspond to the ideal branch. We see that for (ww/vyyp) 2
m{us/ug - 1) (i.e., Byq > 8yy), the ideal branch is unstable for all 8. For
éh1 < ;hz' there is a stability window for éh1 < Sh < éhz' Figure 10(a)
clearly shows these behaviors through the variations in &4 with ww/uwy being

held fixed. We should note that the real frequency shown in Fig. 10(b) is

somewhat different from Fig. 9(b) for the resonant branch in the limit ay
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a,5. This is because the analytical dispersion, £q. (55), does not describe
the MHD continuous spectrum that 1s contained in the NOVA-K code. The zbove
comparison clearly demonstrates that the NOVA-K code gives correct results of
the energetic particle effects on the n=1 internal kink mode.

Next, we examine the valldity of the approximations made in the
analytical theory of Chen et al.[18] Our calculations show that although the
analytical theory gives qualitatively correct results, it fails to provide the
correct values of the critical hot particle betas for both the stabilization
of the ideal branch and the destabilization of the resonant fishbene branch.
To make comparisons on the values of critical 8,, we impose similar
approximations, as dene in Ref. 18 in computing the perturbed hot particle
pressures 561 and 55' defined by Eq. (9), by retaining only the m=1 poloidal
harmonics and taking 1-q(0) = 0. For the same parameters as in Figs. 8(a) and
8(b), the computed eigenvalues w versus 8y, are shown in Fig. 11, By comparing
Figs. 8 and 11, we see that the qualitative behavior of the n=1 mode with
analytical approximations is quite similar to that of Fig. 8 obtained without
approximations. However, the horizontal 8,, scale of Fig. 11 is about a factor
of 4 smaller than that of Fig. 8. Thus, the analytical approximations have
produced an error in 8n1 and Bha by roughly a factor of 4 in this particular
example. The error 1s mainly due to the omission of higher peloidal harmonies
in 65. As seen in Fig. 7, the amplitudes of the m=2 and 3 are not negligible
outside the g=1 surface. Also from Fig. & with A = 1.1, (we/Cuy>) < O for r >
0.85, and thus the m=2,3 harmonics have opposite contributions to stability
from the m=1 harmonic. This calculation tells us that we must employ the
NOVA-K code to compute the correct values of the eritical 8,4 and Bpp-

Another important conelusion from the calculations of the NOVA-K code,

that is different from that of the analytical theory, 1s that 2 necessary
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condition to excite the resonant fishbone mode is 8 > By where B8, is the
ideal MHD critical 8 for the n=1 internal kink., It can be easily seen from
the analytical dispersion relation, Eq. (55}, that the critical 4,5 is
independent of YMHD and there is no constraint on the total plasma 8. OQur
conclusion is derived by computing the stabilities of several equilibria with
decreasing 8. As 8 is decreased, the growth rates of both the ideal branch
and the resonant fishbone branch also decrease. For 8 < Ba, NO instabilities

are found by the NOVA-K code.

VII. Summary and Conclusion

In this paper we have presented a nonvariational MHD stability code
(NOVA) which provides accurate and efficient numerical solutions of the
magnetohydrodynamic stability of axisymmetric toroidal plasmas. In a general
flux coordinate system (v,8,z) the code makes use of cubic B-spline finite
elements in the minor radius ¢ direction and Fourier expansions in the
poloidal 6 and toroidal ; directions. The ideal MHD eigenmode equations are
reduced to a set of coupled second-order differential equations in the
direction. With the cubic B-spline finite elements, the problem is reduced to
solving a matrix equation with nontrivial solutions. Extensive comparisans
Wwith existing variational codes [1-6] show that the ideal version of the NOVA
cade can produce more accurate results with less computational effort.

Since the NOVA code does not rely on the variational energy principle,
this successaful nonvariational approach has been extended to physical problems
where the eigenmode equations are non-Hermitian, such as resistive MHD [24]
and kinetic MHD. In this paper, we have alsoc presented the NOVA-K code which
integrates a set of non-Hermitian integro-differential equations due to

energelic particles by the cublc B-spline finite element ..zthods. Energetic
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particle dynamics are governed by gyrokinetiec equations and have significant
effects on the stability of low frequency MHD modes. We have studied the
problems of energetic particle stabilization of the n=1 internal kink mede and
the excitation of the resonant fishbone modes by resonating with the trapped
energetic partiecle magnetic drifts. Extensive comparisons with the results of
the analytical dispersion for energetic particle distribution with single
piteh angle have shown that, although the amalytical results are qualitatively
correet, they give Incorrect vailues of critical B which can be an order of
magnitude different from those computed by the NOVA-K code. In addition, the
results of the NOVA-K code indicate that a necessary condition for the
excitation of the rescpant fishbone mode is B > Bas Wwhere g8 is the total
plasma beta and 8, is the oritical beta for the n=! internal kink
instability. This necessary condition is not predicted by the analytiecal
dispersion relation.

Finally, the NOVA-K code has been employed to study the energetic
particle effects on the internal kinks, external kinks, and toroidigity-in-
duced shear Alfvén waves for various types of MHD equilibria and energetic
particle distributions. For example, our results show that the c-particle
distribution, wnich is uniform in pitch angle, has very little effect on the
n=1 internal kink mode of Compact Ignition Tokamak (CIT) type equilibria.
This is contrary to the results of several analytical calculations which
eicher made a very improper approximation of keeping only the m=1 poloidal
harmonic or failed to integrate over the a-particle pitch angle with self-
consistent equilibria. Therefore, we believe that the NOVA-K code is an
indispensable tool for studying the energetic particle effects on the MHD

modes. The results of these studies will be presented in future publicatioens.
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Comparigon of the Eigenvalues 72 for Different Solovev Equilibria
from Various Ideal MHD Stability Codes
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TABLE 1

£ A q(0) qla) Kerner PEST-1 ERATO Degtyarev  NGVA
1/6 2 1.791 2.0 0.202 0,204 0.211 0.208
176 2 2.2387 2.5 0.504 0.506 0.511 0.508
1/3 1 0.3 0.5224 0.413  0.427 0.431 0.430 0.430
1/3 1 0.7 1.219 0.118 0.119 0.129 0.121 0.119
173 = 1.2 2.0897 0.75 0.78 0.7u48
1/3 = 2.0 3.4829 0.68 0.75 0.656
1/3 @ 0.6 1.0449 1.3 1.40 1.32 1.35

1/3 L 1.0 1.7415 1.03 1.07 1.06 1.038
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Figure Captions

Typical cubic B-spline finite element for a uniform grid.

Cubic B-spline finite elements for uniform and nonunif'orm partitions.

Comparisaons of convergence results in both the radial and the
poloidal directions for our nonvariational code and the PEST code.
The Solovév equilibrium has the parameters R = B; = 1, E = 2, ¢ =

1/3, q{0) = 0.3, 4 = 7, and n = 2. The eigenvalue 72

is extrapolated
numerically in both the number of poloidal harmonics and the number

of radial finite elements.

(a) The poloidal harmonics of the eigenfunction E¢ versus r, {(b) the
projection of the displacement vector onto the 4 = 0 plane far the
converged solution as shown in Fig. 3. The q-profile is also shown

in Fig. (3a).

The flux surfaces of a circular tokamak equilibrium with average beta

8 = 0.625%, q(0) = 0.8, g(1) = 2.B5, R/a = 3.4, R = 1.43.

{a) The radial variations of the trapped particle pitch angle A space
bounded by hy,, and hpyo. The bounce average magnetic drift
frequency <wy> = 0 curve is also shown, and above the Cwyg> = 0 curve,
the hot iom <wy> is negative for the n = 1 mode. &= hpo
corresponds to deeply trapped particles and A = by, corresponds to

barely trapped particles. (b) The hot ion diamagnetic drift
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frequency ww, versus r for the m = 1 polaidal harmonic. (c) The hot
ion bounce-averaged magnetiec drift frequency (wyg> versus r for & =

1.1, n=1,

The poloidal compenents of the converged n = 1 fixed boundary
internal kink mode eigenfunction g, versus r. It is computed with an
equal arc l2ngth 8~coordinate for the equilibrium described in F.g.

5. The eigenvalue is y = 0.01195 and the 5-prorile is also shown.

(a) The growth rates, {y/wp}, of both the ideal branch (I.B.) and the
resonant fishbone branch (R.B.) versus a for the 2quilibrium
described in Fig. 5. The total B8 .5 fixed and the hot particle
slowing-down distribution is chosen witn A, = 1.1, ¢p/T, = 10,
R/ph(O) = 100, my,/m, = 1, CT = 1, and thus the volume-averaged 8y =
1.38a,8 with 8 = 0.625%. The broken curves represent the
extrapolated growth rates near =arginal stability. {b} The

corresponding negative real frequencies, -(w./wp}, versus ay.

{a) The growth rates, (y/wy), versus ap for both the ideal and the
resonant branches for several values of Cp which scales <(wy> and
Wit . The fixed parameters are the same as in Fig. 8. {b) The

corresponding negative real frequencies, ‘(“r/”A)' versus ay.

(a) The growth rates y/yyyp computed from the analytical dispersion
expression, Eq. (55), versus éh for several values of ap =
<“d>/7HHD‘ The curve labelled wilth GD > 3 represents the ideal

branch. (b) The corresponding real frequencies (wr/YMHD) versus ;h-
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The growth rates, (Y/mA), and negative real frequencies, - ;ur/A), of
both the ideal and the resonant branches versus a, for the same
equilibrium and fixed hot particle parameters as in Fig. 8. The
computations are performed with analytical approximations when

computing 8p  and &p, defined by Eq. (29).
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