Received by OST| weereem—oe

9
APR 0 6 1989 DE89 009221

IBM/VAX Gateway User’s Guide
Edward Rosenthal

Administration Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

February 1989

MASTER

DISTRIBUTION OF THIS DOCUMENM‘?WED

Supported by the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of
the University of Califomia. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or pro-
duct endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer. PUB-3076/2-89

IBM 4341

IBM/VAX GATEWAY USERS' GUIDE

VAXIVMS

TABLE OF CONTENTS

l. Introduction
A. Hardware Configuration
1. IBM Hardware
2. VAX Hardware
B. Software Configuration
1. IBM Software
2. VAX Software
Il. Computer Operations
A. IBM Operations
1. Viewing File Transfer
B. VAX Operations
1. Viewing the Workstation
2. Job Submission
lll. Applications Programming
A. IBM Job Control
B. VAX Applications Programming
1. RUEPROD
2. RJEUTIL
a) A Microfiche Utility
b) A Deblock Utility
IV. Restricitons and Limitations
A. Line Availabilty and Speed
B. Translate Tables
C. Record Length and Data Organization
D. Design Features and Implementation Assumptions
V. The Ibmrje Login
A. Lodfiles:
VI. References
A. Memoranda
B. Source Codes
C. Configuration Drawing

OCOOOOONELAL,WWWNDNON 2

IBM/VAX GATEWAY USER’S GUIDE

l. Introduction

The "Gateway User Guide" describes the facility available for transferring files from
the Data Processing Services IBM mainframe to the Computer Services VAX/VMS
cluster.

This guide will benefit both Data Processing Operations Staff and programmers who
would like to know more about how the "Gateway" operates and how to take
advantage of its capabilities.

The main focus of discussion will be on "how to" after a brief overview of the
hardware and software components. A special section concerning the IBMRIJE login
shows how to use the VAX/VMS system to advantage. Source codes for all the
procedures and DCL programs is provided at the end, as well as references made in
this document to other sources.

This first section of document will present a hardware and software overview of the
current configuration.

A. Hardware Configuration
1. IBM Hardware

The main component of the IBM hardware is a 3705 which is channel connected to
the IBM mainframe on one side, and a modem connected to the VAX Microserver
on the other.

2. VAX Hardware

The main component of the Vax hardware consists of a Microserver, a small box
that has a microvax chip, with a synchronous connection to the IBM Host, and an
Ethernet connection to the Vax. The Server is booted from the VAX cluster, and is
a general purpose low-level connection capable of serving four synchronous lines,
with limitations on the number of high and low speed lines. There is currently one
high speed (56000 Bits/sec) line and one low speed (9600 Bits/sec) line serving to
connect the two mainframes.

B. Software Configuration

1. IBM Software

Telegrocessing is under control of the MVS/VTAM/JES systems. Communicating
to the VAX thru the gateway is the same as talking to an RJE station
(BARRHASP). That is, the commands which are used thru the remote lines to the
VAX hag/e much the same functionality and limitations as any of the RJE
commands.

2. VAX Software

The hardware supplied by DEC is capable of running various network software
protocols, including SNA, X25, and DECNET applications. These high level
application packages can be loaded from the Ethernet connection to the server,
such as IBMRIE or Data Transfer File application packages offered by DEC. The
apFIication package running is IBMRJE. The combination of hardware and
s}c: tvlvglr\i give the appearance of a complete RJE station from the point of view of
the .

IBM/VAX GATEWAY USER’S GUIDE February 6 1989

Il. Computer Operations
A. IBM Operations

To find out if files are transferring or if there are any files waiting to transfer is done
by bringing up one of the ISPF 8.0, 8.H, or 8.I menus. Here is an abbreviated
sample output of the menu, showing relevant information only:

1. Viewing File Transfer

JOBNAME JNUM C FORM DEST TOT-REC DEVICE
DPEIRVAX 100 B V21 R15 2,114 R15.PU1
DPEIRVAX 100 B V22 R15 2,112

The sample output above displays a jobname DPEIRVAX that is using R15. That
is, one job (but two files) are using the high speed line to the Vax. Alternatively, if
R14 was the DEST, the job would be using the slow speed line. The filename on the
VAX depends upon the JOBNAME on the IBM mainframe.

In the "C" column is class B, or Punch Class. Alternatively, if class R was displayed,
that would mean the Print Class. Depending upon the class the file is assigned to,
the file will end up on the VAX in the PRINT or PUNCH directories.

In the FORM column is V21 and V22, a unique form for each of the files. The
FORM-ID is created by using the FORM-ID parameter in the SYSUT2 command.
The default form is "STD", which would appear if the programmer left out the
parameter. The file created on the VAX/VMS depends upon the FORM-ID for its
extension.

In the the DEVICE column is R15.PU1, meaning the file is to be "punched" using
the high speed line. This verifies information given in the "C" column since both
indicate the "punch” class. Alternatively, if the column displayed R15.PR1, it would
be going to the "print queue", and the class should also indicate "R" or "print" class.

To insure the GATEWAY is functioning properly, the IBM console operator can
check on the RMT15 and RMT14 lines to see that they are up and active and not
drained. Depending on which console or terminal the user or operator is on, to
display the current status of the remote print and punch:

$du,r1s

From the information the operator should see whether or not the line is drained or
not. If the line is drained or is not active then the command to start the line is used:

$s,r15.pul or $s,r15.pri

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

If files are waiting to transfer but the line is up and active and not drained, then
probably the V. workstation is down. Under these circumstances, then logging in
to the VAX is called for. The workstation on the VAX should be checked (see
following section) and switched back "ON" if "OFF".

B. VAX Operations
1. Viewing the Workstation

On CSA3 privileged users (IBMRJE) can display and set the status of the
workstation.

LOGIN TO CSA3 AS "IBMRJE".
From the CSA3> prompt type "XEQ SNARJE" (press Return)
The following will be displayed:

@sy systools:SNARJE
9%SNARIJE-I-USING, using workstation LBLRIE1
SNARJE >

The operator will have "SNARJE>" for a new prompt. It might be noted the
operator could use the "help" command to see what is possible under the
workstation commands. But for now the operator wants to know the status of the
workstation. To do that issue the "show status" command:

SNARJE > SHOW STAT (press Return)
The following (abbreviated output) will be displayed:

Status of workstation LBLRJEI on 29-NOV-1988

Gateway node: LBLSNA State: OFF
Access name: A2 Application: AI4JES2]
Circuit: SDLC-0 Logon mode: DECRJE
SNARJE >

The operator will notice whether or not the workstation is "ON" or "OFF" and issue
the following command to turn it on:

SNARJE > SET WORK/STAT=ON (press Return)
To check the results of the previous command issue the status command once again:

SNARJE > SHOW STAT (press Return)
The workstation should now display "State ON".

To terminate the workstation session:

SNARJE > EXIT (press Return)

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

To terminate the VAX/VMS session:
CSA3>LO (press Return)
2. Job Submission

The RJE Hardware and Software allows data to be transferred in either direction.
You can submit jobs from the VAX to the IBM mainframe. The security policy for
this has not yet been fully formed, but assuming that only IBMRIJE can submit jobs
this would be the way to do it.

To submit a job, issue the SUBMIT command with the following options. The queue
must be specified (currently it is called SNARJESFAST), and the SNA sub-option
must be coded. Here is a sample submit:

CSA3> SET DEFAULT [IBMRJE.READER]
CSA3> SUBMIT/QUEUE = SNARJE$FAST/SNA test.jcl

Here is a listing of the test.jcl file:

//DPEIRVAX JOB (302501),’VAX DPEIRVAX’,

// MSGCLASS=W,

// CLASS=A

/*ROUTE PRINT ECHO

//VAX2IBM EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=+

//SYSIN DD DUMMY

//SYSUT2 DD DSN=DPEIR.VAX.READER,

// DISP=(OLD,KEEP,KEEP)

//SYSUTL DD *

THIS IS THE START OF SOME TEST DATA

THIS IS SOME TEST DATA WRITTEN IN LINE FROM THE VAX

THIS IS SOME TEST DATA WRITTEN IN LINE FROM THE VAX

END OF TEST DATA

/¥

//

The above example submits the file "test.jcl" to the VAX Reader Queue. If the
physical line is open and the file is accepted by the IBM mainframe, IEBGENER
copies the inline data to the dataset DD name 'DPEIR.VAX . READER'.

Another way to submit a job is to concatenate the JCL to the inline data. Assuming
the file data.dat contains the inline data for IEBGENER:

CSA3> SUBMIT/QUEUE = SNARJESFAST/SNA begin.jcl +
data.dat + end.jcl

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

This approach allows the flexibility to create the data from some other process and
to include it inline in the production jcl.

When the VAX job is submitted the job entry number is displayed and the job goes
into the queue. When the job begins executing the current login.com file (in the
home directory) is executed to recreate the defaults for the session. The default
directory becomes the home directory. Because of this the full pathname to the files
might have to be given if the command is executed from any location other than the
home directory i.e.;

CSA3>SUBMIT/QUEUE = SNARJE$FAST/SNA -

CSA3> [ibmrje.reader]begin.jcl -
CSA3>_ + [ibmrje.reader]data.dat -
CSA3>_ + [ibmrje.reader]end.jcl

The continuation "-" symbol is actually typed at the command line to allow further
typing on the succeeding lines, and the VAX responds with the underscore symbol.

To save keystrokes in submitting a job a command procedure solves the problem.
Here is the listing of the procedure "subreader.com" located in the [ibmrje.reader]
directory.

Csa3> type subreader.com (press Return)

$if pl .eqs. "" then goto nofilemsg

$file=pl

$! set protection for reader

$set prot=w:r 'file’

$submit/queue=rje$fast/sna -
[ibmrje.reader]’'file’

$ goto exit

$nofilemsg:

$write sys$output ” no input file(s)”
Sexit:

Sexit

$tend of procedure

Csa3¢

To submit a file to the queue using the above procedure issue the command:
CSA3> @SUBREADER MYFILE
Improvements to the "subreader.com” procedure could include:
expansion to three files (concatenating) in place of one.
checking for existence of the files

setting protections on all the files
copying files from other directories

IBM/VAX GATEWAY USER’S GUIDE February 6 1989

Because of the security precautions associated with sending jobs to the IBM
mainframe, there are some correspondin% protective measures built into the
directories and subdirectories associated with the IBMRJE login. Files can only be
submitted when the protection for the file is set properly so that the VAX reader
can pick up the file and submit it thru the gateway. To set the protection for the file:

CSA3> SET PROT= W:R FILENAME

After the file is submitted a logfile is created in the home directory which can be
looked at to see if the job was transferred successfully to the IBM mainframe. The
number of records transferred will be part of the logfile. Any error messages
recorded in the logfile should be passed along to the Gateway Coordinator or the
VAX/VMS administrators of the DEC software (Helpdesk, or Eric Beals).

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

Ill. Applications Programming

This next section describes how to implement the Gateway using the necessary JCL
and DCL (Digital Command Language). Many examples are taken from current
production jobs and procedures.

A. IBM Job Control

To build an application the programmer should keep in mind the following:
The filenames as it will appear to the VAX:

The FILENAME controlled by the JOBNAME.
The EXTENSION controlled by the FORM-ID.

The destination directory for the file(s) controlled by the sysout class:

SYSOUT =R (PRINT-CLASS)

files go to: [ibmrje.print]
SYSOUT=B (PUNCH-CLASS).

files go to: [ibmrje.punch]

Here is a sample job transferring data via the print queue:

//PRODUCT JOB(),'SAMPLE JOB’ ,MSGCLASS=W,CLASS=P,
// MSGLEVEL=(1,1)

//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DSN=MYDATA.FOR.TRANSFER,DISP=OLD
//SYSUT2 DD SYSOUT=R,DEST=RMT15

In the above example, a file will arrive on the VAX with the filename
"PRODUCT.STD", and be placed in the "PRINT" subdirectory, [ibmrje.print].

Here is another example:

//XYZIGGY JOB(),'SAMPLE TWO',MSGCLASS=W,CLASS=P,
// MSGLEVEL=(1,1)

//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//SYSUT1 DD DSN=MYDATA.FOR.TRANSFER,DISP=OLD
//SYSUT2 DD SYSOUT=(B,,001),

// DEST=RMT15

In the above example, a file will arrive on the VAX with the filename

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

"XYZIGGY.001" in the punch subdirectory, [ibmrje.punch].

Thus, in any one job, any number of files with unique names can be sent across the
gateway. As noted in the next section, under VAX programming applications, by
coordinating the names of incoming files, custom applications can be built for any
job.

B. VAX Applications Programming

Once files are transferred to the VAX there remains the task of performing some
action upon them. These files may become the input to a Focus FOCEXEC
program, or may be printed or copied elsewhere, or microfiched, or sent to a label
maker, etc. To provide an automatic interface to any of these several possibilities
requires writing DCL or DIGITAL Command Language programs.

Currently there are two main DCL programs which serve as "hooks" for any other
applications which may be designed. These jobs are running in "background" batch
jobs and become active when their "timers" go off. These programs search for file
types or specific files, and when found start up other programs which may be general
purpose programs which pass further information along to more specific programs,
or may be special production programs customized for the job. These two
background jobs are RJEPROD and RJEUTIL.

To display the names of any jobs running:

CSA3> show queue *normal*
The output will look similar to this:

Generic batch queue BATCH$SNORMAL
Batch queue CSA1_NORMAL, on CSA1::

Jobname Username Entry Status

RJEUTIL IBMRJE 210 Holding until 16-DEC-1988 3:08
RJEPROD IBMRJE 209 Holding until 16-DEC-1988 3:12

This would be interpreted as showing that the two batch jobs REJUTIL and
RJEPROD are currently in the batch queue, and they will become active at the time
and date shown. If either of these two jobs are not displayed then they must be
restarted. To restart the job:

CSA3> SET DEFAULT [IBMRJE.COMFILES]
CSA3> SUBMIT RJEUTIL (OR SUBMIT RJEPROD)

A batch job entry number will be displayed showing the VAX has accepted the job
for execution.

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

10

1. REPROD

The RJEPROD command procedure serves as a front end program for an
production job coming across the gateway. If, for example, the production jo
"EFF0950" runs on the IBM mainframe, then a file with the filename "EFF0950"
will eventually arrive in one of the two subdirectories, [ibmrje.print] or
[ibmrje.punch].

Knowing how the file was sent and with what form-id, the RJEPROD program
knows which queue to search and what the exact file name will be. While RJEPROD
is "active”, one of the files searched for is "EFF0950.WEF", and when found it calls
another program, the EFF0950 Command Procedure.

Here is an excerpt from the RIEPROD command procedure:

$eff0950_label:

$FILE = F$SEARCH(” [IBMRJE.PUNCH]EFF0950.wef"”)

SIF FILE .EQS. ”” THEN GOTO eff0975_ label

$!

$submit/name=effp0950 -
/queue=csa4_normal -
[ibmrje.comfiles]eff0950

$!

$eff0975_label:

The above code begins with a label for the section dealing with EFF0950. The file
"eff0950.wef" is searched for in the Funch directory, and if it doesn't exist the process
proceeds to the next label. If the file exists then another job is submitted with the
name effp0950, using the queue and name option. Since EFF0950 is a FOCUS job,
it must be forced to run on the CSA4 machine, since that is where it is licensed.

In the case of EFF0950, the job requires the file to be copied to another
subdirectory on another disk. After the ?ile is transferred, or copied, a Focus batch
job must be run, and users must be informed of the changes to the Focus Database.
Some other programs, also called from RJEPROD, may not require as much
programming or even testing.

While RJEPROD runs, EFF0950 becomes an active program, runs, finishes, and
returns to RJEPROD. RJEPROD continues to search for other files with their
specific Eredetermined names, and perhaps call other specialized programs acting
upon these files. The complete source code for EFF0950.COM and
RJEPROD.COM is included at the end of this guide.

Here is an excerpt from EFF0950.COM:

$! CHECK TO SEE IF IT ACROSS THE GATEWAY

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

$! 1) IF THE FILE IS ABLE TO BE OPENED FOR READ
$§! 2) then it can be safely copied
$wef=f$search(”ef£f0950.wef")

$!

$CHECK_LOCK :

SON WARNING THEN GOTO POSSIBLE_LOCK

$OPEN/READ SCRATCH 'wef’

$CLOSE SCRATCH

One of the first things that must be checked is that the file is completely across the
gateway before any action is taken on the file. If all is well, the code continues to
operate, the file remains untouched, and when RJEPROD is reactivated this code
runs again also. By then the file will have finished its transfer, and the job will
continue. Later in the code eff0950.wef is deleted from the punch directory, so the
process is not duplicated. :

To summarize, the requirements for coding production job:

Write the IBM JCL to create the VAX files.
Modify the current RJEPROD to:
Search for the new files
Calls the external job if found
Create an external job called from RJEPROD
The job must insure the file has crossed
the gateway
Fullfill the requirements of the job.

2. RJEUTIL

A more general program is RIEUTIL. It can do general tasks or be made to do such
things that could be considered general, for example, copying, printing, and
microfiching. It acts as a front end to another series of programs, including the
ACTION procedure.

After a discussion of what the program expects in the way of an information file, an
extended look at how this is applied to the microfiche problem is considered.

Via JCL, "information fi. s", which are files with an extension "INF", must be sent to
the punch queue i.e.; [ibmrje.punch]. The information file must include "data" and
"action" statements. This allows the program to search for the data files, and to
determine whether the files have come across the gateway. It also does a syntax
check to see whether all the statements needed are there, and exits with error
messages if it finds anything amiss. Once it does that however, it passes its
information along to a second program, called the ACTION Procedure.

The ACTION procedure determines from the information given to it what type of

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

11

action is to be performed on the given file. If the action is to fiche the file, it starts
up the microfiche program, or if the file is to be printed, it starts up the print
program. By this method, any general type of action can be implemented
automatically.

a) A Microfiche Utility

The JCL to produce microfiche would have to have at least two steps, one would
send the data itself across the gateway, perhaps to the punch queue with the form-id
of mfr or std, it doesn’t really matter. The other step would have to send an
information file telling the vax to produce the fiche. Here is the step and what that
file would have to look like:

//STEP3 EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=*

//* SEND THIS INFORMATION FILE TO THE PUNCH QUEUE
//* OVERRIDING THE STD EXTENSION.

//SYSUT2 DD SYSOUT=(B,,INF),DEST=RMT15

//SYSUT1 DD DSN=DPEIR.JCL.FOCUS (INFOFILE),
// DISP=SHR

//SYSIN DD DUMMY

/*

//

And the information file would have to look similar to this:

DATA (F=DPEIR134.STD,SYSOUT=R,JOB=DPEIRJOB),
FICHE(F=DPEIR134.STD,#=1,T=PMA3150A,R=ROSE BLDG 65A)

The data and fiche statments should appear each on one line, but they can be in any
order, and any number of data files can be indicated, along with their corresponding
fiche statements.

The RJEUTIL procedure would check this file to see if data and action statements
are present. It also checks the syntax of the data statement.

The DATA statements themselves have three parts;

COLS 1-4 "DATA" signals this is a DATA statement.
Then within parentheses, and separated by commas the following items:

F=FILENAME.EXT Naming the file as it will appear on the VAX.

A SYSOUT=R or SYSOUT =B statement.
A JOB=JOBNAME statement indicating the name of the job.

If the Eobname statement is omitted, "JOB" is the
default name of the job.

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

12

13

When the RJEUTIL program "awakens", and sees the inf file has arrived, it will
read it, check to see if the files have come across the gateway, and then call the
program RIJEFICHE. The fiche program will check the syntax of the fiche
statement, and if all goes well, will send the file to the DICOMED along with the
proper commands to satisfy the job.

The form of the fiche statements is:

COLS 1-5 "FICHE"

Then within parentheses the following items
separated by comas:

F=FILENAME.: XT the filename to fiche.

=X where x=number of copies 1-9
T=TITLING this title will appear on fiche.
R=ROUTING this information appears on the
sticky label.

b) A Deblock Utility

Mentioned in the following section are some of the restrictions and limitations
imposed upon the applications due to hardware or software technology, but
sometimes there are "work arounds" which circumscribe these circumstances. If the
data that is to be transferred across the gateway has a record length of larger than
255 but less than 2048, transfer is made possible by a combination of blocking on the
ibm mainframe and deblocking (or unblocking) on the vax side. This section
describes how to use these two programs.

The JCL required to block the file to 80 byte records would utilize an assembly
language program (Russ Montello), and might go like this:

//DPEIRBLK JOB (XXXX),'BLOCK IT’',CLASS=A,MSGCLASS=W,

// NOTIFY=DPEIR

/*ROUTE PUNCH RMT15

[/ [*FFFdkdkkdkkkk kg ddokdkkkkkkkkdkdokdokdkkdkok koo ko

//STEPO1 EXEC MVSZ2RJE,DESTIN=R15,HEADER=NOHEAD
[[FFdFdSddkddddodedkdek gk kb ko Rk kokk b ket

//*

//**
//STP1.FILEIN DD DSN=DPEIR.TEST.LONG2048,DISP=SHR

*
5;**
//* STEP02 SEND INFORMATION FILE TO PUNCH QUEUE TO
//* UNBLOCK
//* THE STATEMENTS IN THE PARM FILE LOOK LIKE THIS
//* DATA(F=FILENAME-ON-VAX,SYSOUT=B,JOB=DPEIRBLK)
//* UNBLOCK (F=FILENAME-ON-VAX, RECL~RECORD- LENGTH)
//**

//STEPO2 EXEC PGM=IEBGENER

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

//SYSPRINT DD SYSOUT=#*

//SYSIN DD DUMMY

//SYSUT2 DD SYSOUT=(B, ,INF),DEST=RMT15

//SYSUT1 DD DSN=DPEIR.JCL.CNTL(UNBLOCK) ,DISP=SHR
//

Once the file is blocked and sent thru the gateway along with its accompanying
information file, the VAX RJEUTIL Program would find the "inf" file and read it,
find the verb "unblock”, and awaken the unblock command procedure, passing
along relevant data to it. The unblock procedure checks the syntax, checks the files,
and runs a C Language program which does the actual unblocking. Statistics output
on the IBM and on the VAX can be compared for lines blocked and unblocked, and
for examining the times the programs ran.

The inf file looks like this:

DATA (F=DPEIRBIK. STD, SYSOUT=B, JOB=DPEIRBIK)
UNBLOCK (F=DPEIRBLK.STD,RECL=2048)

The data file to unblock must be sent to the punch directory, to insure no job
headers would interfere with the process of unblocking the records, and "inf" files
are always sent to the punch queue.

The dpeirblk.std file would be sitting in the punch directory when the unblocking
process begins, and an output file dpeirblk.out is produced also in the punch
directory. There currently is no option to name the output file, but there is no need,
since the file will eventually move to a user directory, and could then be renamed.

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

14

15

IV. Restricitons and Limitations

The purpose of this section of the document is to describe some of the restrictions
and limitations of the Gateway.

A. Line Availabilty and Speed

The first and formost limitation of the Gateway product is that it is a
telecommunications link, subject to unavailability. Even thought they are are
currently two lines, a low speed line and a high-sgeed line, both of these lines may
be unavailable at the time when you need to transfer data.

If the Gateway is unavailable, contact the appropriate operations staff. It may be
possible to start the line and/or activate a resource very quickly. As a backup
procedure, you can create a tape and load it on the VAX.

B. Translate Tables

A second limitation arises from the nature of the computer systems, where the IBM
is an EBCDIC machine and the DEC is an ASCII machine. In other words, in
addition to data transmissions, the Gateway performs data conversion services. Due
to the differences between the EBCDIC and ASCII character sets, there cannot be a
one for one character conversion. If your application expects non-standard or
special characters to be preserved across applications, special tests may need to be
conducted to insure correct translation.

C. Record Length and Data Organization

Another limitation may arise from the size and organization of transfer files. Our
version of the Gateway supports RJE stations, and we inherit the standard set of
RIJE restrictions. That is, for the most part, data is expected to be in the form of
"card images", print lines, or console lines. Focus databases, VSAM clusters,
variable length files, must be converted or unloaded before they are transferred.
Also, the files must be of a certain length. Currently the Gateway supports punch
and print files of up to 255 bytes. An in-houe program is available to convert files
with record lengths exceeding the 255 byte limit to 80 byte card images as part of the
transfer process, up to 2048 characters.

D. Design Features and Implementation Assumptions

There are several assumptions made in the implementation of the Gateway you
should keep in mind. First, currently you can only submit a job from the CSA3.
Thus, if CSA3 is unavailable, it is not possible to send a file to the IBM from the
VAX or from the VAX to the IBM. Jobs are placed int he queue, but no transfer
takes place until CSA3 is ready. Secondly, the DecNet software constructs a
filename for the transfer data from the IBM/MVS jobname. The file extension is
built from the FORMS type (usually STD). This can be an advantage if the transfer

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

data set is a print file designed for special forms.

IBM/VAX GATEWAY USER’S GUIDE

February 6, 1989

16

V. The Ibmrje Login

Since the IBMRIJE login has many directories and subdirectories, and because there
are many jobs that are associated with the production and utility programs, some
shortcuts and special commands have been developed to provide easy access to the
whole system. Some of these abbreviated commands are developed as time goes on,
so this cannot be a complete list, but it should provide any privileged IBMRIJE user
who is unfamiliar with the system to be able to get around fairly easily. If after
logging on one wanted to see an overview of the directories issue the following
command:

CSA3> SHOWMAP and see somethng like this:

[ibmrje] I

| I ! o
BIN COMIIULES LOGFILES PRINT PUNCH READER

I l
PRINTCOM =~ PUNCHCOM

"home" sets default [ibmrje]

"gobin" sets default [ibmrje.bin]
"gocom” sets default [ibmrje.comfiles]
"golog" sets default [ibmrje.logfiles]
"goprint” sets default [ibmrje.print]
"gopunch” sets default [ibmrje.punch]
'goreader” sets default [ibmrje.reader]
"socomprint” sets default

[ibmrje.comfiles. printcom]
"gocommpunch” sets default
[ibmrje.comfiles.punchcom]

to see this list un showmap

to see other abbreviated symbols run showsym
Csa3>

The above output gives an overview of the structure of the directories and shows the
shortcuts to set default to them. If one wanted to quickly goto the subdirectory
where jobs submitted to the IBM mainframe reside, the [ibmrje.reader] then
issueing the command "goreader” would do that.

The other commands mentioned include showsym, and the output from that

command would look similar to this (due to the length of the list this is somewhat
abbreviated):

IBM/VAX GATEWAY USER’S GUIDE February 6 1989

17

$SET TERM/DEVICE=VT102
$mydir 'fSlogical("sys$disk”) '’ fSdirectory()’
$home i=~= set def 'mydir’

$gobin :== get def [ibmrje.bin]

$gotst :== set def [ibmrje.bin.test]

Sxeq :== $sy sysexe:xegsystool

$gocom :== set def [ibmrje.comfiles]

$golog :== set def [ibmrje.logfiles]
$unblock ;== "@[ibmrje.bin]unblock.com”
$clear == "@[ibmrje.bin]clear.com”
$gore*ader (== set def [ibmrje.reader]

$gocompr*int :== set def [ibmrje.comfiles.printcom]
$gocompu*nch :== set def [ibmrje.comfiles.punchcom]
$ibmsub :== "@[ibmrje.comfiles]ibmsub.com”
$subprod i== "@[ibmrje.comfiles]rjeprod.com”
$subutil == "@[ibmrje.comfiles]rjeutil.com”
Srjeprint == "@[ibmrje.comfiles]rjeprint.com”
$rjepunch == "@[ibmrje.comfiles]rjepunch.com”
$micro*fiche == "@[ibmrje.bin]microfiche.com”
$showgn _— "show queue *normal¥*

$showge — "show queue *economy*

$showgb — "show queue sys$batch”

$showmap :== "@[ibmrje.bin]showmap.com”
$showsym (== "@[ibmrje.bin]showsym.com”
$listjob == "@[ibmrje.bin]listjob.com”

Csa3¢

This shows a list of available commands from the login.com itself. Any one of these
commands is a shortcut to accomplish what one would have to type on the right side
of the equation. Additional shortcuts are added as necessary to the login.com file,
but showsym will always output an updated list of the jobs as they are added.

A. Lodgfiles:

When jobs are submitted on the VAX, whether they are production jobs or simply
jobs submitted during a login session, logfiles are created either in the home
directory, that is in [IBMRIJE], or perhaps in the [IBMRJE.LOGFILES]
subdirectory. In either case, it is a good idea to clean up any unwanted logfiles that
are past usefulnes. Any one privileged to the IBMRIJE login, and who uses it
??igu arly, should maintain the habit of purging or deleting unwanted files. To purge
iles:

CSA3> PURGE FILE OR
CSA3> PURGE/KEEP=NUMBER FILE

To delete files:
CSA3> DELETE FILES OR DELETE/CONFIRM FILES

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

18

19

VI. References

The purpose of this section of the document is to identify the appropriate technical
and procedural manuals for understanding and using the Gateway.

Data Processing Services
Standards and Procedures Manual
See especially Sections 2.5ff for configuration.

A. Memoranda

Russ Montello, "DecNet/SNA Gateway", 6/29/88.
This memo announces the product with suggested uses.

Edward Rosenthal, "Long Records via IBM-VAX Gateway", 10/1/88.
Describes how to transmit records exceeding 255 byte lengths.

Edward Rosenthal, "FICHE via IBM-VAX Gateway", 10/12/88.
Microfiche using the Gateway.

IBM Technical Publications
BarrHasp Manual

DEC Technical Publications
"Decnet SNA VMS Remote Job Entry User’s and Operator’s Guide",
Number AA-P589C-TE.
"Guide to Using DCL and Command Procedures on VAX/VMS",
Order Number AA-YS01A-TE.
"VAX/VMS DCL Dictionary", Order NO. AA-Z200A-TE.
DECnet/SNA Gateway-ST Problem Determination Guide, Order
Number: AA-MA17A-TK

IBM/VAX GATEWAY USER’S GUIDE February 6, 1989

20
B. Source Codes

RJEPROD.COM

$|##tt************************t**********#*#********

$! RIJEPROD.COM
$!
$! SEARCH THE PUNCH DIRECTORY FOR PRODUCTION FILES
$! IF IT EXISTS THEN
$! DETERMINE IF ALL DATA IS ACROSS THE GATEWAY
$! IF SO THEN ACTIVATE THE APPROPRIATE FILE
$! ELSE
$! RESUBMIT THIS FILE
$! TO RUN VARIABLE 'HOURS' AND ‘MINUTES' TIME
$!**
$! MAINTENANCE LOB
$! added eff0950 EFF0975 EFF0976
$! V01 E ROSENTHAL 11/11/88
$!**
$!
$! CLEANUP
$PURGE/KEEP =1 RJEPROD.LOG
$!
$on warning then goto warning_exit
$ SET DEFAULT [IBMRJE.PUNCH]
$! GET PROCESS ID FOR THIS CONTEXT
$CONTEXT ="
$PID = F$PID(CONTEXT)
$SHO SYM PID
$!
$sho time
$!
$! THESE VARIABLES CONTROL THE TIME PASSED BEFORE RESUBMITTING
$HOURS =1
$MINUTES = 00
$!
$! SEARCH FOR PRODUCTION FILES
$!
$!
$eff0950_label:
$FILE = F$SEARCH("[IBMRJE.PUNCH]EFF0950.wef")
$IF FILE .EQS. " THEN GOTO eff0975_label
$!
$submit/name = effp(950 -
/queue=csa4_normal -
[ibmrje.comfiles]eff0950
$

SOURCE CODES:
RJEPROD.COM

$eff0975_label:
$FILE = FSSEARCH("[IBMRJE.PUNCH]EFF0975.mef")
$IF FILE .EQS. " THEN GOTO ¢ff0976_label
$!
$submit/name = effp0975 -
/queue=csal_normal -
[ibmrje.comfiles]eff0975
$!
$eff0976_label:
$! CHECK TO SEE IF BOTH THE YTD EFF0976 FILE

$! AND THE SYS3.TABLES(DIVRNGS) FILES ARE THERE...

$FILE = FSSEARCH("[IBMRJE.PUNCH]EFF(976.ytd")
$IF FILE .EQS. " THEN GOTO normal_exit
$! else if that is there then check this
$FILE = F$SEARCH("[IBMRJE.PUNCH]EFF0976.div")
$IF FILE .EQS. " THEN GOTO normal_exit
$
$! if both files then do this
$submit/name =eff0976 -
/queue=csal_normal -
[ibmrje.comfiles]eff0976

$!
$!
$! NORMAL AND WARNING EXIT
$! SUBMIT THIS JOB TO RUN IN CSA1_NORMAL
$!
$normal_exit:
$warning_exit:
$submit/after ="+ "hours’:""minutes™ -

/name =rjeprod -

/queue=csal_normal -

[ibmrje.comfiles]rjeprod
$exit

SOURCE CODES:
RJEPROD.COM

21

22

EFF0950.COM

$|t#ﬁ‘***#t##*#l*#*******************t*******#**************

$! PROC eff0950.COM LAWRENCE BERKELEY LABORATORY
$! CALLED BY RJEPROD TO COPY WEEKLY EFFORT FILE TO
$! ADMINFILES

$! AND RUN FOCUS BATCH JOB

$!

$! NARRATIVE:

)|

$! DETERMINE IF ALL DATA IS ACROSS THE GATEWAY
$! IFITIS

$! COPY THE file to adminfiles

$! RUN THE FOCUS BATCH JOB

$! ELSE

$! EXIT
$!***‘*‘**
$! MAINTENANCE LOG

$! V01 E ROSENTHAL 10/27/88

!
$!**
$!

$! HOUSEKEEPING

$PURGE /KEEP =4 EFF0950.LOG

$

$ SET DEFAULT [IBMRJE.PUNCH]

$!

$!

$! CHECK TO SEE IF IT ACROSS THE GATEWAY

$! 1) IF THE FILE IS ABLE TO BE OPENED FOR READ

$! 2) then it can be safely copied

$wef = f¥search("eff0950.wef")

$!

$CHECK_LOCK:

$ON WARNING THEN GOTO POSSIBLE_LOCK
$OPEN/READ SCRATCH ‘wef

$CLOSE SCRATCH

$!

$! HAVING FINISHED PROVING THE DATA IS THERE,

$! copy it to appropriate spot

$!

$! obtain the current disk of adminfiles

$!

$disklogical admin_files

$!

$on warning then goto properexit

SOURCE CODES:
EFF(0950.COM

$copy eff0950.wef -
admin files never_quota:[adminfilesjwef.dat
$!
$! CLEANUP
$delete eff0950.wef;*
$!
$! send mail to distribution
$create eff(0950.txt
THE WEEKLY EFFORT DATA FILE
HAS ARRIVED FROM THE DATA PROCESSING
SERVICES IBM MAINFRAME, AND
A VAX FOCUS UPDATE WILL SOON HAPPEN
$eod
$mail /edit=send eff0950.txt
@[1bmqe bin]effort.dis

$del eff0950.txt;*

$!

$! THIS EXEC SHOULD HAVE BEEN SUBMITTED

$! CSA1_NORMAL SO IT SHOULD BE SAFE to

$! EXECUTE A FOCUS BATCH JOB

$!

$define foc$dirl admin_files_never_quota:[adminfiles]

$define foc$dir2 admin_ ﬁlcs never_quota:[adminfiles.jos]

$define foc$dir3 -
admin_files_never_quota:{adminfiles.toolkit]

$define labwide admin_files_never_quota:[adminfiles]

$set def admin_files_never quota [adminfiles]

$focus

ex bwef echo = on

fin

$exit

$!

$properexit:

$!

$EXIT

$!

$POSSIBLE_LOCK:

$WRITE SYS$SOUTPUT " POSSIBLE LOCK ON INFORMATION FILE"

$close scratch

$exit

SOURCE CODES:
EFF0950.COM

23

$!
$
$!
$!
$!
$!
$!

24

ACTION.COM

ACTION.COM ACTIVATED BY RIEMASTER WHEN IT ENCOUNTERS AN
INF FILE

SEARCH THE INF FILE FOR VARIOUS FUNCTIONS
(FICHE,PRINT,FOCUS ETC)
AND SUBMIT TO THE APPROPRIATE COM FILE

$! SENDING IT THE DATA REQUIRED (THE OUTPUT FROM SEARCH)
$

$! EXAMPLE: SEARCH/OUTPUT =FICHE.DAT INF_FILE FICHE

$! then SUBMIT rjefiche. COM/PARAMETER =FICHE.DAT

$! WAIT FOR EACH JOB TO FINISH BEFORE CONTINUING WITH THE
$! NEXT ONE

$! SINCE THE JOBS MIGHT PERFORM SOME ACTION ON A FILE

$! CAUSING CONTENTION WITH ANOTHER ACTION ON THE SAME FILE
!

$! JOBS ARE SUBMITTED WITH THE PROCESS ID

$! THE SEVERITY .EQ. 3 IS THE INFORMATION BACK FROM THE VMS
$! OPERATING SYSTEM THAT NO STRINGS WERE FOUND IN THE

$ SEARCH

$! THERE FORE NO JOBS OF THAT TYPE ARE SUBMITTED.

$!

$if p1 .eqs. " then goto FINISHED

$set def [ibmrje.punch]

$context = ™

$pid = f$pid(context)

$show symbol pid

$inf file=pl

$!

$SHO SYMBOL INF_FILE

$!

$FICHE_ROUTINE:

$search/output ="pid’.dat 'inf file’ fiche
$severity = f$integer($severity)

$if severity .eq. 3 then goto PRINT_ROUTINE
$SUBMIT /name = fiche/queue =csa2 normal -

/log_file =[ibmrie.logfiles]fiche.log -
[(IBMRJE.BIN]rjefiche -
/parameter = ('pid’.dat,'inf_file")

$SYNC fiche/queue =csa2_normal
$print [ibmrje.logfiles]fiche.log
$!

$PRINT ROUTINE:
$search/output ="pid’.dat ‘inf_file’ print
$severity = f$integer($severity)

SOURCE CODES:
ACTION.COM

$if severity .eq. 3 then goto FOCUS_ROUTINE

$SUBMIT /name = printing/queue = csa2_normal -
/log_file =[ibmrje.logfiles]rjeprint.log -
[IBMRJE BIN]RJEPRINT -
/parameter ='pid’.dat

$SYNC printing/queue = csa2_normal

$print [ibmrje.logfiles]rjeprint.log

$!

$FOCUS_ROUTINE:

$search/output ='pid’.dat ‘inf _file' focus

$severity = f$integer($severity)

$if severity .eq. 3 then goto UNBLOCK_ROUTINE

$SUBMIT /name = ACTION'pid’ /queue = csa2_normal -
/log_file = [ibmrje.logfiles]rjefocus.log -
[IBMRJE.BIN]RJEFOCUS -
/parameter ="pid’.dat

$SYNC ACTION'PID’ /queue =csa2_normal

$print [ibmrje logfiles]rjefocus.log

$!

$UNBLOCK_ROUTINE:

$search/output="pid’.dat ‘inf file’ unblock

$severity = f$integer($severity)

$if severity .eq. 3 then goto RENAME_ROUTINE

$SUBMIT /name = ACTION'pid’ /queue = csa2_normal -
/log_file = [ibmrje.logfiles]rjeunblock.log -
[IBMRJE.BINJRJEUNBLOCK -
/parameter ="pid’.dat

$SYNC ACTION'PID’ /queue =csa2_normal

$print [ibmrje.logfilesjrjeUNBLOCK log

$!

SRENAME_ROUTINE:

$search/output="pid’.dat ‘inf_file’ RENAME

$severity = fSinteger($severity)

$if severity .eq. 3 then goto COMPARE_ROUTINE

$SUBMIT /name = RENAME/queue = csa2_normal -
/log_file = [ibmrje.logfiles] RENAME.log -
[IBMRJE BIN]rjeRENAME -
/parameter ="pid’.dat

$SYNC RENAME/queue =csa2_normal

$!

SCOMPARE_ROUTINE:

$search/output ='pid’.dat "inf_file’ COMPARE

$severity =fSinteger($severity)

$if severity .eq. 3 then goto FINISHED_ROUTINE

$SUBMIT /name = COMPARE/queue =csa2 normal -
/log_file =[ibmrje.logfiles] COMPARE.log -
[IBMRJE BIN]rjcCOMPARE -
/parameter ="pid’.dat

SOURCE CODES:
ACTION.COM

$SYNC COMPARE/queue = csa2_normal
!

S$FINISHED ROUTINE:

$SFINISHED:

$!

$! DELETE THE MISCELLANEOUS DAT FILES CREATED
$! DURING THIS PROCESS

$on warning then goto exit_a

$exists = f$search("'pid’.dat;*")

$if exists .egs. ™" then goto EXIT A

$del 'pid’.dat;*

$EXIT A:

$exit

SOURCE CODES:
ACTION.COM

26

DEBLOCK.C

/*#***t***#*i*********#*t***

DEBLOCK.C

SYNTAX: DEBLOCK INPUT-FILE OUTPUT-FILE RECORD-LENGTH

the input file came thru the gateway with blocked records
of eighty chars each record, but the vax truncates the end
blanks of each record. this program puts back the record
to its original form.
'““‘t“**‘**‘******#***'#*/
#include stdio
#include file
#include time
#define MAX RECL_LENGTH 2048
#define MAX_BUFFER SIZE 32000
#define NEWLINE '\n’
#define BLANK '’
#define ERROR -1
unsigned int total_nl written=0;
main(argc,argv)
int argg;
char *argv(];
{
FILE *infile,*outfile,*logfile;
int handle;
int target;
unsigned int numread=0;
unsigned int total_chars_read=0;
unsigned int total_chars_tmp=0;
unsigned int total_chars_written=0;
char bufferMAX_BUFFER_SIZE];
int dot,x;
char logfile_array[20];
char *bintim;
struct tm *time_structure;
int time_val,i;
static char *weekday{7] = {"Sunday","Monday","Tuesday",
"Wednesday","Thursday","Friday",
"Saturday"};
static char *month[12] = {"January","February","March",
] April","May"," June","July",
"August","September","October",
"November","December"};
static char *hour(2] = {"AM","PM"};

SOURCE CODES:
DEBILOCK.C

27

if (argc != 4) {
greet();
exit(0);

if ((infile = fopen(argv[1],"r")) = = NULL){

printf("\ncould not open file %s ",argv(1]);
exit(0);

}

if ((outfile = fopen(argv2],"w","rat =cr","rfm =var"))

== NULL){
printf("\ncould not open file %s ",argv|2]);
exit(0);
}

target = atoi(argv[3]);
if (target > MAX_RECL LENGTH)
{

printf("\n max record length is %d ", MAX_RECL_LENGTH);
exit(0);

}

/**** build a log file from outfile name ***/

dot=strcspn(argv(2],".");
for(x=0;x< =dot;x+ +)
logfile_array[x] = argv{2][x];
logfile_array{x]="\0";
strcat (logfile_array,"log");

if ((logfile = fopen(logfile_array,"w",

"rat=cr","rfm=var")) = = NULL){

printf("\ncould not open file %s "logfile_array);
exit(0);

}
printf("\n UNBLOCKING IN PROGRESS...");

while((numread =fread((char *)buffer,sizeof(char),
MAX_BUFFER SIZE,infile)) > 0)
{

total chars read=total_chars_read + numread,;
printf("\nnumber of bytes read was %u ", numread);

total_chars_tmp=doblock(buffer,numread,target,outfile);
total chars_written=total chars_tmp+total_chars_written;
}

SOURCE CODES:
DEBLOCK.C

28

printf("\ntotal chars read was %u",
total chars_read);

printf("\ntotal chars written was %u",
total chars_written);

printf("\ntotal number of new lines written was
U,

total nl written);

/* write out to logfile the result of totals */

fprintf(logfile,"\n%s %s",
"results of deblocking",argv[1]);
fprintf(logfile,"\n%s %u",
"total chars read was",total_chars_read);
fprintf(logfile,"\n%s: %u",
"total number of new lines was",
total nl written);
fprintf(logfile,"\n%s: %u",
"total number chars written",
total_chars_written);

time(&time_val);
time_structure =localtime(&time_val);

fprintf(logfile,"\nToday is %s, %s %d, 19%d",
weekday[time_structure->tm_wday],
month[time_structure->tm_mon],
time_structure->tm_mday,
time_structure->tm_year);

if (time_structure->tm_hour > 12)

{

time_structure->tm_hour =
(time_structure ->tm_hour) -12;
=1

fprintf(logfile,"\n%s %d:%02d %s",
"time now is ",
time_structure->tm_hour,
time_structure->tm_min,
hour(i]);

printf("\n logfile created %s ", logfile_array);

SOURCE CODES:
DEBLOCK.C

29

fclose(infile);
fclose(outfile);
fclose(logfile);
exit();

}

doblock(buffer,numread,target,outfile)
char *buffer;

unsigned int numread;

int target;

FILE *outfile;

{

static int index_tmp_buffer=0;

static int num_chars_of 80=0;

static int num_nl read=0;

static int c,position;

char tmpbufferfMAX RECL LENGTH};
static int num_nl_per_block;

static int lastnon;

static int index=0;

static int num_written;

unsigned static int total_chars_written=0;
static int pad_limit = 80;

static int pad_start;

static int pad_index;

static int counter=0;

num_nl_per_block = figure(target);
for (position =0;position < numread;position+ +)

c=buffer[position];
if (¢ == NEWLINE)
{
num _nl read+ +;
if (num_nl read == num_nl per_block)
{
tmpbuffer{lastnon + 1}= NEWLINE;
tmpbuffer[lastnon +2]="\0";
fprintf(outfile,"%s",tmpbuffer);
counter + +;
total nl written+ +;
if(! (counter % 100))
printf("\nwrote %u characters
"total_chars_written);
total_chars written=total_chars_written +lastnon;
num_nl read=0;

SOURCE CODES:
DEBLOCK.C

30

31

index_tmp_buffer=0;
num_chars_of 80=0;
lastnon=0;
}
else if (num_nl_read < num_nl per_block)
&& (num_chars_of 80 <= 80))

for(pad_index=num_chars_of 80+1;
pad_index < =pad_limit;pad_index+ +)
tmpbuffer[index tmp buffer + +]=BLANK;
num_chars_of 80 = 0;

}
}
else if (c != NEWLINE)
tmpbuffer{index_tmp buffer] = c;
num_chars_of 80+ +;
if (c = BLANK)
lastnon=index_tmp_buffer;
index_tmp buffer+ +;
}
return(total_chars_written);
}
greet()
{

printf("\nSYNTAX: DEBLOCK INFILE OUTFILE RECORD-LENGTH-OF-
MAINFRAME-FILE "),

}
figure(num)
int num;
{
int x=0;
while ((x * 80) < num)
X+ +;
return(x);
}

SOURCE CODES:
DEBLOCK.C

fast line
D "

IBM 4341

SNA thWAY

MICROVAX

» sERvIR

NOLEDINNCO 13INHIWLI

VAX/VMS |
Csa3

1BM / VAX GATEWAY PHYSICAL CONNECTIONS 1/18/89

ad rosentnal

