< .

" rfrcrer

- .ﬁ| |

LBNL-42261

ERNEST ORLANDDO LAWRENCE
BERKELEY NATIONAL LABORATORY

Parallelization of
ITOUGH2 Using PVYM

Stefan Finsterle

Earth Sciences Division

RECEIVED
MAR 18 199
OSTI

October 1998

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain
correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor
any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof, or
The Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof, or The Regents of the
University of California.

Emest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

LBNL-42261

Parallelization of ITOUGH?2
Using PVM

Stefan Finsterle

Earth Sciences Division
Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720

October 1998

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of
Geothermal Technologies, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.

ABSTRACT

ITOUGH?2 inversions are computationally intensive because the forward problem must
be solved many times to evaluate the objective function for different parameter combinations
or to numerically calculate sensitivity coefficients. Most of these forward runs are
independent from each other and can therefore be performed in parallel. Message passing
based on the Parallel Virtual Machine (PVM) system has been implemented into ITOUGH2
to enable parallel processing of ITOUGH?2 jobs on a heterogeneous network of Unix
workstations. This report describes the PVM system and its implementation into TTOUGH2.
Instructions are given for installing PVM, compiling ITOUGH2-PVM for use on a
workstation cluster, the preparation of an ITOUGH2 input file under PVM, and the execution
of an ITOUGH2-PVM application. Examples are discussed, demonstrating the use of
ITOUGH2-PVM.

ITOUGH2-PVM i ABSTRACT

TABLE OF CONTENTS

1. INTRODUCTION ...ttt it it ittt e teenaannas 1
2. ITOUGH2-PVM PARALLELIZATIONCONCEPTSt 2
2.1 GeneralRemarkst 2
2.2 Parallelization of the Levenberg-Marquardt Algorithm 3
2.3 Parallelization of the Gauss-Newton Algorithm 4
2.4 Parallelization of the Simplex Algorithm 4
2.5 Parallelizationof GridSearch 4
2.6 Parallelization of First-Order-Second-Moment and Sensitivity Analyses 5
2.7 Parallelization of Monte Carlo Simulations et 5
2.8 SUMMAIY . - .t ittt it ittt ittt st eeteeneaaneaannannenns 6
3. INSTALLATION . .. i it et ettt et iiaaeanns 7
3.1 Introductionttt e i e e 7
3.2 Installing PVM . ..o e e e 7
3.3 Installing ITOUGH2-PVM ittt iiiiiinen. 8
4. USINGITOUGHZ2-PVM i e i et i i 9
4.1 TTOUGH2-PVM Command >>> PVMcuiienninneennenn 9
4.2 Running ITOUGH2-PVM ittt 10
5. EXAMPLESttt e e e 11
I B O 1 o (O 11
5.2 Example 1: Parameter Estimation o.. 12
5.3 Example2:GridSearch it itiennennnnn. 16
5.4 Example 2: Monte Carlo Simulations 21
6. TROUBLESHOOTING i i i it 23
ACKNOWLEDGMENT i ettt e et aanns 26
REFERENCES it ettt e et ettt 26
APPENDIX A: SHELL SCRIPT itough2c.ciiitiirienneanns 27
APPENDIX B: ITOUGH2-PVM ARCHITECTUREo un. 31

TTOUGH2-PVM ii TABLE OF CONTENTS

LIST OF FIGURES

Figure 5.2.1. Excerpt from modified ITOUGH2 input file sam2p3i.
Figure 5.2.2. Screen dump of messages from [ITOUGH2-PVM. 12
Figure 5.2.3. Excerpt from ITOUGH2 output file sam2p31i.out;

spawning of child processes. i, 13
Figure 5.2.4. Excerpt from ITOUGH2 output file sam2p3i.out;summary. 13
Figure 5.2.5. Excerpt from modified ITOUGH2 input file sam2p31i;twohosts.... 14
Figure 5.2.6. Excerpt from ITOUGH?2 output file sam2p3i.out, showing

information about first Levenberg-Marquardtstep. 14
Figure 5.2.7. Excerpt from ITOUGH2 message file sam2p31i.msg, showing
: information about data exchange between processes. 15
Figure 5.3.1. Excerpt from modified ITOUGH2 input file sam2p2i........... 16
Figure 5.3.2. Excerpt from ITOUGH2 output file sam2p21i.out, showing sorted

grid search output and load balance. 18
Figure 5.3.3. Excerpt from modified ITOUGH?2 input file sam2p2i, showing

multiple processes being spawned onthe same host. 19
Figure 5.3.4. Excerpt from ITOUGH2 output file sam2p2i.out, showing

number of TOUGH?2 runs performed by each process. 19
Figure 5.3.5. Excerpt from modified ITOUGH?2 input file sam2p2i; unsorted

gridsearch. L L e e 20
Figure 5.3.6. Excerpt from ITOUGH2 output file sam2p2i.out, showing

unsorted grid search output and load balance. 20
Figure 5.4.1. Excerpt from modified [ITOUGH?2 input file samlp6i........... 21
Figure 5.4.2. Excerpt from ITOUGH?2 output file samlp6i.out,

showingloadbalance. i 22
Figure 6.1. Potential [TOUGH2-PVM error messages. . .«c..covvu... 24
Figure 6.2. Unsuccessful spawning of ITOUGH2-PVMtasks.. 24
Figure A.1. Excerpt from shell script file itough2. 27
Figure B.1. Simplified ITOUGH2-PVM flowchart. 32
LIST OF TABLES
Table 2.8.1. Summary of ParallelizationConceptso i 6
Table 5.1.1. Computer Architectures in the Workstation Cluster 11
ITOUGH2-PVM iii TLIST OF FIGURES/TABLES

1. INTRODUCTION

Message passing based on the Parallel Virtual Machine (PVM) system has been
implemented into ITOUGH2 to enable parallel processing of ITOUGH2 jobs on a
heterogeneous network of Unix workstations. ITOUGH2 is a program for parameter
estimation, sensitivity analysis, and uncertainty propagation analysis [Finsterle, 1997a,b].
ITOUGH2 is based on the TOUGH2 simulator for nonisothermal multiphase flow in porous
and fractured media [Pruess, 1987, 1991]. PVM [Geist et al., 1994] is a freely available
software library that enables a collection of heterogeneous computers to be used as a
concurrent computational resource.

ITOUGH2 inversions are computationally intensive because the forward problem—the
prediction of state variables using the TOUGH2 simulator—must be solved many times to
evaluate the objective function for different parameter combinations or to numerically
calculate sensitivity coefficients. Most of these forward runs are independent from each other
and can therefore be performed in parallel. ITOUGH2-PVM is based on the parent-child
model, in which the parent process initializes the problem, and disseminates specific
information—the individual parameter vectors—to a number of child processes. The child
processes then perform one full TOUGH?2 simulation, returning the results—the elements of -
the residual vector—back to the parent task for further processing. This type of
parallelization on a high level without interaction among the child processes is termed
“embarrassingly parallel” [Geist et al., 1994], and has been implemented into ITOUGH2 for
improving the efficiency of inversions using the Levenberg-Marquardt, Gauss-Newton,
Downhill Simplex, and Grid Search minimization algorithms. Furthermore, the calculation
of the coefficients for sensitivity analyses, as well as uncertainty propagation analyses using
first-order-second-moment (FOSM) and Monte Carlo simulations, have been parallelized.
Minimization based on the method of Simulated Annealing is not parallelized.

This report describes the PVM system and its implementation into ITOUGH?2.
Instructions are given for installing PVM, compiling ITOUGH2-PVM for use on a
workstation cluster, the preparation of an ITOUGH2 input file under PVM, and the execution
of an ITOUGH2-PVM application. Examples are discussed, demonstrating the use of
ITOUGH2-PVM.

Running an ITOUGH2 job in parallel requires the following steps:

* Installation of PVM on all the potential host machines;

* Compilation of ITOUGH2-PVM and linking to PVM library routines;

* Providing a list of PVM hosts in the ITOUGH?2 input file (command >>> PVM);

* Running ITOUGH2-PVM using the shell script itough2 with argument -pvm.

We will describe these steps in detail, after discussing the concept of parallelization for
each of the ITOUGH?2 applications outlined above.

ITOUGH2-PVM 1 INTRODUCTION

2. ITOUGH2-PVM PARALLELIZATION CONCEPTS

2.1 General Remarks

The main task of ITOUGH2 is to initiate multiple TOUGH2 simulations with different
parameter sets, and to analyze each of the corresponding model outputs at selected calibration
points. A new, improved parameter set is then proposed following a certain strategy, which
is specific to the chosen minimization method. Some of these forward runs are independent
from one another, which makes it possible to run them in parallel on separate processors.
Since obtaining the forward solutions consumes the bulk of the CPU time used in an
ITOUGH2 inversion, with only a few percent of the time spent in the optimization routines,
processing individual TOUGH2 runs in parallel has the potential of significantly reducing the
turn-around time of an ITOUGH?2 inversion.

The degree to which an ITOUGH2 job can be parallelized, and the maximum attainable
efficiency depends on the minimization algorithm chosen, the number of parameters to be
estimated, and the number of processors available for parallelization. Since PVM enables
distributed computing on a heterogeneous network of Unix workstations, the relative speed
of the machines in the cluster also affects the efficiency. Again, depending on the method
used and the number of processors available, a machine with a slow response time may be
the limiting factor, severely hampering the overall performance, or it may merely lead to a
slightly suboptimal execution of the job without greatly affecting the efficiency. Note that the
response time of a particular machine in the cluster does not solely depend on the speed of its
CPU, but also on the machine’s workload and the parameter set it happens to receive from
the parent process. '

Also depending on the ITOUGH?2 application, there is a maximum number of processes,
Mpyocs» ONE Can reasonably run in parallel. This number is usually identical to the number of
parameters to be estimated, n. The actual number of processors available for parallel
computing is denoted by n,,,.;. Even if there are more parameters to be estimated than
processors available, it may not necessarily be advantageous to engage all available
processors, i.e., fewer processors may lead to an equivalent performance because the extra
processors would be idle, waiting for another processor to finish its task. Finally, a
significantly slower processor in a network has a relatively small impact on the overall
performance if the number of processors available is small compared with the maximum
number of processors one could potentially use.

While these rules are only approximate and usually difficult to apply because of the
unknown workload on a given machine, it is nevertheless necessary for the user to
understand which tasks are parallelized in a given ITOUGH2-PVM application. This will be
discussed in the following sections.

ITOUGH2-PVM 2

2.2 Parallelization of the Levenberg-Marquardt Algorithm

The Levenberg-Marquardt minimization algorithm is a gradient-based method that
requires evaluating sensitivity coefficients with respect to each parameter to be estimated. In
ITOUGH2, the sensitivity coefficients are calculated using the following forward finite
difference quotient:

dzy _apsp;+ 9p;)—z(p)

= op; p;

(2.2.1)

Here, z; is the calculated system response at calibration point i, i=1,...,m, and p is the
parameter vector of length n. The evaluation of the Jacobian J thus requires n+1
TOUGH2 simulations: one run is used to obtain the elements z;(p), followed by » additional
runs, each providing one column of the Jacobian matrix. In each run, one of the parameters
is perturbed by a small amount 6pj. These n runs with the perturbed parameter sets are
independent and are thus parallelized in ITOUGH2-PVM. The maximum number of
processors to participate in this calculation is therefore n. The initial forward run is not
performed in parallel.

Once the Jacobian is evaluated, the Levenberg-Marquardt algorithm proposes an update
vector Ap, which depends on the Levenberg parameter 4 as follows:

1
ap=(1'C,1+aD) JCgr 2.2.2)

Here, D is an nXn diagonal matrix with elements D; = (JTC;;J) In the original
ITOUGH2 implementation, if the step Ap is successful (i.e., the objective function is
reduced), the Levenberg parameter A is reduced by the Marquardt parameter v, and a new
Jacobian matrix (2.2.1) is evaluated; if the step is not successful (i.e., led to an increase in
the objective function), 4 is increased by v, and a new parameter vector p o p +Ap
is calculated using (2.2.2), until a successful step is obtained. Instead of evaluating the
objective function in sequence with either increasing or decreasing A values, a set Of 7,
forward runs are initiated simultaneously with various A values, and the simulation yielding
the lowest objective function is identified. If this run constitutes a successful step,
optimization continues; if it is an unsuccessful step, another n,,,.; runs are performed with
A=AV, i=1,. ->Mprocs» Where A is the Levenberg parameter that yielded the lowest
value of the objective function in the previous set of runs. The process is repeated until a
successful step can be taken or one of the convergence criteria is met.

As discussed above, the Levenberg-Marquardt minimization algorithm runs in parallel for
two separate calculations, (1) the evaluation of the Jacobian matrix, and (2) for trying
parameter steps with different Levenberg parameters. The latter is equivalent to performing a
limited search for the minimum along the line of endpoints of possible Levenberg-Marquardt
steps with various values for 4 (see Eq. 2.2.2) at each iteration. This may further improve
the performance of the algorithm. However, it changes the solution path compared with that

ITOUGH2-PVM 3 » CONCEPT

taken by standard, non-parallelized ITOUGH2. Parallelization can be restricted to the
evaluation of the Jacobian matrix by using keyword JACOBIAN on the command line (see
Section 4.1), leading to results which are consistent with the standard ITOUGH?2 solution.

The parallel evaluation of the Jacobian has to be completed first, before multiple step
vectors can be tested. This means that some processors may be idle until all columns of the
Jacobian are evaluated. In other words, the number of processors n,,,., should be selected
such that all processors are busy. For example, if mp,,,=n=8 and 7 processors of
equivalent speed and work load are available, only n,,,., =4 should be selected to avoid 6
processors being idle for 50% of the time during the calculation of the Jacobian.

2.3 Parallelization of the Gauss-Newton Algorithm

Parallelization of the Gauss-Newton minimization algorithm is similar to that of the
Levenberg-Marquardt method described in the previous section. The only difference is that
no test runs with varying Levenberg parameters are performed, i.e., only the evaluation of
the Jacobian matrix using forward finite differences needs to be parallelized. (Parallelization
of centered finite differences available in standard ITOUGH2 requires storing additional,
large arrays, and is therefore not supported by ITOUGH2-PVM.)

2.4 Parallelization of the Simplex Algorithm

Only certain calculations performed by the simplex algorithm are suitable for
parallelization. They include the evaluation of n vertices of the initial simplex, the n+1
simulations performed during overall contraction, and the final calculation of the sensitivity
matrix for the error analysis. The initial run as well as function evaluations performed during
reflection, expansion, and one-dimensional contraction of the simplex are not parallelized,
limiting the overall increase in efficiency attainable.

2.5 Parallelization of Grid Search

The evaluation of the objective function on a large number of points in the parameter
space is well suited for parallelization. In ITOUGH2, the output of the grid search method is
a sorted list of parameter sets and the corresponding value of the objective function. The
sorting requires that results from parallel TOUGH2 simulations are only accepted in the exact
same order as they have been submitted. This may affect the efficiency if one of the
processors is slower than the others. However, sorting of the ITOUGH2 grid search output
could also be done in a post-processing step, in which case a new parameter set is submitted
for evaluation as soon as a processor becomes available, increasing efficiency.

ITOUGH2-FPVM 4

By default, the ITOUGH2 output will be sorted. To allow unsorted output with higher
efficiency, keyword UNSORTED must be added to the >>> GRID SEARCH command
line

2.6 Parallelization of First-Order-Second-Moment and Sensitivity Analyses

First-order-second-moment (FOSM) uncertainty propagation analyses and simple
sensitivity analyses require a single evaluation of the Jacobian matrix (see Equation 2.2.1)
using forward finite differences. (Centered finite differences available in standard ITOUGH?2
are not supported by ITOUGH2-PVM.) Similar to the parallelization of the first step in the
Levenberg-Marquardt algorithm (see Section 2.2), the initial run is performed on the parent
processor. The parent processor then broadcasts the result of the base-case run to all
available child processors, and up to n additional TOUGH2 runs are performed in parallel,
each supplying one column of the Jacobian matrix.

2.7 Parallelization of Monte Carlo Simulations

A large number of Monte Carlo simulations with randomly generated parameter sets can
be run in parallel. The parent process performs the first run, broadcasts the results of the
base-case run to all child processors, and initiates new runs with random parameter sets
whenever one of the child processors has finished its task. The number of usable processors
is only limited by the total number of Monte Carlo simulations required, making this type of
uncertainty propagation analysis most suitable for parallelization.

ITOUGH2-PVM 5 CONCEPT

2.8 Summary
Table 2.8.1 provides a quick reference to help a user understand the aspects of a

calculation that are being parallelized, to select the number of processors to be added to the
cluster, and to estimate the expected efficiency.

Table 2.8.1. Summary of Parallelization Concepts

Method Calculation Calculation Not ~ Comment
Parallelized Parallelized
Levenberg-Marquardt Jacobian First run Centered finite differences
' Testing steps with not supported.
different As Mprocs =1
Gauss-Newton Jacobian First run Centered finite differences
not supported.
mprocs =n
Simplex Algorithm Initial simplex First run Mprocs =1
Overall contraction Reflection
Final Jacobian Expansion
1D-contraction
Grid Search All runs - Use keyword UNSORTED
for higher efficiency.

Mprocs = Pryns

Sensitivity Analyses Jacobian First run Centered finite differences
not supported.
Mprocs =N
First-Order-Second- Jacobian First run Centered finite differences
Moment uncertainty not supported.
propagation analysis Mprocs =N
Monte Carlo All runs but first ~ First run Mprocs = My

ITOUGH2-PVM 6 ' CONCEPT

3. INSTALLATION

3.1 Introduction

PVM must be installed on all machines of the workstation cluster, and an ITOUGH2-
PVM executable must be built on each machine, properly linked to the routines of the PVM
library. PVM may already be available on a machine (type printenv PVM_ROOT to
locate PVM), or must be installed according to the instructions given in Section 3.2.
ITOUGH2-PVM must be compiled and linked using command make pvm on any
machine, following the instructions given in Section 3.3. If the code is redimensioned or
changed, it must be recompiled on all machines.

3.2 Installing PVM

This section gives short instructions for obtaining and installing PVM on a Unix
workstation. For details, the reader is referred to Geist et al. [1994].

PVM can currently be obtained by anonymous ftp to netlib2.cs.utk.edu. File
index indirectory pvm3 describes the files that can be downloaded. The PVM software
can also be requested by sending e-mail to netlib@ornl.gov with the message: send
index from pvm3.

After the PVM distribution is unpacked according to the instructions in file index, a
directory called pvm3 is created, preferably in the $HOME directory. Two environment
variables must be defined, most conveniently in the .cshrc file (assuming the C-Shell is
used). The first variable is PVM_ROOT, which is set to the location of the installed pvm3
directory, for example:

setenv PVM_ROOT $HOME/pvm3

- The second variable is PVM_ARCH, which tells PVM the architecture of the host. Valid
PVM_ARCH names are given in Table 5.1.1 on page 11 and Table 3.1 of Geist et al. [1994],
or can be automatically determined by appending the contents of file $PVM_ROOT/1ib/
cshre.stub tofile .cshrc. The stub must be placed after variables PATH and
PVM_ROOT are defined. Type source .cshrc toinvoke the changes.

PVM is automatically built by going to directory $PVM_ROOQOT and typing make. The
makefile will compile and build pvm, pvmd3, libpvm3.a, libfpvm3.a, and
libgpvm3 . a, and place them in a subdirectory $PVM_ROOT/1lib/$PVM_ARCH.

Next, all the hosts one wishes to use must be listed in file .rhosts. Furthermore, a
host file $HOME/ .xpvm_hosts should be created, listing all the hosts, prepended by an
“&”. Login name and password are expected to be identical on all hosts. Otherwise,
additional host file options must be given as described in Section 3.8 of Geist ef al. [1994].

ITOUGH2-PVM 7 INSTALLATION

PVM is started by typing pvm, which should give back a PVM console prompt pvm>.
Alternatively, type pvmd & to start the pvmd3 daemon. The virtual machine could be
configured from the console. However, ITOUGH2-PVM will automatically add the hosts
defined in the ITOUGH2 input file (see Section 4.1), so the PVM console can be exited
immediately by typing quit, leaving daemons and PVM jobs running. In order to shut
down PVM, type pvm again followed by halt. Note that PVM needs only be started on
the machine where the parent process of ITOUGH2 will be executed. PVM must not be
running on the other hosts, i.e., nofile /tmp/pvmd.<uid> should exist on these hosts.

PVM error messages are printed to the screen and to the log file /tmp/pvml.<uid>.
Check Section 6 and Section 3.5 of Geist et al. [1994] for troubleshooting of common
startup problems.

3.3 Installing ITOUGH2-PVM

File pvm.£f contains the subroutines that link the ITOUGH2 application to the PVM
library. To run ITOUGH2-PVM on a single workstation, where PVM is not available or not .
needed, file pvmdummy.f must be used instead of pwvm.f; it provides dummy
subroutines to satisfy all external references.

The ITOUGH2-PVM executable must be built in directory $HOME/itough2 by typ-
ing make pvm. The target “pvm” makes sure that file pvm.o is added to the list of files
to be compiled (see variable OBJPVM in file Makefile for the complete list of object
files; customize it if necessary, e.g., add specific modules such as t2voc.o or ifs.o).
Furthermore, the path to the PVM include files and PVM libraries are provided. The two
environment variables PVM_ROOT and PVM_ARCH discussed in Section 3.2 are used to
specify the directories that contain the PVM include files and the PVM libraries, respectively,
using the -I and -L options (see variables CPVM and LPVM infile Makefile):

-I$ (PVM_ROOT) /include
-L$ (PVM_ROOT) /1ib/$ (PVM_ARCH)

Since FORTRAN interfaces to PVM are implemented as library stubs that in turn invoke
the corresponding C routines, ITOUGH2-PVM must be linked to two archival libraries,
namely the FORTRAN stubs library libfpvm.a as well as the C library 1ibpvm3.a.
Additional libraries may be required depending on the machine’s architecture. The libraries
are linked using the -1 option. For example, a multiprocessor Sun SPARC station
(PVM_ARCH=SUNMP), which uses shared memory, needs the following libraries:

-1lfpvm3 -lpvm3 -1lnsl -lsocket -lthread

Most architectures require only the first two archival libraries. Customize variable CPVM
in file $HOME/itough2/Makefile accordingly. If successfully built, the resulting

ITOUGH?2 executable can be used for both standard ITOUGH2 applications or applications
that make use of PVM.

ITOUGH2-PVM 8 INSTALLATION

4. USING ITOUGH2-PVM
4.1 ITOUGH2-PVM Command >>> PVM
The hosts used for a given ITOUGH2-PVM application are defined in the ITOUGH2

input file using third-level command >>> PVM, which is a subcommand of commands
>> OPTIONS and > COMPUTATION. The command syntax is as follows:

‘Command

>>> PVM: nhosts (JACOBIAN/SLEEP: isleep)
HOST1PVM hostname_1

HOST2PVM hostname_2

HOSTnhostsPVM hostname_nhosts

Parent Command
>> OPTION

Subcommand

Description

The number of hosts nhosts is provided on the command line, followed by nhosts
lines containing the keyword *HOSTiPVM (i=l,...,nhosts) and the name of the host.
The wild card * must be a unique identifier if more than one ITOUGH2-PVM applications
are run simultaneously. The name of the host must be identical to that appended to the file
name of the ITOUGH2 executable on that specific machine. A host (especially a
multiprocessor machine) may be named several times in the list of hosts. The parent process
must not be included in the list. However, a child process may be spawned on the parent
host. If the Levenberg-Marquardt algorithm is used, parallelization can be restricted to the
evaluation of the Jacobian matrix (see Section 2.2) by using keyword JACOBIAN on the
command line. The parent process can be suspended for isleep seconds each time it
checks for incoming residuals (default: isleep =1).

Example
> COMPUTATION
>> OPTION
>>> use LEVENBERG-MARQUARDT minimization algorithm
>>> PVM: 5 processors (parallelize JACOBIAN only, SLEEP for : 1 sec)
HOST1PVM presto.lbl.gov
HOST2PVM hydra.lbl.gov
HOST3PVM hydra.lbl.gov
HOST4PVM aqua.eth.edu
HOSTS5PVM telos
<<<
<<

ITOUGH2-PVM 9 USING ITOUGH2-PVM

4.2 Running ITOUGH2-PVM

An ITOUGH2-PVM application is started by using argument -pvm of the Unix shell
script itough2 (see Appendix A), for example:

itough2 -pvm sampvmi sampvm 3

The process must not be executed in the background, i.e., the command line must not
end with symbol &. As aconsequence, commands prista and kit must be submitted
from a separate window to control the application.

If necessary, an ITOUGH2-PVM process should always be kKilled using command kit,
i.e., not by typing ctrl-C, which would only kill the itough2 script, leaving the
ITOUGH2-PVM applications running on all hosts.

Argument -no_delete can be used to prevent the deletion of the temporary
directories on all hosts after completion of a run; argument -pvm must precede argument
-no_delete.

On all hosts, the ITOUGH2-PVM executable must have been built in directory
SHOME/itough2,i.e., option -v cannot be used in combination with -pwvm.

The itough2 argument -pvm triggers to following actions:

* A standard ITOUGH?2 application is set up by creating a temporary directory
SHOME/it2_<pid> on the parent host. All input files are copied to the temporary
directory.

» The ITOUGH2 input file is parsed by the itough2 script, extracting the number of
hosts, the keywords *HOSTiPVM (see Section 4.1), and the corresponding hostnames.

* A temporary directory named it2_*HOSTiPVM is created on each host.
* The home directory name of the specific host is appended to file itough2.fil.

» All files in the parent host’s temporary directory are copied to the temporary directory on
the child host, including adjusted file itough2.fil.

¢ The filename itough2_*HOSTiPVM is linked to the ITOUGH?2 executable on each
host.

* The parent process is started. It reads the TTOUGH?2 input file and spawns the child
processes. The parent process controls the application. Program flow is different for the
parent process and the child processes (see Appendix B). All child processes are stopped
by the parent process after completion of the run.

* Output files from the parent process are copied back from the temporary directory to the
working directory. '

* The temporary directories on all hosts are deleted unless an error occurred or option
-no_delete isused.

ITOUGH2-PVM 10 USING ITOUGH2-PVM

5. EXAMPLES

5.1 Overview

The examples discussed in the following sections are taken from the collection of
ITOUGH2 sample problems described in Finsterle [1997b]. They have been slightly
modified to allow parallel processing using ITOUGH2-PVM. Focusing on aspects related to
the performance of ITOUGH2-PVM, we will not give any interpretation of forward or
inverse modeling results.

Example 1 (Section 5.2) is an introductory problem that demonstrates the use of
ITOUGH2-PVM for parameter estimation based on the Levenberg-Marquardt algorithm.
Two inversions are performed, the first with only the evaluation of the Jacobian being paral-
lelized, and the second with full parallelization. Example 2 (Section 5.3) shows the
- differences in performance for the grid search method depending on whether the output list is
sorted or unsorted. Finally, Example 3 (Section 5.4) discusses parallelization of Monte
Carlo simulations on a multiprocessor machine.

Table 5.1.1 contains a list of the Unix workstations used for running the sample
problems. Their relative speed as indicated in the last column was measured by running a
typical ITOUGH?2 application on a single processor, and normalizing the speed to the slowest
machine in the cluster. Recall that it is not the CPU time but the turnaround time of a
TOUGH?2 forward run that determines the effectiveness of a specific workstation in the
cluster.

Table 5.1.1. Computer Architectures in the Workstation Cluster

Host Architecture PVM_ARCH Relative
Operating System Speed
scully.lbl.gov DEC Alpha, DEC OSF-1 ALPHA 16.3
yuc.lbl.gov Silicon Graphics, IRIX SGI 15.6
hermes.lbl.gov DEC Alpha, DEC OSF-1 ALPHA 11.0
hydra.lbl.gov Sun SPARC multiprocessor, Solaris ~ SUNMP 10.3
presto.lbl.gov Sun 4, SPARCstation, Solaris SUN4SOL2 6.9
kungfu.lbl.gov DEC Alpha, DEC OSF-1 ALPHA 3.9
itelos.1bl.gov IBM/RS6000, AIX 3.2 RS6K 3.8
killeen.nersc.gov CRAY multiprocessor, UNICOS CRAY 2.3
ifs.]bl.gov Sun 4, SPARCstation, SunOS SUN4 1.0

ITOUGH2-PVM 11 EXAMPLE

5.2 Example 1: Parameter Estimation

The first example consists of running in parallel Problem 2, Part 3 described in Finsterle
[1997b]. Eight parameters are estimated using the Levenberg-Marquardt algorithm; only the
evaluation of the Jacobian matrix will be parallelized. The parent process is run on an
IBM/RS6000 (itelos.lbl.gov), and four hosts are added, two DEC Alphas (hermes.lbl.gov
and scully.lbl.gov), a Sun 4 SPARCstation (presto.lbl.gov), and a Sun SPARC multipro-
cessor (hydra.lbl.gov). Block >>>PVM of the ITOUGH?2 input file is shown in Figure
5.2.1. Figure 5.2.2 shows a screen dump from itelos.lbl.gov with the command line and
messages printed during the execution of ITOUGH2-PVM.

> COMPUTATION
>> OPTION .
>>> PVM : 4 hosts (parallelize JACOBIAN only, don’t SLEEP: 0)
HOST1PVM hermes.lbl.gov
HOST2PVM scully.lbl.gov
HOST3PVM hydra.lbl.gov
HOST4PVM presto.lbl.gov
<<<
<<
<

Figure 5.2.1. Excerpt from modified ITOUGH?2 input file sam2p3i.

itough2 -pvm sam2p3i sam2 3

B B T L I R
+ ITOUGH2 started: -pvm sam2p3i sam2 3
B s S b o e

PVM: Number of hosts: 4 hosts (parallelize JACOBIAN only)

PVM: Creating temporary directory it2_HOST1PVM on host hermes.lbl.gov.
PVM: Creating temporary directory it2_HOST2PVM on host scully.lbl.gov.
PVM: Creating temporary directory it2_HOST3PVM on host hydra.lbl.gov.
PVM: Creating temporary directory it2 HOST4PVM on host presto.lbl.gov.

PVM: Running ITOUGHZ2 in parallel.

PVM: Removing temporary directory it2_HOST1PVM on host hermes.lbl.gov
PVM: Removing temporary directory it2_HOST2PVM on host scully.lbl.gov
PVM: Removing temporary directory it2_HOST3PVM on host hydra.lbl.gov

PVM: Removing temporary directory it2_HOST4PVM on host presto.lbl.gov

B T T = R R S

+ ITOUGH2 terminated: -pvm sam2p3i sam?2 3
o N o TR S A

Figure 5.2.2. Screen dump of messages from ITOUGH2-PVM.

ITOUGH2-PVM 12

Figure 5.2.3 shows excerpts from the ITOUGH2 output file sam2p3i.out. All pro-
cesses on the four hosts were successfully spawned by the parent process, and a task identi-
fier (TID) was assigned. File it2_HOSTi/itough2_ HOSTiPVM was successfully
linked to the executable in directory $HOME/itough2 of the respective host. A warning
message indicates that the forward instead of the centered finite-difference quotient will be
used for calculating the Jacobian.

Convergence is reached after 8 iterations, after a total of 73 TOUGH2 runs have been
performed. The work load was almost equally distributed among the four host processors
(see Figure 5.2.4), each performing two forward runs per Jacobian evaluation. The parent
processor was solving the forward problem 9 times, namely the initial run plus 8 runs to test
the proposed Levenberg-Marquardt step. The parent CPU time for this run was 58 sec as
compared to 336 sec if the inversion were performed on itelos.Ibl.gov without parallelization.
Note that the parent processor is the slowest of all machines in the cluster. Solving the
inverse problem on scully.lbl.gov without parallelization requires 86 CPU sec.

e PVM e e e e e e e e e e e e e ————————_———
Task TID Host Executable

1 524290 hermes.lbl.gov it2_HOST1l/itough2_HOST1PVM

2 786434 scully.lbl.gov it2_HOST2/itough2_HOST2PVM

3 1048578 hydra.lbl.gov it2_HOST3/itough2_HOST3PVM

4 1310722 presto.lbl.gov it2_HOST4/itough2_HOST4PVM
Parent TID ' T 262147
Number of processes spawned : 4
Parent process suspended for : - 0 sec.

* %k k Kk WARNING * %k k kR
* Centered Finite Differences not supported by PVM!
* dkk k k WARNING *khkkKk*k

Figure 5.2.3. Excerpt from ITOUGH?2 output file sam2p3i.out; spawning of child

Processes.
e PUM m oo e e e —————————
Runs TID Host Executable
16 524290 hermes.lbl.gov it2_HOST1/itough2_HOST1PVM
16 786434 scully.lbl.gov it2_HOST2/itough2_HOST2PVM
17 1048578 hydra.lbl.gov it2_HOST3/itough2_HOST3PVM
15 1310722 presto.lbl.gov it2_HOST4/itough2_HOST4PVM
9 262147 Master Suspended for 0 sec.

Figure 5.2.4. Excerpt from ITOUGH?2 output file sam2p3i.out; summary.

 ITOUGH2-PVM 13 EXAMPLE

The problem was slightly modified by reducing the number of hosts to two, and allowing
ITOUGH2-PVM to parallelize both the evaluation of the Jacobian and the testing of parame-
ter updates with different Levenberg parameters. The pertinent block in the TTOUGH2 input
file is shown in Figure 5.2.5.

> COMPUTATION
>> OPTION
>>> PVM using : 2 hosts
HOST1PVM hermes.lbl.gov
HOST2PVM scully.lbl.gov
<<<
<<
<

Figure 5.2.5. Excerpt from modified ITOUGH?2 input file sam2p31i; two hosts.

Figure 5.2.6. shows an excerpt from the ITOUGH2 output file sam2p3i.out with
information about the first iteration. The gradient is calculated from the Jacobian matrix,
which is evaluated in parallel on the two child processors. Next, two parameter steps are
calculated (Equation 2.2.2) with two values of the Levenberg parameter (4;=0.01 and
A,=0.001). Each step is of different length and orientation, and is checked against
constraints such as maximum step size. The two test parameter sets are then evaluated in
parallel on the child processors, and the one leading to the smaller value of the objective
function (here A;) is accepted as the new parameter set.

ITER TOUGH2 OBJ FUNC. MAX. RESID. EQU. ABS. K GEYS1+8 KLINK GEYS1+8 POROSITY GEYS1+ INIT. 1 TOPB1
INIT. 1 TOPB2 INIT. 1 TOPB3 Leakage Inlet 2 Leakage Inlet 3
>I 0 1 .13217E+07 .26491E+05 122 ~.190000E+02 .700000E+01 .150000E-01 .500000E+06
.170000E+0Q7 .300000E+07 -.120000E+02 -.120000E+02
J 1 Gradient = .10910E+08 (forward)
MS Parameter No. 3: POROSITY GEYSl+ Step = ~-.391743E-01 exceeds max. step size = -.200000E-01
Ms Parameter No. 7: Leakage Inlet 2 Step = .772640E+01 exceeds max. step size = .250000E+00
MS Parameter No. 8: Leakage Inlet 3 Step = .758835E+01 exceeds max. step size = .250000E+00
s Step size = .25285E+06 Scaled step size = .138004E+01 Levenberg parameter = ,10E-01
BL Lower bound hit by parameter No. 3: POROSITY GEYS1+ Lower bound = .500000E-02
MS Parameter No. 3: POROSITY GEYSi+ Step = -.652284E-01 exceeds max. step size = -.200000E-01
MS Parameter No. 7: Leakage Inlet 2 Step = .831053E+01 exceeds max. step size = .250000E+00
MS Parameter No. 8: Leakage Inlet 3 Step = .794512E+01 exceeds max. step size = .250000E+00
S Step size = .33789E+06 Scaled step size = .141143E+01 Levenberg parameter = .10E-02
BL Lower bound hit by parameter No. 3: POROSITY GEYS1+ Lower bound = .500000E-02
PUM Testing with Levenberg Parameter = ,10E-02 on Processor No. 2, Objective Function = .13263E+07
PVUM Testing with Levenberg Parameter = .10E-01 on Processor No. 1, Objective Punction = .73459E+06
Minimum objective function obtained with Levenberg parameter: .10E-01
PU Parameter update: -.861718E+00 .113737E+00 -.100000E-01 ~.172266E+06
~-.663148E+05 - -.172805E+06 .250000E+00 .250000E+00
>I 1 13 .73828E+06 .14051E+05 139 ~.198574E+02 .711374E+01 .500000E-02 .327734E+06
.163363E+07 .282719E+07 -.117500E+02 ~.117500E+02

Figure 5.2.6. Excerpt from ITOUGH2 output file sam2p31i.out, showing information
about first Levenberg-Marquardt step.

ITOUGH2-PVM 14 EXAMPLE

Message file sam2p3i.msg contains some information about the exchange of data
between the parent and child processes. An excerpt is shown in Figure 5.2.7. The parent
process (TID = 262168) sends the first and second parameter sets along with some iteration
parameters to the two child processes. Note that the base-case parameter set was previously
evaluated by the parent process, so that the first child process (TID = 524302) receives the
parameter set with the first parameter being perturbed, whereas the second child process (TID
= 786446) performs a TOUGH2 simulation with the second parameter being perturbed. In
this case, the first child process finished its task first, returning the residual vector to the
parent process, which immediately sends out a new parameter set (with the third parameter
being perturbed) to the first child process. Similar statements are printed on the hosts to
report the receiving of parameter sets and sending of residual vectors. These message files
could have been retrieved from the hosts’ temporary directories if option -no_delete
were used. '

—— PVM —_—
TID = 262168 sent message No. 1 to TID = 524302 on Fri Sep 11 15:15
Data sent: NTOUGHC= 1

NITER = O

IJAC = 1

M = 198

N = 8

X(1..N)= ~-.18996E+02 .70000E+01 .15000E-01 .50000E+06
.17000E+07 .30000E+07 -.12000E+02 -.12000E+02 -

P— Pm —_—
TID = 262168 sent message No. 2 to TID = 786446 on Fri Sep 11 15:15
Data sent: NTOUGHC= 2

NITER = 0
IJAC = 1
M = 198
N = 8
X(1..N)= -.19000E+02 .70043E+01 .15000E-01 .50000E+06
.17000E+07 .30000E+07 -.12000E+02 -.12000E+02
| —— PVM ——-
TID = 262168 received message No. 1 on Fri Sep 11 15:15
Data received: M = 198
R(l..4)= -.74197E+05 -.22276E+04 .16135E+05 -.77206E+04
F(l..4)= -.74197E+02 -.22276E+01 .16135E+02 -.77206E+01
—_— Pm —_

TID = 262168 sent message No. 3 to TID = 524302 on Fri Sep 11 15:15
Data sent: NTOUGHC= 3

NITER = O

IJAC = 1

M = 198

N = 8

X(1..N)= -.19000E+02 .70000E+01 .15150E-01 .50000E+06
.17000E+07 .30000E+07 -.12000E+02 -.12000E+02

Figure 5.2.7. Excerpt from ITOUGH2 message file sam2p3i.msg, showing
information about data exchange between processes.

ITOUGH2-PVM 15 ' EXAMPLE

The results of this inversion are slightly different from those obtained in the previous run
because a different solution path was taken as a result of parallelization. Convergence was
actually achieved after 7 iterations, and 10 unsuccessful steps (with 20 different values for
A) were taken before the inversion was terminated. These additional unsuccessful steps in
fact increased the total number of TOUGH?2 simulations from 73 to 96. Nevertheless, the
inversion was completed in 44 CPU seconds, shorter than the previous run, simply because
all forward runs (except one) were performed on the significantly faster child processors.

Example 1 demonstrates that the performance of ITOUGH2-PVM depends on many
factors such as the relative speed of the computers in the cluster, the choice of the parent
processor and its load, and the parallelization option selected, which may affect the solution
path taken by the Levenberg-Marquardt algorithm.

5.3 Example 2: Grid Search

Evaluating the objective function on a regular grid in the parameter space provides
complete information about the topology of the solution. However, the procedure is
computationally expensive and becomes prohibitive if the number of parameters is large. In
practice, grid search is limited to the analysis of three or fewer parameters.

The individual grid points of the uniformly discretized parameter space can be evaluated
in parallel (Section 2.5). However, if the processors in the cluster vary considerably in
speed, the performance of parallel processing may deteriorate as will be demonstrated in the
first part of this section. Two solutions to the performance problem will also be discussed.

We perform a three-dimensional grid search for Problem 2, Part 2 described in Finsterle
[1997b]. A range was specified for each of the three parameters defined in block
> PARAMETER, bounding the parameter space. Each axis in the parameter space is
subdivided into 4 intervals, requiring a total of 5x5x5=125 TOUGH2 simulations. The
virtual machine consists of the parent processor and three child processors, as shown in

Figure 5.3.1. Note that ifs.lbl.gov is about 16 times slower than scully.lbl.gov (see Table
5.1.1)

> COMPUTATION

>> OPTIONS
>>> GRID SEARCH: 4 4 4 intervals, output SORTED
>>> PVM: 3

HOST1PVM scully.lbl.gov
HOST2PVM hermes.lbl.gov
HOST3PVM ifs.lbl.gov
<<<
<<

Figure 5.3.1. Excerpt from modified ITOUGH2 input file sam2p2i.

ITOUGH2-PVM 16

By default, the output will be sorted (see Figure 5.3.2), requiring that the simulation
results are accepted by the parent process in exactly the same order as the corresponding
parameter sets have been submitted to the child processors. This means that the two faster
machines are idle most of the time, waiting for ifs.Ibl.gov to complete its run. As shown in
Figure 5.3.2, each child processor has received the same number of tasks, independent of
their relative speed. While the grid search problem was solved in about one third of the time
the slowest processor would have needed, it is obvious that running the task on the fastest
machine without parallelization would have given a much better performance.

One solution to this problem is to force [ITOUGH2-PVM to submit more parameter sets
to the faster processors according to their relative speeds, keeping them equally busy. Figure
5.3.3 shows the corresponding >>> PVM block. In order not to overload the faster
machines, only 8 processes are started on scully.lbl.gov, 5 on hermes.lbl.gov, and one on
ifs.Ibl.gov. The result is shown in Figure 5.3.4. As expected, each spawned process
carried out the same number of forward runs. However, the total number of TOUGH2
solutions calculated by the fast machine scully.lbl.gov is 72 as compared to 42 in the
previous case (see Figure 5.3.2), whereas only 8 runs were performed on the slow
ifs.Ibl.gov as opposed to 41 before. While improving the performance by about a factor of
five, running the problem on scully.lbl.gov alone would still be slightly faster!
Parallelization is only advantageous in this case if the number of processes initiated on the
three machines were in the ratio of 16:10:1. Note that this example was specially designed to
demonstrate a rather extreme case. However, it may reflect the situation encountered on a
highly heterogeneous network. It is also important to realize that this poor performance is a
result of the sorted grid search algorithm chosen in this example. The other methods
discussed in Section 2 exhibit fewer restrictions, i.e., the slowest machine may not be the
factor limiting the performance.

This last point is illustrated in the final part of this example, where the output of the grid
search is allowed to be unsorted. Adding keyword UNSORTED to the line with the
command >>> GRID SEARCH (see Figure 5.3.5) allows the slowest machine to make its
(minor) contribution to the overall task. More importantly, it does not inhibit the perfor-
mance of the other two hosts. The grid search output shown in Figure 5.3.6 is unsorted.
The first parameter set was submitted for evaluation by scully.lbl.gov. However, the result
obtained with the second parameter set calculated by hermes.lbl.gov was returned sooner,
and the first objective function calculated by ifs.lbl.gov is reported on the tenth line. It
becomes obvious that the work load of scully.lbl.gov was relatively high at the time of this
simulation; it completed fewer runs than hermes.Ibl.gov, and only about 10 times as many as
the slow ifs.lbl.gov. This reminds us that it is not the speed of the CPU as tabulated in Table
5.1.1 that determines the overall performance, but the work load of each processor spawned
by ITOUGH2-PVM.

The transfer rate of data on the network may also affect the performance especially in
these examples, where each TOUGH2 simulation requires only a few CPU seconds. Since
only few data are exchanged between the parent process and its children, the impact of the
network on the overall performance decreases as the size of the application increases.

ITOUGH2-PVM 17 EXAMPLE

EVALUATE OBJECTIVE FUNCTION

PARAMETER RANGE SUBDIVISIONS
ABS. K GEYS1+8 -0.20000E+02 <~> ~-0.19000E+02 4
KLINK GEYS1+8 0.60000E+01 <—> 0.70000E+01 . 4
POROSITY GEYS1l+ 0.50000E-02 <-> 0.10000E+0Q0 4

TOTAL NUMBER OF FUNCTION EVALUATIONS: 125

ABS. K GEYS1+8
~0.2000000E+02

KLINK GEYS1+8 POROSITY GEYSl+ OBJECTIVE FUNC

0.6000000E+01

.5000000E-02

0.2442981E+06

0

-0.1975000E+02 0.6000000E+01 0.5000000E-02 0.3665462E+06
-0.1950000E+02 0.6000000E+01 0.5000000E-02 0.5213457E+06
~-0.1925000E+02 0.6000000E+01 0.5000000E-02 0.7119997E+06
~-0.1900000E+02 0.6000000E+01 0.5000000E-02 0.9369772E+06
-0.2000000E+02 0.6250000E+01 0.5000000E-02 0.2253501E+06
-0.1975000E+02 0.6250000E+01 0.5000000E~02 0.3542300E+06
-0.1950000E+02 0.6250000E+01 0.5000000E-02 = 0.5261435E+06
-0.1925000E+02 0.6250000E+01 0.5000000E-02 0.7389479E+06
-0.1900000E+02 0.6250000E+01 0.5000000E-02 0.9833694E+06
-0.2000000E+02 0.6500000E+01 0.5000000E-02 0.2105522E+06
-0.1975000E+02 0.6500000E+01 0.5000000E-02 0.3564799E+06
-0.1950000E+02 0.6500000E+01 0.5000000E-02 0.5519890E+06
-0.1925000E+02 0.6500000E+01 0.5000000E-02 0.7863536E+06
-0.1900000E+02 0.6500000E+01 0.5000000E-02 0.1046639E+07
-0.2000000E+02 0.6750000E+01 0.5000000E-02 0.2110985E+06
-0.1975000E+02 0.6750000E+01 0.5000000E-02 0.3814090E+06
-0.1950000E+02 0.6750000E+01 0.5000000E-02 0.5997934E+06
-0.1925000E+02 0.6750000E+01 0.5000000E-02 0.8511938E+06
-0.1900000E+02 0.6750000E+01 0.5000000E-02 0.1122943E+07
-0.2000000E+02 0.7000000E+01 0.5000000E~02 0.2352778E+06
-0.1975000E+02 0.7000000E+01 0.5000000E-02 0.4292179E+06
-0.1950000E+02 0.7000000E+01 0.5000000E-02 0.6653426E+06
-0.1925000E+02 0.7000000E+01 0.5000000E-02 0.9287278E+06
-0.1900000E+02 0.7000000E+01 0.5000000E-02 0.1208063E+07
~0.2000000E+02 0.6000000E+01 0.2875000E-01 0.2430781E+06
-0.1975000E+02 0.6000000E+01 0.2875000E-01 0.3744522E+06
~0.1925000E+02 0.6750000E+01 0.1000000E+00 0.1188086E+07
-0.1900000E+02 0.6750000E+01 0.1000000E+00 0.1487237E+07
~0.2000000E+02 0.7000000E+01 0.1000000E+00 0.4704075E+06
-0.1975000E+02 0.7000000E+01 0.1000000E+00 0.7061561E+06
-0.1950000E+02 0.7000000E+01 0.1000000E+00 0.9799752E+06
~0.1925000E+02 0.7000000E+01 0.1000000E+00 0.1276334E+07
-0.1900000E+02 0.7000000E+01 0.1000000E+00 0.1581797E+07

Terminated normally.

—_——— P‘M - _———— [—— - ——

Runs TID Host Executable

42 524297 scully.lbl.gov
42 1048587 hermes.lbl.gov
41 786443 ifs.1bl.gov

0 262159 Master

it2_HOST1PVM/itough2_ HOST1PVM
it2_HOST2PVM/itough2 HOST2PVM
it2_HOST3PVM/itough2_HOST3IPVM
Suspended for 0 sec.

Figure 5.3.2. Excerpt from ITOUGH?2 output file sam2p2i.out, showing sorted grid
search output and load balance.

ITOUGH2-PVM 18 EXAMPLE

> COMPUTATION

>> OPTIONS ‘
>>> GRID SEARCH: 4 4 4 intervals, output SORTED
>>> PVM: 14
HOST1PVM scully.lbl.gov
HOST2PVM scully.lbl.gov
HOST3PVM scully.lbl.gov
HOST4PVM scully.lbl.gov
HOST5PVM scully.lbl.gov
HOST6PVM scully.lbl.gov
HOST7PVM scully.1lbl.gov
HOST8PVM scully.lbl.gov
HOST9PVM hermes.lbl.gov
HOST10PVM hermes.lbl.gov
HOST11PVM hermes.lbl.gov
HOST12PVM hermes.lbl.gov
HOST13PVM hermes.lbl.gov
HOST14PVM ifs.lbl.gov
<<<
<<

Figure 5.3.3. Excerpt from modified ITOUGH2 input file sam2p2i, showing multiple
processes being spawned on the same host.

——— P\]M ___
Runs TID Host Executable
9 524298 scully.lbl.gov it2_ HOST1PVM/itough2_ HOST1PVM
9 524299 scully.lbl.gov it2_HOST2PVM/itough2_ HOST2PVM
9 524300 scully.lbl.gov i1t2_HOST3PVM/itough2_ HOST3PVM
9 524301 scully.lbl.gov it2_HOST4PVM/itough2_ HOST4PVM
9 524302 scully.lbl.gov it2_HOSTS5PVM/itough2_ HOSTSPVM
9 524303 scully.lbl.gov it2_HOST6PVM/itough2_HOST6PVM
9 524304 scully.lbl.gov it2_HOST7PVM/itough2_HOST7PVM
9 524305 scully.lbl.gov it2_HOST8PVM/itough2_ HOST8PVM
9 1048588 hermes.lbl.gov it2_HOST9PVM/itough2_ HOSTIPVM
9 1048589 hermes.lbl.gov it2_HOST10PVM/itough2_HOST10PVM
9 1048590 hermes.lbl.gov it2_HOST11PVM/itough2_ HOST11PVM
9 1048591 hermes.lbl.gov it2_HOST12PVM/itough2_HOST12PVM
9 1048592 hermes.lbl.gov it2_HOST13PVM/itough2_HOST13PVM
8 786444 ifs.lbl.gov . it2_HOST14PVM/itough2_ HOST14PVM
0 262160 Master Suspended for 0 sec.

Figure 5.3.4. Excerpt from ITOUGH2 output file sam2p2i.out, showing number of
TOUGH2 runs performed by each process.

TTOUGH2-PVM 19 i EXAMPLE

> COMPUTATION

>> QPTIONS
>>> GRID SEARCH: 4 4 4 intervals, output UNSORTED
>>> PVM: 3

HOST1PVM scully.lbl.gov
HOST2PVM hermes.lbl.gov
HOST3PVM ifs.lbl.gov
<<<
<<

Figure 5.3.5. Excerpt from modified ITOUGH?2 input file sam2p2i; unsorted grid
search. :

EVALUATE OBJECTIVE FUNCTION

PARAMETER RANGE SUBDIVISIONS
ABS. K GEYS1+8 -0.20000E+02 <-> -0.19000E+02 4
KLINK GEYS1+8 0.60000E+01 <-> 0.70000E+01 4
POROSITY GEYS1l+ 0.50000E-02 <-> 0.10000E+(00 4

TOTAL NUMBER OF FUNCTION EVALUATIONS: 125

ABS. K GEYS1+8 KLINK GEYS1+8 POROSITY GEYSl+ OBJECTIVE FUNC

-0.1975000E+02 0.60000Q0E+01 0.5000000E-02 0.3665462E+06
-0.2000000E+02 0.6000000E+01 0.5000000E-02 0.2442981E+06
-0.1925000E+02 0.6000000E+01 0.5000000E~02 0.7119997E+06
-0.1900000E+02 Q.6000000E+01 0.5000000E-02 0.9369772E+06
-0.2000000E+02 0.6250000E+01 0.5000000E-02 0.2253501E+06
-0.1975000E+02 0.6250000E+01 0.5000000E-02 0.3542300E+06
-0.1925000E+02 0.6250000E+01 0.5000000E-02 0.738%479E+06
~-0.1900000E+02 0.6250000E+01 0.5000000E-02 0.9833694E+06
-0.2000000E+02 0.6500000E+01 0.5000000E-02 0.2105522E+06
-0.1950000E+02 0.6250000E+01 0.5000000E-02 0.5261435E+06
-0.1975000E+02 0.6500000E+01 0.5000000E-02 0.3564799E+06
-0.1950000E+02 0.6500000E+01 0.5000000E-02 0.5519890E+06
~0.1925000E+02 0.6500000E+01 0.5000000E-02 0.7863536E+06
-0.1200000E+02 0.6500000E+01 0.5000000E-02 0.1046639E+07
-0.2000000E+02 0.6750000E+01 0.5000000E-02 0.2110985E+06
-0.1975000E+02 0.6750000E+01 0.5000000E-02 0.3814090E+06
-0.195C000E+02 0.6000000E+01 0.5000000E~02 0.5213457E+06
-0.1950000E+02 0.6750000E+01 0.5000000E~-02 0.5997934E+06
-0.1925000E+02 0.6750000E+01 0.5000000E-02 0.8511938E+06
————— m . e e e e e e e ————
Runs TID Host Executable

57 524296 scully.lbl.gov
62 1048586 hermes.lbl.gov
6 786442 ifs.lbl.gov

0 262158 Master

it2_HOST1PVM/itough2_HOST1PVM
it2 HOST2PVM/itough2 HOST2PVM
it2_HOST3PVM/itough2_ HOST3PVM
Suspended for 0 sec.

Figure 5.3.6. Excerpt from ITOUGH?2 output file sam2p2i.out, showing unsorted
grid search output and load balance.

ITOUGH2-FVM

5.4 Example 3: Monte Carlo Simulations

ITOUGH2-PVM can also be installed on a multiprocessor machine such as the Cray J90
killeen.nersc.gov. No effort has been made to optimize the performance of ITOUGH2 on
this vector machine, or to take advantage of its built-in parallelization capabilities. Problem 1
Part 6 described in Finsterle [1997b] was selected to demonstrate the use of ITOUGH2-PVM
for Monte Carlo simulations on a single multiprocessor machine. Figure 5.4.1 shows block
> PVM from the modified [TOUGH2 input file samlp6i. Only 8 of 32 available
processors were used because the priority is automatically reduced if too many processors are
occupied by the same user. The same host name is listed eight times. Recall that eight
different temporary subdirectories will be created on the host (see Section 4.2), avoiding
potential file conflicts. Note that additional processors on different machines could have been
added.

> COMPUTATION
>> OPTION
>>> Use: 8 PVM processors on Cray J90, parent SPEEP for : 1 second
HOST1PVM killeen.nersc.gov
HOST2PVM killeen.nersc.gov
HOST3PVM killeen.nersc.gov
HOSTAPVM killeen.nersc.gov
HOST5PVM killeen.nersc.gov
HOST6PVM killeen.nersc.gov
HOST7PVM killeen.nersc.gov
HOST8PVM killeen.nersc.gov
<<
<<

Figure 5.4.1. Excerpt from modified ITOUGH2 input file samlp6i.

The initial run with the mean parameter set is performed by the parent process, which is
just another process running on killeen.nersc.gov. After completion, the resulting mean
system behavior, which is information needed by the child processes, is broadcast to all eight
of them, and the first eight forward runs with random parameter sets are initiated. As soon
as a run is completed, the next random parameter set is calculated and submitted to the free
processor, i.e., all eight child processes are constantly and simultaneously performing
simulations. As shown in Figure 5.4.2, the 100 requested Monte Carlo simulations are
almost uniformly distributed over the eight child processes; the parent process performed
only one (the first) forward run, sent and received data, and conducted the final statistical
analysis. The task was completed in 16% of the time needed if the analysis were performed
using only one processor.

Note that Monte Carlo simulations and unsorted grid search do not require the good load
balance seen in this example. Good load balance is crucial for sorted grid search (see Section
5.3, Part 1), and is important for parallelization of the Levenberg-Marquardt algorithm, .

ITOUGH2-PVM 21 . EXAMPLE

especially if the number of parallel processes approaches the number of parameters to be
estimated. :

——— PUM e [e e

Rung TID Host Executable
13 262147 killeen it2_HOST1PVM/itough2 HOST1PVM
13 262148 killeen it2_HOST2PVM/itough2_ HOST2PVM
12 262149 killeen it2 HOST3PVM/itough2_ HOST3PVM
13 262150 killeen it2_HOST4PVM/itough2_ HOST4PVM
12 262151 killeen it2_HOST5PVM/itough2. HOSTSPVM
13 262152 killeen it2_HOST6PVM/itough2_HOST6PVM
12 262153 killeen 1t2_ HOST7PVM/itough2_ HOST7PVM
11 262154 killeen it2 HOST8PVM/itough2 HOSTSPVM

1 262146 Master Suspended for 145 sec.

Figure 5.4.2. Excerpt from ITOUGH2 output file samlp6i.out, showing load
balance.

In this and most other examples, the parent process performs only one forward run.
After the initial run is completed, it spends most of its time in a loop, continuously checking
whether a residual vector from one of the child processes has arrived. When a residual
vector is received, the parent process performs a few minor calculations, prepares the next
parameter set, sends it out, and resumes its waiting position. Since it is not waiting for a
particular child process or a particular message ID, the parent process is constantly checking
for messages, thus using CPU time. With keyword SLEEP on the command line (see
Section 4.1), the execution of the parent process can be suspended for a certain amount of
time whenever it rechecks all the child processes for messages. This saves CPU time on the
parent process, which could be utilized, for example, by another child process spawned on
the parent host itself. A sleeping time of one second is reasonable. For most large
ITOUGH2-PVM applications, it is recommended that keyword SLEEP be used, providing
the possibility of running a child process on the parent machine.

ITOUGH2-PVM 22 EXAMPLE

6. TROUBLESHOOTING

Successful use of ITOUGH2-PVM requires experience with running standard ITOUGH?2
applications, good understanding of the concepts described in Section 2 of this report, and
some knowledge of the Unix operating system. It is also important to understand the
itough2 shell script as outlined in Section 4.2 and Appendix A

This section attempts to summarize common problems encountered by users when
installing and running ITOUGH2-PVM, and offers some guidelines to fix them. It also
explains some of the error messages potentially generated by the code.

Installing PVM)

Follow the instructions in Section 3.2, and consult Geist et al. [1994] for additional
troubleshooting. Make sure that the environment variables PVM_ROOT and PVM_ARCH
are set correctly. A FORTRAN77 and C compiler are required.

Starting PVM

Start PVM by either entering the PVM console or starting the pvmd daemon using,
respectively, the scripts pvm or pvmd; the scripts are located in directory
$PVM_ROOT/1ib, which must be added to the search path. The pvind writes error
messages to a log file named /tmp/pvml.<uid>, where <uid> is a numeric user
identifier. PVM cannot be started if the socket address file /tmp/pvmd.<uid> exists
from a previous run that was killed with an uncatchable signal. This file must be removed
before another pvmd will start.

Installing ITOUGH2-PVM

To install ITOUGH2-PVM, type make pvm (see Section 3.3). If include file
fpvm3.h cannot be found during compilation, check variable CPVM in file
$SHOME/itough2/Makefile, or copy file fpvm3.h from directory
$PVM_ROOT/include todirectory $HOME/itough2. If the PVM library routines are
not found during linking, check variable LPVM in file $HOME/itough2/Makefile.
Make sure that the environment variables PVM_ROOT and PVM_ARCH are set correctly.

Running ITOUGH2-PVM

ITOUGH2-PVM is started using the script itough2 with argument -pvm. Messages
similar to those shown in Figure 5.2.2 should be printed to the screen. ITOUGH2-PVM
stalls if it is run in the background. Kill the process, clean up, and restart without “&” at the
end of the command line.

If error messages from commands rcp or rsh appear on the screen, check for
correct hostnames and keywords HOSTiPVM in the ITOUGH?2 input file, as well as for
permissions on the corresponding host. You must have the same login name and password
on all hosts. The host should be registered in files /etc/hosts and $HOME/.rhosts.

ITOUGH2-PVM 23 TROUBLESHOOTING

After completion of the ITOUGH?2-PVM run, check for error messages in the ITOUGH2
output file, the ITOUGH2 message file, or file /tmp/pvml.<uid>. You may use
command options -pvm -no_delete to prevent removal of the temporary directories on
all the hosts. Check for additional error messages in the corresponding files on each host.

The set of error messages shown in Figure 6.1 are related to improper installation of
PVM or ITOUGH2-PVM on the parent host, as well as wrong command usage; the
messages and remedies are self-explanatory.

The result of initiating child processes is reported in the ITOUGH2 output file (see Figure
5.3.2). An example of unsuccessfully spawned tasks is shown in Figure 6.2.

* Kk k k% ERROR * Kk ok k
* No PVM routines from file pvm.f found. Recompile; type 'make pvm'.
%k k kK ERROR * kkxx

*kkkk ERROR * k kkk

* pvmd not responding!

* Start PVM before running ITOUGH2. Type 'pvm' followed by ‘quit'.
* ok k Kk ERROR * %k %k Kk k

* k% k% ERROR % Kk k Kk k

* ITOUGH2 would run locally on a single processor. .

* Use argument '-pvm' on itough2 command line.

* Check for correct installation of PVM and ITOUGH2-PVM on all hosts.
k%k RERROR ***%*

* %k %k %k ERROR * Kk Kk k*k

* PVM: Task TID 1310724 stopped.
* All PVM tasks stopped!

%* % Kk ok %k ERROR * ok kkk

Figure 6.1. Potential ITOUGH2-PVM error messages.

~m— PVM —mmm e e e e e e e e e
Task TID Host Executable
ERROR -6 kungfu.lbl.gov it2_HOST1PVM/itough2_ HOST1PVM

1 524292 kungfu it2_HOST2PVM/itough2_ HOST2PVM

2 786436 scully.lbl.gov 1t2_HOST3PVM/itoughZ2_HOST3PVM
ERROR -6 hermes.lbl.gov it2_HOST4PVM/itough2_HOST4PVM
ERROR -7 itelos it2_HOSTS5PVM/itough2_HOSTHPVM
Parent TID : 262150
Number of processes spawned : 2

Figure 6.2. Unsuccessful spawning of ITOUGH2-PVM tasks.

ITOUGH2-PVM 24 ; TROUBLESHOOTING

There are various reasons for an erroneous initiation of child processes. The parent
pvmmd may fail to add a host and start the child pvind if:

¢ PVM is not properly installed on that host (check installation of PVM);

* The parent pvmd cannot resolve the host name to an IP address (check files
/etc/hosts and $SHOME/.rhosts);

* A daemon pvind is already running on the host (stop PVM on all hosts except the parent
host by typing pvm followed by halt).

* The pvmd executable and shell script pvmd is not installed in the correct location (set
environment variable PVM_DPATH on the parent hostto pvm3/1ib/pvmd);

* Something is printed in the .cshrc or equivalent script file.(move printing statement to
file .login; see also Section 9.2.5 of Geist et al. [1994]).

Other reasons for an error message as shown in Figure 6.2 are related to ITOUGH?2.
Make sure that the programs $HOME/itough2/itough2_<eos>.<hostname> exist
and are executable on all hosts. Here, <eos> is the number of the equation-of-state
module used, and <hostname> is the name of the host as printed when typing
hostname, which may or may not include the domainname. For example, since the
domainname is not included when typing hostname on host kungfu.lbl.gov, the executable
was not found if kungfu.lbl.gov was given as the hostname; the task was successfully
spawned when using hostname kungfu.

Note that if any of the child processes is stopped during an application for any reason,
ITOUGH2-PVM terminates (see last error message in Figure 6.1).

ITOUGH2-PVM , 25 TROUBLESHOOTING

ACKNOWLEDGMENT

This work was supported by the Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of Geothermal Technologies, of the U.S. Department of Energy,
under Contract No. DE-AC03-76SF00098. I would like to thank R. Hinkins for introducing
me to parallel computing. The review comments by C. Doughty, C. Oldenburg and A.
Mishra are gratefully acknowledged. Thanks to D. Hawkes for his editorial comments.

REFERENCES

Finsterle, S., ITOUGH2 Command Reference, Version 3.1, Report LBNL-40401,
Lawrence Berkeley National Laboratory, Berkeley, Calif., 1997a.

Finsterle, S., ITOUGH?2 Sample Problems, Report LBNL-40402, Lawrence Berkeley
National Laboratory, Berkeley, Calif., 1997b.

Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM:
Parallel Virtual Machine—A User’s Guide and Tutorial for Networked Parallel
Computing, MIT Press, Cambridge, 1994.

(This book can currently be viewed over the Internet at the following URL:
http://www.netlib.org/pvm3/book/pvm-book.html

A PostScript file can be retrieved from the anonymous ftp server
netlib2.cs.utk.eduy, directory pvm3/book, file pvm-book.ps)

Pruess, K., TOUGH User's Guide, Report NUREG/CR-4645, Nuclear Regulatory
Commission (also Report LBL-20700, Lawrence Berkeley Laboratory, Berkeley,
Calif.), 1987.

Pruess, K., TOUGH2—A General-Purpose Numerical Simulator for Multiphase Fluid and
Heat Flow, Report LBL.-29400, Lawrence Berkeley Laboratory, Berkeley, Calif.,
1991.

ITOUGH2-PVM 26

APPENDIX A: SHELL SCRIPT ITOUGH2

Figure A.1 shows an excerpt from the Unix shell script file itough?2, which is used to
start both standard ITOUGH2 applications as well as ITOUGH2-PVM. Type itough2
without any arguments to obtain the command usage.

The itough2 script and the ITOUGH2 FORTRAN77 code are interrelated.
Corrupting either one may prevent ITOUGH2-PVM from running. The steps performed by
the itough?2 script are described in general terms in Section 4.2; see also comments in
Figure A.1. ‘

#! /bin/sh

.

FHESFE AR RS EER S S R E S R E HE
Shell script to run ITOUGHZ (Finsterle, June 1998)

Copy this file to your SHOME/bin directory.

Set variable prog_dir (see line 22).

Make sure that directory $HOME/bin is in your search path.

Type "chmod a+x itough2" to make itough2 an executable command.

inv_file
dir_file
ieos

ITOUGH2 input file
TOUGH2 input file
Number of EOS module being used

Options: (see below)

#
#
#
#
#
#
Syntax: itough2 [options] inv_file dir_file ieos ¥
#
#
#
#
#
#
$HEHHFFHRASEFEEFF R R R R R

Provide here the path to the itough2 executable

Sk e o o OE o 3E R ko 3k 3k R 3k dF dF 9k 3k

prog_dir=$HOME/itough2
Provide here the path to the main temporary directory
#
tmp_dir=SHOME
HHHFHHA R FF S EH SRS EE R E R R R R R R R S AR R
#
At least three arguments must be given
#
arguments=$*
echo " "
echo ++++++++++++++++++
echo + ITOUGH2 started: $arguments
echo ++++++++++++++++++
if test $# -1t 3
then (prints command usage)
exit 1
fi

(initializes variables; checks command arguments; sets pvm=yes for option -pvm)

Figure A.1. Excerpt from shell script file itough2.

ITOUGH2-PVM 27 APPENDIX A

program=$8progdir/itough2_$arg3. hostname”

if test ! -s "$program®
then

exit 1
fi
tmp_dir=$tmp_dir/it2_s$$
datum="date"
ori_dir="pwd’

#
mkdir Stmp_dir
cd Stmp_dir

tmp_dir="pwd"

inv_fil="echo $argl|awk -F.
dir_fil="echo $arg2|awk -F.
if test $inv_out = S$default
then inv_out=$inv_fil.out
fi

if test $dir_out = $default
then dir_out=$dir_£fil.out
fi

if test $sav_out = Sdefault
then sav_out=$dir_fil.sav
fi

{prints error message)

create temporary directory on parent host

'{ print $1 }'°
"{ print $1 }'°

> $inv_fil.msg 2>&1

(creates file itough2.msg)

write input file names into file itough.£fil
#
echo Sargl > itough2.fil
echo Sarg2 >> itough2.fil
echo $ori_dir >> itough2.fil
echo $datum >> itough2.fil
echo $Sarguments >> itough2.fil
echo $0 >> itough2.fil
echo $tmp_dir >> itough2.fil
#
copy ITOUGH2 and TOUGH2 input files to temporary directory
#

cp Sori_dir/sargl
cp Sori_dir/Sarg?2

if test $run = yes
then
cd $Sori_dir

cp ‘grep -i FILE $inv_fil | awk -F:

(copies additional input files to temporary directory)

copy potential data files to temporary directory

"{print $2}°'

A\

| awk '{print $1}'" $tmp_dir >> $inv_fil.msg 2>&l

cd Stmp_dir
£i

Figure A.l. (cont.) Excerpt from shell script file itough2.

ITOUGH2-PVM

28

#
PWM
#
if test Spvm = yes -a $run = yes
then
#
parse input file to find number of hosts
#
nprocs="grep ">>>" $inv_£fil | grep PVM | awk -F: '{print $2}'°
ip=0
echo " "
echo "PVM: Number of hosts: S$nprocs"®
cp S$tmp_dir/itough2.fil $tmp dir/itough2.dum
while test *$ip" -1t "S$nprocs'
do parse input file to find hosts and directories
ip="expr $ip + 1°
hostpvm="HOST"S$ip"PVM"
remote_dir=it2_‘grep S$hostpvm $inv_fil | awk '{print $1}'°
host="grep -i $hostpvm $inv_fil | awk '{print $2}'"°
echo "PVM: Creating temporary directory S$remote_dir on host S$host.”

if test S$host = “hostname’ parent host and child host are identical; use cp

then :
mkdir $HOME/S$Sremote_dir create temporary directory
echo SHOME >> S$tmp_dir/itough2.fil add home directory name
cp Stmp_dir/itough2.fil S$HOME
cp Stmp_dir/* $HOME/Sremote_dir copy all files to temporary directory
In -f $program SHOME/Sremote_dir/itough2_$hostpvm create link
cp Stmp_dir/itough2.dum $tmp_dir/itough2.fil

else parent host and child host are not identical, use rcp
rsh Shost mkdir S$remote_dir create temporary directory
remote_home="rsh Shost pwd’ add home directory name to itough2.fil

echo S$remote_home >> $tmp_dir/itough2.fil
rcp $tmp_dir/itough2.£il Shost:)

rep Stmp_dir/* Shost:Sremote_dir copy all files to host
rsh S$host 1n -f itough2/itough2_S%arg3.S$host \\
Sremote_dir/itough2_S$hostpvm create link to executable
cp $tmp_dir/itough2.dum $tmp_dir/itough2.fil
fi
done
mv $tmp_dir/itough2.dum S$tmp_dir/itough2.fil
echo " *
echo "PVM: Running ITOUGH2 in parallel.™
fi
#
if test $run = yes
then S$program _ start ITOUGH2 on parent host
i#

(copies output files from local directory on parent host to working directory)

Figure A.l. (cont.) Excerpt from shell script file itough2.

ITOUGH2-PVM 29 APPENDIX A

(removes temporary files)

if test Sdelete = yes
then
nprocs="grep ">>>" $inv_fil | grep PVM | awk -F: '{print $2}'°
ip=0
if test S$pvm = yes
then
while test "$ip®" -1t "$nprocs"
do
ip="expr $ip + 1°
hostpvm="HOST" $ip" PVM"
remote_dir=it2_‘grep $hostpvm $inv_fil | awk '{print $1}'"
host="grep -i $hostpvm $inv_£fil | awk '{print $2}'"
if test $host = “hostname™ parent host and child host are identical; use rm

then
echo "PVM: Removing temporary directory S$remote_dir on host $HOME"
/bin/rm -r S$HOME/Sremote_dir remove temporary directory

/bin/rm itough2.fil
/bin/rm itough2.ver

else parent host and child host are not identical; use rsh
echo "PVM: Removing temporary directory $remote_dir on host Shost™"
rsh $host rm -r $remote_dir remove temporary directory on host

rsh $host rm itough2.fil
rsh Shost rm itough2.ver
fi
done
fi
cd ..
/bin/rm -r S$tmp_dir
else
echo "Temporary directory S$tmp_dir not removed!"
fi
echo
echo +++++++++++++++++++++
echo + ITOUGH2 terminated: Sarguments
echo +++++++tt+ttttt+tttt++
#
end of itough2 script file

Figure A.1. (cont.) Excerpt from shell script\ file itough2.

ITOUGH2-PVM 30

APPENDIX B: ITOUGH2-PVM ARCHITECTURE

Figure B.1 shows a simplified flow chart of ITOUGH2-PVM. The source codes for the
parent and child processes are identical. All PVM-related subroutines can be found in file
pvm. £.

ITOUGH2-PVM first enrolls itself into PVM, obtains its task identifier (TID), and
determines whether it is a parent process (IPVMMS=1) or a child process spawned by a
parent process (IPVMMS=2). The program flow differs depending on whether the task is a
parent or child process.

The parent process reads the standard TOUGH2 and ITOUGH?2 input files from the
temporary directory $HOME/it2_<pid>. The information provided in block >>> PVM
(see subroutine - PVMINPUT) is used to add hosts to the virtual machine and to spawn child
processes (see subroutine PVMINIT). Furthermore, it sends the name of temporary
directory it2_*HOSTiPVM to the corresponding child process. As soon as the directory
name is received by the child process, it starts reading the TOUGH2 and ITOUGH2 input
files, which were copied to the host’s temporary directory by the shell script itough2 (see
Section 4.2 and Appendix A). After reading of input is completed, the child process goes to
subroutine FCNLEV and waits for the arrival of data or parameter sets sent by the parent
process (see subroutine PVMRCVPAR). In the meantime, the parent process performs the
initial forward run with the base-case parameter set (except for grid search). If sensitivity
analyses, first-order-second-moment (FOSM) uncertainty propagation analyses, or Monte
Carlo simulations are performed, the results from the initial run are broadcast to all hosts.
No such step is required when performing optimization using the Levenberg-Marquardt,
Gauss-Newton, Downhill Simplex, or Grid Search method. After the initial run, the
parameter set is updated according to the procedure of the selected method. The updated
parameter set is sent to one of the child processes (see subroutine PVMSENPAR). The
procedure is repeated until all child processes are busy. The child processes perform one
TOUGH?2 forward calculation with the parameter set they have received from the parent
process. After completion of the run, they send the resulting residuals to the parent process
(see subroutine PVMSENRES) and go back to the top of subroutine FCNLEV, waiting for
the next parameter set to arrive. The parent process checks for incoming residual vectors (see
subroutine PVMRCVRES), and processes them according the method selected. If
convergence is achieved or one of the child process signals that it was stopped (see
subroutine PVMRCVRES), the parent process stops all child processes before it continues
with the error analysis in subroutine TERMINAT.

If PVM is not engaged, variable IPVMMS is set to zero, and ITOUGH2 runs in its
standard mode, skipping PVM-related steps. Looking for variable IPVMMS in files
it2main.f and it2xxxx.f leads to the code affected by PVM.

ITOUGH2-PVM 31 APPENDIX B

ITOUGH2 Main Program

'

Determine TID

Parent | Child

Read input files

Y

Add hosts _w|Receive temporary directory name

Spawn tasks / *

Send temporary directory name]

* Read input files
Perform initial run *
Send results from initial run 1 Receive results from initial run

Y '

Update parameter set

- Receive parameter sets
- Send parameter set —t |
Receiv iual Perform forward run
eceive residuals - .
I _Send residuals

Calculate objective function

Y

Stop child processes
Terminate

Figure B.1. Simplifiéd ITOUGH2-PVM flow chart.

ITOUGH2-PVM 32 APPENDIX B

