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Objectives

The objective of this project is to increase oil production and reservesin the Uinta
Basin by demonstrating improved completion techniques. Low productivity of Uinta
Basin wellsis caused by gross production intervals of several thousand feet that contain
perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals.
Geologic and engineering characterization and computer ssimulation of the Green River
and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities
related to fractures and depositional trends. Thiswill be followed by drilling and
recompletion of severa wellsto demonstrate improved completion techniques based on
the reservoir characterization. Transfer of the project results will be an ongoing
component of the project.

SUMMARY OF TECHNICAL PROGRESS

Characterization of Fracture Property Distributions

Introduction

Fractures control flow in areservoir to alarge extent. It isimportant to quantify
fracture property distributions, reservoir wide. Fracture frequency is one of the most
important properties. Distributions of fracture frequency depends on the stress
distributions and on rock types among other things. A novel approach based on
geostatistical principles was used to generate fracture density distributions. Fracture
density distributions were generated by using not only spatial distributions of fracture
frequency but aso by taking into account the dependence of frequency distributions on
rock types. The fracture frequency data generated using this approach was compared to
other stochastic approaches.

Fracture characterization methods

Fracture frequencies over a certain spatial domain have been generated using
severa different techniques. Some of the most common methods are the: (1) Monte
Carlo approach, (2) geostatistical approach, (3) fractal approach, and (4) process
imitating approaches. The first three approaches were based on statistical principles. The
generated networks were not conditioned to observed property values. Some of the
fracture networks are generated using information about stress fields. Reservoir-wide
stress distributions are difficult to measure. Most of these approaches have been used to
generate fracture networks in two dimensions though some have extended the application
to three dimensions. In al cases, extensive fracture characterization data was available.
Another feature of these methods is that the area of study was small (100 to 10,000 m?).

In petroleum reservoir engineering, the scale of study is often larger in comparison
to that used in generating networks using the first three approaches. Even after generation



of fracture networks, integration of the fracture propertiesin reservoir models will be
another practical challenge. Often times additional conditioning data are available which
can be used to fracture properties distributions. Detailed analysis of the core data from
the Bluebell field linked fracture frequency at different locations to rock types. This
dependence of fracture frequency on rock types was used as soft conditioning data when
generating frequency distributions over the entire study area. This was accomplished
using the Markov-Bayes method.
Markov - Bayes method: Simulation methods based on Gaussian models provide
estimates of the unknown values. On the other hand, indicator-based methods provide
probability density functions of different categories at alocation. These probabilistic
estimates can be improved by taking into account secondary or soft data. The integration
is performed through Bayes rule of conditiona probability.

Bayesrule states that if arandom variabley is being conditioned using the value of
another random variable x, the joint probability of (x,y) is proportional to the conditional
probability of y given the occurrence of x, p(y[x). From this proportionality we can write:

p(x,y) = p(y)p(Xly) = p(x) p(y|x) 1)

Equation 1 can aso be written as,

p(ylx) = RO @
p(x)
Equation 2 resultsin,
p(y[x) 1 p(x)p(x[y) ©)

Equation 3 is one form of the Bayes Theorem of conditional probability.

The cumulative distribution function (cdf) of y is known apriori. In addition, n
observations of a second variable x, (Xy,.....,Xn) are dso available. The probability
distribution of x is dependent on the unknown values of y. The conditional cdf of x based
ony isafunction of x for fixed y. With the likelihood principle, the conditiona cdf can be
considered afunction of y at fixed x. Bayes' Theorem says that the posterior cdf of y, p(y
| X), which takes into account all the known data, is proportional to the prior cdf of y, p(y)
multiplied by the likelihood function p(x | y). In other words:

Posterior cdf p (Prior cdf x likelihood function.) 4



The relationship above summarizes Bayesrule.

Soft conditioning using Bayes Theorem: Suppose sampling at a study site has resulted
in m values of primary variable (u) and n values of secondary variable (v). The unknown
values of u can be inferred from the posterior cdf of u. The posterior cdf is conditioned
to available data.

Prob{U(x) £ u|u,...., Un, V1, ...., Vi} (5)
The posterior cdf is obtained by applying Bayes Theorem as follows:
Prob{U(x) £ u| m+tn} puf{v|u} x Prob{U(X) £ u|uy,....,Un} (6)

The data values on u and v are used to calculate the likelihood function f {v | u}. Itis
assumed that u and v are independent of each other. Then the above product can be
converted to a summation:

Prob{U(x) £ u|(m +n)} =1

m
OF(U) + i

In the above equation i(x;,u) are the indicators defined at the m locations where the
primary variable is available.

i(x,u) =1,if U(x) £ u, =0if not (8)

Thefirst term on the right side of equation 7, F(u), is the globa expected vaue for
acategory. The first two terms on the right side of equation 7 give the prior cdf of u
based on the m primary variables. In the absence of the secondary variable, the posterior
cdf will be calculated based only on the primary variable and the procedure will reduce to
that of smple indicator kriging.

The third term on the right side of equation 7 gives the prior probability of ‘U’
conditioned to the secondary variable v.

y(Xx, U) = Prob {U(x) £ u|vy, ....., Vi} 9



The sum of the indicators conditioned to secondary variable is the likelihood function.
The m primary variables and n secondary variables are independent of each others. The
unbiasedness of the estimates is assured by assuming that the sum of all the weightsis 1.
Procedure for Markov Bayes simulations: |If data are available on a primary variable u
and secondary variable v then the procedure for generating conditional cdf’s using
Markov-Bayes smulationsis as follows.

1. Theprimary variable ‘U’ is converted into indicators defined at K different cutoffs,

i, w), k=1,.....K; I =1, ....,m.

Indicator variograms are calculated from all the available primary data for each cutoff.

The indicator variograms are used to cal culate the covariances for each cutoff.

The secondary variableis discretized in L different classes, vy, ....., VL.

The u and v datasets are used to calculate the secondary indicators y(x;, u). A

calibration scattergram of the primary values versus the secondary valuesis plotted.

For each class of the secondary variable, the scattergram values are used to calculate

the probability distributions. An example scattergram is shown in Fig. 1.

6. The primary and secondary variable data values are also used to calculate the
coefficients. These coefficients and the primary variable covariances are used to
calculate the covariances and cross covariances for the secondary variables
approximated by the Markov hypothesis.

7. Once al the covariances are available, the posterior cdf’ s are calculated using the
Bayesian updating formula defined in equation 7. A schematic of the procedureis
shownin Fig. 2.

abrown

The procedure described above does not depend on the distribution of the primary or
secondary variable. The secondary variable could be continuous or discrete. The primary
variable can be continuous like porosity values and the secondary variable can be discrete
like rock types.
The data set: The Markov-Bayes simulation technigque was used to generate fracture
density distributions for a study areain the Uinta Basin. Analyses were performed on
cores from 10 wellsin the Bluebell field. The well locations are given in Fig. 3. The study
area extends for 4.8 km in the east-west direction and for 1.6 km in the north-south
direction. Formation names and depths from which the cores were collected are shown in
Fig. 4. No information was available about the rock types. A total of 149 m of core were
available from all the wells. These cores were analyzed in terms of rock type
classification, porosity, permeability values, and fracture properties. Fracture orientations,
relative frequencies, and nature of the fracture (open, partially closed, closed) were noted.

Petrographic analysis of thin sections from the available cores has been described
by Wagner (1996). This anaysisidentified seven prominent rock types. The rock types
were asfollows. (1) shale, (2) mudstone, (3) siitstone (4) sandstone, (5) limy mudstone,
(6) packstone, and (7) wackestone. Of the seven rock types, sandstone and mudstone
were the most abundant.

The core samples were analyzed for fracture frequencies, which were classified
gualitatively into the following categories. (1) one to two, (2) occasiondl, (3) few, (4)
moderate, (5) frequent, and (6) very frequent.



Fracture analysis also indicated that the distributions of fracture frequencies varied
with the rock types. Figure 5 shows the fracture frequency distributions for seven
different rock types as reported by Wagner (1996). The cumulative frequency
distributions within each rock type for the six fracture frequency classes are compared in
the figure. Thisinformation was used to generate distributions of fracture frequency using
Markov-Bayes smulations. The primary variable was fracture frequency, while rock type
was the secondary variable.

The rock-type distributions were first generated using principles of indicator
kriging. The variation in fracture frequencies with rock type was used aong with the hard
frequency data when generating fracture-frequency distributions. The fracture frequencies
were conditioned to hard fracture frequency data and soft rock type data. The hard and
soft conditioning were performed by using Markov-Bayes principles described earlier.

For comparison purposes, two more approaches were used to generate frequency
distributions. As mentioned previoudly, Markov-Bayes simulations reduce to smple
indicator smulations in the absence of secondary data. The data on hard indicators were
used to generate frequency distributions by sequentia indicator smulations. These
distributions were conditioned to the observed frequency indicators. The third approach
used was sequential Gaussian smulations.

Comparison of fracture frequencies determined using the three approaches

The cumulative distribution functions (cdfs) of fracture frequencies for these three
approaches are compared with sample datain Table 1. Asshown from Table 1, the cdf’s
found using Markov-Bayes simulations come closest to reproducing sample data;
sequentia indicator simulations are next best. The cdf calculated using sequential
Gaussian simulations does not reproduce the data well.

The effect of soft conditioning on the fracture frequency distributions was aso
examined. Analysis of sample data had showed that the fracture-frequency distribution
varied with rock type. Asaresult, the cdf’s of frequency varied with rock type. Soft
indicators were calculated for fracture-frequency distributions generated using the three
methods. These indicators are compared with the soft indicators for the sample data for
sandstone and shale in Figs. 6 and 7. As can be seen from the figures, the cdf’ s for the
sequential Gaussian and sequential indicator simulations do not change with the rock type.
The cdf of each category is the same as the global cdf. The results for Markov-Bayes
simulations capture the trends of fracture frequency distributions for various rock types.
The trends in the frequency distributions are well captured through soft conditioning.

Effects of using fracture frequency distributions generated using the different
approaches on flow simulations will be discussed in the next quarterly report.



Table 1- Comparison of proportions of fracture frequency categories with sample data for

three approaches.
Sample Data Markov - Bayes | Seq. Gaussan | Seg.  Indicator
Simulations Simulations Simulations

Category 1 0.1576 0.1636 0.2163 0.1465
Category 2 0.2153 0.2163 0.2682 0.2036
Category 3 0.5333 0.5688 0.5242 0.5153
Category 4 0.7567 0.7277 0.7008 0.7771
Category 5 0.8270 0.8056 0.7571 0.8398
Category 6 1.0000 1.0000 1.0000 1.0000
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Figure 1. A scattergram and corresponding prior probability distribution function.
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Figure 2. A schematic diagram showing the steps involved during Markov-Bayes simulation procedure.
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Figure 4. Cross section showing the formation and depth of sampled cores.
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Figure 5. Fracture frequency distribution in different rock types.
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Figure 6. Comparisons of probability distribution functions for different fracture frequency

categories for shale.
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Figure 7. Comparisons of probability distribution functions for different fracture
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Technology Transfer

A poster was presented at the AAPG National Convention in Dallas Texas
highlighting the results of the first demonstration, the recompletion of the Michelle Ute
well (Morgan, 1997).

The Utah Geological Survey maintains a Bluebell home page on its web site
containing the following information: (1) a description of the project, (2) alist of project
participants, (3) each of the Quarterly Technical Progress Reports, (4) a description of
planned field demonstration work, (5) portions of the First and Second Annual Technical
Reports with information on where to obtain complete reports, (6) areference list of all
publications that are a direct result of the project, (7) an extensive selected reference list
for the Uinta Basin and lacustrine deposits worldwide, and (8) daily activity reports of the
Michelle Ute 7-1 demonstration work. The home page addressis
http://www.ugs.state.ut.us/bluebell.htm
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