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This report was prepared as an account of work sponsored by an agency of the
United States Government.  Neither United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.  Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation or any agency thereof.  The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



Objectives

The objective of this project is to increase oil production and reserves in the Uinta
Basin by demonstrating improved completion techniques.  Low productivity of Uinta
Basin wells is caused by gross production intervals of several thousand feet that contain
perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals.
Geologic and engineering characterization and computer simulation of the Green River
and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities
related to fractures and depositional trends.  This will be followed by drilling and
recompletion of several wells to demonstrate improved completion techniques based on
the reservoir characterization.  Transfer of the project results will be an ongoing
component of the project.

SUMMARY OF TECHNICAL PROGRESS

Characterization of Fracture Property Distributions

Introduction
Fractures control flow in a reservoir to a large extent.  It is important to quantify

fracture property distributions, reservoir wide.  Fracture frequency is one of the most
important properties.  Distributions of fracture frequency depends on the stress
distributions and on rock types among other things.  A novel approach based on
geostatistical principles was used to generate fracture density distributions.   Fracture
density distributions were generated by using not only spatial distributions of fracture
frequency but also by taking into account the dependence of frequency distributions on
rock types.  The fracture frequency data generated using this approach was compared to
other stochastic approaches.

Fracture characterization methods
Fracture frequencies over a certain spatial domain have been generated using

several different techniques.  Some of the most common methods are the: (1) Monte
Carlo approach,  (2) geostatistical approach,  (3) fractal approach, and (4) process
imitating approaches.  The first three approaches were based on statistical principles.  The
generated networks were not conditioned to observed property values.  Some of the
fracture networks are generated using information about stress fields.  Reservoir-wide
stress distributions are difficult to measure.  Most of these approaches have been used to
generate fracture networks in two dimensions though some have extended the application
to three dimensions.  In all cases, extensive fracture characterization data was available.
Another feature of these methods is that the area of study was small (100 to 10,000 m2).

In petroleum reservoir engineering, the scale of study is often larger in comparison
to that used in generating networks using the first three approaches. Even after generation



of fracture networks, integration of the fracture properties in reservoir models will be
another practical challenge.  Often times additional conditioning data are available which
can be used to fracture properties distributions.  Detailed analysis of the core data from
the Bluebell field linked fracture frequency at different locations to rock types.  This
dependence of fracture frequency on rock types was used as soft conditioning data when
generating frequency distributions over the entire study area.  This was accomplished
using the Markov-Bayes method.
Markov - Bayes method:  Simulation methods based on Gaussian models provide
estimates of the unknown values.  On the other hand, indicator-based methods provide
probability density functions of different categories at a location.  These probabilistic
estimates can be improved by taking into account secondary or soft data.  The integration
is performed through Bayes rule of conditional probability.

Bayes rule states that if a random variable y is being conditioned using the value of
another random variable x, the joint probability of (x,y) is proportional to the conditional
probability of y given the occurrence of x, p(y|x).  From this proportionality we can write:
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Equation 2 results in,
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Equation 3 is one form of the Bayes Theorem of conditional probability.
The cumulative distribution function (cdf) of y is known apriori. In addition, n

observations of a second variable x, (x1,…..,xn) are also available.  The probability
distribution of x is dependent on the unknown values of y. The conditional cdf of x based
on y is a function of x for fixed y.  With the likelihood principle, the conditional cdf can be
considered a function of y at fixed x.  Bayes’ Theorem says that the posterior cdf of y, p(y
| x), which takes into account all the known data, is proportional to the prior cdf of y, p(y)
multiplied by the likelihood function p(x | y).  In other words:

Posterior cdf ∝ (Prior cdf x likelihood function.) (4)



The relationship above summarizes Bayes rule.

Soft conditioning using Bayes Theorem:  Suppose sampling at a study site has resulted
in m values of primary variable (u) and n values of secondary variable (v).  The unknown
values of u can be inferred from the posterior cdf of u.  The posterior cdf  is conditioned
to available data.

Prob{U(x) ≤  u | u1,…., um, v1, …., vn} (5)

The posterior cdf is obtained by applying Bayes Theorem as follows:

Prob{U(x) ≤  u | m+n} ∝ f {v | u} x Prob{U(x) ≤  u | u1,….,um} (6)

The data values on u and v are used to calculate the likelihood function f {v | u}.  It is
assumed that u and v are independent of each other. Then the above product can be
converted to a summation:
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In the above equation i(xj,u) are the indicators defined at the m locations where the
primary variable is available.

i(xj,u) = 1, if U(xj) ≤  u, = 0 if not (8)

The first term on the right side of equation 7, F(u), is the global expected value for
a category.  The first two terms on the right side of  equation 7 give the prior cdf of u
based on the m primary variables.  In the absence of the secondary variable, the posterior
cdf will be calculated based only on the primary variable and the procedure will reduce to
that of simple indicator kriging.

The third term on the right side of equation 7 gives the prior probability of ‘u’
conditioned to the secondary variable v.

y(xk, u) = Prob {U(xk) ≤  u | v1, ….., vn} (9)



The sum of the indicators conditioned to secondary variable is the likelihood function.
The m primary variables and n secondary variables are independent of each others. The
unbiasedness of the estimates is assured by assuming that the sum of all the weights is 1.
Procedure for Markov Bayes simulations:  If data are available on a primary variable u
and secondary variable v then the procedure for generating conditional cdf’s using
Markov-Bayes simulations is as follows.

1. The primary variable ‘u’ is converted into indicators defined at K different cutoffs,
i(xi, uk), k = 1,….., K; I = 1, …., m.

2. Indicator variograms are calculated from all the available primary data for each cutoff.
3. The indicator variograms are used to calculate the covariances for each cutoff.
4. The secondary variable is discretized in L different classes, v1, ….., vL.
5. The u and v datasets are used to calculate the secondary indicators y(xj, u).  A

calibration scattergram of the primary values versus the secondary values is plotted.
For each class of the secondary variable, the scattergram values are used to calculate
the probability distributions.  An example scattergram is shown in Fig. 1.

6. The primary and secondary variable data values are also used to calculate the
coefficients.  These coefficients and the primary variable covariances are used to
calculate the covariances and cross covariances for the secondary variables
approximated by the Markov hypothesis.

7. Once all the covariances are available, the posterior cdf’s are calculated using the
Bayesian updating formula defined in equation 7.  A schematic of the procedure is
shown in Fig. 2.

The procedure described above does not depend on the distribution of the primary or
secondary variable.  The secondary variable could be continuous or discrete.  The primary
variable can be continuous like porosity values and the secondary variable can be discrete
like rock types.
The data set:  The Markov-Bayes simulation technique was used to generate fracture
density distributions for a study area in the Uinta Basin.  Analyses were performed on
cores from 10 wells in the Bluebell field.  The well locations are given in Fig. 3.  The study
area extends for 4.8 km in the east-west direction and for 1.6 km in the north-south
direction.  Formation names and depths from which the cores were collected are shown in
Fig. 4.  No information was available about the rock types.  A total of 149 m of core were
available from all the wells.  These cores were analyzed in terms of rock type
classification, porosity, permeability values, and fracture properties.  Fracture orientations,
relative frequencies, and nature of the fracture (open, partially closed, closed) were noted.

Petrographic analysis of thin sections from the available cores has been described
by Wagner (1996).  This analysis identified seven prominent rock types. The rock types
were as follows:  (1) shale, (2) mudstone, (3) siltstone (4) sandstone, (5) limy mudstone,
(6) packstone, and (7) wackestone.  Of the seven rock types, sandstone and mudstone
were the most abundant.

The core samples were analyzed for fracture frequencies, which were classified
qualitatively into the following categories: (1) one to two, (2) occasional, (3) few, (4)
moderate, (5) frequent, and (6) very frequent.



Fracture analysis also indicated that the distributions of fracture frequencies varied
with the rock types.  Figure 5 shows the fracture frequency distributions for seven
different rock types as reported by Wagner (1996).  The cumulative frequency
distributions within each rock type for the six fracture frequency classes are compared in
the figure.  This information was used to generate distributions of fracture frequency using
Markov-Bayes simulations.  The primary variable was fracture frequency, while rock type
was the secondary variable.

The rock-type distributions were first generated using principles of indicator
kriging.  The variation in fracture frequencies with rock type was used along with the hard
frequency data when generating fracture-frequency distributions.  The fracture frequencies
were conditioned to hard fracture frequency data and soft rock type data.  The hard and
soft conditioning were performed by using Markov-Bayes principles described earlier.

For comparison purposes, two more approaches were used to generate frequency
distributions.  As mentioned previously, Markov-Bayes simulations reduce to simple
indicator simulations in the absence of secondary data.  The data on hard indicators were
used to generate frequency distributions by sequential indicator simulations.  These
distributions were conditioned to the observed frequency indicators.  The third approach
used was sequential Gaussian simulations.

Comparison of fracture frequencies determined using the three approaches

The cumulative distribution functions (cdfs) of fracture frequencies for these three
approaches are compared with sample data in Table 1.  As shown from Table 1, the cdf’s
found using Markov-Bayes simulations come closest to reproducing sample data;
sequential  indicator simulations are next best.  The cdf calculated using sequential
Gaussian simulations does not reproduce the data well.

The effect of soft conditioning on the fracture frequency distributions was also
examined. Analysis of sample data had showed that the fracture-frequency distribution
varied with rock type.  As a result, the cdf’s of frequency varied with rock type.  Soft
indicators were calculated for fracture-frequency distributions generated using the three
methods.  These indicators are compared with the soft indicators for the sample data for
sandstone and shale in Figs. 6 and 7.  As can be seen from the figures, the cdf’s for the
sequential Gaussian and sequential indicator simulations do not change with the rock type.
The cdf of each category is the same as the global cdf.  The results for Markov-Bayes
simulations capture the trends of fracture frequency distributions for various rock types.
The trends in the frequency distributions are well captured through soft conditioning.

Effects of using fracture frequency distributions generated using the different
approaches on flow simulations will be discussed in the next quarterly report.



Table 1- Comparison of proportions of fracture frequency categories with sample data for

three approaches.

Sample Data Markov - Bayes

Simulations

Seq. Gaussian

Simulations

Seq. Indicator

Simulations

Category 1 0.1576 0.1636 0.2163 0.1465

Category 2 0.2153 0.2163 0.2682 0.2036

Category 3 0.5333 0.5688 0.5242 0.5153

Category 4 0.7567 0.7277 0.7008 0.7771

Category 5 0.8270 0.8056 0.7571 0.8398

Category 6 1.0000 1.0000 1.0000 1.0000
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Figure 5.  Fracture frequency distribution in different rock types.



Sample data

Markov Bayes simulations

Seq. Gaussian simulations

Seq. indicator simulations
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Figure 6. Comparisons of probability distribution functions for different fracture frequency

categories for shale.
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Figure 7.  Comparisons of probability distribution functions for different fracture

frequency categories for sandstone.



Technology Transfer

A poster was presented at the AAPG National Convention in Dallas Texas
highlighting the results of the first demonstration, the recompletion of the Michelle Ute
well (Morgan, 1997).

The Utah Geological Survey maintains a Bluebell home page on its web site
containing the following information: (1) a description of the project, (2) a list of project
participants, (3) each of the Quarterly Technical Progress Reports, (4) a description of
planned field demonstration work, (5) portions of the First and Second Annual Technical
Reports with information on where to obtain complete reports, (6) a reference list of all
publications that are a direct result of the project, (7) an extensive selected reference list
for the Uinta Basin and lacustrine deposits worldwide, and (8) daily activity reports of the
Michelle Ute 7-1 demonstration work.  The home page address is
http://www.ugs.state.ut.us/bluebell.htm

References

Morgan, C.D., 1997, Improving primary oil recovery from a (DOE Class I) fluvial-
dominated deltaic lacustrine reservoir Uinta Basin, Utah: AAPG Annual
Convention Program with Abstracts p. A85.

Wagner, M., 1996, Core analysis and description as an aid to hydrocarbon production
enhancement - Lower Green River and Wasatch Formations, Bluebell field,
Uinta Basin, Utah:  Provo, Brigham Young University, M.S. Thesis, 233p.


