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Under t h e  supervis ion of Professor  G.A. Fhmert 

The t r a n s p o r t  p rope r t i e s  of  plasma on magnetic f i e l d  l i n e s  t h a t  ' . 

i n t e r s e c t  a conducting p l a t e  are s t u d i e d  exper imenta l ly  in t h e  

Yi.sconsin i n t e r n a l  r i n g  D.C. machine. The magnetic geometry is 

. ' intended t o  s imula t e  c e r t a i n  a spec t s .o f  plasma phenomena t h a t  may take 

p lace  in a tokamak d ive r to r .  

It is found by a v a r i e t y  o f  .measurements t h a t  t h e  c r o s s  f i e l d  

. t r a n s p o r t  is. non-ambipolar; . t h i s  may have important impl ica t ions  p, . '., ,,I . , . ,. . - . . 
h e a t  loading,  cons ide ra t ions  in tokamak ' d i v e r t o r s .  The undesi rable  : I 
effects o f  nonambipolar f l o w  .make it pre fe rab le  t o  be a b l e  t o  - . I  
e l i m i n a t e  it. Bowever, we f ind t h a t  though t h e  non-ambipolarity may 

be reduced, it is d i f f i c u l t  t o  e l imina te  e n t i r e l y .  The plasma flm . . 

v e l o c i t y  p a r a l l e l  t o  t h e  magnetic f i e l d  is found t o  be  n e a r  t h e  ion I 

I 

a m u s t i c  v e l o c i t y  i n  a l l  cases. The experimental  dens i ty  and e l ec t ron  

temperature  p r o f i l e s  a r e  compared t o  t h e  s o l u t i o n s  t o  a one 

dimensional t r a n s p o r t  model t h a t  is commonly used i n  d i v e r t o r  theory. 

S o l u t i o n s  t o  both t h e  s teady s t a t e  dens i ty ,  and t ime dependent coupled 

d e n s i t y  and temperature equations o f  t h i s  model, agree  wel l  with t h e  

exper imenta l  p r o f i l e s ,  f o r  c ross  f i e l d  d i f f u s i o n  c o e f f i c i e n t s  t h a t  . 

s c a l e  like t h e  c l a s s i c a l  coe f f i c i en t s  due t o  ion-neutra l  c o l l i s i o n s .  ' : 



. :  

c r a s s .  f i e l d  conduct iv i t ie ;  t h a t ,  scale l i k e  t h e  c l a s s i c a l  

c o n d u c t i v i t i e s  due '  t o  electron-neutral  c o l l i s i o n s ,  and p a r a l l e l  l o s s  

terms t h a t  s c a l e  l i k e  t h e  ion acoust ic  ve loci ty . '  m e  ion-neutra l  
. - 

s c a l i n g  i n  t h e  convective term o f  t he  e l ec t ron  energy equat ion  is 
. .-. . .  . 
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Chapter 1 
. ... : . .' ,. 3 . L . . . . .  - . . 

. . - .. . 
f... . 

One of  the  wst press ing problems t o  be faced i n  the  magnet10 
. . . .. . 

control led  thfmmnuclear fus ion program i s . t h e  c o n t m l  o f  impuri t ies  
2 . .  

2 - 
in t h e  next generation of experiments., Whatever confinement concept ._ . . . . . 

.. . t h a t  one believes w i l l  demonstrate fus ion f e a s i b i l l t p ,  it is agreed 

. . , . .  . . 
t h a t  its success w i l l  r e s t  on t h e  implementation of  some concept of. 

,?.- 
8 .  . .: 

impurity c m t m l .  The e f f e c t s  of impuri t ies  on Tokamak discharges ha3 . . . .  
received considerable a t t e n t i o n ,  and t h e  proposed methods t o  con t ro l  

. . .  .- . . .. ,. ,. 

t hese  i m ~ u r i t i e s  a r e  many. Because my purpose is t o  d iscuss  t h e  * .  
.... - . .a . . ., 

. . .proper t ies  of one such method of  con t ro l  i n  ~okamaks, I w i l l  l i m i t  
. .. . 

t h i s  br ief  review t o  impur i t i e s  i n  Tokamaks. However, it should be 

noted t h a t  most of  t h e  concepts r e l a t i n g  t o  t h e  e f f e c t s  of impuri t ies  

and t h e i r  production mechanisms extend e a s i l y  t o  o the r  devices. For a 

much mre de ta i l ed  review of the  e f f e c t s  of impuri t ies  on Tokamak 

discharges,  and t h e i r  production mechanisms, than can ba presented 

here,  t he  in t e re s t ed  reader is r e f e r r e d  t o  t h e  exce l l en t  review paper 

by UcCracken and ~ t o t t . '  

Perhaps t h e  wst . severe  e f f e c t  of Impuri t ies  in a Tokamak 

discharge is, the '  g e a t l y  enhanced energy l o s s  due t o  l i n e  and 

bremstrablung radia t ion.  The energy r ad ia t ed  due t o  e l ec t ron  

~ e m s s t ~ l m g  .is2 

' 2 
and due t o  l i n e  radiation is 

. . 

where t h e  sums extend over  all t h e  ion spec ie s ,  Ti is t h e  ion 

t empera tu re ,  Te is t h e  e l e c t a n  temperature, ni is the  ion densi ty ,  

and 2, is t h e  ion  a tomic  number. .These equations f o r  r ad ia t ive  e n e r a  

l o s s  are s t r i c t l y  a p p l i c a b l e  f o r  coronal e q u i l i b r i m  only. The 

problem is  g r e a t e s t  f o r  t hose  impurity ions t h a t  a r e  not completely.  

s t r ipped  of e l ec t rons .  For example, it has been shown3. t h a t  aS l i t t l e  

a s  a -1% concen t ra t ion  o f  tungsten t r i p l e s  t h e  required m-i f o r  

i gn i t ion ,  where n is t h e  Puel ion'  density and 1 t h e  p a r t i c l e  

confinement time. A n  i n c r e a s e  t o  only ..21 can preclude ign i t ion  

a l toge the r .  These impur i ty  cancentra t ions  a r e  not a t  a l l  unreasonable 

because in a t y p i c a l  i g n i t i o n  experiment one can expect a 52 niobium 

concentra t ion i n  t h e  plasma f r o m  t h e  bombarded walls of t h e  vacuum 

vessel  i f  t h e  walls had been niobium coated. From equations (1.1) and 

(1.21, t h e  r a d i a t i o n  problem is l e s s  severe f o r  low-Z impur?ties 

e spec ia l ly  i f  they a r e  f u l l y  s t r ipped  of  e lec t rons  i n  which Case. of . 

course,  t h e r e  is no l i n e  r ad ia t ion .  However, even f o r  a low-Z 

impurity l i k e  carbon on ly  a few percent is allowable before t h e  same 

problems occur t h a t  occur  a t  high-2. 



Due t o  a n  , e f f e c t  p r e d i c t e d  by n e o c l a s s i p l  t r a n s p o r t  t h e o r y ,  ' 

under t h e  r i g h t  c o n d i t i o n s  i m p u r i t i e s  should be t r a n s p o r t e d  to t h e  

c e n t r a l  s e c t i o n  o f  a Tokamak d i s c h a r g e  where . they w i l l  bu i ldup  and  d o  

t h e  most damage.4 Even a t  t h e  d i s c h a r g e  c e n t e r ,  high-Z i m p u r i t i e s  w i l l  

n o t  be f u l l y  s t r i p p e d .  T h i s  e f f e c t  h a s .  been observed ln many 

e ~ p e r i m e n t s ~ * ~ * ~ * ~  from t h e  T-3 ~ o k a m a k ~  to, most r e c e n t l y ,  t h e  ISX-A 

experiment4, b u t  o n l y  o n  t h e  outermost  flux s u r f a c e s  o f  the discbar&.  . 

Observa t ions  on  t h e  ST tokamak show no buildup o f  i m p u r i t i e s  ia t h e  

c e n t e r  o f  t h e  d i s c h a r g e .  Radia t ion  measurements on 1PR i n d i c a t e .  

c e n t r a l  i m p u r i t y  peaking  would n o t  be c o n s i s t e n t  wi th  t h e  measured 

pouer o u t  o f  t h e  c e n t e r  o f  t h e  device.  The TFR group p o s t u l a t e s  t h a t  

on ly  a s m a l l  f r a c t i o n  o f  t h e  i n M r d  d i f f u s i n g  i m p u r i t i e s  in t h e  c u t e r  

l a y e r s  a c t u a l l y  r e a c h e s  t h e  c e n t e r ,  t h u s  impuri ty r e c y c l i n g  o c c u r s  

o n l y  in t h e  o u t e r  layers. ' l  A t  p r e s e n t  t h e  q u e s t i o n  o f  t h e  inward 

d i f f u s i o n  o f  i m p u r i t i e s  is unresolved.  I n t e r e s t i n g l y  enough, t h i s  

same phenomena may, under p r o p e r l y  t a i l o r e d  c o n d i t i o n s ,  p r o v i d e  a 

method o f  i m p u r i t y  c o n t r o l .  T h i s  w i l l  be d i scussed  in t h e  s e c t i c m  o n  

t h e  c o n t r o l  o f  i m p u r i t i e s .  

R a d i a t i o n  l o s s e s  a r e  n o t  the, only d e l e t e r i o u s  e f f e c t  o f  

i m p u r i t i e s  o n  a Tokamak d ischarge .  Even a smal l  concent ra t icm of 

h i g h l y  s t r i p p e d  i o n s  a t  t h e  c e n t e r  o f  a d i scharge  can  c a u s e  a 

s u b s t a n t i a l  d i l u t i o n  of t h e  n u c l e a r  f u e l  and a consequent increase i n  

t h e  r e q u i r e d  n T , .  Each h i g h l y  charged impur i ty  i o n  can t a k e  t h e  p l a c e  

o f  many f u e l  i o n s  f o r  a g i v e n  e l e c t r o n  d e n s i t y ,  r e s u l t i n g  i n  a l o w e r  

f u e l  i o n  d e n s i t y  as i m p u r i t i e s  d i f f u s e  inward.' Furthermore, r a d i a t i v e  

c & l i n g  o f .  t h e  d i s c h a r g e  peripceery can c a u s e  i n s t a b i l i t i e s  w i t h  

a t t e n d a n t  enhanced t r a n s p o r t ,  as w e l l  as ' d i s r u p t i o n s  due  t o  ' t h e  

s h r i n k i n g  of  t h e  c u r r e n t  channel .  2 
. . 

~ l u t i o n s  t o  t h e  I m ~ u r i t y  Problem 

To t h e  many problems posed by t h e  p r e s e n c e  o f  i m p u r i t i e s  in 

Tokamak d i s c h a r g e s  have come a V a r i e t y  o f  answers.  . One s o l u t i o n  is 

t h e  u s e  o f  m a t e r i a l  l i m i t e r s  t o  d e f i n e  t h e  plasma shape  and prevent  

c o n t a c t  of t h e  h o t  plasma w i t h  t h e  vacuum walls. A t  p r e s e n t  t h i s  

seems o n l y  to move t h e  s o u r c e  o f  t h e  i m p u r i t i e s  from t h e  w a l l s  t o  t h e  

' l i n i t e r .  k i t h  megawatts  o f  power b e i n g  d e p o s i t e d  o n  t h e  l i m i t e r  even 

in p r e s e n t  day exper iments ,  s e v e r e  h e a t i n g  f o l l o w e d  by r e l e a s e  o f  

i m p u r i t i e s  is unavoidable. '  One proposed compromise is t o  u s e  low-Z 

c o a t i n g s  on  t h e  l i m i t e r  s o  t h a t  a t  l e a s t  . t h e  r e l e a s e d  i m p u r i t i e s  w i l l  

b e  f u l l y  s t r i p p e d .  

Another ' s o l u t i o n  is t o  sur round t h e  plasma w i t h  a g a s  b l a n k e t  t o  

i n s u l a t e  t h e  vacuum w a l l s  from t h e  plasma. A s i m i l a r  s o l u t i o n  

proposed f o r  t h e  JET Tokamak is a c o l d  plasma b l a n k e t  t h a t  is 

impermeable t o  c h a r g e  exchange n e u t r a l s  and c o l d  enough t o  b e  b e l w  

' t h e  s p " t t e r i n g  t h r e s h o l d  (1.e.: 10eVffe<20eV). As o f  y e t  t h e  b l a n k e t  

h a s  o n l y  been s i m u l a t e d  numer ica l ly ,  a n d  t h e r e  remain  q u e s t i o n s  o n , t h e .  

s t a b i l i t y  o f  t h e  blanket-plasma i n t e r f a c e .  

One imagina t ive  s o l u t i o n  t o  t h e  problem of t h e  n e o c l a s s i c a l  

inWard t i a n s p o r t  o f  i m p u r i t i e s  was proposed  by Ohkawa o f  General  

~ t c m i c . ~  OhkaM showed t h a t  i n  t h e  P f i r s h - S c h l u t e r  domain o f  

t r a n s p o r t ,  a p o l o i d a l l y  asymmetric s o u r c e  o f  p r o t o n s  can  reduce  o r  



even r e v e r s e  t h e  inward t r a n s p o r t  o f  impuri t . ies .  S u b s e q ~ e n t l y ,  o t h e r  

'. a u t h o r s  have genera l f ied '  ' t h e  t h e o r y  t o  i n c l u d e  the- ' e f f e c t  of 

asymmetric h e a t  sources ,  l o w e r  c o l l i s i o n a l i t y  regimes a n d - g e n e r a l  f l u x  

s u r f a c e  g e o q ~ e t r i e s . ~ ' ~ ~ *  ' T h e o r e t i c a l  c a l c u l a t i o n s  have. s h m  t h a t  i n  

t h e  presence of  such p o l o i d a i l y  asymmetr ic  s o u r c e s ,  t h e  r a d i a l  flu. o f  

i m p u r i t i e s  FI o f  +Age ZI , is4 

where 

~ = 2 ~ ~ n ~ / ( z ~ e B +  Uci TiI). 

The s u b s c r i p t  i ( I )  r e f e r s  t o  t h e  p r o t o n s ( i m p u r i t i e s ) ,  q is t h e  s a f e t y  

f a c t o r ,  rfl is t h e  pro ton- impur i ty  c o l l i s i o n  t ime,  uOi is  t h e  p r o t o n  

. cyc lo t ron  frequency,  %, is t h e  t o r o i d a l  f i e l d ,  R and r t h e  major and 

minor r a d i i ,  e  t h e - e l e c t r o n  c h a r g e ,  and P t h e  pressure .  The A's a r e '  

numerical f a c t o r s  o f  o r d e r  u n i t y  t h a t  depend on t h e  co l l i s ic rn  model 

used. l1 

The f i r s t  term i n  b r a c k e t s  i n  e q u a t i o n  1.3 is  t h e  n e o c l a s s i c a l  

e f f e c t  respons ib le  f o r  t h e  inward d i f f u s i o n  o f  i m p u r i t i e s ,  namely t h e  

impuriUies d i f f u s i n g  up t h e  t h e  g r a d i e n t  b f  main plasma i o n  s p e c i e s .  
. . 

The second term is r e s p o n s i b l e  f o r  ' h g u r i t i e s  d i f f u s i n g  down t h e i r  own 

d e n s i t y  grad ien t .  The l a s t  two t e r n s  are t h e  pro ton  p a r t i c l e  s o u r c e  

ail,  and t h e  h e a t  source  f 1 ,  and show t h e y  can e f f e c t  t h e  d i r e c t i o n  

and  magnitude of t h e  i m p u r i t q  flux.. These e x i s t e n c e  of  t h e s e  terms i q  

r e s p o n s i b l e  for t h e  i m p u r i t y  r e v e r s a l  e f f e c t .  . . 

A p o l o i d a l l y  asymmetric s o u r c e  o f  5 gas uis t h e r e l o r e  i n s t a l l e d  
' 

on t h e  ISlC .experiment t o  test.  t h e s e  . p r e d i c t i o n s .  R e s u l t s  c o n s i s t e n t  

dtb t h e  tb&&y were o b t a i n e d  f o r  neon i n j e c t e d  a s  an impuri ty;  t b e  

inward d i f f b s i m  of neon was s i g n i f i c a n t l y  reduced.  S i m i l a r  t e s t s  on 

a lun inum as, t h e  i n j e c t e d  i m p u r i t y  gave i n c o n s i s t e n t  r e s u l t s ;  Various 

e x p l a n a t i o n s ,  such  as t h e . h i g h e r  ' thermal  v e l o c i t i e s  o r  t h e  i n j e c t e d  

' a l m i n m ,  h a v e  be* advanced f o r  t h i s  d i sc repancy .  l2 Higher thermal 

v e l o c i t i e s  may a l l o w  t h e  aluminum t o  p e n e t r a t e '  t h e  l a y e r  where t h e  

flaw r e v e r s a l  effect e x i s t s .  Attempts t o  reproduce  t h e s e  r e s u l t s  on 

ISX-B h a v e  n o t ,  a s  o f  t h i s  w r i t i n g ,  -been successful13,  however it 

. would c e r t a i n l y  seem . t h a t  it m e r i t s  f u r t h e r  s tudy.  It remains-  t o  b e  

s e e n  i f  a c t u a l  r e v e r s a l  o f  t h e  f l o w  c a n  be  induced. . 

P e r h a p s  t h e  one  s o l u t i o n  w i t h  t h e  most promise Is t h e '  magnetic 

d i v e r t o r .  The i d e a  o f  t h e  d i v e r t o r  is t o  s h i f t  t h e  problem. o f  t h e  

plasma-wall  i n t e r a c t i o n  away f r o m  t h e  main containment v e s s e l  t o  an 

area t h a t  c a n  b e  b e t t e r  equipped t o  h a n d l e  t h e  problems. . The d e v i c e  

was f i r s t  p roposed  i n  1951 by Lyman s p i t z e r 1 4  as a means o f  p r e v e n t i n g  

,. . c o n t a c t  between plasma and f i r s t  wal l .  Fig. 1.1 shows t h e  S p i t z e r  

d i v e r t o r . .  Bowever, It was soon r e a l i z e d ' t h a t  t h e  device  could  s c r e e n  

t h e  plasma  fro^ -11 evolved i m p u r i t i e s  a s  well..  C o i l s .  e x t e r n a l  t o  

, - 
. t h e  plasma c r e a t e  a n u l l  i n  one component o f  t b e  c o n f i n i n g  f i e l d ; '  from 

t h e  component t h a t  is. n u l l e d ,  comes t h e  u s u a l  name g i v e n  t o  t h e  

d i v e r t o r .  ( i . e . : t o r o i d a l  or poloi'dal d i v e r t o r ) .  F i e l d  l i n e s  i n s i d e  t h e  

. . 
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Fig. 1.1 : Schematic representa t  ion .of t he  Spi tzer  d iver tor .  

s e p a r a t r i x  remain i n  the' t o r u s ,  whi le  t h o s e  ou t s ide  are conducted t o  , 

an e x t e r n a l  chamber with t h e  plasma' t h a t  i s  on them ( thus  the name ' . 

pscrape-offm zone f o r  these  f i e l d '  l i n e s ) .  Fig.  1.1 shows a 1 l . o f .  these 

f ea tu res .  &re t h e  plasma is n e u t r a l i z e d  by allowing, it t o  s t r i k e  a 

m a t e r i a l  p l a t e .  Return of  t h e  n e u t r a l i z e d  gas t o  t h e  main chamber is 

r e s t r i c t e d  by reducing t h e  flow conductance. The flow of plasma back 

t o  t h e  main discharge may be r e s t r i c t e d  by ambipolar e l e c t r i c  

f ie lds .15 To handle t h e  h e a t  and pas-  l o a d  . t o  t h e  d iver tor ,  t h e  

n e u t r a l i z e r  p l a t e  may be cooled and t h e  chamber pmped on by a vacuum 

p h p i n g  system. The hea t  load p e r  u n i t  a r e a  may be reduced .by fanning 

o u t  t h e  f i e l d  l i n e s  with a p p r o p r i a t e l y  . .placed c o i l s . .  Damage o r  

eros ion of t h e  d ive r to r  p l a t e s  may b e .  d e a l t  with by continually 

: r e f r e sh ing '  t h e  . -p la te  surface-;--by , -getterLng. - o r  even  mechanical 

replacement. I n  a l l  cases  one is allowed g r e a t e r  f l e x i b i l i t y  in 

handl ing t h e  plasma wall  i n t e r a c t i o n  problem. 

.The pubpose envisioned f o r  d i v e r t o r s  then is a threefold  one. 

The f i r s t  i s  t o  be a magnetic l i m i t e r  t h a t  de f ines -  t h e  plasma shape. 

The , d i v e r t o r  v i l l  not def ine  t h e  plasma edge i n . t h e  sense t h a t  t h e  

d e n s i t y  vill go t o . z e m  the re ,  b u t  it v i l l  d e f i n e  a boundarq l aye r  

w h e r e . t h e  f a l l  o f f  of densi ty  and temperature  w i l l  occur more rapidly  

than t h e  main discharge.   he' second func t ion  is t o  t ake  up t h e  plasma 

f l u x  t h a t  warld normally h i t  the .  f i r s t  w a l l  and exhaust i t  t o  e 

' pumping chamber. The t h i r d  func t ion  is ' to  sweep up w a l l  evolved 

' i m p u r i t i e s  by the  plasma flowing t o  t h e  d i v e r t o r  and thus  prevent them 

from e n t e r i n g  t h e  main discharge. To llaximally p ro tec t  t h e  f i r s t  wal l  



as in purpose t w o ,  one r equ i r e s  a .  r a p i j  f a l l  . o f f  of dens i ty  t o  

minlmize plasma and f i r s t ' w a l l  int .eraction and Its re su l t an t  damage 

and impurity' evblution.  Purpose t h r e e  r e q u i r e s  a .scrape&ff l a y e r  , 

t h i c k  enou* t o  a s su re  a -h igh p robab i l i t y  of i on i z ing  an i&ming 

n e u t a l . a n d  c a r w i n g  it t o  t h e  d iver tor .  m e r e f o r e ,  t h e  last two 

d i v e r t o r  func t ions  can not .be simultaneously optimized and one must 

s e t t l e  f o r  saoe  reasonable compromise.16 F i n a l l y  t h e  extent  t o  which 

t h e  d i v e r t o r  can act. as a . l i m i t e r  is determined by th!s tradeoff.  

An a d d i t l c a a l  bene f i t  of d iver tor?  has  been r ea l i zed .  ' Evacuatian . 

..of t h e  r e a c t i o n  chamber t o  t h e  required law pressures  w i l l  demand 

p re sen t ly  unat ta inable  p,umping speeds. Rowever, if t h e  . d ive r to r  . 

chamber is. &si&ed with a .  low ,conductance path  t o  t h e  r eac t ion  

vesse l .  t h e  throughput (escaping plasma) ,can be guided tbrougb t h i s  

law conductance path t o  t h e  d i v e r t o r  chamber. Thus, i n  t h i s  chamber, 
. . 

higher  p re s su re s  can be t o l e r a t e d  and maintained with t echn ica l ly  

l ea sab le  pmping  speeds., 

QhecLsxEmerimenta 

Show in P i g .  1.2 is a schematic of t h e  t h e s  , o f  d i v e i t o r s  t h a t  

have'  r ece ived ,  experimental a t t e n t i o n ,  and i l l u s t r a t e s  t h e  s a l i e n t  

d i f f e r ences  between th*. The f i r s t  experimental, t e s t  of t he  d i v e r t o r  

was done in 1957.on t h e  B-65 ~ t e l l a r a t o r . ' ~ : ~ h i ;  d i v e r t o r  was found t o  

reduce the impurity concentrations by a f a c t o r  o f  two t o  t h ree .w i th  an 

a t t e n d k t . i n c r e a s e  in t h e  ion t e m p e r a t k .  A divertor.was ne& t e s t e d  

on t h e  model C s t e l l a r a to r :  i n  1963 and found t o  reduce impur t t ies  by 

an o r d e r '  of magnitqde.18 A mador disadvantage o f ,  t he se  . t o r o i d a l  , 

Divertor 
current , Diverted. 

I I 
Current 

lobps . 
Diverled 

bundle 

Seporotrlr ' 

w ,  
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SINGLE NEUTRAL POINT DOUBLE NEUTRAL POINT 
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Fig. 1.2: The d i f f e r e n t  t y p e s  o f  magnetic d ive r to r  t h a t  have 
received exper imenta l  a t t e n t i o n .  

. . 



d ive r to r s ,  a s  with a l l  t o r o i d a l  d i v e r t o r s ,  is th4t they des t roy t h e  
. . 

axisymmetry and cause  l a r g e  f i e l d  per turbat ions ,  both of which can 

lead t o  enhanced r a d i a l  plasma perhaps the  s o l e  advantage 

of a  t o r o i d a l  d i v e r t o r  l i e s  i n  t h e  f a c t  t h a t  it does not requi re  t h e  

exis tence  of a.plasma c u r r e n t  t o  opera te .  This point w i l l  be expanded 

upon sho r t ly .  

Another d i v e r t o r  o f  t h e  t o m i d a l  type is the  s o  cal'led bundle 

d ive r to r  f i r s t  repor ted  i n  t h e  l i t e r a t u r e  i n  1 9 7 2 . ~ " ~ ~  The c o i l s  used 

t o  d i v e r t  t he  "bundlen o f  t o r o i d a l  Plux a r e  a  higher order mul t ipole  

than those of t h e  above mentioned d ive r to r .  A s  a  r e s u l t  t h e  f i e l d  

f a l l s  o f f  much f a s t e r  than i n  t h e  t o r o i d a l  case, r e su l t i ng  i n  magnetic 

f i e l d  per turbat ions  on a x i s  o f  t y p i c a l l y  a  few per cent. I n  t h i s  

sense it is an improvement on t h e  t o r o i d a l  d iver tor ,  unfor tunate ly ,  
. , . .&* , . / ,, -, 

t h i s  device still d e s t r o y s  t h e  t o r o i d a l  axisymmetry. In add i t i on ,  t o  

handle t h e  an t i c ipa t ed  h e a t  l oads  i n  next generation experiments more 

than one such d i v e r t o r  may be necessary.  The f i r s t  experimental t e s t  

of t he  bundle d i v e r t o r  occurred  on t h e  D.I.T.E. tokamak and met wi th  

encouraging resul ts .23  The d l v e r t o r  received 50% of t he  p a r t i c l e  Plux 

and 602 of t h e  energy f l u x  t h a t  normally h i t  t h e  walls. The amount o f  

me ta l i i c  impur i t ies  was reduced by a  l a rge  f ac to r  a s  evidenced by an 

order of magnitude decrease  i n  t h e  radia t ion  and a  f a c t o r  of 

three  reduction i n  Fe+16 r a d i a t i o n .  The t o t i 1  radiated power was down 

by a  f a c t o r  of. f i v e  t o  e i g h t .  F i n a l l y ,  t he re  is ample evidence of a  

screening e f f e c t  ' f m m  experiments with an in jec ted  oxygen impurity. 

F igu re  1.3 shows a  schematic r e p r e s e n t a t i o n  of t h e  D.I.T.E. bundle 

d i v e r t o r .  

A t h i r d  d i v e r t o r  concept is t h e  po lo ida l  d i v e r t o r ,  which was 

f i r s t  conceived o f  in 1 9 5 6 ~ ~  and .has received t h e  most a t t e n t i o n  i n  

r e c e n t  years .  Because t h e  p o l o i d a l  f i e l d  i n  a  tokamak Fs t y p i c a l l y  a 

f a c t o r  of t e n  smal ler  than t h e  t o m i d a l  f i e l d ,  it fo l lous  t h a t  t h e  

c u r r e n t  necessary t o  d r ive  a  p o l o i d a l  n u l l  is smaller than t h a t  

necessary  t o  dr ive  a  t o r o i d a l  n u l l .  Thus t h e  f i e l d  pe r tu rba t ion  

problem is smailer.  Although t h e  p o l o i d a l  d i v e r t o r  preserves  t h e  

axisymmetry of t h e  device,  it does r e q u i r e  t h e  exiz tence  o f  a  plasma 

c u r r e n t  t h a t  , c r ea t e s  t h e  p o l o i d a l  f i e l d  before it can work. It 

t h e r e f o r e  follows t h a t  impur i t i e s  r e l ea sed  i n  t h e  s t a r t  up phase of a  

tokamek discharge,, be fo re  sthe - t o r o i d a l *  c u r r e n t  . i s  e s t ab l i shed ,  nay be . 

f r e e  t o  e n t e r  t h e  plasma. A p o l o i d a l  d i v e r t o r  a l s o  d i f f e r s  from a  

t o r o l d a l  d i v e r t o r  i n  t h e  length  of a  t y p i c a l  f i e l d  l i n e  i n  t h e  s c rape  

zone before  it en te r s  t he  d ive r to r .  I n  a  t o r o i d a l  d ive r to r  a  p a r t i c l e .  

is never  more than one t o r o i d a l  circumference away from t h e  pumping 

chamber. On t h e  o ther  hand, i n  a  p o l o i d a l  d i v e r t o r  a  p a r t i c l e  may 

make s e v e r a l  t r i p s  around t h e  major a x i s  before  being d iver ted .  

The f i r s t  experimental t e s t  o f  t h e  po lo ida l  d i v e r t o r  occurred on 

t h e  EM-1 sphe ra to r  device a t  t h e  P r ince ton  Plasma Physics Labs. A 

plasma cap tu re  ef f ic iency of 80% was obta ined on t h i s  device.25 A 

p o l o i d a l  d i v e r t o r  was a l s o  t e s t e d  on t h e  D I V A  tokanak.26 This  d i v e r t o r  

was found t o  receive 752 of t h e  energy l o s s  and 332 of t h e  p a r t i c l e  

l o s s .  The t o t a l  r ad i a t ion  decreased by a  f a c t o r  of 2 t o  4  and 
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Fig. 1.3: Schematic of  t h e  f i r s t  bundle d i v e r t o r ,  a s  used On 

t h e  DITZ toicauak. 
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sh l ' e ld ing  of  a t  l e a s t  oxygen was o h e r v e d .  The number d e n s i t y  o f  both 

low and high-Z i m p u r i t i e s  was decreased  by t h e  d i v e r t o r  a c t i o n .  

I n  t h e  c o n s t r u c t i o n  and/or  i n i t i a l  o p e r a t i o n  phase a r e  t h r e e  more 

l a r g e  . p o l o i d a l  d i v e r t o r  experiments.  PDX . a t  P r i n c e t o n  h a s  begun 
. . 

" - o p e r a t i o n ,  a* h a s  t h e  ASDEX exper iment  a t  ~ a r c h i n g . ~ ~ : ~ ~  I n i t i a l  

r e s u l t s  from PDX show a s i g n i f i c a n t  d e c r e a s e  i n  t h e  t o t a l  r a d i a t e d  

power o v e r  t h e  non-d iver ted  c i r c u l a r  c a s e ,  and a Zeff o f  one i n  t h e  

d i v e r t e d  c a s e ,  i h i c h  is one h a l f  t h a t  o f  t h e  c i r c u l a r  discharge.29 

S t i l l  a n o t h e r  d i v e r t o r  concept  was o r i g i n a t e d  h e r e  a t  Wisconsin 

' by D.W.  erst.^' It was s u g g e s t e d  t h a t  a n  e x t e r n a l l y  a p p l i e d  e l e c t r i c  

, f i e l d  c o u l d  be used  t o  produce a n  Ex! d r i f t  t h a t  would augment o r  

i n i t i a t e  plasma f low t o  t h e  d i v e r t o r  chamber. The e x i s t e n c e  o f  t h i s  

e f f e c t  was shown i n  a series o f  exper iments  c a r r i e d  o u t  by E. strait3' 

on  t h e  l a r g e  Octupole  device .  A d d i t i o n a l l y ,  a n  a p p l i e d  e l e c t r i c  f i e l d  

i n  c o n j u n c t i o n  w i t h  a p o l o i d a l  d i v e r t o r  was demons t ra ted  t o  reduce  t h e  

plasma f l u x  t o  t h e  w a l l  by an e x t r a  f a c t o r  o f ' f i v e  from t h e  a c t l o n  o f  

t h e  p o l o i d a l  d i v e r t o r  a l o n e .  

TlkxxkapePdy~ODerat ion  

The t h e o r e t i c a l  problem o f  plasma t r a n s p o r t  i n  a  d i v e r t o r  is .. , 

, . .  
e s s e n t i a l l y  two d i a e n s i o n a l ,  and t h e  p h y s i c a l  p r o c e s s e s  . t h a t  govern 

. . . 
t h e  c r o s s  f i e l d  and p a r a l l e l  t o  t h e  magnet ic  f i e l d  f low a r e  very 

d i f f e r e n t .  If one i n c l u d e s  t h e  e f f e c t s  o f  t h e  magnet ic  giometry t h e  

problem is compl ica ted  f u r t h e r .  The first t h e o r e t i c a l  a t t e m p t s ' t o  
. . 

p r e d i c t  such d i v e r t o r  , p a r a m e t e r s  as t h e  d e n s i t y  and tempera ture  , 

p r o f i l e s  s i m p l i f i e d  t h e  problem c o n s i d e r a b l y  by a d o p t i n g  a.  phenomeno- 



l o g i c a l  ?pproach.16'32'33 I n  t h e s e  a n a l y s e s  th; plasma flow i n t d  t h e  

m l l e c t o r s  is modeled by r e b l a c i n g  t h e  p a r a l l e l  p a r t  o f  t h e  c o n t i n u i t y  

equa t ion  by a n  "absorption".  term, t h u s  reduc ing  t h e  e q u a t i o n  t o  one . 

dimension. Then, depending on one ' s  p r e j u d i c e s  about  t h e  govern ing  

phys ics  in t h e  scrape'-off zone, c h o i c e s  a r e  made a s  t o  t h e  v a l u e  OF 

the c r o s s  f i e l d  d i f f u s i o n  c o e f f i c i e n t  and t h e  form o f  t h e  p a r a l l e l  

mabsorp t ionn  term. T h i s  s lmple  model h a s  proven u s e f u l  i n  deve loping  

an unders tanding  OF t h e  ,consequences of  t h e  v a r i o u s  p h y s i c s  

assumptions one c a n  make o n  t h e  o p e r a t i o n  OF a d i v e r t o r .  

A s  an example, c o n s i d e r  a s imple  s l a b  model d i v e r t o r  a s  shown i n  

P i g .  1.4. The s t e a d y  s t a t e  c o n t i n u i t y  equa t ion  i n  t h i s  geone t ry .  

ignor ing  s o u r c e s  f o r  t h e  moment ( a  more formal d e r i v a t i o n  w i l l  be 

. * glven l a t e r ) ,  can  be w r i t t e n  a s  

0.c = v, o r l  + 8" or. - 0 ,  . . (1 .4)  

*ere and . r e f e r  t o  x and  z i n  Fig. 1.4. Ye make t h e  replacement 

!, -[,= r./L= nv,/L= n /  1,. (1.5) 

For  t h e  s l a b  model shown i n  F ig .  1.4 
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an 
Assuming a FickSs law type diffurion, r l  =-DL-, one gets f o r  the a x  

continui ty e q u a t i k  

I f  we assume tha t  Dl is lndependent of 1, then the  solut ion is 

where X=(Dl T . ) " ~  and ns Is the density a t  t h e  separatr ix .  

The density 'has an exponential f a l l  o f f  with 9 e-folding length X. 

I f  one a1loLs for  an additional source. i n  the  scrape-off zone due t o  

c o l l i s i o c a l  1,onizatioa of neutrals. 1 becomes 

. . 
where noo v is the t o t a l  prodimtion r a t e  of ions due t o  electron and 

ion c o l l i s i m s .  In a .s imilar  way, one can add terms which model other 

processes &t m e  believes map occur i n  the  scrape-off zone and 
. . 

chobse value? for  . D l  and ,T. again a s  a function of t h e  physical 

processes one 'believe; &e relevant. Hqving chosen these values, one 

&an e s t i m -  the part ic le  flux incident i n  the  f i r s t  wall a s  

and t h e  plasma f lux  t o  t h e  d i v e r t o r  

. . 
. . 

rva l l  dz. 

where z is i n  t h e  d i r e c t i o n  of t h e  magnetic f i e ld .  
. . 

The choice of the  various governing parameters within the  context 

of t h i s  model has been t h e  sub jec t  of '  considerable theoret ical  

a t tent ion.  The value and s c a l i n g  of  DL appears t o  be uncertain a t  

present, but concerning the  value of  T ,  the re  is more certainty. . f o r  
. . 

. . 
example, one choice of T, is  t h e  time t h a t  an ion might take t o  . 

t ravel  along a f i e l d  l i n e  of length L t o  t h e  col lector  plate34, 
. . 

. , 
One choice f o r  Vn is t h e  ion acous t ic  speed 

This assumption is based on t h e  treatment of the '  sheath problem 

carr ied out by S.A. self3', and a s s m e s  cold ions and ambipolar flov 

of ions and electrons i n  t h e  presence of t h e  long range e lec t ros ta t i c  



potent ia l .  (The assumption of ambipolar i ty  i n  these  models is one of 

t h e .  subjects  t h a t  t h i s  t h e s i s  examines -experimentally. )  here is 

experimental j u s t i f i c a t i o n  f o r  t h i s  issumption a s  well  i n  t h a t  both 

t h e  ~ i v a ~ ~  and EM-lZ5 d i v e r t o r  'experiments measure flow ve loc i t i e s  a t  

about one t h i r d  t h e  ion a c o u s t i c  .value.  Based on analyses tha t  t r e a t  

t h e  more re levant  case ,  of  hot  i o n s ,  one may expect a d i f f e ren t  long 

range po ten t i a l  and thus  a ,d i f f e ren t  v , . ~ ~  In  t h i s  case the  proper 

choice , f o r  VU is f b r  a m a k e l l i a n  d i s t r ibu t ion  of 

ions. . . 

A. second choice f o r  .T, comes from t h e  consideration of s ing le  

p a r t i c l e  dynamics i n  t h e  scrape-off  zone.. A s  p lasm par t ic les  follow 

f i e ld .  l i n e s  t o  t h e  d i v e r t o r  t hey  must move through an increas ing 

magnetic f ie ld .34 I n  t h i s  &he, -if t h e  pa r t i c l e~ 've1oc t tp  vector,  is 

outside the  l o s s  cone of  t h e  mirWr,it w i l l  be confined t o  a region 
. .  . 

outside the  col lec tor .  (Of course , those  p a r t i c l e s  with t h e i r  veloci ty  

vector ins ide  the  l o s s  cone w i l l  flow f r e e l y  t o  the  col lec tor  with .a  

time t=WVu. )  The maximum time t h a t  t h e  remaining mirror conf-ined 

plasma could be trapped 1s of t h e  o rde r  of  t h e  90' degree s c a t t e r i n g  

time r o r  ions3' t i  s c a t t e r  i n t o  t h e  l o s s  cone, 

I n  a d d i t i o n  t o  t h e  c l a s s i c a l  processes  discussed above, t h e  l o s s  

cone d i s t r i b ~ t i o n ~ ~  of  the  'mirror  confined f r a c t i o n  of  plasma can 

d r i v e  a weal th  of high frequency ' i n s t a b i l i t i e s  t h a t  can break t h e  

a d i a b a t i c  invar iance  of the  magnetic moment and increase  p i t ch  angle 

s c a t t e r i n g .  Thus, i n  t h e  presence of such modes, t h e  bes t  es t imate  of  

t h e  p a r a i l e l  f l w  time may still be ( T,,) ,~,  of equation 1;13, and t h e  

plasma l a y e r  i n  t h e  scrape-off zone may be too t h i n  and tenuous t o  be 

an e f f e c t i v e  s h i e l d ,  unless  t h e  plasma f l u x  c ross ing  t h e  s e p a r a t r i x  is 

l a r g e  enough. This w i l l  be d iscussed i n  more d e t a i l  sho r t ly .  Low 

frequency modes3' dr iven by t h e  - densi ty  gradient  o r  bad f i e l d  

c u r v a t u r e  can lead t o  enhanced c r o s s  f i e l d  t r anspor t  without inceas ing 
. . 

t h e  r a t e  o f  p i t c h  ang le . sca t t e r ing ,  thereby increas ing t h e  f l u x  t o  t h e  

. wall.  , . , -  . I *  . .n i . , 7 ,  

A s  an i l l u s t r a t i o n ,  f o r  parameters typ ica l  o f  a next generation 
. . . . 

exper imenta l  tokamak with d ive r to r ,  

Ti= 1 keV, Te= 200 eV, 

L= 3 m, 

n = 1 0 ~ ~ - 1 0 ~ 3  ( a t  t h e  s e p a r a t r i x ) ,  
e .. .. . 

the-&. io .  (tnmax/~,,mIn) may vary .from 10 t o  30, and the re fo re  

can.vary-  as much. Considering t h e  poss ib l e  va r i a t ion  i n  Di leads  t o  
. . 

even g r e a t e r  uncer ta in ty .  Again t h e  f i n a l  values must r e s t  on 
. . 

experiment.  , 

j: - 7 .  . . r.; 

A.T. flenseSO coniidered t h e  e f f e c t  t h i s  large  range of 1, and D, 

had. on t h e  f l u x  t o  t h e  .wall, (among o t h e r  parameters) us ing equation 

1.7, wi th  t h e  boundary conditions: , 



a n  
a  - I x o  r e  f l u x  ou t  of t he  core. 

( b )  l i m  n(x)=o a s  *.goes t o  i n f i n i t y  (ie:. wall  very f a r .  away) 

The f l u x  a t  t h e  wa l l  is then given by 

a n  ' 

, , a l l = - D ~ ~ l x = " a l l -  

. . 

?he r e s u l t s  f o r  t h e  lndicat'ed coe f f i c i en t s  bere a s  follows: 
. . .  

( 1 ) DI=DNeoclassi~l, T W X ~ ~  (p i t ch  ,angle  s c a t t e r i n = )  

' rw=O . . 
- FT 

( 2 )  D.=D~;~~=; S ( d " e  t o  instab.  ), ? n ~ i i  pitch 

ry=( -91)) ro; 'almost a l l  p a r t i c l e s  eApe t h e  d iver tor .  
. . 

rw10  a n  over ly  o p t i m i s t i c  case. 

(4) DI'DBohm, - T m s  mdn 
. .  . 

rw=.25 ro; a  marginally ef fec t ive '  d iver tor .  
+ .  

I n  l i g h t  of ~ e & e * s  l a t e r  t ranspor t  equation so lu t ion  it is found 

t h a t  too high a  value of Te was assumed i n  tNs e a r l i e r  ca lc"1at io i .  

Thus DL=DBohm is  f a r  t o o  high and with more r e a l i s t i c  va lues  o f  T,, 

s h i e l d i n g  e f f i c i e n c i e s  of 95%. a r e .  found. 

The s h i e l d i n g  .;fficiency' of t h e  plasma i n  t h e  scrape-of r' zone can 
. . 

be assessed from a  cont inui ty  equation a s  well .  I f  ro (x )  is t h e  

n e u t r a l  f l u x  a t  any x ,  

where n(x)  and a v  b a w  t h e  sam; d e f i n i t i o n s  as befor; and do(x) is 

t h e  n e u t r a l  dens i ty  'as a  Punction o f  x.' For  a  given plasma' d ins i ty  

p r o f i l e  and some neu t r a l  f l u x  coming o f f  t h e  w a l l ,  t h e  probabi l i ty  

. . t h a t  an incoming neu t r a l  w i l l  be i on ized  is 

- < crv>oi 
fi = 1- expt I n  d x l ,  (1.16) 

. .  . . .  . 

where n  is t h e  p lassa  dens i ty , '  Poi and .< U V > , ~ :  a r e  thd impurity 

v e l o c i t y  ,and t h e  impurity.  i on i za t ion  r a t e  respectively:. .Thus .one sees  

t h a t  t h e  sh i e ld ing  depends on t h e  l i n e  i n t e g r a l  o f  t h e  plasma density 
. . 

, a c ros s  t h e  scrape  of? zone. . &sed on .  t h e  s imple  flow mod& out l ined 

above., i f  rm is not a  funct ion  o f  'x,. t h e  l i n e  averaged,' dens i ty  can 
. . 

e a s i l y  be  shown t o  be . . . .  

. . . . 
. where rsep is t he  plasma f l u x  t h a t  c r o s s e s  t h e  s epa ra t r ix .  So a s  

. .  . 
i nd i ca t ed  above, a ' k m l e d g e  of t h e  p a r a l l e l .  f low time 1s not endugh 

t o  spec i fy  t he  shie ld ing,  one needs t o  know t h e  t h e  plasna f l u x ' t h a t  

is c roas ing  t h e  s e p a r a t r i x  a s  wel l .  , The s h i e l d i n g  e f f i c i ency  ,is found 

t o  be g r e a t e r  than 991 ( f o r  TimpS5 ev)" if: 



i o n  temperature i n  t h e  co re  (1.e. a-: Ti = 2.7 keV, T.Zl.8 

Here n is t h e  average plasma densi ty  i n  t h e  core,  and a the  minor 
P 

radius  of t h e  t o m s ,  and t h e  l i n e  averaged density has been 

approximated by d . 
A more ca re fu l  ana lys i s  of t he  plasma p a r t i c l e  and energy 

t ranspor t  i n  t h e  d ive r to r ,  and t h e  e f f e c t  of  various boundary 

condi t ions  ( a t  t h e  s e p a r a t r i x  and f i r s t  wa l l )  on a tokamak discharge 

has been c a r r i e d  out by seve ra l  authors  41,42,43. 

The group a t  ~ r i n c e t o n ~ l  numerically solved de ta i l ed  p a r t i c l e  and 

energy balance equations. .for t h e  electrons'  and ions.  They included 

sucb energy l o s s  and gain mechanisms as r ad ia t ion ,  ionizat ion,  charge 

exchange and neu t ra l  beam heating. The e f f e c t  of t he  d ive r to r  on the  

main core was assessed by solving these  equations with boundary 

equations a t  t h e  s e p a r a t r i x  supposedly appropr ia te  t o  t h e  PDX 

experiment. 

Comparison of t h e  parameters of t he  'PDX discharge with and 

without t h e  d ive r to r  were made us ing t h e i r  code. For t h e  d ive r to r l e s s  

case, the  coe f f i c i en t  R ,  t h e  f r a c t i o n  of neu t r a l s  recycled back i n t o  

t h e  plasma is chosen t o  be 1 ( Zef f  is chosen t o  be 8.) For the  

d i s c h a r p  with d ive r to r ,  R is  chosen t o  be .2 and. Zef f  =I  (due t o  t h e  

expected reduction i n  impurity level . ' )  The p r inc ipa l  d i f ference  

between t h e  so lu t ions  t o  these ,  two cases  is the.  higher e l ec t ron  and 

keV;. -: ~ ~ 3 . 9  keV, 1,: 3.8 keV) l o r  t h e  d ive r t ed  cage, and 
I 

s k l l e r  l o s s e s  due t o  charge exchange: 

A b e t t e r  t rea tment  t h a t  does not r e l y  on d i v e r t o r  type boundary 

cond i t ions  a t  t h e  s e p a r a t r i x  was done by ~ e n s e . "  In  t h i s  treatment,  

t h e  t r a n s p o r t  equat ions  were solved cons i s t en t ly  i n  t h e  core  and t h e ,  I 
scrape-off  zone. The only "boundary condi t ionn was t h a t  DL was 

, I 
continuous ac ross  t h e  sepa ra t r ix .  A t  t h e  edge o f  t h e  core  near t h e  I 
s e p a r a t r i x  t h e  d i f f u s i o n ,  c o e f f i c i e n t  of  t h e  trapped ion mode was 1 

I 

chosen. An a d j u s t a b l e  parameter eb  was in se r t ed  i n t o  t h e  assumed Bohm I 
! 

d i f  fus ion  c o e f f i c i e n t  i n  t h e  scrape-off  zone: . .  
I 

t o  a s s u r e  con t inu i ty  of Dl (eb= .25 t o  . I ) .  Various boundary 

cond i t ions  a t  t h e  f i r s t  wal l  were t r i e d ,  and it was found t h a t  t he  

t r a n s p o r t  equation s o l u t i o n s  i n  t h e  core and most of the  d ive r to r  were 

i n s e n s i t i v e  t o  these  boundary condi t ions .  

I n  t h e  scrape-off zone, t h e  cont inui ty  equations as wel l  a s  t h e  

e l e c t r o n  and ion  energy balance equations f o r  c ross  f i e l d  diffusion, 

p a r a l l e l  flow t o  t h e  c o l l e c t o r ,  and neu t ra l  gas e f f e c t s  were solved. 

I n  add i t ion ,  10% of t h e  plasma neutra l ized a t  t h e  c o l l e c t o r s  is 

recycled t o  t h e  scrape-off zone. ( Various deposi t ion p r o f i l e s  of 
. . 



r e f l u x  were t r i e d  i n  t t ie  sc rape-of f ,  and found . t o  have min imal ly  A group a t  P r i n c e t o n  have  a p p l i e d  a n  a n a l y s i s  s i m i l a r  t o  :he 

method used by Nense t o  t h e  c a s e  o f  a b i v e r t o r  f o r  t h e  INTOR tokamak. d i f f e r e n t  e f f e c t s . )  

The r e s u l t s  of t h i s  code t y p i c a l l y  show a r a p i d  f a l l ,  off in 

d e n s i t y  in t h e  sc rape-of f  zone as compared t o  t h e  c o r e  p r < f l l e .  The The f i r s t  two dimensional. a n a l y t i c a l  s t u d y  o f  t h e  d i v e r t o r  was 

' c a r r i e d  o u t  by H a z e l t i n e  and h in ton;^! I n  t h e i r  model, 'it is  assumed . 
' 

t h a t  t h e  d i s t r i b u t i o n  f u n c t i o n .  o f  b o t h  i o n s  , and  e l e c t r o n s  a r e  

~ o i t z m a n n  d i s t r i b u t i o n s .  The i o n s  are f u r t h e r  assumed t o  be  

tempera ture  p r o f i l e s  of t h e  i o n s  2nd e l e c t r o n s  show t h a t  Ti=Te 

t h m u g h o u t  much of  t h e  c o r e  reg ion  (due t o  r a p i d  e q u i l i b r a t i o n  between 

spei?ies) b u t  t h a t  Te' f a l l s  o f f  much more r a p i d l y  than  Ti i n  t h e  

sc rape-of f  zone. The impor tan t  e f f e c t  t h a t  causes t h i s  d i f f e r e n c e  15 c o l l i s i o n l e s s  and t h e  e l e c t r o n s  c o l l i s i o n a l  i n  t h e  s c r a p e  o f f  zone. 

t h e  s h e a t h  t h a t  .forms a t  t h e  p a r t i c l e  c o l l e c t o r s .  This  s h e a t h  Forms T h e i r  fundamental d e f i n i t i o n  is t h a t  t h e  i o n  d e n s i t y  is s imply  t h e  

i n t e g r a l  of  t h e  i o n  d i s t r i b u t i o n  f u n c t i o n  o v e r  t h a t  p o r t i o n  o f  t o  r e p e l  t h e  m a j o r i t y  of  e l e c t r o n s  t h a t  epproac'h 'it, t o  a s s u r e  t h a t  

= . Only t h e  h o t t e s t  e l e c t r o n s  can"reach  t h e  s u r f a c e  and  v e l o c i t y  space where t h e  i o n  s i n g l e  p a r t i c l e  o r b i t s  a r e  conta ined ,  and 

combine, b u t  a l l  i o n s  t h a t  e n t e r  t h e  s h e t h  s t r i k e  t h e  p la te :  The  n e t  t h a t  t h e  d i s t r i b u t i o n  f u n c t i o n  is z e r o  o n  unconfined o r b i t s .  Using 

t h e  Tokamak d r i P t  o r b i t s  f o r  t h e  u n t r a p p e d  p a r t i c l e s .  t h o s e  o r b i t s  m s u l t  is a more r a p i d  c o o l i n g  o f  t h e  e l e c t r o n s  . t h a n  . t h e  i o n s .  

However, secondary e l e c t r o n  emission from t h e  c o l l e c t o r  can r e d u c e  t h e  t h a t  p a s s  beyond a c e r t a i n  minor r a d i u s  (1.e. t h e  s e p a r a t r i x  a t  t h e  
. . 

c o l l e c t o r )  a r e  t a k e n  t o  b e  l o s t  t o  t h e  p o l o i d a l  d i v e r t o r ,  i n  a n  
. . . . 

p o t e n t i a l  d r o p  a c r o s s  t h e  s h e a t h  and cause  even l a r g e r  l o s s e s  t o . t h e  
. . 

e lec t rons .42  A s  w e . s h a l 1  s e e  i n  t h e  d e s c r i p t i o n  of  ' t h e  e x p e r i m e n t s  
. . i d e a l i z e d  magnetic geometry. When t h i s  i n t e g r a l  is eva lua ted  and t h e  

r e s u l t  combined w i t h  t h e  q u a s i n e u t r a l i t y  c o n d i t i o n ,  t h e y  f i n d  t h e  t h a t  f o l l o w s ,  a s i m i l a r  ?hanced e l e c t r o n  cool ing  can t h e , r e s u l t  o f  

non-ambipolar d i f f u s i o n .  It should be noted t h a t  t h i s  e f f e c t  w i l l  d e n s i t y  s c a l e  l e n g t h  i n  t h e  s c r a p e - o f f  zone, t o  be 

i n v a l i d a t e  t h e  assumption of  ion  a m u s t i c . f l o w  into t h e  d i v e r t o r  p l a t e  
. . 

which i s .  based  on t h e  e x i s t e n c e  dr ambipolar f l o w t .  Therefore ,  a n o t h e r  
. . 

impor tan t  a r e a  o f  exper imenta l  ' i n v e s t i g a t i o n  needing, f u r t h e r  r e s e a r c h  . . 

is s h e a t h  format ion  i n  t h e  presence o f  secondary emis,sion, a n d  its , 

where ppi is t h e  i o n  g y r o r a d i u s  e v a l u a t e d  w i t h  t h e  p o l o i d a l ;  f i e l d  
e f f e c t  on V. and e l e c t r o n  e n e r w  l o s s ,  i n  one of . t h e  next  g e n e r a t i o n  

d i v e r t o r  experiments.  
i n t e n s i t y  and a/R is t h e  i n v e r s e  a s p e c t  r a t i o .  T h i s  analya ' is  y i e l d s .  

s i n g u l a r  r e s u l t s ,  however, f o r  p o l o i d a l  a n g l e s  approaching .the. 



. . 

l o c a t i o n  o f  t h e  d i v e r t o r  p l a t e s ,  which is  an a r t i f a c t .  of t h e  

c o l l i s i o n l e s s  assunpt ion .  ( T h a t  is ,  t h e  d e n s i t y  p r o f i l e  approaches a 

s t e p  f u n c t i o n  a t  p o l o i d a l  a n g l e s  n e a r  t h e  l o c a t i o n  o f  t h e  d i v e r t o r  

p l a t e s . )  

I n  a l a t e r  s e c t i o n  o f  t h e i r  paper ,  t h e  a u t h o r s  ex tend  t h e  

a n a l y s i s  t o  t h e  r e g i o n  where t h e  c o l l i s i o n l e s s  model b reaks  dorn. 

Based on a n e o c l a s s i c a l  a n a l y s i s  o f  p a r t i c l e s  d i f f u s i n g  i n t o  t h e  

d i v e r t o r  l o s s  reg ions ,  It i s  shorn-  t h a t  t h e  d e n s i t y  . s c a l e  l e n g t h s  
.- . 

o b t a i n e d  in t h e  c o l l i s i o n l e s s  l i m i t  are v a l i d  everywhere except  n e a r  

- .poloIda1 a n g l e s  o f  8  =*/2, t h e  l o c a t i o n  o f  t h e  d i v e r t o r  p l a t e s .  A t  

8 n + n / 2  t h e  boundary l a y e r  a n a l y s i s  y i e l d s  a  more g e n t l e  f a l l  o f f  of  

d e n s i t y  than  t h e  s t e p  f u n c t i o n  o f  t h e  c o l l i s i o n l e s s  a n a l y s i s .  They 

conc lude  t h e i r  paper by c a l c u l a t i n g  t h e  p a r t i c l e  and energy l o s s  t o  - 
t h e  d i v e r t o r  based on t h e s e  r e s u l t s .  

The importance of I n c l u d i n g  t h e  b a r e l y  t rapped  i o n s  i n  t h e  energy  

and p a r t i c l e  l o s s e s  t o  t h e  d i v e r t o r ,  l e f t  o u t  i n  t h e  previous paper,  

was shown by E L - ~ a d i ~ '  i n  a  s i m i l a r  a n a l y s i s  based on t h e  d r i f t  

k i n e t i c  equation.  

A f u r t h e r  refinement of t h e  H a z e l t i n e  and Hinton paper is c a r r i e d  

o u t  by Daybelge and'.Beinq5. Using t h e  f u l l  Fokker-Planck c o l l i s i o n  

o p e r a t o r  in t h e  i o n  d r i f t  k i n e t i c  e q u a t i o n ,  and account ing  f o r  t h e  

v a r i a t i o n  o f  t h e  l o s s  r e g i o n  a s  a  Punct ion  o f  p o s i t i o n ,  t h e  p a r t i c l e  
, 

and energy loss 'es  t o  t h e  d i v e r t o r  a r e  c a l c u l a t e d .  

There is one  f i n a l  d i v e r t o r  model worth mentioning t h a t  i s  q u i t e  

d i f f e r e n t  from t h e  models  d i s c u s s e d  previously.  Fig. 1.4 d e s c r i b e s  

t h e  two dlmen'sional  model o f  Boozerq6 schemat ica l ly .  The modei 

a s s m e s  plasma is d e p o s i t e d  i n t o  t h e  z d i r e c t e d  .magnetic f i e l d  w i t h  

s a o e  g i v e n  p r o f i l e  I'(z). The d i v e r t o r  is assumed t o  a c c e p t  any and 

a l l  plasma g i v e n  t o  it(common t o  a l l  t h e  d i v e r t o r  models  d i s c u s s e d  

except  t h e  n u m e r i c a l  models  oP ~ e n s e ~ '  and ueadeql e t  a l ) ,  t h e  plasma 

then moving a c r o s s  a n d  p a r a l l e l  t o  _8, through t h e  s h e a t h  a t  t h e  

c o l l e c t o r  p l a t e s ,  a n d  n e u t r a l i z i n g  i t s e l f  on t h e  t a r g e t  p l a t e s .  ( T h i s  

process  is asswned t o  depend o n l y  on  x and z;  y  is a symmetry plane.)  

A g e n e r a l  set o P  e q u a t i o n s  g i v e n  by ~ r a g i n s k i i 3 ~  are used t o  

s o l v e  For  t h e  plasma t r a n s p o r t .  These equa t ions  a r e  e s s e n t i a l l y  t h e  

two f l u i d  e q u a t i o n s ,  with..a term _R inc luded  to .account  f p r  i n t e r - f l u i d  

n f r i c t i o n a l R  Coulcmb f o r c e s ,  and  energy  ba lance  equations42.  S o l u t i o n  

o f  t h e s e  e q u a t i o n s  i n d i c a t e s  o n c e  a g a i n  t h a t  plasma f low p a r a l l e l  t o  _B 

w i l l  be  a t  t h e  i o n  a c o u s t i c  speed.  However, h e r e  t h e  s i m i l a r i t y  t o  

t h e  f low models  ends .  While t h e  Plow models p r e d i c t  e q u a l  f l o w  o f  

i o n s  and e l e c t r o n s  a c r o s s  f i e l d  l i n e s  wi th  a  p r o f i l e  n  m e e x A  , t h i s  

model p r e d i c t s  d i f f e r e n t  c h a r a c t e r i s t i c  A's f o r  each  s p e c i e s .  It 

i n d i c a t e s  t h a t  t h e  e l e c t r o n s  f low t o  t h e  c o l l e c t o r  o v e r  a  narrow 

r e g i o n  o f  w i d t h  X = pet /  Xe ( pe= e l e c t r o n  g y r o r a d i u s ,  X g e l e c t r o n  

mean f r e e  p a t h , L  t h e  f i e l d  l i n e  l e n g t h  t o  t h e  c o l l e c t o r . )  The i o n s  

w i l l  have a  A = p+(Te), t h e  i o n  gyrorad ius  c a l c u l a t e d  w i t h  t h e  

e l e c t r o n  t e m p e r a t u r e .  The l a t t e r  is wider than t h e  p r e d i c t e d  X from 

t h e  f low models ,  which f o r  comparison purposes i n  t h e s e  u n i t s  is 



. . 
A = (  P, peL/ 1,) . The f l u x  of plasma is anbipolar on ly  i n  t h e  

sense  t h a t  equal  f l u x e s  of e l e c t r o n s  and ions enter  t h e  s h e a t h  i f  

in t eg ra t ed  over t h e  width of t he  p a r t i c l e  col lec tor .  I n t e r e s t i n g l y  

enough, t h e  FM-1 d i v e r t o r  experiment d i d  note an ion outPlow w i d t h ' o f  

p+(Te), and a l a rge .  potent ia l .  change across  the  scrape-off zone,  a s  

i f  t h e  e l e c t r o n s  and i o n s  c r e  separated.  The exis tence  o f  such. 

mn-anbipolar flow has a l s o  been observed in  t he  experiment to  be 

described. Boozer's model assumes cold ions  and c l a s s i c a l  t r a n s p o r t  

i n  t h e  scrape-off  zone. These a r e  unlikely occurances i n  Tokamak 

" reac to r  plasmas, bu t  may have relevance f o r  our experiment. 

The f i n a l  choice  among these  many theories can only r e s t  on 

' experiment. The l a r g e  d i v e r t o r  experiments tha t  a re  p re sen t ly  coming 

on l i n e  w i l l  hopeful ly  answer t h i s  question. It is the  humble hope o f  

t h i s  author  t h a t  t h e  experiments described i n  t h i s  t hes i s  w i l l  s h e d  a 
. - 

ray of l i g h t  03 a 3-11 a r e a  of t h e  d ive r to r  problem. 
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C h a p t e r  2 . 
. . 

A schematic. of  t h e  D.C. machine, t h e  device used f o r  - t h e s e  . . 

experiments,  is shown. i n  Fig.  2.1. T h i s  a p p a r a t u s  was c o n s t r u c t e d  i n  

the y e a r s  1970-71 by Dale Meade, Tom J e r n i g a n  and Ron P r a t e r  .and used 
. . . . 

by P r a t e r  and J e r n i g a n  as t h e  main exper imenta l  device f o r  t h e i r  

Ph.D. Subsequently R. ~ i c h a r d s  obtained h i s  Ph.D. f o r  
. . 

experiments ' a r r i e d . o u t  on t h e  same . . 

The k t e r  s e c t i o n  of t h e  vacuum t a n k  was c o n s t ~ c t e d  by r o l l i n g  

3/4 inch  5083 a l u m l & n ' i n t a  a c y l i n d e r  a d  welding t h e  seam. The end 

f l a n g e s  a r e  c u t  from 1.5 inch  5083 aluminum and a r e  s e a l e d  t o  t h e  

c p l i n d r i c a l  sect ion, .  w i t h  l a r g e .  V i t o n  O-rings. The e n t i r e  device  is 

' suppor ted  on a s t a n d ,  w i t h  t h e  c e n t e r  ' l i n e  ( s e e  ~ i ~ . '  2.1) i n  a 
. . 

' h o r i z o n t a l - p l a n e . .  The tank  is 66  cm. l o n g  and 92 cm. i n  diameter .  

P o r t s  &e provided i n  t h e  t a n k  f b r  s i x  i n t e r n a l  r i n g  s u p p b r t s ,  

. . 
Pig.  2 .l: A ' schemat ic  o f  t h e  D.C. Machine showing: A-Lisi tano , 

c o i l ;  P - i n t e r n a l  rLng; G-Helmholtz c o l l s ;  B-mir ror  c o i l s ;  B,C,, . 

D-typical  f i e l d  lines f o r  t h e  chosen magnetic c o n f i g u r a t i o n .  

d i f f u s i o n  pump, ion  gauge, and t h e  c u r r e n t  f e e d  t o  t h e  i n t e r n a l  r i n g  

as u e l l ' a s  numerous ' o t h e r  d i a i p l o s t i c  p o r t s .  A l l . p o r t  s e a l s  a r e  e i t h e r  

iadlum o r  Vi ton  O-rings. , 

laQam3xamn 
. . 

A base  d r e s s u r e  i n  t h e  mid 10-7 . ranee is obtained with. an o i l  
. . 

&?fusion .pump, topped b j  a ~ r ' e o n  cooled  b a f f l e  and a water  cooled  

c o l d  cap ,  backed by a mdchanical  pump. The o i l  d i f f u s i o n  pump is a 
e .  

s i x  inch  PMC-6 Consol ida ted  Vacuum Corp. charged with DC-704 s i l i c o n  

base  o i l .  A smal l  Tecumseh' Gorp: r e f r i ~ e r a t i o l ?  u n i t  c o o l s  t h e  
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Consol ida ted  Vacuum t y p e  BC-61C b a f f l e  t o  a b o u t  -60 d e g r e e s  f a r e n h e i t  

t o  reduce backs t reaming  of d i f f u s i o n  pump o i l .  'The b a f f l e  reduces  t h e  

pumping s p e e d  t o  a b o u t  h a l f  o f  its o r i g i n a l  1400 l/s. F i n a l l y  a Welch 

mechanical  pump w i t h  a pumping s p e e d  o f  500 l/s e v a c u a t e s  t h e  . 

d i f f u s i o n  pump through a s t e e l - w o o l  packed f o r e l i n e  t r a p ,  whose 

purpose is t o  reduce  b a c k s t r e a m i n g  o f  mechanical  pump o i l .  A 

Leybold-Heraeus DK-45 m e c h a n i c a l  pump, w i t h  a pumping s p e e d  o f  650 

l/s, is used  t o  rough t h e  s y s t e m  down from a tmospher ic  p r e s s u r e  

t h m u g h  a s e p a r a t e  p o r t .  

Analys i s  o f  t h e  r e s i d u a l  g a s s e s  i n  t h e  system w i t h  a Molytek 

Spectramass 8 0  mass s p e c t r o m e t e r  showed t h e  dominant p a r t i a l . p r e s s u r e  . 
i n  t h e  sys tem was t h a t  o f  w a t e r .  I n  - a d d i t i o n  s m a l l e r  peaks  were 

-observed, ak. mass t o , c h a r g e . , r a t i o s  in.  t h e  range  41-50..and were thought  ., 

t o  be hy&ocarbons . from t h e  d i f f u s i o n  pump o i l .  Fig. 2';2 shows 
I 

t y p i c a l  R.G.A. t r a c e s  when t h e  b a s e  p r e s s t i r e  was 5 x 1 0 - ~  t o r r .  The 

Qminant peaks a t  m/e=18 ( p a r t i a l  p r e s s u r e =  3.3x10-' t o r r . )  and m/e=28 

( p a r t i a l  p r e s s u r e = 1 . 7 ~ 1 0 - ~  t o r r .  ) a r e  e v i d e n t .  Both s u b s t a n c e s  a r e  

u n d e s i r a b l e  i n  a plasma exper iment  because  of  p o t e n t i a l  changes i n  

work f u n c t i o n  t h e y  can  c a u s e  on p r o b e  s u r f a c e s 4 ,  a s  w e l l  a s  adding  

e f f e c t i v e  c a p a c i t a n c e  a n d  r e s i s t a n c e  i n  s e r i e s  w i t h  t h e  probe. An 

a d d i t i o n a l  e f f e c t  is due  t o  t h e  s i l i c o n  base  pump o i l .  On s u r f a c e s  

t h a t  have been c o n t i n u a l l y  bombarded wi th  plasma a g l a s s y  

non-conducting d e p o s i t  h a s  b u i l t  up o v e r  t h e  y e a r s ,  i n  p l a c e s  t h i c k  

enough t o  f l a k e  o f f .  A n a l y s i s  of t h e s e  brown d e p o s i t s  ,by Auger 

spec t roscopy  h a s  shown t h e y  c o n s i s t  l a r g e l y  of s i l i c o n  and carbon .with 



?ip. 2 .2:  Residual gas analyzer traces of the D.C. machine 

vacuum before the instai lat ion of the cryopanel. The 

horizontal scale i s  .mass t o  charge rat io  of the impurity. 

. . and the vert ical  scale  is proportional t o  the partial pressure 

of the impurity. Shovn are three different sensit ivit ies  of 

the R.G.A. 
. . 



t r a c e  amounts of c h l o r i n e  and sulphur., suggesti-ng they  a r e  c h e m i c a l l y  

c r a c k e d  pump ,011. Bui ld  up of t h i s  same c o a t i n g  has been o b s e r v e d  on  

probe  s u r f a c e s ,  where it can c h a n s  t h e  e f f e c t i v e  c o l l e c t i n g  a r e a  o f  

t h e  probe. 

To e l i m i n a t e  o r  reduce a s  much a s  p r a c t i c a l  t h e  bad e f f e c t s  o f  

t h e s e  i m p u r i t i e s ,  a l i q u i d  n i t m g e n  cooled  c ryopanel  w a s  ~ 0 n S t I U c t e d  

a n d  i n s t a l l e d  on t h e  D.C. machine. The c ryopanel  is near ly  i d e n t i c a l  

. to  one  t h a t  has .&en shown t o  be e f f e c t i v e  on ' t h e  oc tupole  and  was 

d e s i g n e d  by Jon Twichell .  Fig. '2.3 shows t h e  R.G.A. t r a c e s  a f t e r  

i n s t a l l a t i o n  o f  the panel .  The water  peak has been r e d u c e d  t o  

1.2r10-~ t o r r .  and t h e  o i l  peaks have been reduced by about  a f a c t o r  

o f  t h r e e .  The c ryopanel  h a s  two square f e e t  of  b a f f l e d ,  c o o l e d  copper  

p l a t e .  w i t h  a pumping speed Cor water  o f  about 2000 l/s. 

The p r e s s u r e  i n  t h e  system is monitored i n  t h e  1 atm. t o  1 

micron  m g e  wi th  v a r i a n  t y p e  0531 t h e r m c o u p l e  'gauges. For p r e s s u r e s  

below 1 micron, a  Varian 563 Bayard-Alpert t y p e  i o n i z a t i o n  gauge is 

used  and  monitored by a Varian 843 i o n i z a t i o n  gauge c o n t r o l l e r .  To 

c o n t r o l  t h e  p r e s s u r e  dur ing  experiments, g a s  is ' b l e d  i n t o  - t h e  tank 
' 

t h r o u e  .a  needle  viilve while t h e  'system is .being pumped on. 

ltiulm&uau 

The o r i g i n a l  i n t e n t  i n  t h e  design o f  t h e  magnetic f i e l d  s t r u c t u r e  

o f  t h e  D.C. machine was t o  model c e r t a i n  p r o p e r t i e s  of m u l t i p o l e s  i n  a  

s t e a d y  s t a t e  device.' To. t h i s  ,end, and t h e  d e s i r e  f o r  . f l e x i b i l i t , y  i n  

F i g .  2.3: R e s i d u a l  g a s  a n a l y z e r  t r a c e s  a f t e r  t h e  i n s t a l l a t i o n  

o f  t h e  cryo-panel .  Note  t h e  r e d u c t i o n  o f  t h e  vater peak a t  m/e=18. 

and t h e  r e d u c t i o n  i n  t h e  h i g h  m/e p e a k s  a t t r i b u t a b l e  ._.I t o  pump o i l .  + .. 

t h e  a v a i l d b l e  conf igura t ions ,  t h e  c o i l  arrangement i n  Fig.  2.1 w a s  
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100 t"r& o f  t h e  same copper t u b i n g  a s  t h e  ~ e l & o l t z  c o i l s . .  .The 

"cubew power s u p p l y .  f o r  t h e s e  c o i l s  is capable '  o f  2 i 5  amps a t  3'6 v o l t s  
. . .  . . 

b u t  is n o r m a l l y  ' m n  i t  180 amps.  h he na'chine's f i e l d  n&iu,urn o f  1200 

G. o c c u r s  a t  t h e  t h r o a t  o f  t h e s e  c o i l s .  . 
. . 

. F i n a l l y  t h e  i n t e r n a l  r i n g  o f  t h e  D.C. machine is' a magnet t h a t  
.. e 

. was p r i g i n a l l y '  . . l o i n e d  t o  ' the ,  experiment by t h e  p r i n c e t o n  p l a s m  
, , 

p h y s i c s  Lab., and' b n l y  r e c e n t l y  became proper ty  of  t h i  u n i v e r s i t y  of 
. . 

~ i s c o n ' s i n . '  T h e  magnet had been used i n  - t h e  S p h e r a t o r  S.P.-1 

exper iment .  T h i s  c o i l  h a s  twelve t u r n s  of  copper i n s i d e  a s t a i n l e s s  
. . 

. 

. . 

e x t e r n a l  t o  t h e  vacuum chamber a r e  i n  a ,  Helmholtz c o n f i g u r a t i o n .  
. . . . 

These  k i h " a r e  made. u p  of  18 each "pancakem having 12 
. . ,  . . . 

t u r n s  o f  c o p p e r  t u b i n g  and  measuring 56.5 cm. i n  major r a d i u s ,  10 
. . .. . 

cm. i n  t h i c k n e s s  and 14 cm. i n  length .  The s u c c e s s i v e  t u r n s  i n  each 

 pancake'^ are . i n s u l a t e d  from e a c h  o t h e r  by f i b e r g l a s s  t a p e  and p o t t e d  
. .. 

' i n  epoxy. T h e  power s u p p l y  f o r  t h e s e  c o i l s  is a mqdified .Lora in  

. . P r o d u c t s  F l o t r o l  m a g n e t i c  amplif i ; r ,  capable '  of 4OO amps a t  7 0  v o l t s .  
. .  . 

These  coils are u s u a l l y  o p e r a t e d  a t  about  7 0  amps p e r  t u r n ,  which 

produces  an on a x l s  f i e l d  o f  about  250 G. 

c a r r y i n g  c u r r e n t  i n  t h e  same direction a s  t h e  Helmholtz c o i l s  a re '  

t h e  , s m a l l  e n d  c o i l s .  These c o i l s  provide t h e  resonance f i e l d  
. . 

n e c e s s a r y  to  o p e r a t e  t h e  L i s i t a n o  source ,  a s  ' v e i l  a s  p i n c h i n g  t h e  . . . . 
f i e l d  down t o  form 'a magnet ic  mir ror .  The end c o i l s  a r e  wound from 



s t e e l  jacket  wi th  an i n s i d e  major radius  of 33 cm. Supporting t h e  

c o i l  i n s i d e  the .  vacuum vesse l  a r e  s i x  1/8 inch diameter s t a i n l e s s  . . 

s t e e l  rods ,  and both. rods  and c o i l  a r e  e l e c t r i c a l l y  i so l a t ed  from t h e  

main vacuum chamber. The current  supply  t o  t h e  r i n g  -is a  s u r p l u s  

MaguePlux meta l  f law d e t e c t o r  supply tha t  can supply 4 kA a t  12 V bu t  

u n t i l  r e c e n t l y  only i n  a  step-wise fashion. It was found d u r i n g  t h e  

pre l iminary  i n v e s t i g a t i o n s  of t h i s  t h e s i s  t h a t  a continuous 

V a r i a b i l i t y  o f  the cu r ren t  was necessary. Therefore T. Love l l ,  

C. S t r awi t ch  and D:Gmbb designed and i n s t a l l e d  t h e  c i r c u i t  shown i n  

P ig .  2.4 t h a t  a l lows t h e  current  t o  be near ly  'continuously va r i ed  
. . .  

between t h e  t a p s  on t h e  autotransformer. 

The two mst u s e f u l  conf igura t ions  f o r  d ive r to r  s t u d i e s  are shown 

: i n .  . Fig.2.5.. and t h e  t h i r d  is.,.. essent iakly .  a  simple mirror  

con f igu ra t ion  when t h e  i n t e r n a l  r i n g  is not energized. The lower 

magnetic, c&nf igu ra t ion  i n  ~ i g . '  2 ;s  is most s i m i l a r  t o  a  d i v e r t o r  f i e l d  

p l o t ,  b u t  f o r  reasons  out l ined l a t e r .  t h e  upper con f i eu ra t ion  was 

chosen. For  t h e  w n f i y r a t i ~ s  shom i n  Fig. 2.5 t h e  cu r r en t  i n  t h e  

i n t e r n a l  r i n g  is  m n  oppos i t e  t h e  currents  i n  t h e  Helmholtz c o i l s .  

The o u t p u t s  of a l l  t h r ee  p w e r  suppl ies  a r e  h ighly  c a p a c i t i v e l y  

f i l t e r e d  i n  a d d i t i o n  t o  t h e  'inherent current s t a b i l i t y  provided by t h e  

induc t ive ,  l oads  o f  t h e  magnets. A l l  o f  t he  magnets a r e  cooled by a  

c lo sed  loop coo l ing  system t h a t  pumps a  d i s t i l l e d  water a n t i - f r e e z e  

Fig. 2.4: Schematic o f  t h e  , m d i f  i c a t i o n s  to t h e  Hagneflux power 
supply t o  make it cont inuously  v a r i a b l e .  

mixture ( t o  prevent  corros ion)  through the. c o i l s  a t  approximately 140 

Psi.  and seven gal./min. In  t u rn  a  'hea t  exchanger t r a n s f e r s  t h e  

waste  h e a t  t o  t h e  c i t y  water. A system o f  e l e c t r o n i c  i n t e r l o c k s  



Axis of Symmetry . . 

~ i i .  2.5: Magnetic Configurations Avoiloble for qivertor Studies, . 



a l l o w s  power . t o  b e  a p p l i e d  t o  . t h e  c o i l s  on ly  uhen t h e  c o o l i n g  nter is 
. . 

c i r c u l a t i n g .  . . 

n asma S o u r c e  

The plasma s o u r c e  used throughout t h e s e  experiments was a so- 
. - 

c a l l e d  m L i s i t a n o  c o i l "  s low wave s t r u c t u r e  s i m i l a r  to o n e s  found i n  

t r a n s m i s s i o n  l i n e s  i n  microwave tubes.5 The mil ,  shown i n  F ig .  2.6, 

is in open ended meta l  c y l i n d e r '  s l o t t e d  i n  its a x i a l  d i r e c t i o n .  

R.F. energy  is f e d  i n t o  one end o f  t h e  transmission l i n e  formed by t h e  

s l o t s  ( s h o r n  s c h e m a t i c a l l y  in F Q .  2.6) and t h e ' -  o t h e r  end is, 

te rmina ted  i n  a short c i r c u i t .  The s l o t s  a r e  one h a l f  wavelength l o n g  

and t h e r e  is a 180 degree  phase s h i f t  between s i m i l a r  p o i n t s  on  

a d j a c e n t  s l o t s .  The f r i n g i n g  f i e l d  from . the  TEM wave p r o p a g a t i n g  i n  

.. . . the .  . s l o t s , . .  forms . a  f i e l d . .  - p a t t e r n . .  s i m i l a r  t o  a  TEOil mode o f  a  

c y l i n d r i c a l  r e s o n a n t  c a v i t y ,  and w i l l  be s t k n g e r  .on t h e  i n s i d e  .than 

on t h e  o u t s i d e  due  t o  t h e  c y l i n d r i c a l  shape. A TEO,, mode b a s  its 

electric f i e l d  v e c t o r  in t h e  0 d i r e c t i o n  o f  t h e  c y l i n d e r ,  and  changes 

' d i r e c t i o n  o n  each  h a l f  c y c l e  o f  t h e  appl ied  B.F. and s i m i l a r l y  s o  

d o e s  a L i s i t a n o  coil. The advantage t o  us ing  .a L i s i t a n o  c o i l  o v e r  a  

' cyhindr ica l . .  r e s o n a t o r  is' t h a t  t h e  i n t e r n a l  I- ield c o n f i g u r a t i o n  is  

independent of its d i a m e t e r  and r e l a t i v e l y  independent  of t h e  

f requency  'o f  t h e  a p p l i e d  R.F. Therefore t h e  s h e  o f  t h e  s o u r c e  can  

.more e a s i l y  b e  t a i l o r e d  t o  . t h e  reqirements o f  a. given .experiment. 

When an &la1 magnetic f i e l d  is appl ied ,  one can make u s e  o f  t h e  

r e s o n a n t  n a t u r e  of t h e  o r b i t  of e l e c t r o n s  in a magnetic f i e l d  by 

Fig.  2.6.: The s l o t t e d  c y l i n d e r  L i s i t a n o  c o i l ,  shoving  t h e  

microwave power f e e d  and t h e  o r i e n t a t i o n  o f  t h e  magnet ic  f i e l d .  

a p p l y i n g  R.P. a t  ' the '  c y c l o t r o n  frequency t o  .achieve breakdown a t  .a 



N OT 
TO SCALE 

, . . r :  ':. :' . . . ,. . . . 
lowkr i l e c t r i c  f i e l d  t h a n  i f  no magnet ic  f i e l d  were present .6 source  

gas is b l e d  i n t o  t h e  base  o f  t h e  c o i l ,  and a breakdown can be achieved 
... . , .. 

. , from and  up t o  10-3 tbrr. 
. . , . 

Once t h e  plasma is formed, power is absorbed  a t  t h e  upper hybr id  
. . .  . . - .  . - . . . . . . 

resonance  f r e q u e n b  
. . 

.L .. . < '  . _. '. 

. . .  . . f;= fuh' ( fpe2+; fce 2)l'/2. = 
s. . .. .. 

where f is t h e  a p p l i e d  f requency ,  fuh  1s t h e  upper  h y b r i d  f requency ,  a .  . 

fpe is t h e  e l e c t r o n  plasma f requency ,  and  fee, is t h e  e l e c t r o n  . 
. - 

c y c l o t r o n  frequency.  , F o r  plasma. d e n s i t i e s  l e s s  t h a n  10'' cm-3 t h i s  
. ... .. ' 

1 reduces  t o  fa=fc=. . 
: . , . 

Care must be t a k e n  t o  a m i d  h i g h e r  o r d e r  c o a x i a l  modes t h a t  w i l l  

competei, for , t h e  ava i . l ab le  . . power w i t h  t h e  d e s i r e d  mode i n .  t h e  .. . 
From Fig .  2.6 it w i l l  be  observed  , .  t h a t  t h e  c o i l ,  . . .  holder ,  ,. ,with t h e ,  

a t t a c h e d  c o o l i n g  l i n e s ,  and t h e  c o i l  fo rm a c o a x i a l  t r a n s m i s s i o n  l i n e .  

Higher o r d e r  c o a x i a l  modes t h e r e f o r e  can e x i s t  i n  t h e  gap between c o i l  

and  holder .  F o r  ,exz+ple,-,, t h e  TEl ,; mode h a s  t h e  lowest  c u t o f f  . . 

wavelength . . .. . . .  :, 

. . . . . . .  . 'Ao= n ( b + a  . ., )I2 . - . .  . 
where K c  is t h e  c u t o f r  kave length ,  b is , t h e  ' i n s i d e  d iameter  of th; 

. . , .. . 



holder and, , a  t h e  outs ide  diameter of t he  co i l .  For ou r  parameters . . 
Xo=19 cm. and t h e  R.F. wavelengths used a r e  near  12 cm ind ica t ing  
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Chapter 3 
. . . I 

A l l  o f  t h e  data  f o r  t h e  experiments described i n  t h i s  t h e s i s  were 

taken with e l e c t r o s t a t i c  probes in one form o r  another. E l e c t r o s t a t i ~  

probes have t h e  ad;a"tage of .providing a simple; l o c a l  measurement of 

plasma parameters but  t h e  p r i c e  t o  be paid is t h e  per turbing e f f e c t  . 

they may have on t h e  plasna.    he l a t t e r  can hopefully be minimized by 

des igning the-  probe'  t o  b i  phys i ca l ly  small  and, in addi t ion ,  perhaps 

draw no n e t  e l e c t r i c a l  current .  Implementatioa of probes as a 

: ' - iamost ic  then is a simple matter i n  general;  however, t h e  

i n t e r p r e t a t i o n  of t h e  probe c h a r a c t e r i s t i c  is f a r '  from Simple and 

s t i l l  a sub jec t  of a c t i v e  research .  S t i l l  another complication a r i s e s  

when a l a y e r  of i n p u r i t i e s  r e s ides  oo t h e  probe Surface,  which is 

almost unavoidable i n  most labora tory  plasmas. Since Law-ir' first 

jeweloped t h e  e l e c t r o s t a t i c  probe technique in 1924, t h e r e  has  

3eveloped a very extens ive  l i t e r a t u r e  on probes. The work of chen2 

u a s  t h e  f i r s t  sy s t ema t i c  account o f  probe theo r i e s  through 1965. 

Swl,ft and .Schwar3 updated t h e  work of Chen t o  t h e  year 1969. F i n a l l y  

Chung, Ta lbo t ,  and ~ o u r ~ a n ~  summarize t h e  s t a t e  of t h e  a r t  up t o  1975. 

The s o  c a l l e d  I - V  c h a r a c t e k i s t i c  of a probe contains a l l  o f  t h e  

information about a plasma t h a t  one can obta in  from a probe.215 The 

simple probe theory  of Bohm6 p r e d i c t s  an .  ion current;  which, a t  

vol tages  a u f f i c i e n t l y  negative with respect  t o  t h e  plasma p o t e n t i a l  t o  

. 54 

r e p e l  t h e  ma jo r i t y  of e i e c t r o n i ,  is ind'ependent o f  voltage.  ,Based on 

t h e  s o  c a l l e d  "Bohm sheath  c r i t e r i o n n  from t h i s  sane  theory,  t h e  ion 
. . 

curren.t t o  t h e  probe i s  given by 

. , 

wh&e A is t h e  probe a rea  and Ioi t h e  . i o n  s a t u r a t i o n  current.  

Obta in ing Te, t h e  e l ec t ron  temperature,  from t h e  exponent ia l  par t  o f  ' 

t h e  I -V  c h a r a c t e r i s t i c  enables one t o  c a l c u l a t e  ni t h e  ion  o r  plasma 

dens i ty .  A typical .1-V c h a r a c t e r i s t i c  from t h e  D.C. machine plasma is . 

' shown i n  Fig.  3.1. The lack of s a t u r a t i o n  o f  t h e  ion  current  is 

obvious and l eads  one t o  suspect  t h e  simple '-  theory  of Bohm. The 

a n a l y s i s  of Laframboise7 is app l i cab le  t o  t h e  c a s e  of' n6n-$aturating 

ion  c o l l e c t i n g .  probes,  fo r '  th'e case  when ' . the  i on  me& f r e e  path is 

much g r e a t e r  t han  t h e  probe radius ,  which c e r t a i n l y  is t h e  case  i n  our  

plasmas. The numerical  work of Laframboise t a k e s  i n t o  account t h e  ion 

o r b i t s  t h a t  w i l l  occur in t h e  a t t r a c t i n g  p o t e n t i a l  wel l  o f  t h e  probe, 

and c a l c u l a t e s  t h e  ion current  by no t ing  which o r b i t s  w i l l  i n t e r s e c t  

t h e  probe su r f ace .  Knowing t h e  f l o a t i n g  p o t e n t i a l  and t h e  e l ec t ron  

temperature,  t h e  value of Ioi from t h e  I - V  t r a c e  is uniquely 

determined i n  h i s  theory,  and from t h i s  fo l lows t h e  ion density.  It 

is worth po in t ing  o u t  t h a t  t h e  paper by sonins  was very use fu l  i n  t h e  

a c t u a l  a p p l i c a t i o n  of ' the  r e s u l t s  of Laframboise 's  theory,  f o r  reasons 

descr ibed i n  Ref. (4). 
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1. The theore t ica l  r e s u l t s  of Lafiamboise are derived under the 

assumption t h a t  there  a r e  no magnetic f i e l d s  present. However, i f  the  

i m  gyroradius is much grea te r  than, the  Debye length, one has a 

reasonable expectation t h a t  the r e s u l t s  of t h i s  theory a re .  still 

applicable. I n  t h i s  l imi t ing  case, the,  ion orb i t s  on t h e  sheath 

spa t ia l  scale  a r e  very nearly s t r a i g h t  l i n e s  outside the  .sheath, a s  is 

implicitly assumed i n  Laframboise's theory. For our paraneters: EZ50 

G , ~ ~ Z 2 . 5  cm , ADZ .2 mm, and obviously pi>> AD. I n  f a c t  the  

resul ts  of Chen e t  a19 and Brown e t  a l l 0  support t h i s  conclusion by 

experimental comparison of density obtained from probes, Interpreted 

using the theory of Lafranboise, and a microwave interferometer. . 

The electron retarding, portion of the I -V  charac te r i s t i c  can 

still -be used t o  determine t h e .  electron. telf;perat"re i n  t h i s  parameter 

regime. A s  in simple ' probe theory, the  current (dominated by 

el;c&ons) t o  t h e  probe in t h e  retarding region varies 

e(V-Vp) 
I = exp - 

where V is the probe voltage and Vp the  plasma potential.  A program 

that  ca r r ies  out an. exponential l e a s t  squares f i t  . t o  t h e  I-V 

character is t ic  was wri t ten f o r  a HP-29c programable calculator  and 

used t o  deduce Te. I n  a l l  . cases . the  curves are  very close t o  an 

exponential with a coef f ic ien t  of determination, R ~ ,  of .95 o r  greater  



( ~ ~ = 1  is a p e r f e c t  e x p o n e n t i a l ) .  The . program then  impliments t h e  

' theory of  Laframboise t o  determine.  t h e  d e n s i t y .  

Having determined Te and V f ,  t h e  f l o a t i n g  p o t e n t i a l ,  . a s  , t h e  

vo l tage  on t h e  probe a t  z e r o  c u r r e n t  ( t h e  pd in t  where t h e  I -V  

i n t e r s e c t s  t h e  ' v o l t a g e  a x i s )  o n e  can determine t h e  l o c a l  s p a c e  O r  

plasma p o t e n t i a l  from t h e  r e l a t i o n s h i p  

where t h e  v a l u e  of t h e  c o n s t a n t  a can a l s o  be obtained from t h e  

theory  of Laframboise. It is c o n v e n i e n t  a t  times t o  u s e  t h e s e  same 

probes t o  measure t h e  f l o a t i n g  p o t e n t i a l  without  t h e , n e c e s s i t y  of 

sweeping t h e  probe th,rou@ its , I -V  c h a r a c t e r i s t i c .  , I n  t h i s  c a s e  t h e  

probe must be t e r m i n a t e d  i n  a r i s i s t a n c e  much l a r g e r  t h a t  t h e  s h e a t h  

impedance.' o u r  . case  R S h e a t h = ( k ~ e ) ( l / ~ o i )  = 50 k ohms, s o  a 

Tekt ronix  1 0  M ohm b a l a n c e d  a t t e n u a t o r  probe is more than adequate.  

It is i n t e r e s t i n g  t o  n o t e  t h a t  t h e  s o  c a l l e d  "probe paradoxa1' t h a t  

observed i n  t h e  Octupole  is n o t  observed i n  the'D.C. machines. T h i s  

r e f e r s  t o  t h e  e x p e r i m e n t a l  o b s e r v a t i o n  t h a t  a  h i @  Impedance probe 

indicates's d i f f e r e n t  . v a l u e  of t h e  f l o a t i n g  p o t e n t i a l  t h a n  a low 

impedance probe i n  t h e  Octupole .  The d i f f e r e n c e  is a t t r i b u t e d  t o  

unequal  r a t e s  of . I m p u r i t y  coat: b u i l d u p  on t h e  probe s u r f a c e s .  i n  t h e  

.. . two cases .  . . 
. . 

Shorn i n  P ig ;  3.2 is t h e  c i r c u i t  used  t o '  o b t f i n  t h e  I -V  

c h a r a c t e r i s t i c s .  T y p i c a l l y  t h e  e n t i r e  c h a r a c t e r i s t i c  c a n  be g e n e r a t e d  

i n  a f e w '  seconds  when t h e  b i a s  v o l t a g e  is swept by hand. The 

d i f f e r e n t i a l  a m p l i f i e r  is used  a s  a  h i g h  impedance v o l t m e t e r  and 

a l l o w s  &se i n  s c a l i n g  o v e r  t h e  v o l t a g e  r a n g e  t h a t  is necessary  t o  

measure  maximum and miriimun d e n s i t i e s .  
. . 

I m p u r i t i e s  on probes  have been shown t o  c a u s e  t h e  measured Te 

v a l u e  t o  be h i g h e r  t h a n  t h e  a c t u a l  Ti- a s  w e l l  a s  a f f e c t  t h e  v a l u e  o f  

Of t h a t  is r n e a ~ u r e d . ' ~ ~ ~ ~  In an e f f o r t  t o  minimize t h e  e f f e c t  of 

i m p u r i t i e s  o n ,  t h e  probe  c h a r a c t e r i s t i c ,  t h e  probe  t i p s  a r e  first 

c l e a n e d  w i t h  a c e t o n e  and  t h e n  a l c o h o l  b e f o r e  i n s e r t i o n  i n t o  t h e  vacuum 

chamber.  Once i n s i d e  t h e  chamber, t h e  , probe  is bia$ed t o  i o n  

s a t u r a t i o n  t o  c l e a n  t h e  s u r f a c e  of vacuum evolved  i m p u r i t i e s .  Both 

e l e c t r o n  a n d . i o n  bombardment have been r e p o r t e d  i n  t h e  l i t e r a t u r e  as a 

method o f  c l e a n i n g  probes.12-16 During d a t a  a c q u i s i t i o n ,  t h e  probe  is 

m a i n t a i n e d  a t  i o n  s a t u r a t i o n  and o n l y  s u e p t  b r i e f l y  through its 1s 
t r a c e .  T h i s  method h a s  a l s o  been r e p o r t e d  t o  main ta in  a c l e a n  probe  

s u r f a c e  u n d e r  c o n s t a n t  i o n  bombardment d e s o r p t i o n  of  lmpuri t ' ies .  T h i s  

is a l s o  s u p p o r t e d  by exper imenta l  o b s e r v a t i o n  i n  bo th  D..C. machines. 

P r o b e s  m a i n t a i n e d  a t  t h e  f l o a t i n g  p o t e n t i a l  o r  e l e c t r o n  s a t u r a t i o n  f o r  . 

p e r i o d s  o f  d a y s  o f  accumulated r u n  t ime develop b lack  a s h - l i k e  

d e p o s i t s . .  These  d e p o s i t s  have been shown by Auger s p e c t r o s c o p i c  

. a n a l y s i s  t,o c o n s i s t  of  s i l i c o n ,  carbon ,  and s u l p h u r  a l l  o f  which may 

have come from c r a c k e d  d i f f u s i o n  pump o i l .  On t h e  o t h e r  hand, p robes  

k e p t  a t  i o n  s a t u r a t i o n  do n o t  develop such d e p o s i t s ,  and r e u a i n  



remarkably c l e a n  and f r e e  o f  i m p u r i t i e s .  A probe b iased  t o  e l e c t r o n  
L 

s a t u r a t i o n  i n  t h e  D.C. machine w i l l  glow c h e r r y  red ,  which would 

c e r t a i n l y  seem t o  be  enough t o  b o i l  away i m p u r i t i e s .  However, t h e  

0 b s e r ~ t i O n S  don ' t  s u p p o r t  t h i s  i d e a ,  b u t  a p p a r e n t l y  i m p a r t i n g  

momentum d i r e c t l y  t o  t h e  i m p u r i t i e s  b y  i o n  bombardment is more 

e f f e c t i v e .  

P r o f i l e s  o f  t h e  v a r i o u s  plasma p a r a m e t e r s  a r e  made by simply 

moving t h e  p r o b e  t h m u g h  t h e  plasma a n d  t a k i n g  I -V  t r a c e s  on a  p o i n t  

by p o i n t  b a s i s .  

' The e r r o r  b a r s  shown o n  t h e  . d e n s i t y  d a t a  are based on  

e x p e r i m e n t a l  comparisons of t h e  d e n s i t y  measured w i t h  a  microwave 

i n t e r f e r o m e t e r  and ' a  Langmuir p r o b e  i n t e r p r e t e d  wi th  t h e  t h e o r y  of  

~ a f r a m b o i s e . ~ ~ ' ~  Fof t h e  v e r y  weak m a g n e t i c  f i e l d  t h a t . e l d s t s  i n  o u r  

experiment,  t h e  t h e o r y  o f  Laf ramboise  p i e d i c t s  d e n s i t i e s  t h a t  a r e  less 

than  20% lower  t h a n  t h e  t r u e  d e n s i t y  as measured ' w i t h  an 

i n t e r f e r o m e t e r .  T h i s  is e x p e c t e d  t o  be t h e  dominant e r r o r  

c o n t r i b u t i o n ,  and t h u s  we c o n s e r v a t i v e l y  p l a c e  e r r o r  b a r s  o f  *20% on . . 

t h e  d e n s i t y  d a t a .  

The dominant e r r o r  s o u r c e  i n  t h e  e l e c t r o n  tempera ture  measurement 

is due t h e  r e s i s t i v e  i m p u r i t y  c o a t  t h a t  Corns on t h e  probe s u r f a c e ,  

and causes  l n d l c a t i o n s  of h i g h e r  e l e c t r o n  t e m p e r a t u r e  than  is a c t u a l l y  

(Because t h e  p r o b e  is s w e p t  s lowly  throu* i t s  I -V  

c h a r a c t e r i s t i c ,  t h e  c a p a c i t i v e  , p o r t i o n  o f  t h e  Impuri ty l a y e r  model is 

ignored  i n  t h e  a n a l y s i s  t h a t  f o l l o w s . )  The r e s i s t a n c e  o f  t h e  impur i ty  

c o a t  .is t y p i c a l l y  . es t imated  t o  b e  o f  t h e  o r d e r  of  200-300 k  ohms, b u t  



a b e t t e r  e j t i m a t e  upon which t o  base  an e r r o r  ' e s t i m a t e  '1's a v a i l a b l e .  

By s u b t r a c t i n g  of f  t h e  ohmic v o l t a g e  drop t h a t  occurs  a c r o s s  t h e  l a y e r  

' h e n  c u r r e n t - i s  d rayn ,  one o b t a i n s  t h e  t r u e  v o l t a g e  t h a t  t h e  plasma 

s e e s  a t  t h e  s u r f a c i  o f  t h e  & ~ ~ u r i t ~  l a y e r .  For an assumed i m p u r i t y  

l a y e r  r e s i s t a n c e ,  t h e  p l o t  o f  c o l l e c t e d .  c u r r e n t  v e r s u s  t r u e  probe 

v o l t a g e  should  obey  a n  e x p o n e n t i a l  Boltzmarin r e l a t i o n ,  t h e  b e s t  

e x p o n e n t i a l  b e i n g  g i v e n  by a n  assumed l a y e r  r e s i s t a n c e  t h a t  e q u a l s . t h e  

a c t u a l  value.  T h i s .  p rocedure  was c a r r i e d  o u t  and found t o  work 

n i c e l y ,  i n d i c a t i n g  a t y p i c a l  r e s i s t a n c e  of 25 k ohms, s u b s t a n t i a l l y  

s m a l l e r  t h a n  t h e  r e p o r t e d  v a l u e s .  This  v a l u e  of the l a y e r  r e s i s t a n c e  

causes  t h e  Te v a l u e s  t o  b e  t y p i c a l l y  20% t o o  high.  Once a g a i n  t h i s  

a p p e a r s  t o  b e  t h e  dominant e r r o r  a s  r e p r o d u c i b i l i t y  is n o t  a  problem 

i n  t h e  D.C. machine p lasmas ,  and t h u s  a c o n s e r v a t i v e  e s t i m a t e  on t h e  

e r r o r  in Te is about  +_20$. 

The measured f l o a t i n g  . p o t e n t i a l  can d i f f e r  from t h e  ' c o r r e c t  

f l o a t i n g  p o t e n t i a l  due  t o  secondary  emission enhanced by work f u n c t i o n  

changes o f  t h e  probe .  s u r f a c e  a g a i n  caused by an impur i ty  l a y e r .  (The 

choice  o f  p la t inum a s  t h e  m a t e r i a l  of  our probe t i p s  r e f l e c t s  e f f o r t s  

t o  minimize t h e s e  e f f e c t s ,  =s ' pla t inum.  b a s  a h i g h  work' func t ion . )  

T y p i c a l  e r r o r s  on , t h e  f l o a t i n g  . - p o t ' e n t i a l  a r e  r e p o r t e d  i n  t h e  

l i t e r a t & a  to b e  +_ 10%. 

'. The methods used f o r  p robe  c o n s t r u c t i o n  a r e  a l o c a l s t a n d a r d  and 

. . 
a r e  adequate ly  d e s c r i b e d .  e l sewhere . l5  It was soon a i scovered  t h a t  t h e  

s t a n d a r d  method o f  s e a l i n g  t h e  prdbd s t a l k  to t h e  v a c u ' d  f e e d  through,  

..n.amely high vacuum epoxy, would:."ot s t a i d ' u i  t o  1 . k ~ .  of ~0nt inuOUS 

microwave bombardment from a n o t h e r  , exper iment  i n  t he  D.C. machine. 

T h e r e f o r e ,  f o r  p robes  t h a t  c o u l d n ' t  be withdrawn from the. vacuum 

chamber, a n o t h e r  method o f  probe  c o n s t u c t i o n  had t o  be a r r i v e d  at .  

F ig .  3.3 'shows t h e  probe  t h a t  s t o o d  t h e  t e s t  o f  microwaves, and is, t h e  

p r o b e  used  t o  t a k e  most o f  t h e  data t o  be ' d i s c u s s e d  l a t e r .  (Not shown 

is t h e  angled  probe t i p  t h a t  made wi thdrawal  through a vacuum, f e e d  

t h r o u g h  impossible.)  The probe  s t a l k  is s t r u c t u r a l l y  supported by 1 3 1  

S a u e r e i s e n  h i g h  t e m p e r a t u r e  cement.  his cenknt  i s  porous ' so  a h o l e  

is d r i l l e d  n e a r  t h e  t i p  t o ,  a v o i d  v i r t u a l  l e a k s .  The vacuum s e a l  is 

made a t  t h e  o t h e r  end o f  t h e  s u p p o r t  w i t h  h i g h  vacuum epoxy. The 

probe  s u p p o r t  is made o f  anodized  alumunum. To prevent  t h e  probe  

s u p p o r t  and t h e  w i r e  t o  t h e  probe  t i p  from a c t i n g  l i k e  a c o a x i a l  wave 

g u i d e  a n d ' c o n d u c t i n g  microuaves t o .  t h i s  o u t e r  seal . .  t h e  c e n t e r  w i r e  is 

w c u n d . i n t o  a l a r g e  i n d u c t o r .  To f u r t h e r  p r e v e n t  a r c i n g  from t h e  w i r e  

t o  t h e  aluminum s u p p o r t ,  t h e  ' c o i l  f s  surrounded wi th  alumina ' t u b i n g .  

A s i m i l a r  p robe  w i t h o u t  t h e  i n d u c t o r ' s o o n  saw t h e  o u t e r  s e a l  reduced  

t o  ash .  The D.C. v o l t a g e  'drop a c r o s s  t h e  i n d u c t o r  is n e g l i g i b l e  as is 

n e c e s s a r y  f o r  a c c u r a t e  I -V  t r a c e s .  . . 

SL~IUXI Particle Qa.lleEZnr 

F o r  measurements of  t h e  plasma f l u x . t o  a g iven  s u r f a c e  s t r i p e d  
. - . . 

. ' p a r t i c l e  c o l l e c t o r s  l i k e  , t h o s e  used  by , c a v a l l o t 6  and t r e a t e d  

t h e o r e t i c a l l y  by Mak17 and ~ o s b e r g "  were used.  Nei ther  of t h e  l a t t e r  
. . 

. t w o  a u t h o r s  t r e a t e d  t h e  c a s e  o f  magnet ic  f i e l d  l i n e s  perpendicu la r  t o  

t h e  c o l l e c t o r  s u r f a c e ,  however, s o  we used t h e  a n a l y s i s  c a r r i e d  o u t  i n  

t h e .  f i e l d  f r e e  case .  Plasma m o t i o n  a l o n g  a uniform n a g n e t i c  f i e l d  is  ' 
. . 



unaf fec ted  by t h e  p r e s e n c e  o f  t h e  f i e l d .  So ,  a s  l o n g  a s  t h e  c u r r e n t  

drawn from a g i v e n  t u b e  o f  f l u x  is much l e s s  than  t h e  c r o s s  f i e l d  

c u r r e n t  t h a t  f i l l s  t h a t  t u b e ,  any  f i e l d  f r e e  probe a n a l y s i s  is va l id .  

I f  t h e  c u r r e n t  drawn d o e s  approach  t h e  f i l l i n g  c u r r e n t ,  t h e n  one 

presumably b e g i n s  t o  e n c o u n t e r  magnet ic  f i e l d  e f f e c t s  a s  p l a s m  must 

now move a c r o s s  B t o  g e t  t o  t h e  probe. Experiniental  o b s e r v a t i o n s ,  

both i n  our exper iment  and t h e  e x p e r i m e n t s  o f  o t h e r s 9 ,  s u p p o r t  t h e  u s e  

o i  t h e  f i e l d  f r e e  a n a l y s i s  as w e l l .  A plane  probe  o r i e n t e d  

p e r p e n d i c u l a r  t o  t h e  m a g n e t i c  f i e l d  i n  t h e  D.C. machine g i v e s  an I - V  

t r a c e  t h a t  is v e r y  similar t o  t h a t  p r e d i c t e d  by t h e  f i e l d  f r e e  theory,  

e x h i b i t i n g  good i o n  s a t u r a t i o n  c u r r e n t .  On t h e  o t h e r  hand, a p lane  

probe w i t h  its f a c e  p a r a l l e l  t o  g e x h i b i t s  a s e v e r e l y  d i s t o r t e d  I - V  

t r a c e  i n  bo th  t h e  e l e c t r o n  and i o n  c o l l e c t i n g  r e g i o n s .  T h e  a n a l y s i s  , .  

of Mak, f o r  t h e  f i e l d  f r e e  c a s e ,  u s e s  s i m p l e  probe t h e o r y  f o r ' . p l a n e  

c o l l e c t o r s .  TherefoFe ,  we f e l t  t h e  a p p l i c a t i o n  o f  t h e  f i e i d  f r e e  

a n a l y s i s  t o  t h e  c o l l e c t o r s  o r i e n t e d  p e r p e n d i c u l a r , t o  g was j u s t i f i e d .  

Shown i s  Fig .  3.4 is a t y p i c a l  1-0 c h a r a c t e r i s t i c  from one  of  t h e  

st i - iped p a r t i c l e  c o l l e c t o r s  used ,  and is i n  f a c t  s i m i l a r  i n  shape  t o  

t h e  t r a c e  e x p e c t e d  i n  t h e  m a g n e t i c  f i e l d  f r e e  case.  Also shown is t h e  

c i r c u i t  used  t o  b i a s  t h e  c o l l e c t o r s .  Below a c e r t a i n  plasma d e n s i t y ,  . 

t h e  I-V t r a c e s  b e a r  l i t t l e  resemblance t o  t h e  t r a c e s  shawn i n  . 

Fig. 3.4, s o  much s o  t h a t  a p p l i c a t i o n  o f  t h e  theory  is impossible.  

The t r a c e s  become h i g h l y  asymmetric,  and c r o s s  and r e c r o s s  t h e  v o l t a g e  

a x i s  i n  an i r r e p r o d u c i b l e  f a s h i o n .  It seems l i k e l y  t h a t  t h i s  may be a 

Debye l e n g t h  e f f e c t  b e c a u s e  f o r  p r o p e r  o p e r a t i o n  o f  t h e  c o l l e c t o r s  the.  



Pig. 3.4: A s , h p l i f  ied ,schematic of the striped particle collector 

and biasing circuitry. Also shown is an actual I-V characteristic. . 



Debye s h e a t h  of each s t r i p  should only over lap  t h e  a d j a c e n t  s t r i p s .  

For t h e  d e n s i t i e s  where t h e  t r a c e s  become asymmetric, t h e  Debye 

s h e a t h s  o v e r l a p  s e v e r a l  s t r i p s .  To avoid  t h i s  e f f e c t ,  t h e  plasma 

d e n s i t y  had t o  be  k e p t  above t h i s  c r i t i c a l  d e n s i t y  f o r  t h e  s p a c e  o f  

the f l u x  measurements. This  u n f o r t u n a t e l y  l i m i t e d  t h e  u s e f u l  r a n g e  o f  

the s t r i p e d  p a r t i c l e  c o l l e c t o r s .  

l L k c t K a t i c E n e r a Y  Bnakz!%c 

The i o n  t e m p e r a t u r e  i n  t h e  plasmas s t u d i e d  was measured u s i n g  a 

v o l t a g e  swept  p i d d e d  e l e c t r o s t a t i c  energy a n a l y z e r  t h a t  was 

z o n s t r u c t e d  and d e s c r i b e d  by ~ a v r a t i l . ~ ~  Meazured i o n  t e m p e r a t u r e s  

v e r e  f a r n d  t o  be a f u n c t i o n  of  t h e  n e u t r a l  p r e s s u r e  and r a n g e  from 

a b o u t  -5 e v  at  8x10-= t o r r . ,  t o  .l e v  a t  8x10'' t o r r . ,  t h e  o p e r a t i n g  

range  of most of t h e  experiffients t o  be described.  These r e s u l t s  were  

f o r  a he l ium plasma but  s i m i l a r  r e s u l t s  were found f o r  a hydrogen  

plasma. These  numbers a r e  i n  rough apeement  w i t h  t h e  r e s u l t s  o f  

B - ~ O  who a l s o  worked wi th  a L i s i t a n o  source  of  about  t h e  same power 

input .  

ssme3QcaCCgE 

The c o l l e c t o r  a r r a y ,  w e d  i n  experiments t o  be  d e s c r i b e d ,  is 

shovn i n  P ig .  3.5. The a r r a y  s t r i p s  a r e  simply copper s t r i p s  a t t a c h e d  

t o  mica i n s u l a t o r s  w i t h  epoxy, with each s t r i p  having  a w i r e  s o l d e r e d  

t o  t h e  back t h a t  is e v e n t u a l l y  b r o u e t  o u t  of t h e  vacuum v e s s e l .  To 

z e a s u r e  t h e  c u r r e n t  o u t  of  each s t r i p ,  one s t r i p  is s h o r t e d  t o  th,e 

rest o f  t h e  a r r a y  throu* a small r e s i s t o r  and t h e  v o l t a g e  measured.  

T y p i c a l l y  t h e  r e s i s t o r  used is 100 ohms s o  t h a t  f o r  t h e  c u r r e n t s  

Pip;. 3.5: Diagram of t h e  c o l l e c t o r  a r r a y  used  t o  measure t h e  

e x t e n t  of  t h e  non-ambipolar o u t f l o w .  T h e r e  a r e  f e v e r  s t r i p s  shown 

t h a n  a c t u a l l y  e x i s t  in t h e  r e a l  a r r a y .  
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measured (usually t e n s .  of microanperes) the  voltage offset intmdirced 
I 

t o  ithe col lector  s t r i p  .monitored is a t  most a few thinisandths of a 

irolt. ~ o l t a &  of the  order  of v o l t s  would be necessary to ser ioubly 

perturb the  measurements. The array.  w a s  chemically cleaned before 

. . mounting l a  t h e  machine. - . .  

ElectrrrnEup . . 
An electron gun t h a t  could be inserted through a probe port  w a s  ' 

~ 0 n S t l v c t e d  i n  the'  early phases of these exper ikn ts ,  as a method of  

fol louing c e r t a i n  c h a r a o t e r i s t i o  f i e l d  lines..  The gun is .  s h m  

sohematically Lo Pig. 3.6. Accelerating voltages of up t o  PO0 v o l t s  

could be to le ra ted  before a r c i n s  between the two cylinders occurred, 
, 

with about 10 ma of cur ren t  out of the gun. Firing the beam through 5 

microns of neon gas was e a s i l y  v l s l b l e  a s  a .b r igh t  orange .trace t h a t  

f o l l w e d  the  aa@et ic  f i e l d  l ines .  T h l s m n  is. modeled a f t e r . a n  

e a r l i e r  gun t h a t  was constructed by Paul MOM. - 



Fig. 3.6: Cross sec t iona l  v iev of the  e lect ron gun shoving 

A- t h e  f i lament  ,B- t h e  Inner' and outer accelera t ing cylinders.  

C- t h e  support stalk,D- epoxy vacuum s e a l s  located a s  f a r  away 

a s  poss ib le  from t h e  hot fFlament.E- machine gr0und.P- alumlna 

tube t o  support b ias ing vires,G- s e t  screvs so t h a t  top may be 

removed.8- b ia s ing  wires.1- Sauereisen cement a s  a high 

temperature insu la to r  betweem cylinders.  
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Chapter  1) . . 

A s  d i s c u s s e d  i n  t h e  f i r s t  c h a p t e r ,  an e s s e n t i a l  i n g r e d i e n t  i n  

unders tanding  t h e  o p e r a t i o n  o f  a  d i v e r t o r  and be ing  a b l e  t o  p r e d i c t  

its p e r f o w a n c e  is t h e  p h y s i c s  govern ing  plasma flow i n  t h e  s c r a p e + f f  

zone. I n  this zone plasma is n o t  on ly  d i f f u s i n g  a c r o s s  magnet ic  f i e l d  

U n e s  b u t  is a l s o  f l o w i n g  p a r a l l e l  t o  t h e  'magnetic f i e l d  i n t o  a 

n e u t r a l i z i n g  p l a t e .  These p r o c e s s e s  are common t o  a l l  t y p e s  o f '  

d i v e r t o r s ;  t h e  purpose  o f  t h e  experiment descr ibed  h e r e  is t o  

i n v e s t i g a t e  t h e s e  f e a t u r e s .  While t h e  plasma i n  o u r  e x p e r i n e n t  h k ~  

Te>>Ti, which is t h e  o p p o s i t e  o f  what cne expects  i n  a l a r e e  Tokamak 

d i v e r t o r  exper iment ,  and t h e  n e u t r a l  p ressure  is uniform ( b u t  r o u g h l y  F I R -  4.1: S c h m a t i c  of t h e  magnet ic  c o n f i g u r a t i o n  chosen for 

t h e  same i n  magnitude a s  t h e  p r e s s u r e  expected i n  t h e  pumping chambers  the d i v e r t o r  experiments.  I n d i c a t e d  are t h e  f i e l d  n u l l s ,  and the 

of t h e s e  same Tokamaks) t h e  r e s u l t s  can c o n t r i b u t e  t o  t h e  g e n e r a l  c o l l e c t o r  p l a t e  ' l o c a t i o n  a t  E. The p r o f i l e  scans for the 

u n d e r s t a n d i n g  of  t h e  problem. i n  f a c t  phenosena which can  n o t  be l e a k  exper'&eht were a l s o  made a c r o s g  t h e  f i e l d '  lines at E. 

observed w i t h  d i a g n o s t i c s  t h a t  on ly  y i e l d  l i n e  averaged, p a r a m e t e r s , ,  

can be s e e n  i n  o u r  experiment because of our  c a p a b i l i t y  o f  u s i n g  

probes.  On t h e  o t h e r  hand, phenomenc such 2 s  un ipolar  a r c s ,  i o n  

s p u t t e r i n g ,  secondary  emiss ion  o r  n e u t r a l  p ressure  buildup r e s u l t i n p ,  

from plasma n e u t r a l i z a t i o n  a r e  beyond t h e  scope of  t h i s  exper iment .  
. - 

Our i n i t i a l  c b j e c t i v e  was t h e  choice of  an a p p r o p r i a t e  m a g n e t i c  

f i e l d  c o n f i g u r a t i o n  from t h e  two descr ibed  i n  c h a p t e r  two, a n d . t o  t h i s  

end t h e  c o n f i g u r a t i o n  shown. i n  Fig.  4.1 was i n i t i a l l y  chosen .  The 

reason  f o r  t h e  c h o i c e  is twofold: 



H nf rip. 4 .  L o u l a t e s  a a v e r t o r ,  Some o f  t h e  plasma d i f f u s e s  

a c r o s s  t h e  s e p a r a t r i x ,  C ,  on td '  t h e  f i e i d  l i n e s  e n c i r c l i n g  t h e  i n t e r n a l  

r i n g ,  F. These f i e l d  l i n e s  i n t e r s e c t  t h e  m e t a i  n e u t r a l i ~ i n g  p l a t e  a t  . 

E. T h i s  area s i m u l a t e s  t h e  s c r a p e - o f f  zone ,  w h i l e  t h e  f i e l d ,  l i n e s  a t  B 

connec ted  t o  t h e  smrce s i m u l a t e  t h e  main plasma r e g i o n  o f  t h e  

Tokamak. Our c o n f i g u r a t i o n - i s ,  i n  a s e n s e ,  " ins ide-outm i n  comparison 
. . 

t o  t h e  u s u a l  , a r rangement  o f  t h e  s c r a p e - o f f  zone on t h e  o u t s i d e  of  t h e  

main plasma i n  a Tokamak b u t  t h i s  is n o t  b e l i e v e d  t o  be o f  any 

consequence. The e s s e n t i a l  t r a n s p o r t  problem o f  plasma d i f f u s i n g  o n t o  

f i e l d  l i n e s  i n t e r s e c t i n g  a  n e u t r a l i z i n g  p l a t e  is modeled by our 

c o n f i g u r a t i o n .  

2. c o n f i e u a t i o n  ig M . H . D .  s t a b &  !: ilPe U 
1  iffu us^ c o e f f i c i e n ~  b a s  be= p e a z u r e d ,  According t o  H.H.D. t h e o r y  , 

a  low b e t a  p lasma-nagnet ic  f i e l d  sys tem is s t a b l e  t o  i n t e r c h a n ~ e  

i n s t a b i l i t i e s  i f  

d l  
where P is t h e  plasma p r e z s u r e .  A q u a l i t a t i v e  p l o t  o f  P a n d  4- is 

B 
shown i n  Fig.  4.2 which s h w s  t h e  s t a b l e  n a t u r e  o f '  t h i s  

conf igura t ion . ( .  T h i s  diagram i s  based  on  t h e  meeaured d e n s i t y  p r o f i l e s  

and t h e  c a l c u l a t e d  f i e l d  l i n e  i n t e g r a l s .  The magnitude o f  each curve 

h a s ,  been a d j u s t e d  . s o  t h e y  c o i n c i d e  f o r  e a a e  o f  comparison.) The 





.. 

d l  
l o ~ a r i t h m i c  d ivergence  of 6 a t  t he  s e p a r a t r i x  is t h e  r e s u l t  d l  e. 
ca r ry ing  o u t  t h e  l i n e  1n teg ra l s .ove r  t h e  f i e l d  n u l l s  on . t h e  s e p a r a t r i x  

surface .  

Fu r the r  v e r i f i c a t i o n  of .the s t a b l e  na ture  o f  t h i s  conf igura t ibn  

comes &om ear l ier 'work done on t h e  D.C. machine.2 The perpendicular  

d i f fu s ion  c o e f f i c i e n t  was determined from an a n a l y s i s  o f  t h e  measured 

s t eady- s t a t e  dens i ty  p r o f i l e  and from ,measurements o f  t h e  r a d i a l  

plasma . l o s s .  The d i f fu s ion  coe f f i c i en t  was' found,  t o  be v i t h i n .  a 

: f a c t o r  of two of t h e  c l a s s i c a l  ambipolar c o e f f i c i e n t  f o r  a p a r t i a l l y  

ionized. g a s ,  i n d i c a t i v e  of t h e  lack o f . . i n s t a b i l i t y  d r iven  d i f fus ion.  

Experimentally,  t h e  absence of low frequency f l u c t u a t i o n s  confirms t h e  

s t a b l i t y  o f  t h i s  conf igura t ion .  

An M.H.D. s t a b l e  plasma conf igura t ion  is an obvious n e c e s s i t y  . i f  

one wishes t o  s tudy ddvertor phenonena and n o t  p o s s  

' M.H.D. . i n s t a b i l i t i e s .  From a p rac t i ca l  experimental  ~ o i n t  o f  view, . . 

; t h e  l i r g e  f l u c t u a t i o n s  associa ted  with U.R.D. i n s t a b i l i t i e s  would 

grea t l ;  compl ica te  t h e  a c q ~ i s i t i o n  of da ta  by any means. ~ u r t h e r m o r e ,  

f u t u r e :  dev ices  w i l l  be designed t o  have H.H.D. s t a b i l i t y  a t  l e a s t .  

( ~ u o o v l n g  t h e  plasma with - t h e  d iver tor  p l a t e  may ' i n v a l i d a t e  t h e  

concept o f  average good curvature,  because it can i n t e r r u p t  t h e  
. . ' . p a r a l l e l  e l e c t r i c a l  cu r r en t  between regions of good and bad, curvature .  

: Thus eva lua t ion  of t h e  K.H.D. s t a b i l i t y  Of. a given conf igu ra t ion  may 

await  experiment.)  ~ l s o -  .knowing DA from Ref. 2 e n a b l e s  one t o  
. . 

a t t r i b u t e  any change i n  t h e  d i f fus ion c o e f f i c i e n t  t o  t h e  i n t e r a c t i o n  
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1 
of t h e  p a r t i c l e .  c o l l e c t o r  with t h e  plasma and provides e b a s i s  o f  . 

comparison. 

P r i o r  t o  t h e  i n s t a l l a t i o n  o f  ' the d f v e r t o r  p l a t e  and t h e  s t a r t  o f  
. . 

any d i v e r t o r  exper inents ,  t h e  ' e f f e c t  o f  t b e  f i e l d  n u l l s  on f r o s s  f i e l d  

plasma t r a n s p o r t  t o  p r i v a t e  f i e l d  l i n e s  was assessed.  F i e ld  n u l l s  a r e  

a l s o  a f e a t u r e  o f  bundle d i v e r t o r s  and t o r o i d a l  d i v e r t o r s  have a near  

n u l l ,  i n  t h a t  t h e  weaker p o l o i d a l  f i e l d  is still p re sen t  a t  t h e  . 

t o r o i d a l  n u l l .  F i e ld  n u l l s  have been shown3 t o  a l low c r o s s  f i e l d  

t r a n s p o r t  due t o  nonad iaba t i c  p a r t i c l e  motion ' a t  t h e  ze tk  of t h e  

f i e l d , .  which might conceivably be  g r e a t e r  than t h e  c r o s s  f i e l d  

t r anspor t  over t h e  s e p a r a t r i x  magnetic s u r f a c e .  

It was' decided t h a t  t he '  e a s i e s t  way of experimentally a s se s s ing  

t h e  magnitude of t h e  plasma l e a k  through t h e  n u l l  ,would .be t o  

e l imina t e  it and observe t h e  change 'on plasma p ro f i l e s '  i n s i d e  t h e  
. . 

sepa ra t r ix .  I f  t h e  n u l l s  provide  a sou rce  of plasma i n s i d e  t h e  

s e p a r a t r i x  t h a t  is a l a r g e  f r a c t i o n  o f  t h e  c ros s  f i e l d  d i f f u s i v e  

source ,  t h e  p r o f i l e s  should change s u b s t a n t i a l l y  i f  t i e  n u l l s  a r e  

sh i e lded  from impinging plasma. Our method o f  achieving t h i s  wan 

simply to i n s e r t  .meta l  d i s k s  between t h e  n u l l  and . the  plasma source  

outs ide  t h e  s e p a r a t r i x  s o  t h a t  plasma could no t  reach t h e  f i e l d  nu l l s .  

The f i r s t  order  o f  bus ines s  was t h e  l oca t ion  of t h e  f i e l d  n u l l s  

i n s ide  the  device. I n i t i a l l y  t h e  n u l l  was rou&ly located  us ing t h e  . 

e l e c t r o n  gun f i r e d  through a background o f  neon gas. 'ahen t h e  eun s a t  

on t h e  s e p a r a t r i x ,  because o f  ttie f i n i t e  width of t he  beam, a t r a c e  



could e a s i l y  be observed following f i e l d  l i n e s  on.  e i t h e r  s i d e  o f  t h e  

nu l l .  'The n u l l  was roughly ha l f  way between. t h e  t r a c e s .  A more 

p r e c i s e  n u l l  l oca t ion  was obtained by l e t t i n g  t h e  machine up t o  a i r  

and sea rch ing  f o r  simultaneous zeroes i n  t h e  a x i a l  &d r a d i a l  f i e l d s  
. . 

with a Ha l l  probe. The n u l l  located  i n  t h i s  fashion was compared with 

t h e  n u l l  l o c a t i o n  predic ted  from a computer rou t ine  t h a t  s e a r c h e d ' f o r  

I t h e  n u l l  on ax i s .  A t  f i r s t  t he  two d idn ' t  agree ,  b u t .  it was 

! , discovered t h a t  t h e  f r o n t  panel meter o f  t h e  Magnaflux was reading 
. . 

140% of t h e  a c t u a l  c u r r e n t  value. When t h i s  was co r r ec t ed  t h e  two'  

agreed t o  w i th in  ii few i m ,  an . e r ro r  e a s i l y  explained by c o i l s  t h a t  ' a r e  

I not  t h e  smewhat  i dea l i zed  current  f i l amen t s ,  t h a t  a r e  used i n  t h e  

w d e .  . . 

1% . .  -A s t a i n l e s s  s t e e l  d isk  was the re fo re  mounted on an alumina s t a l k .  

t o  a c t  a s  a n u l l  blocker;  and f a h i o n e d  i q  such a way t k a t  'it could be 

moved from t h e  n u l l  while t h e  machine was under vacuum; The d i s k  was 

4 cm i n  diameter and centered on t h e  null.' The l a r i . e s t  l e ak  nea r  a 

f i e l d  n u l l  occurs  a t  t h e ' n u l l .  However, even nea r  t h e  n u l l  p a r t i c l e  

o r b i t s  are 'such t h a t  they may drosq the  ~ e ~ a r a t r 1 x . l  To ? f f e c t  t h e  
. . 

n u l l  sou rce  a s  much a s  poss ib le ,  t h e  d i s k s  were made l a r g e  t o  block 

sr .,r "F&.' 413:  " . 'Dedsi t~  s d d s  :beforeL.:(upper , c u b e )  ' -and.af ter :  t h e  ' . '. 

magnetic f i e l d  n u l l s  were blocked. . . . . 

. . . . 
. . . . .  

those  p a r t i c l e s  whose orbit.? .make . l a r g e  exdursions ac ros s  t h e  ' , 

. . 
s e i a r a t r i r  according t o  t h e  theqry of Schmidt i n '  Ref. 1. 

. .. 

Plasma parameter scans with'.and without t h e  n u l l  blocked where 
. . 

made a c r o s s  t h e  magnetic f i e l d  a t  E of Flg.Y.1. The dens i ty  d r o f i l e s  , .  . . 
. . 

in t he se  two cases  a r e  shoim i n  Fig. 4.3. The irnporta'nt po in t  t o  note 

is t h a t  t h e  shape of t he  p ro f i l e s  is the  same, which is not  what one 



. ' would e x p e c t  i f  t h e  n u l l s  w e r e . 8  s i g n i f i c a n t  s o u r c e  o f  plasma. It was 

0 w ITHOUT' BLOCKER 
+ WITH BLOCKER 

. - s u s p e c t e d  t h a t  t h e  L i s i t a n o  s o u r c e .  was. p e r t u r b e d  by t h e  d i s k ' s  

s u p p o r t i n g ' s t a l k  where it c r o s s e d  t h e  s e p a r a t r i x ;  t h i s  would e x p l a i n  

t h e  l o w e r  r e l a t i v e  d e n s i t y .  To i n s u r e  t h a t  t h i s  was indeed t h e  c a s e ,  

a probe  .was c o n s t r u c t e d  'wi th  .a. s t a l k  o f  . the same.. s i z e  a s  t h a t .  of  t h e  

n u l l  b l o c k e r  s u p p o r t ,  b u t  t h a t  was j u s t  l o n g .  enough t o  c r o s s  t h e  

s e p a r a t r i x  w i t h  n o  d i s k  a t  its end. D e n s i t y  s c a n s  w i t h  t h e  t e s t  probe 

i n s e r t e d  and withdrawn demonstrated t h a t  t h e  lower r e l a t i v e  d e n s i t y  

. was d u e  t o  t h e  plasma s o u r c e  b e i n g  per turbed .  m e . m e c h a n i m  by which 

. t h e  s t a l k  p e r t u r b s  t h e  L i s i t a n o  s o u r c e  is n o t  w e l l  unders tood ,  b u t  t h e  

': s t a l k  may s h o r t  , o u t  e l e c t r i c  f i e l d s  i n s i d e  t h e  source .  t h a t  are 

c r i t i c a l  t o  its o p e r a t i o n .  

The v a l i d i t y  o f  conc luding  t h a t  t h e  n u l l  is n o t  a c t i n g  l i k e  a 

plasma s o u r c e  can  a l s o  b e  seen  'by a rough c a l c u l a t i o n .  The p a r t i c l e  

c u r r e n t  rl  d s c a p i n g  through a p o i n t  c u s p  is g i v e n  byu 

0 . 0.5 . 1.0 1.5 2.0 25 3.0 
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where p i  and  pe are t h e  i o n  and e l e c t r o n  g y r o r a d i u s  e v a l u a t e d  a t  t h e  
. . 

, c u s p s  f i e l d  maximum, n is t h e  i o n  . d e n s i t y ,  Te is t h e  e l e c t r o n  

t e m p e r a t u r e ,  M i , i s  t h e  i o n  mass; and k is Boltzmannls c o n s t a n t .  ( T h i s  
. . 

c a l c u l a t i o n  assumes t h a t  i n  t h e  s t e a d y  s t a t e ,  t h e  c r o s s  f i e l d  

t r a n s p o r t  i n t o  t h e  c u s p  ba lances  t h e  f low out .)  For o u r  parameters  



The d i f f u s i v e  p a r t i c l e  c u r r e n t ,  r2, is  g iven  by 

where DL is t h e  p e r p e n d i c u l a r  d i f f u s i o n  c o e f f i c i e n t  and ASep is t h e  

a r e a  o f  t h e  s e p a r a t r i x  magnetic sur face .  Using c l a s s i A l  diffusion 

due , t o  i o n - n e u t r a l  c o l l i s i o n s  w i t h  Our exper imenta l  

r 2 = 7 ~ 1 0 1 6  set-'. mu. t h e  d i f f u s i v e  t m n s S o r t  is b e t t e r  t h a n  atf 

o r d e r  of  magnitude g r e a t e r  than .  the non-adiaba t ic  t r a n s p o r t  f o r  a 

c o n s e r v a t i v e  c h o i c e  o f  parameters. 

Having determined t h a t  t h e  n l i l l s  a r e  a n e g l i g i b l e  s o u r c e  o f  

plasma, c o l l e c t o r  p l a t e s  were i n s t a l l e d  around t h e  o u t e r  p e r i p h e r y  o f  

t h e  i n t e r n a l  r i n g ,  a s  shown a t  E o f  Fig. 4.1. The c o l l e c t o r  was made 

o f  aluminum and e l e c t r i c a l l y  i s o l a t e d  from t h e  i n t e r n a l  . r i n g .  

Alignment of t h e  edge of  the c o l l e c t o r  was aga in  accomplish.ed with t h e  

h e l p  o f '  t h e  e l e c t r o n  gun. Measured p r o f i l e s  on  f i e l d  l i n e s  t h a t  

i n t e r s e c t  t h e  c o l l e c t o r  showed a s i g n i f i c a n t  change from t h e  p r o f i l e s  

t a k e n  b e f o r e  mounting t h e  c o l l e c t o r ,  and behaved c o n s i s t e n t l y  w i t h  t h e  
. < 

. . 
c o l l e c t o r  a c t i n g  a s  a . p a r t i c l e  and energy s i n k  a s  expec ted .  Our 

i n v e s t i g a t i o n s  of t h e  behavior i n  t h i s  arrangement o f  t h e  

c o l l e c t o r  ended h e r e  f o r  a number o f  reasons .  ' ~ i r s t  o f  a l l ,  t h e  

p r o f i l e s  i n  t h e  sc rape-of f  zone evolve i n  t h e  space.  o f  o n l y  a b o u t  a 

c e n t i m e t e r ,  which is about  t e n  probe t i p  d iameters :  Thus g r a d i e n t s  i n  

d e n s i t y  and tempera ture  a r e  n o t  n e g l i g i b l e  over  t h e  , d i a m e t e r  of  t h e  

88 

probe,  and some s p a t i a l  a v e r a g i n g  1s i n e v i t a b l e .  Secondly,  t h e  h i g h  

magnetic f i e l d  (800 G.)  i n  t h i s  area makes t h e  a p p l i c a b i l i t y  o f  the 

theory  of  Laframboise d o u b t f u l  (1.e. Pi=.6 mm, p e = . l  mm, and 

t h e r e f o r e  pe< pi<<Dp t h e  p r o b e  t i p  d i a m e t e r ) .  F i n a l l y ,  because  s o  

few p o i n t s  are o b t a i n a b l e  i n  t h e  c o u r s e  o f  comple t ing  a p r o f i l e ,  

exper imenta l  u n c e r t a i n t y  makes t h e  p r o f i l e  shape  l e s s  de te rmina te .  

The s o l u t i o n  t o  a l l  o f  these problems is t o  a l l o w  t h e  same f i e l d  

Lines  t o  i n t e r s e c t  t h e  c o l l e c t o r  p l a t e ,  b u t  t o  p l a c e  t h e  c o l l e c t o r  

p l a t e  in$ ide  the i n t e r n a l  ring as shown i n  Fig. 4.4. Now t h e  a v e r a g e  

' m a g n e t i c  f i e l d  s t r e n g t h  d r o p s  t o  a round 20 G. ( pi=2.5 en, P e = l . l  

mm, and impor tan t ly  PI>>Dp.) I n  a d d i t i o n ,  t h e  r e s u l t i n g  s p r e a d i n g  o f  

t h e  f i e l d  l i n e s  means t h e  p r o f i l e s  e v o l v e  i n  t e n s  o f  c e n t i m e t e r s  

i n s t e a d  of ,  j u s t  one c e n t i m e t e r .  The p r o b l e m  o f  a l i g n i n g  t h e  c o l l e c t o r  

p l a t e  with t h e  s e p a r a t r i x  r n a s n e t i c  s u r f a c e  is avoided e n t i r e l y ,  a s  t h e  
. . 

. . 
magnetic f i e l d  now d e f i n e s  t h e  s c r a p e - o f f  zone. 

The p l a t e  i t s e l f  is a g a i n  s o l i d  aluminum, c l e a n e d  w i t h  O a k i t e  

before  i n s e r t i o n  i n t o  t h e  vacuum chamber. E l e c t r i c a l  i s o l a t i o n  i s .  

provided by Tef lon  s u p p o r t s  i n s i d e  t b e  i n t e r n a l  r t n g ,  t h a t  a l s o  ho ld  

- t h e  p l a t e  i n  p l a c e ,  and a l l o w  t h e  p l a t e  t o  be  b iased  wi th  r e s p e c t  t o  
' . 

. machine ground. To c o m p l e t e l y  e l i m i n a t e  any e f f e c t s  o f  n u l l  s c a t t e r e d  

. . p a r t i c l e s ,  a t e n  c e n t i m e t e r  h o l e .  was c u t  i n  t h e  c e n t e r  o f  t h e  p l a t e .  

Those f i e l d  l i n e s  n e a r e s t  t h e  n u l l ,  and  t h u o  most l i k e l y  t o  have n u l l  

s c a t t e r e d  part icle.?  on them5, d o  n o t  s t r i k e  t h e  p l a t e  and t h e y ,  must 

a g a i n  be d i f f u s i v e l y  t r a n s p o r t e d  t o  t h e  e x p e r i m e n t a l  r e g i o n  i n  f r o n t  

o f  t h e  p l a t e .  An a d d i t i o n a l .  a d v a n t a g e  o f  t h e  h o l e  is t h a t  t h e  



Pig,. 4.4: The f inal  configuration of magnetic f i e l d  and collector 

chosen 'for the divertor .studies. Shown are:  A-Lisitano source. 

B6D- source plasma on non-diverted f i e l d  lines,c-separatrix . . 

magnetic surface,E-collector plate  1ocation.f-inte.&l ring. 

GRelmholtz colls,B-end or m k o r  c o i l s .  



j ux t apos i t i oq  of f i e l d  l i n e s  t h a t  do and d o ' n o t  s t r i k e  t he  c o l l e c t o r  
-3 , 

p l a t e  a l lows study of phenomena t h a t  occur ' i n  t h e  t n n s i s t i o n  of , 1. G. ~ c h m i d t ,  pf . 3 e m ~ e r w  
. . elasmas, Academic Press,  

d ive r tdd  t o  non-divkrted plasma. This  t r a n s i t i o n  from closed t o  open .' . p.  138 1966). ' . 

f i e l d .  l i n e s  a l s o  .be t ter  models a ~ o k i a k  d ive r to r ,  where t h i s  2. D. Heade, and R.J .  Fonck, ~ h y s .  ~ l u i d s  16, 1654 (1973). 

t r a n s i t i o n  occu r s '  too.  A l l  o f  the  d a t a  presented'  i n  t h e  r e s t  o f  t h i s  
3. J.  Sinn i s ,  and G .  ~ c h m i d t ,  ~ h y s .  F lu ids  6, 841 (1963). 

t h e s i s  was t a k e n . v i t h  t h e  machine i n  t h i s  confib?$ration. 4. I. Spalding, i n  Advances & plaoma f h v z l c s  . Vol. 4,. e ~ i t e d  by 

A. s inon  and Y.B. Thonpson, I n t e r s c i e n c e ,  ~ e u  York, 79 (1.971). . . . 

5. G. Schmidt, Phys. F l u i d s  1, 994 ,(1962). 



Chapter 5 

N v e r t o c  E x c e r i v e n b  

, For reasons discussed i n  t h e  previous  'chapter,  t he  con f igu ra t ion  

of magnetic f i e l d  and  c o l l e c t o r  t h a t  is used thmu&out  t hese  

experiments is t h e  one shoun i n  Fig.  5.1. A l l  of t h e  parameter 

p r o f i l e s  t o  be shown were taken between t h e  .arrowheads a t  l e t t e r  I i n  

Fig. 5.1, p a r a l l e l  t o  t h e  c o l l e c t o r  p l a t e  and about 2.5 cm away from 

t h e  p l a t e  a x i a l l y  with a s p h e r i c a l  t i p  Langmuir probe. The cen te r  

l i n e  shown i n  Fig. 5.1 is  t h e  o r i g i n  o f  t h e  coordinate system used, 

and t h e  edge of the  c o l l e c t o r  p l a t e  is a t  r= 5 cm with i nc reas ing  r a s  

one moves towards t h e  i n t e r n a l  r i ng .  Hydrogen and Helium plaauas  were 

used f o r  t h e  majority of t h e  d a t a  t o  be prezented, and because t h e  
. . 

r e s u l t s  obtained d id  not d i f f e r .  q u a l i t a t i v e l y ,  but only 

i n .  ways a t t r i b u t a b l e  t o  mass d i f f e r e n c e ,  t h e  plasma used i n  each case  

is spec i f i ed  anly when such a mass dependent d i f f e r ence  occurs. Shcwn 

. in Table 5.1 a r e  t y p i c a l  parameters in t h e  experiment.region. The ion  

temperature f o r  t h e  experiments d i scussed  was measured with a gr idded 

e l e c t r o s t a t i c  analyzer ,  and found t o  r a z e  fmm .1 t o  .5 eV and depend 

' depend cnly on t h e  n e u t r a l  dens i ty .  Th i s  is i n  rough agreement with a 

previous spect roscopic  determinat ion  oC T ~ . '  

For comparison purposes, a p r o f i l e  o f  dens i ty ,  n, and e l e c t r o n  

temperature, Te', was taken be fo re  t h e  i n s t a l l a t i o n  of t he  d i v e r t o r  

co l l ec to r  p l a t e  and is shoun i n  Fig .  5.2. Figures 5.3 arid 5.4 show 

Fig. 5.1: The con f igu ra t ion  chosen f o r  t h e  d i v e r t o r  s t u d i e s  

showing: t h e  region that a l l  t h e  parameter s cans  i n  t h i s  chapter  

were taken in ( i . e .  betveen t h e  arrowheads), .J-  t h e  region of t h e  

f i r s t  c o l l e c t o r  p l a t e .  

p r o f i l e s  of the  e l ec t ron  tempera ture ,  f l o a t i n p  potpnt ia l ,  ' @ f r  and 



Neutral Density ' lo1* - 10'3 cm-3 

Plasma Density ' 10' - lo9 ~ r n ' ~  

Electron Temperature ' 5 - 10 eV 

Ion Tenperature ' . 1  - .5 eV 

Electron-Neutral Mean Free Path ' 300 cm 

Ion-Neutral Mean Pree Path ' 18 cm 

Debye Length ' .2 mm . . 

Electron ~ y r o r a d i u s  ' 1 . 1  mm 

Ion Gyrorad1.u~ ' '2.5 cm 

Average - 50 G 
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density i n  t h e  e x p e r b e n t  region with the  d iver tor ,  p l a t e  i n  place. 

These p r o f i l e s  a r e  symmetric about t h e  a x i s  of the  machine and a r e  

iden t i ca l  cm oppos i t e  s i d e s  of  the  c o l l e c t o r  p la te .  

The densi ty  and temperature show the.expe'cted decay, due t o  the  

ao l l ec to r  p l a t e  a c t i n g  a s  a  p a r t i c l e  and energy s ink,  i n  comparison 

with t h e  no c o l l e c t o r  case.  The " e i m i f i c a n c e  of  t h e  f l o a t i n g  

po ten t i a l  contour is most e a s i l y  seen i f  one considers t h e . d i f f e r e n c e  

em- efc VS. r a d i u s ,  where gfp is t h e  f loa t ing  p o t e n t i a l  o f  t he  , . 

probe and gfc is t h e  p o t e n t i a l ,  t h e  p l a t e  'assmes. This d i f f e rence ,  is 

plot ted  i n  Fig. 5.5. On- a given f i e l d  l i n e , ,  vhen eft= Qfp, equal 

fluxes of ions  and e l e c t r o n s  s t r i k e  the  co l l ec to r  p l a t e  where t h i s .  

f i e l d  l i n e  passes through t h e  p l a t e .  (Ye are assuming here t h a t  t he  .. 

probe f loa t ing  po ten t i a i  on a  given f i e l d  l i n e  is a .  !pod lreasure of 

the  po ten t i a l  t h a t  t h e  c o l l e c t o r  .would have t o  assume on t h i s  same 

f i e l d .  l i n e  s o  t h a t  it t o o  would l o c a l l y  co l l ec t  no ne t  e l e c t r i c a l  
. . 

current.  The p o t e n t i a l  which a  body immersed i n  the  plasma must . 

Fig. 5.5: The q u a n t i t y  A@ vs. radius  with t h e  p l a t e  i n s t a l l e d .  

. . 
assume s o  t h a t  t h e  f luxes .  , o f  i ons  .Ad  e lect rons  a re  equal . is the  

de f in i t i on  of t h e  f l o a t i n g  po ten t i a l ) .  To lowest o rde r ,  when 
. . 

efp= eft= A$ is .no t  equal  t o  zero ,  unequal fluxes of ions '  and . . 

electroris w i l l  s t r i k e  t h e  p l a t e  and t h e  p a r a l l e l  flow is nonambipolar. 

iben A$ > 0 ,  more. i o n s  than e l ec t foos  flow alonn f i e l d  l i n e s  t o  t h e  

ao l l ec to r , ' and  v ice  versa  f o r  A@ <O. These areas  a re  indicated i n  
. . 

, . . . : 
Fig. 5.5. khenever t h e r e  is  non-ambipolar p a r a l l e l  f l c v ,  t h e  steady 

s t a t e  cont inui ty  equat ion implies t h a t  there  is e l s o  non-anbipolar 

cross  f i e l d  t r anspor t .  



. . . . 

Several assumptions a r e  implici t '  i n  the above dtscussion. lhese 

assumptions w i l l  add small .corrections t o  Fig. 5.5 but not change the 

conclusions of t h i s  section. One assumption is tha t  t h e  electron 

temperature is constant along the portion of the magnetic f i e l d  l i n e  

tha t  passes between the  probe and col lector .  This is cer ta in ly  t rue  

because the electron mean f r e e  path (= 300 cm) is much greater  than 

the 2.5 !m distance between co l lec tor  and, probe. (This was a l s o .  

ver i f i ed  by measurement of the  electron temperature a t  t h e  v l l e c t o r  
. .  . 

plate.) Two.other approximations a r e  inherent i n  the above discussion. 
' 

The f i r s t  i s  t h a t  there is 'no o f f s e t  i n  the f loa t ing  potent ial  of the 

probe or co l lec tor ;  such an o f f s e t  could be caused by impurities on 
. . 

the  surface of the probe o r  col lector .  The second is tha t  the 
. . 

spherical probe t i p  w i l l  assume the  same f loa t ing  potent ial  on a given 

f i e l d  l i n e  that .  a plane co l lec tor  would. In other  words it is assumed 
. . 

t h a t  there are  no geometrical e f f e c t s  t h a t  w i l l  cause a spherical  and 
. .: , . 

planar probe. t o  f l o a t  a t  d i f fe ren t  p o t e n t i a l s . i n  the  same plasma. Of 

course, both of these e f f e c t s  do e x i s t  but t h e  question t o  be answered . - 
is  how severe they are. Fresumably i f  e i t h e r  of these e f fec t s  is 

, large enough t h e  existence of non-ambipolar flow is i n  question. 
. . . . ,  

Perhaps the  eas ies t  way t o  assess  the  magnitude of these two 
" .  . , . .  . . 

ef fec t s  is t o  attempt t o  remove them. In order t o  eliminate these 
. . . . 

sources-of e r ror ,  i t  was decided t o  t ry.  to measure' the net  .current t o  
. . .  . 

( SllOA ) 
3lVld 4 , 380tid 9 9 . + the col lector  p la te '  a s  a function of radius rather  than in fe r  it from 

. . 
the f loa t ing  potent ial  with a l l ,  of  its possible errors.. To preserve 

overal l  charge neu t ra l i ty ,  the  c o l l e c t o r  plate  must conduct excess 



e1ectron.s from t h e  e lec . t ron  out f low .region . to  ' t h e  a r e a  o f  n e t  i o n  . 

outflow. T h i s  n e u t r a l i z i n g  c u r r e n t  was de tec ted  d i r e c t l y  by mounting 

an a r r a y  o f  conduct ing  s t r i p s  on t h e  d i v e r t o r  p l a t e  bu t  i n s u l a t e d  from 

. . . .  ' 

it; t h i s '  is sh,own s c h e m a t i c a l l y  i n  Fig.  5.6. m e  a r r a y  o f  s t r i p s  was 

1 Intended t o  a c t  a s  any . t y p i c a l  s e c t i o n  of t h e  c o l l e c t 6 r  p l a t e  would, . . . . 
I 

with t h e  added f e a t u r e  o f  a l l o w i n g  t h e  c u r r e n t  t h a t  f lows w i t h i n  t h e  

p l a t e  t o  be  measured. The s e p a r a t i o n  between s t r i p s  is l e o s  t h a n  t h e  

l o c a l  Debye l e n g t h .  Each s e e e n t  c o u l d  be Ind iv idua l ly  s h o r t e d  t o  t h e  

rest o f  t h e  a r r a y  th rough a n  ammeter t o  measure Inet, t h e  n e t  c u r r e n t  . . . . 

' . t o  t h e  segment. T h i s  c o n c e p t  i s  i l l u s t r a t e d  i n  ,Fig. 5.7. F i g u r e  5.8 

' 

shows t h e  n e t  c u r r e n t  measured by , t h i s  method as, a' Punction o f  r a d i u s ,  
. . 

and F l g .  5.9 .shows t h e  c u r r e n t  d e n s i t y  t o  t h e  strips. The l a t t e r  is 
. . 

shown t o  wmpensa te  f o r  t h e  d i f f e r e n c e s  i n  t h e  a reas '  o f '  t h e  i n d i v i d u a l  

. . 

Pig. 5.6:  The segmented 'c&l lec tor  used  t o  mea&re I . . n e t  ' 

I . . c o l l e c t o r  s t r i p s .  One n o t e 3  t h a t  t h i s  method o f  measuring . the  . . 

non-ambipolar  p a r a l l e l  c u r r e n t  has  t h e  s k i  grdss, . features a s  t h e  p l o t  . . . 
. . . . .  . .  . 

o f  A v s  r.  here .a? however smal l  d i f f e r e n c e s  t h a t  w i l l  be  . . 

discussed  shor t ly . ' )  It is found t h a t  t h e  c u r r e n t  outf low summed o v e r  ' .  . . 

t h e  a r r a y  e q u a l s  z e r o  . a s  expec ted . .  . A  measure o f  t h e  d e g r e e  o f  . . .. . 
. . . . . . 

non-ambipolari ty o f  t h e  . p a r a l l e l  f low.  in '  reg ions  o f .  a g iven  s 1 . g ~  o f  - . 

Init can be i n d i c a t e d  by . t h e  r a t i o  I > ~ I < ,  .where I> is t h e  dominant . 

c u r r e n t  o f  . o n e  s p e c i e s  and the- I< t h e  .smaller  c u r r e n t  o f '  t h e ,  o t h e r  

spec ies .  .(For .example uhere.,InetYO, I> is' t h e  ion c u r r e n t  and I< t h e  

e l e c t r o n  c u r r e n t . )  u s i n g  s i m p l e  .probe theory ti i,"fer I> and I< from 

t h e  l o c a l l y  measured plasma parameters  and t h e  measured s h e a t h  ' 

p o t e n t i a l  drop,  I>/I< r a n g e s  from i t o  5 i n  both outf low r e n i o n s .  



COLLECTORS 

Pig. 5.7 : The ecrape-of f zone ihowing non-ambipolar currenb. flow into anh thrdugh the 
. . .  

array, & ~ d  the sch&atic location of the anmeter to meamre the net'current. 
' 
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One consequence of  this unequal charge outf?ov is a .monotonical lp  
. , 

i nc reas ing  . value' o f  the  parameter n ( TI =sheath p o t e n t i a l  

dmp/e lec t ron  temperature) a s  one moves deeper i n t o  t h e  scrape-off  

zone. The experimentally .determined sheath drop is deduced i r o n  t h e  . . 

r e l a t i o n s h i p  

where O p  is t h e  plasma po ten t i a l ,  , I # ~ ~  t he  measured probe f l o a t i n g '  

p o t e n t i a l  and o a '&"s t&t  t h a t  depends on t h e  ion and ' e l ed t ron  mass, 

end t h e  shape of t h e  probe.3 The sheath drop QS is then 

where O f S  is t h e  p o t e n t i a l  o f ' t h e  co l l ec to r  segment t h a t  t h e  probe is 

in f r o n t  of. I n  t h e  present case a l l  the  s t r i p s  are a t  t h e  same 

po ten t i a l .  Dividing'by the meas'"red value of re g ives  TI , and t h i s  is 

shorn a s  a  firnction of radius is ~ ig : '  5:lO. .The e l ec t ron  f l &  through 

t h e  'sheath is determined by 

' . .  

and thus  t h e  e l ec t ron  f lux through the  sheath is exponen t i a l ly  

Pig. 5.10: TI= e9/kTe vs .  radius .  

. . dependent on 0 . The horizontal  l i n e  i n  ~ i g .  ' 5.10 is drawn a t  t h e  



valye of  q where t h e  e l ec t ron  f lux  equa l s  t h e  ion f l u x ,  and thus  

again  t h e  e le 'c t rons  can reach t h e  p l a t e  i n  p -ea te r  numbers than t h e  
. ' 

i ons  a t  smal l  r a d i i ,  but  a r e  e l e c t r o s t a t i c a l l y  const ra ined from 
. . 

reaching t h e  p l a t e  a t  l a r g e  r a d i i .  (The pre-sheath p o t e n t i a l  drop is 

r e l a t i v e l y  unchanged ac ross  the  scrape-off zone, and thus  s o  is t h e  

i m  a c o u s t i c  ve loc i ty  of t he  ions.  Therefore  t h e  ion motion is 

r e l a t i v e l y  unaffected a s  compared t o  t h e  *bipolar case.)  One s t i l l  

has  charge n e u t r a l i t y  outs ide  of  t h e  shea th  i n  t h i s .  region. The .. . . . 
l o c a t i o n  o f  t h e  ho r i zon ta l  l i n e  is, determined by the  value  o f  a , f o r  a 

. . 

plane c o l l e c t o r ,  and it  is only, when t h e :  curve o f  11 vs. r ad ius  . . ' .  , . 
i n t e r s e c t s  t h i s  l i n e  t h a t  ambipolar flow occurs .  .That is when 

. . , .. . 

where a is t h e  value of the  constant. appropr i a t e  f o r  a s p h e r i c a l  

e l l e c t o r ,  and, a f o r  a piane co l i ec to r .  ,To vderst?nd.,eq"at1on 5.4 
. . 

no te  t h a t  if an a r ray  s t r i p  is f l o a t i n g ,  .. . . then,  equation; 5.1 is 

app l i cab le  t o  both co l l ec to r  s t r i p  end f l o a t i n g  probe on t h e  same 

f i e l d  l i n e  i f  t h e  appropr ia te  values of  a a r e . u s e d  f o r  each. That is 
. . .  . .. . . . .-: : 

e i t h e r  can be used t o  deduce the  plasma p o t e n t i a l  when t h e  proper 

value  o f  a is used. I n  t h i s  caee one can w r i t e  



S u b t r a c t i n g  Ofs ' fmm both . s ides ,  and d iv id i ag  by T, y i e l d s  t h e  value . 

of a f o r  a  f l o a t i n g  .strip, which is equation (5.4). The pr=d ic t ed  . .  

outf low regions  as measured by this.,.method agree we l l  with t h e  values 

shown i n  Fig. 5.8. 

The magnitude of t he  meesured i let  cu r r en t  a t  each s t r i p  of t h e  

a r r a y  is found t o  be i n  good agreement, t h a t  is we l l  w l t h i n  t h e  
. . 

exper imenta l  uncer ta in ty ,  v i t h  t h e  value ca l cu l a t ed  us ing  t h e  measured 

v a l u e ' o f  a Fn t h e  simple ,probe theory equation 

which a s s m e s  co l l ec t ion  of t h e  ions  a t  t h e  l o c a l  i o n  . a c o u s t i c  

ve loc i ty .  I n  t h i s  formula t he  dens i ty ,  n ,  t h e  e l e c t r o n  tempera ture ,  

I,, and , t h e  f l o a t i n g  po ten t i a l ,  4.f;  a r e  measured' by sweeping each 
. . 

. s t r i p  throdgh i ts I-V c h a r a c t e r i s t i c ,  a s  it 1s .a l lowed t o  e l e c t r i c a f l y  
. . 

f l o a t  away from the  array.  'Tab le  5.2 shows t h e  comparison of ' t he  

' measured ne t  current  and the  ' c a l cu l a t ed  cu r r en t  .us ing t h e  measured 
. . 

value  o f  t he  sheath poteritial drop. .The c o r r e c t  va lue  o f  q " is egain  

c a l c u l a t e d  using .equation 5.1 i The value .of a. can be expe r imen ta l ly  
. . 

determined by vaiying a i n  .equation 5.6 " n t i l  a  b e s t  f i t '  with t h e  

d a t a  is  obtained; t h e  best  f i t  value ' is  'found- t o  a w e e  w e l l  with t h e  

. . va lue  o f  a from simple probe theory . . 



h y s t e r e s i s  was,  observed .  There a r e  undoubtedly.  sone' impurities on t h e  

It is i n t e r e s t i n g  t o  r e t u r n  : b r i e f l y  t o  t h e  method t h a t  compares 

t h e  f l o a t i n g  p o t e n t i a l s  o f  probe.  and  a r r a y  t o  d e t e c t  non-anbipolar  

flow; and compare it ' t o  t h e  d i r e c t  c u r r e n t  measurement t h a t  i s  n o t  

s u b j e c t  t o  t h e  errors o f  t h e  former.  Comparison o f  F i g u r e s  5.5 and 

5.8 r e v e a l s  t h a t  t h e  two method; d o n ' t  a g r e e  a s  t o  t h e  e x a c t  s p a t i a l  

e x t e n t  o f  t h e  o u t f l o w  r e g i o n s .  Because t h e  c u r r e n t  measurement method 

d e t e c t s  t h e  unequal  o u t f l o w  d i r e c t l y ,  p o s s i b l e  s o u r c e s  o f  e r r o r  i n  

this' t echnique  a r e  e x t e r n a l  t o  t h e  experiment (1.e.  i n  t h e  measur ing  

I ~ apparatus) .  and can  be e l i m i n a t e d .  Therefore  it is n a t u r a l  t o  ask  

I 
! where t h e  s 'ources o f  E r r o r  a r i s e  i n  t h e  method t h a t  r e l i e s  on t h e  

cooparison of  f l o a t i n g  p o t e n t i a l s  of t h e  a r r a y  and probe. Of t h e  

p o s s i b l e  s o u r c e s  o f  e r r o r  t h a t  were uent ioned  e a r l i e r , , l e t  u s  c o n s i d e r  

t h e  e f f e c t s  of  i m p u r i t i e s  f i r s t .  F i r s t ,  no m o u n t  o f  ion  bombardment 

c lean ing  o f  t h e  probe  or a r r a y  caused  t h e  observed o f f s e t  i n  t h e s e  two 

methods of  d e t e c t i n g  non-ambipolar f low t o  decrease.  Cleaning  was 

o f t e n  t r i e d  f o r  p e r i o d s  o f  twenty  minutes  o r  more with no e f f e c t .  
. . . . 

Elec t ron  bdmbardment c l e a n i n g  was t r i e d  a s  wel1,often h e a t i n g  t h e  

probe t o  incandescence ,  wi th  n? e f f e c t .  Sweeping t h e  probe t h r o u &  

its I - V  character is ti.^ r a p i d l y  tias been mentioned i n  t h e  l i t e r a t u r e  a s  ' 

a means o f  d e t e c t i n s  t h e  p r e s e n c e  of i m p u r i t i e s  on a probe sur face . '  

Any d i s c e r n a b l e  h y s t e r e s i s  i n  t h e  c h a r a c t e r i s t i c  i n d i c a t e s  an i m p u r i t y  

l a y e r  on t h e  probe. The probe  was swept a t  var ious  f requenc ies  and no 

p r o b e  and a r r a y ,  b u t  we, conclude from t h e  above o b s e r v a t i o n s  t h a t  t h e y  

have a negligible e f f e c t  on t h e  measurement o f  t h e ' f l o a t i n &  p o t e n t i a l .  . 

. . ~ e o m e t r i c a l  d i f f e r e n c e s  can a130 c a u s e  two o b j e c t s  1h t h e  same 

plasma t o  f l o a t  a t  d i f f e r e n t  p o t e n t i a l s .  Fig.  5.11 is reproduced  from 

~ a f r a m b o i s e 3  and  shows a d imdns ionless  i o n  c u r r e n t  if t o  a s p h e r i c a l  

p r o b e  an t h e  o r d i n a t e  vs. d i m e n s i o n l e s s  probe p o t e n t i a i  on  t h e  

a b s c i s s a .  Each c u r v e  is p a r a m e t r i c a l l y  dependent  - i n  a d d i t i o n  on  t h e  

r a t i o  R / Ad,  t h e  r a t i o  o f  t h e  probe  r a d i u s  t o  t h e  Debye l e n g t h .  Also 
P 

p l o t t e d  on t h e  g r a p h ,  s h o d  w i t h  a dashed l i n e ,  is t h e  e l e c t r o n  

c u r r e n t  i n  t h e  r e t a r d i n g  r e g i o n  t h a t  is g iven  i n  e q u a t i o n  5.3. The 

i n t e r s e c t i o n s  o f  t h e s e  two c u r v e s  mark'  t h e  d imens ionless  p o t e n t i a l  

where no n e t  c u r r e n t  s t r i k e s  t h e  probe. T h i s  va lue  o f  e @p/kT, is 

n o t h i n g  more t h a n  t h e  v a l u e  of a f o r  a g iven  R p /  id. Note t o o  t h a t  

a s  R / Ad g e t s  l a r g e ,  t h e  i n t e r s e c t i o n  o f .  t h e  e l e c t r o n  and i o n  
P 

c u r r e n t s  moves t o  t h e  r i g h t  on t h e  curve ,  and ' a p ~ r o a c h e s  t h e  v a l u e  

4.22 which is t h e  s i m p l e  probe  t h e o r y  e s t i m a t e   or aipha.' T h i s  is 

e x a c t l j  t h e  l i m i t  t h a t  one would expec t  i n t u i t i v e l y .  Thus t h e  c o r r e c t  
, . :  :. . . '  

a l d h a  t o  choose  f o r  a  g i v e n  dimension o f  o n e ' s  probe t i p  'depends on 
. . . , . .  . . : :  . . , ,  : .  ' ' ' . . . .  - 

t h e  comparison:  of t h i s  dimension t o  a c h ' a r a c t e r i s t i c  s c a l e  l e n g t h  of 
: .  .,. . i . . .  . , 

t h e  plasma,  namely t h e  Dcbye l e n g t h .  A s p h e r i c a l  probe becomes, i n  a 
a . .' .:,;: 

s e n s e ,  l i k e  a p l a n e  a s  f a r  a s  t h e  plasma is concerned only  when t h e  
' >  .: - 4  

p r o b e  . s i z e  is much g r e a t e r  than  a Debye l e n g t h .  To s e e  i f  t h i s  s o r t  

o f  geomet ry  e f f e c t  could  'cause t h e  observed o f f s e t ,  t h e  a r r a y  s t r i p s  

t h e m s e l v e s  were used  t o  measure t h e  l o c a l  f l o a t i n g  p o t e n t i a l  by 



Pig .  5.11: I f (d imens ion1ess  i o n  c u r r e n t )  v s .  d i m e n s i o n l e s s  p r o b e  

p o t e n t i a l  w i t h  r e s p e c t  t o  the .  space p o t e n t i a l  f o r  c o l d  i o n s ,  f o r  

v a r i o u s  v a l u e s  o f  t h e  r a t i o  of  t h e  probe r a d i u s  t o  t h e  Debye l e n g t h  

f o r  a  s p h e r i c a l  p robe  t i p .  Shown a l s o  is  t h e  e l e c t r o n  c u r r e n t  

(dashed l i n e )  t o  t h e  probe. vs .  t h e  same d i n e n s i o n l e s s  p o t e n t i a l .  

(Taken from Ref. 3) 



.. . 
i s o l a t f n g  each  strip in t u r n  e l e c t r i c a l l y  fr0.m- t h e  r e s t  of t h e  a r r a y ,  

and measuring its p o t e n t i a l .  Because each s t r i p  is a p lane  c o l l e c t o r  

t h e  g e o m e t r i c a l  e f f e c t  s h o u l d  be  e l imina ted .  In f a c t ,  e x a c t  agreement 

is observed between t h e  p o t e n t i a l  and t h e  c u r r e n t  methods o f  measuring 

t h e  outflow if t h e  a r r a y  s t r i p s  a r e  used. 'That is, t h e  s p a t i a l  e x t e n t  

of t h e  nonambipolar f l o w  t h a t  one,'w*uld deduce from t h i s  measurement 

o f  TI is t h e  same- a s  t h e  c u r r e n t  d i a m o s t i c .  This  is shown i n  

Fig. 5.12, and comparison w i t h  Fig. 5.8 does  indeed show agreement a s  

t o  t h e  s p a t i a l  e x t e n t  o f  t h e  non-ambipolar flow. One can conclude 

t h a t  t h e  observed  o f f s e t  i s  due e n t i r e l y  to t h e  s p h e r i c a l  geometry o f  

a u r  probe t i p .  

This  r e s u l t  a l l o w s  one t o  exper imenta l ly  measure a v a l u e  o f  a l p h a  

f o r  a  s p h e r i c a l  p r o b e  t i p .  f iearranging equa t ion  5.5 a l l o w s  one t o  

w r i t e  t h e  c o n d i t i o n  Por  a n b i p o l a r  flow a s  
I 

where t h e  symbols have t h e  same d e f i n i t i o n  a s  before.  I n  F i g .  5.5 t h e  

assunpt ion  a'= a was nade s o  t h e  c o n d i t i o n  f o r  ambipolar i ty  was 

' .+fp-  efs = 0, o r  where t h e  e x p e r i m e n t a l  curves  crossed t h e  x-axis. 

The c o r r e c t  c o n d i t i o n  f o r  a m b i p o l a r i t y ,  t h a t  t a k e s  i n t o  acccunt  t h e  

geomet r ica l  e f f e c t s  d i s c u z s e d  above,  would p l o t  t h e  exper imenta l  

+fP- $ f s  . v e r s u s  ( a'- a ' )Te,  and now t h e  i n t e r = e c t i o n  o f  t h e  two 

Fig. 5.12: A@ t a k e n  with t h e  i n d i v i d u a l  a r r a y  s t r i p s  v s .  r a d i u s .  

curves c o r r e c t l y  i n d i c a t e s  e q u a l  charge  outflow. When t h i s  is 

a c t u a l l y  done wi th  . t h e  e x p e r i m e n t a l  d a t a ,  t h e  c u r r e n t  measuring rcettiod 



agrees  wel l  with t h e  f l o a t i n g  p o t e n t i a l  method, as.  shown i n  €ig: 5.13. 

However, t he  uncorrected curve provides  a  measure of  alpha f o r  t h e  

probe. Typical ly  when t h e  c u r r e n t  d i a g n o s t i c  ind ica t e s  a  crossover  t o  

opposi te  charge outflow, t h e  uncorrected f l o a t i n g .  po ten t l a l  d i agnos t i c  

reads a  pos i t ive  .5 v o l t s .  Therefore  t h e  value  of alpha f o r  a  probe 

f o r  t h e  case  of a  Helium plasma o f  e l e c t r o n  temperatiwe 3 eV a t  t h i s  

point must s a t i s f y  

o r  solving f o r  alpha g i v e s  a =4.05, where t h e  value 9.22 i s  t h e  simpie 

probe theory es t imate  ' f o r  t h e  value  o f  alpha f o r  a  plane probe. This 
' . .  

agrees well  with t h e  p r e d i c t i o n s  of  t h e  theory of Lafrmboise .  

(R / Xd>10 f o r  most of  ou r  plasmas.)  
P 

n e o r v  of Nan-ambi~olar D i f f u s i ~  

The theory of non-ambipolar d i f f u s i o n  was f i r s t  presented i n  a  

paper by A. slmon5 t o  d e s c r i b e  same experimental  f ind ings  i n  a r c  

plasma ejcperiments t h a t  were i n c o r r e c t l y  a t t r i b u t e d  t o  i n s t a b i l i t y  

driven d i f f u s ~ o n . ~  The p o s s i b i l i t y  and e f f e c t s  o f  non-ambipolar 

diffusion i n  a  d i v e r t o r  were f i r s t  d i scussed  by A.H. Foozer, bu t  from 

a  d i f f e r e n t  t h e ? r e t i c a l  o t a n d p ~ i n t . ~  A s  & a i d  t o  one's . i n t u i t i o n  . 

about t h i s  phenomena, presented he re  is a  b r i e f  descr ip t ion of  t h e  

underlyinz physics based on Ref. 5. A more. formal der ivat ion can be 

found ' i n  Ref. 8. I n  a p las& with  no maqnetic f i e l d ,  t h e  e l e c t r o n s  

tend t o  d i f fuse  out of  a  system f a s t e r  than t h e  ion species.  A space 
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c h a r g e  bu i ldup  occurs  with a  r e s u l t i n g  e l e c t r i c  f i e l d  t h a t  reduces  t h e  
' , 

e l e c t r o n  c u r r e n t  and main ta ins  s p a c e  charge  n e u t r a l i t y .  There r e s u l t s  

t h e  f a m i i i a r  ambipolar d i f f u s i o n  c o e f f i c i e n t ,  which is  t h e  same f o r  

N t h  i o n s  and e l e c t r o n s  approximately g i v e n  by 

where D+ and D- a r e  t h e  i o n  and e l e c t r o n  d i f f u s i o n  c o e f f i c i e n t s .  

Imposing a  magnetic f i e l d  has  t h e  e f f e c t  o f  reduc ing  t h e  d i f f u s i o n  

a c r o s s  t o  t h e  va lues  

where t h e  s u p e r s c r i p t  zero i n d i c a t e s  t h e  f i e l d  f r e e  va lue ,  and 

*=eB/Mzc and 2  is  t h e  mean f r e e  t ime between c o l l i s i o n s  f o r  . ions  

and e l e c t r o n s .  The d i f f u s i o n  c o e f f i c i e n t  a l c n ~  t h e  f i e l d  is t h e  same 

a s .  t h e .  B-0 value.  I n  o u r  experiment o- T->, u+ ?+>>I s o  t h e ' o r d e r i n g  

. .  . 
a p p l i e s .  One might  t ? i n k  t h a t ,  s i n c e  t h e  i o n s  d i f f u s e  more . r a p i d l y  

a c r o s s  t h e  f i e l d  t h a n  t h e . e l e c t r o n s ,  a n  ambipolar  e l e c t r i c  f i e l d  would 

r e s u l t  t h a t  would s p e e d  u p  the e l e c t r o n  d i f f u s i o n  s o  t h a t  t h e  o v e r a l l  , 

d i f f u s i o n  c o e f f i c i e n t  would b e  DI=2D,,. When t h e  magnetic f i e l d  

i n t e r s e c t s  an end w a l l  o r  a d i v e r t o r  p l a t e ,  a s  in o u r  c a s e ,  t h i s  is no 

longer  t r u e .  Because t h e  p a r a l l e l  and  p e r p e n d i c u l a r  c o n d u c t i v i t i e s  

obey r e l a t i o n s  s i m i l a r  t o  e q u a t i o n  5.9 and i n e q u a l i t i e s  s i m i l a r  t o  

5.10, (1.e. a.e>> ale where u is  t h e  c o n d u c t i v i t y ) ,  any  i n e q u a l i t y  

i n  t h e  s p a c e  c h a r g e  can be  removed by t h e  f l o w  o f  p a r a l l e l  c u r r e n t s  t o  

t h e  d i v e r t o r .  p l a t e .  R e f e r r i n g .  t o  Fig. 5.7, any e l e c t r i c  f i e l d  bu i ldup  

can be c o u n t e r a c t e d  by a n  enhanced e l e c t r o n  f l u x  t o  t h e  p l a t e  a t  one 

l o c a t i o n ,  and an enhanced i o n  f l u x  a t  a n o t h e r  l o c a t i o n  t o  p r e s e r v e  

q u a s i n e u t r a l i t y .  The p l a t e  i t s e l f  p a r t i c i p a t e s  i n  t h e  conduction by 

c a r r y i n g  e l e c t r o n s  from t h e  r e g i o n  o f  enhanc.ed e l e c t r o n  out f low t o  t h e  

a r e a  o f  enhanced i o n  o u t f l o w .  Thus ,  t h i s  " s h o r t  c i r c u i t n  e l i m i n a t e s  

t h e  n e e d .  f o r  an a s b i p o l a r  e l e c t r i c  f i e l d  i n  t h e  p e r p e n d i c u l a r  

d i r e c t i o n .  Fur thermore ,  b e c a u s e  t h e r e  .is no e l e c t r i c  f i e l d  - t o  slow 

d m  t h e  i o n  d i f f u s i o n ,  t h e  i o n s  d i f f u s e  a t  t h e i r  own c h a r a c t e r i s t i c  

r a t e .  

The phenomenon o f  non-ambipolar  t r a n s p o r t  may be o f  i n t e r e s t  i n  

t o k a L k  d i v e r t o r s  where a  c o n d u c t i n g  t a r g e t  p l a t e  is p laced  a c r o s s  

f i e l d  l i n e s .  as i n  t h i s  e x p e r i m e n t .  Whether o r  n o t  i t  w i l l  o c c u r  i n  a  

tokamak d i v e r t o r  depends  on w h e t h e r  Vin> Vie, where V in is t h e  i o n  

n e u t r a l  c o l l i s i o n  f r e q u e n c y  a n d  vie is t h e  i o n  e l e c t r o n .  c o l l i s i o n  

frequency.  For  example,  t h e  c o l l i s i o n  f r e q u e n c i e s  can be shown t o  be9 



V i e  = 
3mi~e1'2~i 

where n  is t h e  plasma d e n s i t y ,  nn is t h e  n e u t r a l  d e n s i t y ,  en A is t h e  

coulomb logar i thm,  me and mi t h e  e l e c t r o n  and i o n  masses,  Te and Ti. 

, the e l e c t r o n  and i o n  t e m p e r a t u r e s ,  and aoi t h e  ion  n e u t r a l  c o l l i s i o n  

c r o s s  s e c t i o n .  For  parameters  t y p i c a l  o f  t h e  PDX device:  Ti=50 eV, 

Te=20 eV, ooi=5x1 0-15cm2, En A =16, mi=l . 6 7 x 1 0 - ~ ~  4 ,  me= . 9 1 x 1 0 - ~ ~  5, 

t h e  s c a l i n g  w i t h  n e u t r a l  d e n s i t y  and plasma d e n s i t y  a r e  

"in = nn(3.46x1 o - ~ )  sec-l  

Therefore ,  u n l e s s  nn/n is 6 . 6 x l 0 - ~  o r  l e s s ,  n e u t r a l  d r i v e n  t r a n s p o r t  

w i l l  dominate I n  comparison t o  c l a s s i c a l  d i f fus ion . '  N e u t r a l  p r e s s u r e  

i n  t h e  d i v e r t o r  chamber may be a s  h i g h  a s  t o r r  o r  h i g h e r .  For 

plasma d e n s i t i e s  o f  1012 ~ m ' ~ ,  n e u t r a l  t r a n s p o r t  w i l l  dominate. I f  

vie> Vin charged p a r t i c l e  t r a n s p o r t  w i l l  dominate t h e  t r a n s p o r t  and 

t h e  c r o s s  f i e l d  f low may be a u t o m a t i c a l l y  ambipolar  due . t o  

c o n s e r v a t i o n  o f  momentum i n  charged p a r t i c l e  c o l l i s i o n s .  ( T h i s  nay 

n o t  hold u p  i n  plasma sys tems  t h a t  ha"e a f f i i t e  l e n ~ t h  a long  8 . )  It 

is i n t e r q s t i n g  t o  n o t e  though,  t h a t  t h e  t h e o r y  o f  ~ o o z ~ r ~  is f o r  a  

' f i l l y  i o n i z e d  plasma and Yet still  p r e d i c t s  non-ambipolar d i f f u s i o n .  

If, on  t h e  o t h e r  hand, i n s t a b i l i t i e s  dominate t h e  c r o s s  f i e l d  

t r a n s p o r t ,  t h e  f low may a g a i n  be  ambipolar  because t h e  t ime  averaged 

g x i  d r i f t s  w i l l  move i o n s  and e l e c t r o n s  a c r o s s  t h e  f i e l d  l i n e s  at  t h e  

same r a t e ,  u n l e s s  t h e r e  is a  l o c a l i z a t i o n  o f  t h e  d r i v i n g  i n s t a b i l i t y  

thri t  c o u l d  c a u s e  , resonance  e f f e c t s .  F o r  p r e o s u r e s  below T o r r ,  

Bohm d i f f u s i o n  w i l l  dominate c l a s s i c a l  i o n - n e u t r a l  c o l l i s i o n  d r i v e n  

t r a n s p o r t .  However, f o r  p r e s s u r e s  above t h i s '  n m b e r ,  i o n - n e u t r a l  . 

c l a s s i c a l  d i f f u s i o n  c a n  a g a i n  become comparable t o  Kohm. 

If t h e  f low is non-ambipolar, one can expec t  most . o f  t h e  

e l e c t r o n s  t o  e d t  t h e  plasma where t h e  s e p a r a t r i x  i n t e r c e p t s  t h e  

d i v e r t o r  p l a t e .  An e l e c t r o n  "hot  s p o t n  w i l l  r e s u l t  a s  many more 

e l e c t r o n s  w i l l  d e p o s i t  t h e i r  energy  t h e r e .  The i o n  energy  f l u x  w i l l  

a l s o  be  p r e s e n t ,  b u t  i ts d e p o s i t i o n  p r o f i l e  w i l l  be unchanged from t h e  

a m b i p o l q  c a s e .  The energy f l u x  t o  t h e  c o l l e c t o r  p l a t e  from t h e  

e l e c t r o n s  is g i v e n  by 

. . 
assuming a  ~ a x v e l l i a n  d i s t r i b u t i o n  o f  e l e c t r o n s ,  where a g a i n  (S is 

t h e  s h e a t h  p o t e n t i a l  d rop ,  and n  is t h e  d e n s i t y  a t  t h e  s h e a t h  edge.  

Assuming t h a t  t h e  d e n s i t y  and t e m p e r a t u r e  p r o f i l e s  remain the . same i n  

t h e  ambipolar  and non-ambipolar c a s e ,  t h e  r a t i o  of  t h e .  n o n - a m b i ~ o l a r  



t o  t h e  ambipolar  h e a t  f l u x  v a r i e s  from 1.5 t o  1.7 f o r  our exper imenta l  . , 
parameters .  That is ,  i n  t h e  r e i i o n  of t h e  e l e c t r o n  .hot s p o t w  t h e  

h e a t  f l u x  f r o m  t h e  e l e c t r o n s  is 501 t o  702 g r e a t e r  t h a n  i n  t h e  

ambipolar  case. . 

It might a l s o  be  thought t h a t  t h e  l a r g e r  d i f f u s i o n  c o e f f i c i e n t  

t h a t  occurs  ' for  non-ambipolar  d i f f u s i o n  might  change t h e  z h i e l d i n g  

e f f i c i e n c y  because t h e  c r o s s  f i e l d  p a r t i c l e  f l u x  w i l l  change. 

However, r e f e r e n c e  t o  equa t ion  (1.17) i n d i c a t e s  t h e  s h i e l d i n g  t o  be  

on ly  a f u n c t i o n .  o f  7. and t h e  plasma f l u x  t h a t  c r o s s e s  t h e  

s e p a r a t r i x .  The a c t u a l  p r o f i l e  may change, b u t  t h e  s h i e l d i n g  

p r o p e r t i e s  don ' t  depend on DL. 

The adverse  e f f e c t s  of  non-ambipolar f low make it  d e s i r a b l e  t o  be 

. ~ i g .  5.14: rl w i t h  t h e  a r r a y  s t r i p s  s h o r t e d  t o g e t h e r  and Lndiv- 
a b l e  t o  e l i m i n a t e  it. To t h i s  end each s t r i p  i n  t h e  c o l l e c t o r  a r r a y  

i d u a l l y  f l o a t i n g  . 
MS al lowed t o  separat ; ly e l e c t r i c a l l y  f l o a t  t o  e l i m i n a t e  t h e  s h o r t i n g  

p a t h  from e l e c t r o n  t o  i o n  outf low reg ion  and h o p e f u l l y  f o r c e  ambipolar  

c r o s s  f i e l d  and p a r a l l e l  t o  t h e  f i e l d  flow. An i n s u l a t i n g ' l a y e r  was 

p laced  on t h e  back s i d e  o f  t h e  d i v e r t o r  p l a t e  t o  prevent  s h o r t i n g  

t h e r e .  where t h e  same f i e l d  l i n e s  t h a t  i n t e r s e c t  t h e  a r r a y  a l s o  s t r i k e  

t h e  c o l l e c t o r  p l a t e .  

F i g u r e  5.14 shows t h e  p r o f i l e  of rl b e f o r e  and a f t e r  t h e  s h o r t i n g  

p a t h  t h r o u a  t h e  p l a t e  was.remoyed, f o r  a hydrogen plasma. (The, 

d a t a  shown i n  Fig. 5.10 was f o r  a helium plasma.) A s  Is e v i d e n t ,  t h e  

s c a l e  o f  t h e  t h e  outflow has been changed b u t  t h e  f a c t  remains t h a t  

t h e  p a r a l l e l  flow is still non-ambipolar. The magnitude o f  t h e  

ou t f low imbalance has  a l s o  been reduced. A t  r a d i i  s m a l l e r  t h a n  11 cm, 



t h e  o u t f l o w  still  shows t h e  c h a r a c t e r i s t i c  n e t  e l e c t r o n  o u t f l o v  

fol10,wed b j  n e t  i o n  c u r r e n t .  A t  r a d i i  l a r g e r  t h a n  11 cm, t h e  f low is 

p m b a b l y . a m b i p o l a r .  As t o  why t h e  t r a n s p o r t  becomes a n b i p o l a r  a t  

l a r g e  r a d i i  we can  at  p r e s e n t  on ly  s p e c u l a t e .  The lower plasma 

d e n s i t y  at t h e s e  . r a d i i .  may , n o t  p rovide  enough charge  c a r r i e r s  t o  a l low 

s h o r t i n g  on t h e  s u r f a c e  o f  t h e  a r r a y  t o  o c c u r .  The mechanism t h a t  

a l l o w s  s a n e  s h o r t i n g  t o  o c c u r  i n  t h e  r e g i o n s  o f  non-anbipolar  f low i s  

a l s o  u n c l e a r ,  - a n d -  t ime  l i m i t e t i o n s  don ' t  a l l o w  f u r t h e r  i n v e s t i g a t i o n .  

P e r h a p s  p h o t o e l e c t r o n s  e j e c t e d  from t h e  u l t r a v i o l e t  l i g h t  t h a t  is 

c e r t a i n l y  p r e s e n t  from t h e  plasma, o r  c h a r ~ e d  p a r t i c l e s  t h e t  r e s i d e  on 

the a r r a y  f o r  s h o r t  p e r i o d s  b e f o r e  b e i n g  n e u t r a l i z e d ,  may. a l l o w  

s h o r t i n g  t o  o c c u r  a c r o s s  t h e  f a c e  o f  t h e  c o l l e c t o r  a r r a y .  I n  any  . 

c a s e ,  it a p p e a r s  t h a t  a g r e a t e r  e f f o r t  is i n  o r d e r  t o  e l i n i n a t e  t h e  

s h o r t i n g  t h a t  d o e s  occur ,  a t  l e a s t  more h e r o i c  t h a n  s imply  a l l o w i n g  

t h e  a r r a y  s t r i p s  t o  f l o a t .  R. Neidigh c a r r i e d  o u t  t h e  exper imenta l  

v e r i f i c a t i o n  o f  t h e  . d i f f u s i o n  c o e f f i c i e n t  s c a l i n g  p r e d i c t e d  by 

8 .  simon8, and a p p a r e n t l y  a l s o  found t h a t  non-azbipolar  d i f f u s i o n  was 

h a r d  t o  e l i m i n a t e .  Fur ther  i n d i c a t i o n  t h a t  t h e  i n d i v i d u a l l y  f l o a t i n g  

a r r a y  d o e s n ' t  e l i m i n a t e  t h e  s h o r t i n g  cones from t h e  observa t ion '  t h a t  . 
. . 

t h e  d e n s i t y  p r o f i l e s  don't change s u b s t a n t i a l l y  in, , t h e  a r r a y  s h o r t e d  

and  f l o a t i n g  c a s e s ,  a s  shown i n  Fig.  5.15.. Thiz  . i s  ev idence  t h a t  t h e  

d i f f u s i o n  c o e f f i c i e n t  is v i r t u a l l y  t h e  same i n . b o t h  c a s e s ,  



Fig. 5.15: Typical denpity prof i l es  with-the array strips shorted 

1 . 'and unshorted. Dl changes by . , less  . . .than a factor of 2 .  

. . 



Another  q u a n t i t y  of i n t e r e s t  i n  t h e  unders tanding  o f  d i v e r t o r  

plasma p h y s i c s  is t h e  n e t  plasma flow v e l o c i t y  i n t o  t h e  c o l l e c t o r  

: p l a t e .  Measurements o f  t h i s  q u a n t i t y  have been c a r r i e d  o u t  i n  t h e  

p a s t  by p r o p a g a t i n g  i o n  a c o u s t i c  waves p a r a l l e l  and a n t i - p a r a l l e l  to  

t h e  plasma flow. The d i f f e r e n c e  i n  t h e  t r a n s i t  t ime between t h e  

p r o p a g a t i o n  in t h e  two d i r e c t i o n s  is p r o p o r t i o n a l  t o  t h e  f l o w  

v e l o c i t y .  l o  T y p i c a l  v e l o c ' i t i e s  measured ' a r e  about  one t h i r d  t h e  l o c a l  . 

' i o n  a c o u s t i c  v e l o c i t y .  A d i f f e r e n t  d i a g n o s t i c  approach was a d o p t e d  . 

h e r e  in t h e  i n t e r e s t  o f  t e s t i n g  t h e  r e s u l t s  o f  p rev ious  e x p e r i m e n t e r s  

by a n  independent  means. The s t r i p e d  p s r t i c l e  c o l l e c t o r  d i a g n o s t i c  

measures  t h e  plasma Plux r n  i n c i d e n t  on its face ,  and' s o  a 

s i m u l t a n e o u s  measureaent  o f  t h e  d e n s i t y  a t  t h e  c o l l e c t o r  y i e l d s  t h e  

. . 
f low v e l o c i t y  v i a  t h e  equatiorr  Vn= r n / n .  A t  t h e  same t ime t h a t '  t h e  

c h a r a c t e r s t i c  o f  t h e  s t r i p e d  p a r t i c l e  c o l l e c t o r  . i s  o b t a i n e d ,  a p r o b e  

l o c a t e d  in.:front o f  t h e  c o l l e c t o r  measures t h e  d e n s i t y .  The measured  

. f l o w  velocities ranged from . 3  t o  4 t i m e s  t h e  l o c a l  i o n  a c o u s t i c  
. . 

v e l o c i t y  w i t h  an a v e r a g e  over  t h i r t y  measurements o f  1.6 t i m e s  t h e  i o n  
f 

a c o u s t i c  v e l o c i t y .  

The r e a s o n  f o r , t h e  l a r e e  s c a t t e r  i n  t h e  d a t a  is  n o t  c l e a r ,  b u t  it 

is c e r t a i n  t h a t  it 1's not  a  r e a l  e f f e c t .  For r e a s o n s  ment ioned  

p r e v i o u s l y  i n  Chap. 3; a l l  c f .  t h e  meas~rements '  were t a k e n  a t  n e a r l y  

t h e  same o p e r a t i n g  c o n d i t i o n s  by n e c e s s i t y .  The measured Plow 

v e l o c i t i e s  d e f i e d  r e p r o d u c i b i l i t y  a t  seeminqly i d e n t i c a l  c o n d i t i o n s  o f  

meas-ured e l e c t r o n  t e m p e r a t u r e s  and d e n s i t i e s  a t  t h e  c o l l e c t o r .  I n  a l l  

c a s e s  I -V  t r a c e s  o f  t h e  c o l l e c t o r s  appeared  e x a c t l y  a s  t h e  theory  s a i d  

t h e y  should  look ,  above a c e r t a i n  n e u t r a l  p r e s s u r e .  Eelow t h i s  

t h m s h o l d  o f  n e u t r a l  p r e s s u r e  t h e  t r a c e s  became unsymmetric about  t h e  

c u r r e n t  axis. T h i s  c o u l d  v e r y  w e l l  be a magnet ic  f i e l d  e f f e c t  and its 

d i s a p p e a r a n c e  above a c e r t a i n  n e u t r a l  d e n s i t y  caused  by i n c r e a s i n g  

w l l i s i o n a l i t y  t h a t  i n c r e a s e s  i n  t u r n  t h e  c r o s s  f i e l d  d i f f u s i o n .  When 

the c r o s s  f i e l d  t r a n s p o r t  is & e a t  enough, t h e  p a r a l l e l  c u r r e n t  t o  t h e  

c o l l e c t o r  behaves as it d o e s  In t h e  f i e l d  f r e e  c a s e ,  and is no l o n g e r  

l i m i t e d  by t h e  c r o s s  f i e l d  t r a n s p o r t .  T h i s  is t h e  s a c e  e f f e c t  t h a t  

c o m p l i c a t e s  t h e  u s e  o f  p r o b e s  i n  magnet ic  f i e l d s . "  A 1 1  o f  t h e  d a t a  

were o b t a i n e d  above t h i s  t h r e s h o l d ,  however, d a t a  was o f t e n  taken  on 

d a y s  wide ly  s e p a r a t e d  i n  time. Data t a k e n  on t h e  same day a r e  c l o s e r  

t o  t h e  same v a l u e  o f  t h e  f low v e l o c i t y  t h a n  d a t a  taken  on d i f f e r e n t  

days.  The l a s t  p o s s i b i l i t l  t h a t  is unexplored  is t h e  e f f e c t  o f  t h e  

l o n g  term d e p o s i t i o n  o f  i m p u r i t i e s  011 t h e  c o l l e c t o r s ,  o r  t h e  e f f e c t  o f  

l o n g  term bombardment w i t h  microwaves. These e f f e c t s  c o u l d  change t h e  

p r o p e r t i e s  of  t h e  i n s u l a t o r  t h a t  t h e  c o l l e c t o r s  were mounted on, and 

t h u s  change t h e  c h a r a c t e r i s t i c .  For t h e s e  r e a s o n s , , t h e  measured f low 

v e l o c i t i e s  have l a r g e  e r r o r  b a r s  which a r e  i m p o s s i b l e  t o  e s t i m a t e .  It 

a p p e a r s  t h a t  t h e r e .  'is some t r u t h  h e r e  tho"+, f o r  t h e  measured f low 

v e l o c i t i e s  a r e  always n e a r  t h e  i o n  a c o u s t i c  v e l o c i t y .  

n e u t r a l  p r e s s u r e ,  microuave, i n p u t  power, f i e l d  s e t t i n g s ,  a s  w e l l  a s  



Qmzckml lhc Theor i e s  QC Boozer md Simon I 

It is of i n t e r e s t  ' t o  compare the  experimental s ca l e  lengths  with 

t h e  sca l e  lengths predic ted  by ~ooze r ' l  and ~ i m o n . ~  Both t h e o r i e s  t r e a t  

t h e  case of uniform magnetic f i e l d ,  and predic t  an exponential  s p a t i a l  

dependence of  the  densi ty  with a c h a r a c t e r i s t i c  s ca l e  length.  ( The 

piper  by Simon uses t h e  same flow model t h a t  wao described i n  t h e  

f i r s t  chapter,  however, based on h i s  idees  about non-ambipolar 

d i f f u i o n ,  h i s  choice f o r  t h e  c ross  f i e l d  d i f fus ion c o e f f i c i e n t  ?s 

D ~ = D ~ / ~ ) .  A s  is c l e a r  by now, t h e  densi ty  p ro f i l e s  i n  the  experiment 

are not exponential ,(evidenced by the  non-linear semi-logarithmic 

p l o t s )  a r e f l ec t ion  of the  f a c t  t h a t  t h e  f i e l d  increases  i n  magnitude 

a function o r  r ,  and t h u s  DI decreases.  a l s o ,  t he  volume per u n i t  

flux is changing and t h e  temperature is changing. These a l s o  o f f s e t  

t b e  p ro f i l e s  from an exponential  dependence. However, a comparison 

can still be uade by comparing a s o r t  of nlocaln.measured sca le  l eng th  

w i t h  t he  theo re t i ca l  l o c a l  s c a l e  length.  That is, f o r  some smal l  

length dr along t h e  radius ,  DL is approximately constant and equation 

1.7 can be solved a t  t h i s  po in t  t o  give a l o c a l  density dependence a s  

in equation 1.8. Within t h i s  d r ,  centered a t  rot the  sca l e  length  Is 

given by 

ldhich l a  t o  be compared t o  t h e  t h e o r e t i c a l  predic t ion a t  ro. 
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. . 
The s c a i e  l eng th  o f ,  t h e  e l e c t r o n  outflow according t o  Boozer's 

theory is pet/  A,. For parameters typ ica l  o f  t h i s  experiment: p,=.5 

an, X ~ 3 0 0  cm, Lq8O cm, t h i s  s c a l e  length is approximately .13 em. 

.Because t h i s  is considerably  l e s s  than t h e  e l e c t r o n  gyroradius 
p,, 

t h e  f l u i d  theory used by Boozer is c l e a r l y  not appl icable .  ( I n  f a c t ,  

Boozer s p e c i f i c a l l y  assumes t h a t  L/ Ae>>l, and thus  one would not 

expect t h e  e l e c t r o n  s c a l e  length  t o  be va l id  i n  our experiment.) 
. . 

Therefore comparison of  t h e  e l e c t r o n  outflow s c a l i n g  t o  experiment is 

no t  va l id .  On t h e  o t h e r  hand, Eoozerls s c a l e  length  f o r  t h e  ion 

outf low is  pi(^,), t h e  i o n  gyroradius evaluated a t  t h e  e l ec t ron  
. . 

temperature,  which is obviously much g rea te r  than the  a c t u a l  ion 

gyroradius  a t  a l l  points .  The s c a l i n g  from Simon's paper f o r  both 

s p e c i e s  is LDi/ZVil where Vi i s  t h e  ion acous t i c  veloci ty ,  L is the  

d i v e r t o r  l eng th ,  and Dl is t h e  ion d i f fus ion  c o e f f i c i e n t  due t o  ion 
. . 

n e u t r a l  c o l l i s i o n s .  These two t h e o r e t i c a l  s c a l e  lengths  were 

c a l c u l a t e d  and compared t o  t h e  experimental  s c a l e  lengths  a t  t h e  
. . .'.. 

extremes OF t h e  D.C. machine's ope ra t ing  range. Table 5.3 shows t h i s  

comparison f o r  t h e  high p res su re  l i m i t  with Helium gas  (~,=10-3 Torr)  

and low p res su re  with Iiydrogen gas  ( ~ , = 5 x 1 0 - ~  Tor r ) ,  and a r e  typ ica l  

o f  t h e  r e s u l t s  found f o r  a l l  of  t h e  da ta  taken. Shown i n  each case  is . 

t h e  radius ,  from t h e  c e n t e r  l i n e  t h a t  t h e  comparison is made a t ,  and 

t h e  r a t i o  OF t h e  experimental  s c a l e  length  t o  t h e  t h e o r e t i c a l  s c a l e  

l eng th  a t  each point .  I n t e r e s t i n g l y ,  t h e  t h e o r e t i c a l  p red ic t ions  seem 

t o  bracket  t h e  exper imenta l  values  (except a t  one exceptional point  

t h a t  is not t y p i c a l  o f  t h e  r e s t  of  the  d a t a )  i n  a l l  cases ,  t h e  theory 



&,lim- p r e o s m  

Radius ?em./  b o o z e r  'exo.1 'slrspn 

7.0 . ' .578 1.45 

Bdrouen- lm p r e s s u r e  

Radivs &xu./ l ~ o o z w  & x i . /  'sigpn 

6.0 .337. .596 

10.0 -605 1.45 

of ~ o o z e C  being t y p i c a l l y  a -  f a c t o r  of  t vo  l a r g e r ,  and Simon's theory 

being l e s s  than a f a c t o r  Of t h r e e  smaller.  Cons ide r ing . the  e r r o r s  

t h a t  en te r  t h e  t h e o r e t i c a l  p r e d i c t i o n s  from t h e  measured parameters,  

f b r  eiample e r r o r s  in Ti, Te, t h e  ion n e u t r a l  c o l l i s i o n  frequency, and 

t h e  e r r o r  inbe ren t  i n  ske tch ing  a curve through t h e  experimental  da t a  

points ,  t he  agreement is exce l l en t .  
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Chapter 6 

T ~ ~ n s ~ o d  . 

I n  an e f f o r t  to f u r t h e r  understand the  t r a n s p o r t  i n  t h e  scrape- 

o f f  zone, i t  was decided t o  s o l v e  the  one dimensional Plow model t h a t  

was desc r ibed  h Chapter 1 ,  f o r  our  p a r t i c u l a r  geometry. By varying 

t h e  t r a n s p o r t  c o e f f i c i e n t s  i n  t h e  equation u n t i l  a bes t  P i t  t o  t h e  

exper imenta l  d e n s i t y  and e l e c t r o n  temperature p r o f i l e s  is obta ined,  

one g a i n s  some knowledge o f  t h e  magnitude and s c a l i n g  o f  t h e  t r a n s p o r t  

 coefficient,^ wi.thin t h e  l i m i t s  o f  such a slmple model. Addi t ional ly ,  

one t e s t s  t h e  f e a s i b i l i t y  o f  t h e  flow model f o r  d i v e r t o r s  over  t h e  

parameter range t h a t  ou r  experiment covers. 

S teadv-Sta te  D i f fus ion  Eauation 

As.a  first s t e p ,  t h e  s teady-s ta te  p a r t i c l e  d i f fu s ion  equation was 

solved . w i  t h  t h e  exper imenta l  e lec t ron temperature .as an i npu t  

parameter. The i n t e n t i o n  was t o  so lve  t h e  more d i f f i c u l t  t ime 

dependent problem o f  t h e  coupled diff'usion and energy t r a n s p o r t  

equa t ions  a s  f a m i l i a r i t y  was gained v i t h  t h e  numerical techniques  from 

t h i s  s i m p l e r ,  problem. It i s  a l s o  ea s i e r  t o  change t h e  t r a n s p o r t  

c o e f f i c i e n t  s c a l i n g  wi th  j u s t  one equation, s o  t h e  knowledge gained 

about t h e  p a r t i c l e  t r a n s p o r t  should e l iminate  t h e  need t o  experiment 

wi th  ' d i f f e r e n t  s c a l i n g s  i n  . t he  more complicated case. 

To d e r i v e  t h e  r e l e v a n t  equation,  consider t h e  two ad jacen t  f l u x  

s u r f a c e s  shown i n  Fig.  6.1, which is  the  ac tual  magnetic con f igu ra t ion  
-. . . . 

used. Assuming F i c k 8 s  law d i f fus ion  is va l id  over  t h e  .whole f l u x  
. . 



surfacp f o r  t h e  c r o s s  f i e l d  p a r t i c l e  f l u x  ( = D l  n ,  t he  

con t inu i ty  equat ion  f o r  t h e  volume between f l u x  su r f aces  is wr i t t en  ap 

follaws: 

. . 

. . 

where t h e  A i n d i c a t e s  t h e  d i f f e r e n c e  i n  t h e  i n t e g r a l s  evaluated on 

adjacent  f l u x  s u r f a c e s ,  dV is  t h e  volume between t h e  $ and $4 

su r f aces ,  9 is t h e  azimuthal ang le ,  R is  t h e  r ad ius ,  and bde is t h e  

i n t e g r a l  taken a long a  f i e l d  l i n e .  Dividing both s i d e s  by A$ &d 

t ak ing  t h e  l i m i t  a s  A V O ,  we g e t  

(U3) z. 
'-  ~ i ~ . "  6.1: The magnetic geometry of t he  experiment, showing t h e  

coo rd ina t e  system used t o  de r ive  t h e  t ranspor t  equation. 

. . . . 

 heri if ore equat ion  (6 .2 )  can be w r i t t e n  a s  

i . a  a n  an(%) a t  N = (a) r (@!I f12Dr)-1. w a J , .  



Despi te  t h e  i n t e n t i o n  t o  model t h e  s t e a d y  s t a t e  s i t u a t i o n  i n  o u r  
I 

experiment,  t h e  t ime d e r i v a t i v e  term h a s  been r e t a i n e d  t o  phenomeno- 

l o g i c a l l y  model t h e  l o s s  term due t o  n e u t r a l i z a t i o n  at  t h e  d i v e r t o r  

p l a t e .  Consequently, we make t h e  rep lacement :  

h%ere, a s  in Chapter  1, 1, is t h e  c h a r a c t e r i s t i c  t ime  f o r  flow. 

p a r a l l e l  t o  8. T h i s  replacement can a l s o  b e  thought o f  more f o r m a l l y  

.s a r i s i n g  from t h e  p a r a l l e l  p a r t  o f  t h e  d ivergence  o f  t h e  p a r t i c l e  

f l u x  = V l - r l  + V n a r n .  The r i g h t  hand s i d e  of  e q u a t i o n  (6 .3)  i s  

t h e  perpendicu la r  p a r t  o f  t h e  d i v e r g e n c e  o f  t h e  p a r t i c l e  f l u x .  The 
nV n 

s u b s t i t u t i o n  V,.rn+ - = A, can be thought  o f  a s  be ing  t h e  r e s u l t  
L  T n  . 

of averag ing  V,,-r,, a long  a f i e l d  l i n e 1  

dn where J($)=#d9.,R2~~,, and  we have assumed t h a t  - is ipdependent  o f  
dJ, 

p o s i t i o n  a l o n g  t h e  f i e l d  l i n e .  I f  one makes t h e  assumption t h a t  ?, 

is p r o p o r t i o n a l  to  L N n ,  where V a  is t h e  i o n  a c o u s t i c  v e l o c i t y ,  

( a p p r o p r i a t e  t o  o u r  case o f  Te>>Ti) and L i s  t h e  f i e l d  l i n e  l e n g t h ,  

t h e n  

- where L O )  = @ . At t h i s  p o i n t  le t  u s  t a k e  t h e  f u n c t i o n a l  form o f  

DL t o  be: DA = C ~ ~ ~ ( $ ) T ~ ~ @ ) B ~ ( $ ) .  D i f f e r e n t  c h o i c e s  f o r  t h e  

exponents  a , b , c  a l l o w  u s  t o  c o n s i d e r  v a r i o u s  s c a l i n g s  f o r  DL. Then 

e q u a t i o n  (6 .7)  becomes 

because r ,=0 a t  b O  by symmetry ( e q u a l  f l u x e s  i n  bo th  d i r e c t i o n s ) .  

I n  e i t h e r  case ,  making t h e . s u b s t i t u t i o n  o f  e q u a t i o n  (6 .4)  i n t o  (6 .3)  

y i e l d s  
. -  

where C, is a c o l l e c t i o n  o f  c o n s t a n t s ,  and a g a i n  we have assumed t h a t  

t h e  d e n s i t y  and.  t e m p e r a t u r e  a r e .  independent  o f  ' p o s i t i o n  a l o n g  t h e  

f i e l d  l i n e .  In e q u a t i o n  (6.8)  n o t e  t h a t  J d ( $ ) = b d ~  It2BC+'. The 

e l e c t r o n  t e m p e r a t u r e  is c e r t a i n l y  a  c o n s t a n t  a long  a  f i e l d  l i n e  

. because o f  t h e  l o n g  e l e c t r o n  mean f r e e  path.  It i s  a n t i c i p a t e d  t h a t  

t h e .  d ,ens i ty  g r a d i e n t  a l o n g '  t h e  f i e l d  i i n e  w i l l  be much s m a l l e r  t h a n  

t h e  g r a d i e n t  a c r o s s  t h e  f i e l d ,  and t h i s  is i n  f a c t  born o u t  by t h e  

exper iment .  F o r  a s i m p l e , B o l t z m a n n  r e l a t i o n s h i p  between t h e  d e n s i t y  



and t h e  pote i r t ia l  a long t h e  f i e l d  l i n e ,  where the  p o t e n t i a l  drop is of 

t h e  o rde r  o f  Te/2 over  t h e  length  of t h e  whole- f i e l d  l i n e ,  (1.0. t h e  

. s o  c a l l e d  pre-sheath drop)  t h e  dens i ty  a t  t he  sheath edge is 612 o f  

t h e  dens i ty  a t  t h e  ,=enter of t h e  slab. '  ~ o o i e r ~  p r e d i c t s  an even 

sma l l e r  change, t h e  dens i ty  a t  t he '  sheath  edge being about 702 O f '  t h e  
' 

dens i ty  a t  t h e  cen te r  of t h e  s l a b  model d i r e r to r .  On t h e  o t h e r  hand, 

t h e  g r a d i e n t  ac ros s  t h e  f i e l d  l i n e  is a t  l e a s t  an o ide r  o f  magnitude 

i n  a d i s t a n c e  about h a l f  a s  long a s  a ' f i e l d  l i ne .  For t h i s  reason t h e  

-dens i ty  change along t h e  f i e l d  l i n e  w i l l  be neglected. A l t e r n a t i v e l y ,  

one can th ink of t h e  dens i ty  on a given J, surface  as being an average  

dens i ty  ' f o r  t h a t  p a r t i c u l a r  su r f ace .  

To allow f o r  t h e  ca se  t h a t  flow i n t ~  the  c o l l e c t o r  p l a t e  may 

occur a t  sctoe f r a c t i o n  of t h e  i on  acous t i c  speed, a m u l t i p l i c a t i v e  

f a c t o r  S can be in se r t ed  befor6  t h e  p a r a l l e l  lass term. S imi l a r ly ,  a 

m u l t i p l i c a t i v e  f a c t o r  F can be included t o  allow f o r  d i f f u s i o n  t h a t  

s c a l e s  l i k e  a given d i f f u s i o n  c o e f f i c i e n t ,  but may be numerica l ly  

d i f f e r e n t .  The e f f e c t s  o f  these  two f a c t o r s  is not separable  however; 

t hey  a r e  lumped d t h  Co i n t o  t h e  coe f f i c i en t  C l .  Only t h e  r a t i o  F/S 
. . 

a f f e c t s  t h e  equation.  
. . 

Equation (6.8) is , a ,  l i n e a r -  p a r t i a l  d i f f e r e n t i a l  equation i n  t h e  
. . 

f l ux  space of . t h e  D.C. machine o f  t he  rohn . - . 
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.here  f ($)  and g($) a r e  known func t ions  o f  J, . 0ur . cho ice  o f  a method 

o f  s o l u t i o n  was, a numerical  one by n e c e s s i t y ,  involving f i n i t e  

d i f f & e n c i n g  i n  space.. The f i n i t e  d i f f e r e n c i n g  scheme is one t h a t  is 

p a r t i c u l a r l y  app ropr i a t e  f o r  t r a n s p o r t  equat ions  because o f  its 

d e s i r a b l e  p rope r ty  of conserving pa&.icles. o n e  cons t ruc t s  a s d a t i a l  

mesh i n  . f l ux  space ,  not  n e c e s s a r i l y  uniform, a s  stiovn i n  Fig. 6.2. 
. . 

The boundaries between mesh zones a r e  t aken  t o  be  equ id i s t an t  between 

ad jacen t  mesh points .  Equation 6.9 is i n t e g r a t e d  ac ros s  a mesh zone 

and then each o f  t h e  two i n t e g r a l s  is approximated with f i n i t e  

d i f f e r e n c e  schemes. For example, t h e  f i r s t  term becomes 

where t h e  s u b s c r i p t s  j+m i n d i c a t e  t h a t  t h e  d e n s i t y  is evaluated  a t  a 

.nesh  p o i n t '  i f  m is an i n t e g e r ,  and a t  t h e  midpoint between .two mesh 

p o i n t s  if q is a h a l f  i n t ege r .  The two func t ions  f  a r e .  f u r t h e r  

approximated .by 



Pig. 6.2: The mesh spacing scheme used f o r  t he  f i n i t e  

d i f ferencing of t h e  t r anspor t  equations.  

The second t e r m  i n  equat ion 6.10 i s  approximated by 

1 
where bJ>( $J+l- $J-l). A l l  o f  these  approximations break down i f  

t h e  chosen mesh spacing is too  l a rge ,  and thus  c a r e  must be taken t o  

a s su re  t h a t  t h e  mesh is f i n e  enough. When a l l  o f  t hese  approximations 

a r e  i n s e r t e d  i n t o  t h e  o r i g i n a l  equation, one has  a l i n e a r  a lgebra i c  

equation f o r  n i f  n and nj,l a r e  known. The r e s u l t i n g  equation is 
J+1 J 

Needed a l s o .  o f  course ,  a r e  the  various f i e l d  l i n e  i n t e g r a l s  f o r  t he  

chosen f i e l d  conf igu ra t ion .  These a r e  obtained numerically using an 

e x i s t i n g  program'. Therefore  t o  so lve  f o r  say nu, t h e  densi ty  a t  t he  

fou r th  mesh p o i n t ,  one needs t o  know ng and n2. Knowing n4, one can 

in  t u r n  s o l v e  f o r  5 a l s o  using ng. This s o  c a l l e d  "shootingn method, 

* Spec ia l  thanks  a r e  due t o  D r .  L.P:Mai f o r  h i s  a s s i s t ance  i n  

gene ra t ing  'f'(R,Z) and t h e  f i e l d  l i n e  in t eg ra l s .  



s o  named because one s h o o t s  f o r  t h e  n p o i n t  from t h e  known nj,l and  
j - 

nj-2, is c a r r i e d  o u t  u n t i l  t h e  e n t i r e  p r o f i l e  is genera ted .  

T w  problems have been. swept under t h e  r u g  i n  t h e  above 

t rea tment .  The f i r s t  is how one s t a r t s  t h e  a lgor i thm.  T h a t  is, t o  

.genera te  n j  one needs  t o  know n2 and n l .  ' The v a l u e  o f  nl  can  be  

chosen t o  be  t h e  exper imenta l  d e n s i t y  a t  t h e  l e f t  hand boundary which 

w i l l  a l s o  . b e t t e r  f a c i l i t a t e  t h e  e v e n t u a l  comparison o f  t h e  g e n e r a t e d  

profi le  t o  t h e  exper imenta l  p r o f i l e .  One could  t h e n  c o n c e i v a b l y  p i c k  

n2 a r b i t r a r i l y  and proceed t o  g e n e r a t e  t h e  rest o f  t h e  p r o f i l e  u n t i l  

t h e  r i g h t  hand boundary v a l u e  n~ i s  reached.  However t h e r e  is a 

S e t t e r  way, one t h a t  u s e s  e q u a t i o n  6.9, t h e  d i f f u s i o n  e q u a t i o n .  Our 

o b j e c t  i s  t o  g e n e r a t e  n2. t h e  d e n s i t y  a t  t h e  second mesh p o i n t .  To 

t h i s  end, l e t  'w d i v i d e  t h e  s p a c e  between t h e  f i r s t  two nesh p o i n t s  by 

adding  another  mesh p o i n t  midmy between t h e s e  two and c a l l  i t  jlI2. 

Ye f u r t h e r  d i v i d e  t h e  space  between j and J l I2  i n  two a g a i n ,  and c a l l  1 .. 
it jlI4. NOW a g a i n  we i n t e g r a t e  e q u a t i o n  6.9 from jl t o  jlI2 and 

approximate t h e  terms a s  b e f o r e  

Now,'we approximate t h e  second tkrm by a ' T a y l o r  s e r i e s  

. . 

and t h e  f i r s t  term 

where n l S  is t h e  d e r i v a t i v e  o f  t h e  d e n s i t y  a t  t h e  f i r s t  mesh p o i n t .  

Combining t h e s e  r e s u l t s  y i e l d s  

T h e r e f o r e  knowing n l  . a n d  n l l  t h e  a l g o r i t h m  can  be s e l f - c o n s i s t e n t l y  
. . 

s t a r t e d .  It a p p e a r s  a t  t h i s  p o i n t  t h a t  we have mere ly  . t r a d e d  

u n c e r t a i n t y  i n  t h e  c h o i c e  o f  n2 f o r  u n c e r t a i n t y  i n  t h e  c h o i c e  o f  n l ' ,  

b u t  t h i s  t o o  can  be  s e l f - c o n s i s t e n t l y  remedied. A s  v i t h ' t h e  l e f t  hand 

boundary, one  d e s i r e s  t h e  numer ica l  r e s u l t s  t o  a g r e e  w i t h  t h e  

e x p e r i m e n t a l  r e s u l t s  a t  t h e  right h&d boundary. One procedure  would 

be  t o ,  ' i t . e r a t i v s l y ,  a d j u s t  t h e  v a l u e  o f  n l l  u n t i l  t h e  v a l u e  of t h e  

d e n s i t y  g e n e r a t e d  a t  the r i g h t .  boundary, nN, a g r e e s  w i t h  t h e  

e x p e r i m e n t a l  one. .However, because  o f  t h e  l i n e a r i t y  o f  e q u a t i o n  6.9 

a n  e a s i e r  approach  is a v a i l a b l e .  The d e n s i t y  a t  t h e  r i g h t  hand 



boundary, nN, is l i n e a r l y  dependent  o n ' t h e  g r a d i e n t  a t  t h e  l e f t  hand 

boundary, nl ' .  . 

nN = a n l '  + b ,  

o r  e q u i v a l e n t l y ,  

h a s  been done,, and i n s i s t  on t h e  c o n t i n u i t y  o f  t h e  d e n s i t y  and its 

d e r i v a t i v e s  a t  t h e  s e p a r a t r i x .  T h i s  las t  c o n d i t i o n  would r e p l a c e  t h e  

boundary c o n d i t i o n s  t h a t  we imposed. However, a d e g r e e  o f  

a r b i t r a r i n e s s  would e x i s t  a g a i n ,  i n  t h a t  t h e  plasma s o u r c e  s t r e n g t h  o f  

t h e  experiment would have  t o  b e  imposed on t h e  code. T h i s  seems l i k e  

a n  obvious  n e c e s s i t y ,  & l e s s  one  i n t e n d s  t o  model t h e  s o u r c e  as wel l ,  

t h a t  d e f i n e s  a s t a r t i n g  b a s e l i n e  f o r  t h e  code.  Beyond t h e  impos i t ion '  

o f  t h i s  b a s e l i n e ,  t h e  n u m e r i c a l  s o l u t i o n  must be al lowed t o  evolve  
where t h e  c o n s t a n t s  a  and b a r e  t o  be  determined. Some i n i t i a l  choice . .  

independent ly  o f  t h e  exper iment  i f  a t r u e  comparison between theory  
f o r  n l (  ), c a l l  it n l V (  1, w i l l  y i e l d  a unique n l (  q N ) .  Q second 

and experiment: l ' s  t o  be  o b t a i n e d .  After d e f i n i n g  t h e  d e n s i t y  and its 
c h o i c e  f o r  n t (  a l ) ,  s a y  n12( $,I, w i l l  y i e l d  a second n2( $*). 

s l o p e  a t  t h e  f i r s t  mesh p o i n t ,  t h e  numer ica l  s o l u t i o n  evolves  
Wri t ing  o u t  t h e s e  two e q u a t i o n s  

accord ing  t o  e q u a t i o n  6.9. The c r i t i c a l  p o i n t  o f  comparison t o  t h e  

and by t h e  s o l u t i o n  o f  t h e s e  s imul taneous  equa t lons ,  t h e  c o n s t a n t s  a 

and b a r e  u n i q u e l y  de te rmined .  Thus by i n v e r t i n g  equa t ion  6.18 t h e  

c o r r e c t  n l (  t o  y i e l d  t h e  exper imenta l  r i g h t  hand boundary v a l u e  Is 

de te rmined  on t h e  t h i r d  p a s s  through t h e  algori thm. 

The i m p o s i t i o n  of t h e  exper imenta l  boundary va lues  o n  t h e  

numerical  s o l u t i o n  a t  f i r s t  s e w s  l i k e  an a r b i t r a r y  s t e p  t o  f o r c e  a . . 

measure o f  ae .eement  between theory  and exper iaen t  t h a t  is  h a r d  t o  

j u s t i f y .  The a l t e r n a t i v e  would be t o  w r i t e  a d i f f u s i o n  e q u a t i o n  f o r  

t h e  plasma on  f i e l d  l i n e s  o u t s i d e  t h e  s e p a r a t r i x  a s ' w e l l  a s  i n s i d e ,  a s  

e x p e r b e n t  is  t h e  shape  t h e  n u m e r i c a l  s o l u t i o n  assumes between t h e  
1 

boundary va lues .  Only when t h e  n u m e r i c a l  s o l u t i o n  shape  and t h e  

exper imenta l  shape a g r e e  i n  t h i s  r e g i o n  can  one a rgue  f o r  a theory  

t h a t  d e s c r i b e s  t h e  p h y s i c a l  p r o c e s s e s  In t h e  experiment a c c u r a t e l y .  

I n h e r e n t  i n  t h i s  is t h e  u n d e r s t a n d i n g  that t h e  m u l t i p l i c a t i v e  f a c t o r s  

F and S w i l l  n o t  be far from u n i t y  when agreement is  o b t a i n e d ,  o r  

s e r i o u s  q u e s t i o n s  a s  t o  t h e  a p p l i c a b i l i t y  o f  a  g i v e n  t r a n s p o r t  

c o e f f i c i e n t  s c a l i n g  s h o u l d  be  r a i s e d .  

The i n d i c a t e d  e q u a t i o n s  were-  i n c o r p o r a t e d  i n t o  a program w r i t t e n  
. . .  
in Rebel ~ a s i c 3  and run'. o n  a DEC PDP-11 computer. To a s s u r e  t h a t  t h e  

numerical  approximat ions  a c c u r a t e l y  model t h e  d i f f e r e n t i a l  e q u a t i o n ,  

p r o f i l e s  genera ted  on a g i v e n  mesh were compared t o  p r o f i l e s  g e n e r a t e d  

on  a mesh o f  h a l f  t h e  mesh s p a c i n g  a n d  found '  t o  agree  a lmos t  e x a c t l y .  



T h e r e f o r e  we f e l t  a s s u r e d  t h a t  t h e  approximat ions  were s u f f i c i e n t l y  

a c c u r a t e .  

Bohm d i i f u s i o n  was chosen a s  a f i r s t  c a s e  s i n c e  t h i s  assumption 

h a s  been used i n  some o f  t h e  phenomenological  d i v e r t o r  s t u d i e s 1 .  Bohm 

d i f f u s i o n  s c a l i n g  is a=O, b = l ,  c =  -1. The b e s t  f i t  s o l u t i o n  f o r  t h i s  

case is obta ined  w i t h  (P/S)=.03 and is shown i n  Pig.  6.3 a l o n g  w i t h  

t h e  exper imenta l  p r o f i l e .  S i n c e  t h e  f low v e l o c i t q  p a r a l l e l  t o  h a s  

been measured t o  b e  n e a r  t h e  i o n  a c o u s t i c  v e l o c i t y ,  t h e  i m p l i c a t i o n  is 

t h a t  t h e  c r o s s  P i e l d  t r a n s p o r t  is much s m a l l e r  t h a n  Bohm d i f f u s i o n .  

S i n c e  we have a  r a t h e r  h i g h  n e u t r a l  d e n s i t y .  t h e  c a s e  o r  

t r a n s p o r t  due t o  i o n - n e u t r a l  c o l l i s i o n s  is o f  i n t e r e s t .  F o r  n e u t r a l  

c o l l i s i o n  dominated t r a n s p o r t  i n  a magnet ic  P i e l d  one h a s  a=O, b=O, 

c= -2. The b e s t  f i t  p r o f i l e  is ahom i n  F ig .  6.4, and o c c u r s  f o r  

F/S=l. A comparison o f  t h e  two c a s e s  t r e a t e d  t h u s  f a r  shows t h a t  t h e  
. . 

c l a s s i c a l  d i f f u s i o n  c o e f f i c i e n t  s c a l l n g  g i v e s  b e t t e r  agreement w i t h  

t h e  measured p r o f i l e  t h a n  t h e  Bohm d i f f u s i o n  c a s e ;  t h i s  is i n  

agreement wi th  s i m i l a r  measurements done e a r l i e r  ?n t h e  D.C. machine4. 

A v a l u e  o f  Ti= . I  eV is  assumed independent  o f  r a d i u s  i n  t h e s e  

s o l u t i o n s .  

These p r o f i l e  comparisons have been c a r r i e d  o u t  o v e r  t h e  f u l l  

r a n g e  o f  t h e  o p e r a t i n g  c o n d i t i o ? s  o f  t h e  D.C. machine,  and i n  each 

c a s e  t h e  r e s u l t s  a r e  s i m i l a r .  The numerical ' .  r e s u l t s  a g r e e  wi th  t h e  
. . 

e x p e r i m e n t a l  d a t a ,  f o r  s m a l l  f r a c t i o n s  - o f  t h e  Bohm d i f f u s i o n  

c o e f f i c i e n t ,  and f o r  va lues .  n e a r  t h e  c l a s s i c a l  d i f f u s i o n  c o e f f i c i e n t .  

Pig.  6.3: The n u m e r i c a l  s o l u t i o n  t o  t h e  s teady-s ta te ,  d i f f u s i o n  

e q u a t i o n  compared t o  t h e  e x p e r i m e n t a l  d e n s i t y  p r o f i l e s  f o r  Bohm 

s c a l i n g  in DL, and F/S=.03. 

Admittedly t h e  agreement g iven  by t h e  c h o i c e  o f  c l a s s i c a l  s c a l i n g  



+ 
E

X
P

E
R

IM
E

N
TA

L 
'1

 

R
A

D
IU

S
 (
cm
) 



gives  only marginal ly  b e t t e r  agreement than Bohm s c a l i n g  wi th in  the 

uncer ta in ty  of  our  d e n s i t y  p r o f i l e s :  Although c l a s s i c a l  s c a l i n g  is. 

. = B - ~  and Bohm is  =T,B-', t h e  experimentax 1, p r o f i l e  is roughly . 

=B-' ; t h i s  probably e x p l a i n s  why we c a n ' t  more c l e i r l y  r e s o l v e  which 

sca l ing  is present.  However, t h e  observed absence of  f l u c t u a t i o n s  i n  

t h e  experiment and t h e  h i g h . n e u t r a 1  d e n s i t y  ind ica t e  t h a t  t h e  choice 

o f  c l a s s i c a l  s c a l i n g  is probably the .  b e t t e r  one. 

Iimi De~endenk Xcau+L EsuaLbm . . 

I n  l i g h t  o f  t h e  s u c c e s s  o f  t h e  simple s t eady- s t a t e  equat ion 

solut ion,  it was decided t o  a t t empt  t h e  more complex problem o f  a . , 

solut ion t o  t h e  coupled energy and p a r t i c l e  t r anspor t  equat ions .  The 

hope was again t o  l e a r n  more about t h e  type o f  t r a n s p o r t  i n  t h e  

scrape-off zone and t e s t  t h e  a p p l i c a b i l i t y  of  t h e  one dimensional flow 

model t o  the  energy t r a n s p o r t  a s  we l l  a s  t h e  p a r t i c l e  t r anspor t .  Id 

addition, because o f  t h e  non-linear na tu re  o f  t he  t r anspor t  equa t ions ,  

t h e  time dependent equa t ions  were chosen a s  a  s t a r t i n g  point .  . T h e ,  

procedure w i l l  be t o  a l low t h e  t ime dependent so lu t ion  t o  evolve t o  

s teady s t a t e .  Comparison is then  made between the  computed s teady 

s t a t e  p ro f i l e s  and t h e  exper imenta l  r e s u l t s .  The experience qf  t4ense5 

i n  such cases  i n d i c a t e s  t h a t .  t h i s  o f t e n  t h e  best .  way t o  o b t a i n  t h e  

solut ion t o  non l inea r  d i f f e r e n t i a l  ecua t ions ,  and 'avoid numerical 

. . s t a b i l i t y  problems. 

The p a r t i c l e  t r a n s p o r t  equa t ion  is, f o r  t h e  most p a r t ,  t h e  same 

a s  equation 6.8, except t h a t  t h e  time dependent term i n  t h e  con t inu l ty  

equation. is r e t a i n e d  



The e l e c t r o n  energy t r anspor t  equat ion  can be  derived i n  a manner 
h e r e  Vmin is t h e  lowest e l e c t r o n  v e l o c i t y  t h a t  can t r a v e r s e  t h e  shea th  

. s i m i l a r  t o  t h e  d e r i v a t i o n  o f  t h e  p a r t i c l e  . t r a n s p o r t  equat ion ,  by 
and r each  t h e  c o l l e c t o r  plate ' ,  and g S  is t h e  sheath  p o t e n t i a l  drop. 

performing an energy balance  on a  tube  o f  f l u x  
. I n  t h e  e v e n t  t h a t  t h e  p a r a l l e l  p a r t i c l e  f l o w ' l s  ambipolar, one can 

w r i t e  t h e  l o s s  a s  ' rn 3 . ?--(&kTe)dV'+ k  ~ J d e  bd). [- K pTe + -ETe] l  = - (Se dv) ,  (6.21) . , 

a t  2 O 2  . . 

where the  A again  i n d i c a t e s  t h a t  t h e  l i n e  i n t e g r a l  is t o  be ca r r i ed  
,, . I - ".. ,. 

out on t h e  J, and q+d$ . su r f aces ,  and subt rac ted ,  and k  is 
Wi th in ' t he  con tex t  o f  t h e  flow model, t h e  p a r a l l e l  l o s s  term is Qn/L. 

with  t h e  same L a s  l n  t h e  p a r t i c l e  equation.  When t h e  d i f f e r e n t i a t i o n  
Boltzmann's cons tant .  The term Se inc ludes  energy sources and s inks .  . . 

o f  t h e  f i r s t  term i n  equat ion  6.21 is  c a r r i e d  ou t  and equat ion  6.20 
The gPTe term accounts  f o r  thermal conduction , where K is  t h e  thermal 

rn - . . 
3 s u b s t i t u t e d  i n  f o r  t h e  2 t e r m ,  t h e  energy equation.  becomes 

conductivity, and t h e  term -rTe accounts f o r  convective energy a t  
2- - 

3 
transport .  We w i l l  a s s m e  i n  a l l  t h a t  follows t h a t  K d n  and 

. 2  

[= -D yn, where t h e  f i r s t  is t h e  c l a s $ i c a l  thermal conduct iv i ty  f o r  a  

d i l u t e  gas6 and t h e  second is an assumption of F i c k v s  law t r anspor t .  

We w i l l  a s s m e  c l a s s i c a l  s c a l i n g  f o r  t h e  d i f fus ion coe f f i c i en t  based 

on the so lu t ion  o f  t h e  s t eady  s t a t e  equat ion  t h a t  agrees most c lose ly .  . . 

The dominant e l e c t r o n  cool ing  mechanism ( t o  be' proved s h o r t l y )  is 

para l le l  flow through t h e  shea th  t o  t h e  d ive r to r  p la te .  For a  

M a k e l l i a n - d i s t r i b u t i o n  o f  e l e c t r o n s ,  t h i s  l o s s  i s .  
where w e  have used t h e  same d e f i n i t i o n  o f  J($), namely 



J($) = J~ILR*!D~. Equations 6.20 and 6.24 a r e  the equations t o  be 

solved simultaneously~ One notes t h a t  the  energy loss  terms contain 

the  sheath potent ial  drop. In  the  absence of a third equation that  

determines Os, the' value of the  e x p e r b e n t a l  $heath drop w i l l  be 
. . 

inserted. 
. . 

Up t o  t h i s  .point, flow t o  t h e  . . diver to r  plzte  has been assuned t o  

be the dominant p a r t i c l e  and energy l o s s  mechanism. That t h i s  is 

indeed so can be seen by comparing it t o  other potent ial  source or  

loss  terms f o r  some.typica1 experimental parameters. The par t i c le  and 

energy l o s s  r a t e  f o r  p a r t i c l e  flow t o  t h e  divertor  plate  is 

: . . .  . . 

nV I 
= (-1 

L 

where n and V. are ,  typical  plasma d e n s i t i e s  and loss  veloci t ies ,  L is 

the length t o  the  plate ,  and EaV the  average energy loss  per part ic le .  

For a conservative estimate of  t h i s  t e r n ,  l e t  us choose V. t o  be the 

ion acoustic velocity. and EaV from equation 6.22, so 6.25 becomes 

Choosing some typ ica l  parameters: T,,= 10 eV, mi=4xl .6ixl o - ~ '  g,, ~ 1 x 1  o9 

&t-3, L=43 em, e@ = aTe f o r  ambipolar flow, one f inds 

E~~~~ = 2x1 0,15 ev/sec. (6.27) 

I n  t h e  d i f fus ion  equation, c m s s  f ie ld  diffusion is the only source 

term t h a t  balances the  par t i c le  loss. Other source terms that  a r e  

' possible  a r e  ion prqduction due t o  electron impact ionization, and ion 

l o s s  d u e .  t o  charge exchange. Of thse two processes, e lectron 

ionizat ion is by f a r  the  larger fo r  our cold ions (Ti=.l eV), so we 

w i l l  consider t h i s  one only. The Maxwellian averaged reaction r a t e  

f o r  '10 eV e l e c t r o n s  on helium gas is < ~ v > = l x 1 0 - ~ ~  ~ m ~ / s e c . ~  Therefore 

the  production r a t e  of ions due to ionization is 

f o r  plasma and neu t ra l  densi t ies  respectively of ' n  -lxlo9, and 
P- 

n n- - 3 ~ 1 0 ~ ~ .  This source term is. a t  l eas t  a s  order of magnitude l e s s  

than t h e  l o s s  due t o  neutralization a t  ttie 'plate, and is thus ' 

negligible .  

1". t h e  energy equation we have ignored the energy loss .  prdces5es 

. , o f '  ine1asti.c c o l l i s i o n s  of electrons with 'neutrals  ahd ions. The 

dominant & t h e , t h e s e  two is loss  due t o  electron-neutral co l l i s ions ,  
. . 

. . 



which i n c l u d e s  i o n i z a t i o n  10s~. Based on t h e  t r e a t m e n t  by patau', 

t h i s  t o t a l  l o s s  r a t e  r a t e  is 

where R i s  t h e  t o t a l  energy l o s s  per  i o n i z a t i o n .  Again t h i s  l o s s  term 

is s m a l l  compared t o  t h e  assumed l o s s ,  t e r m  by about  a n  o r d e r  o f  

magnitude,  and is t h e r e f o r e  j u s t i f i a b l y  n o t  inc luded .  

hn iaup  Numerical  S o l u t i o n  Tec 

The numer ica l  s o l u t i o n  technique  t h a t  we fo l low c l o s e l y  p a r a l l e l s  

t h e  t r e a t n e n t  o u t l i n e d  i n  Ref. 9. The s p a t i a l  f i n i t e  d i f f e r e n c i n g  is  

accomplished by t h e  same method t h a t  is o u t l i n e d  f o r  t h e  s t e a d y  s t a t e  

s o l u t i o n  e a r l i e r  in t h i s  chapter .  The d i f f e r e n c i n g  is c a r r i e d  o u t  i n  , 

a way t h a t  w i l l  a l low a r b i t r a r y  s p a t i a l  meshes t o  b e  imposed l a t e r .  

A s  w i t h  the '  p a r t i c l e  equation,  t h i s  method o f  implementing t h e  f i n i t e  

d l f f e r e n c i n g  a l s o  preserves  t h e  h e a t  f l u x e s  a s  w e l l  a s  t h e  p a r t i c l e  

. f l u x e s ,  s i n c e  t h e  f l u x  leav ing  o n e - s p a t i a l  mesh is t h e  same f l u x .  t h a t  

' e n t e r s  t h e  next .  Upon t h e  completion o f  t h e  f i n i t e  d i f f e r e n c i n g ,  t h e  

e q u a t i o n s  appear  i n  t h e  fol lowing f u n c t i o n a l  form 

where f  i d  g are c o m p l i c a t e d  e x p r e s s i o n s ' i n v o l v i n g  t h e  d e n s i t y  and 

tempera ture  a t  n e i g h b o r i n g  mesh p o i n t s  a s  w e l l  a s  t h e  kth mesh p o i n t ,  

and o f  c o u r s e  t h e  f i e l d  l i n e  i n t e g r a l s  and c o n s t a n t s .  Equat ions  6.30 

a r e  v a l i d  a t  e a c h  mesh p o i n t .  It is o u t  d e s i r e  t o  perform some s o r t  

o f  t empora l  f i n i t e  d i f f e r e n c i n g  scheme t h a t  , w i l l  e n a b l e  u s  t o  s t e p  

ahead i n  t h e  from t h e  known v a l u e s  at  a p r e v i o u s  t ime ,  t h u s  a l l o w i n g  

t h e  p r o f i l e s  o f  d e n s i t y  and  t e m p e r a t u r e  t o  evolve.  I f  we make t h e  

replacement 

an, %p' - $ 
-+ a t  ~t * 

. . 
where t h e  s u p e r s c r i p t  i n d i c a t e s  a t i m e  s t e p ,  and t h e  unnecessary  

s u b s c r i p t  ' e '  h a s  been dropped  on  t h e  e l e c t r o n  tempera ture  t o  avoid  

confbsion.  Now n o t e  t h a t  knowing n and T a t  t h e  pth t ime s t e p ,  &d 

t h e  va lue  o f  f  and g ,  we c a n  c a l c u l a t e  n and T a t  t h e  p+l . . t ime s t e p .  

such  an a l g o r i t h m  is  s t a r t e d  from known boundary and i n i t i a l  

condi t ions .  One p o s s i b l e  s o l u t i o n  t e c h n i q u e  would be  t o  e v a l u a t e  f  

and g .us ing  n and T a t  t h e  p time s t e p .  T h i s  method is c a l l e d  t h e  
. . 

e x p l ' i c i t  o r  E u l e r  t echnique ' '  which,  whi le  having  t h e  v i r t u e  o f  

s i m p l i c i t y  o v e r  o t h e r  t e c h n i q u e s ,  is plagued by s t a b i l i t y  problems i f  

t h e  time s t e p  is t o o  l a r g e .  A s o l u t i o n  technique  wi th  no s t a b i l i t y  

probl6ms and o t h e r  advantages"  is t h e  s o  c a l l e d  i m p l i c i t  method, 



where f  and g a r e  evaluated a t  the  p + l , t i o e  step, and is the method.we 

chose; *ether o r  not the  f i n i t e  difference approximation correct ly  

models the d i f fe ren t ia l  equation f o r  a given time step is a separate 

problem that  must be investigated'., With the choice of the implici t  

method our equations look, l i k e  

To simplify t h e  solut ion,  we fbrther expand each element of f  and g i n  

a  Taylor se r ies  in  time, keeping only terms l inear  i n  A t  which leads 

t o  a  l inearized 'set  of equations i n  density and temperature a t  the new 

time, pt l .  For example t h e  e'xpansion of  f  would look l ike  

As a further s implif icatfon,  . terms involving the transport 

coefficients are  evaluated a t  the  p time step, a  procedure that  has 

been shown t o  yield . the same steady s t a t e  solution a s  evaluating a t  . . 
?+l and ' . l inearizing; however the intermediate profiles do not 

represent a correct time evolution. This process of l inearizing 

., 1 

generally tu rns  each term, i n  f  and g into a? many a s  f ive  terms which 

makes the ensuing algebra tedious. 

Because the  equations a r e  linearized i n  time, a ,  simplified 

ana lys i s  of t h e  numerical treatment can be carried out. A t  each time 

s t e p  the equations, can be put i n t o  the  form 

A~~~ = B ~ ~ ,  (6.34) 

where A and B a r e  matrices and 5 is  a l inear  array whose transpose has 

t h e  form 

P P P P P P  P P  gP = (nl , T ~  ,n2rT21n3,T3,-.'nNsTN) 

and because of  t h e  choice of time differencing, the matrix A i s  block 

t r i -diagonal  which permits a  cer tain economy is the  solut ion scheme. 

Equation 6.34 i s  solved f o r  gP+' a t  each time s tep ,  and t h e  resul t ing 

matrix xP+l is  i n  turn multiplied by the matrix B, h d  the  process 

repeated t o  solve f o r  the array The ;hole p r o f i l e  of  n  and T 

a r e  generated a t  each time Step i n  t h i s  solution method," and one 

s t e p s  i n  time u n t i l  the profi les  a t  suceeding time s teps  a re  

identical ' ,  a t  which time the steady s t a t e  solut ion has been reached. 

The matrix A was inverted using a  Gaussian elimination routine 

special ized t o  tri-diagonal matrices. 



A s  w i t h  t h e  s t e a d y  s t a t e  program, t h e  exper imenta l  boundary . s reached  was t h e  same f o r  any  t ime s t e p  l e s s  t h a n  t h i s  A t .  Typica l ly  

. c o n d i t i o n s  a r e  imposed a t  t h e  l e f t  and r i g h t  boundar ies  a t  e a c h  t i m e  sLeady s t a t e  is reached  i n  lo-3 sec. which t a k e s  about  two minutes of 

s t e p .  Because t h e  a lgor i thm a c t u a l l y  c a l c u l a t e s  t h e  parameters  a t  t h e  .CPU t ime.  T h i s  program was w r i t t e n  w i t h  t h e  o p t i o n  o f  us ing  a 

mesh p o i n t s  and t h e  phys ica l  boundary is l o c a t e d  between t h e  mesh v a r i a b l e  s p a t i a l  mesh t o  more a c c u r a t e l y  h a n d l e  r e g i o n s  o f  l a r g e  

p o i n t s  1.2 and  N-1 , N ,  we must r e s o r t  t o  t h e  s imple  d e v i c e  o f  impos ing  . g r a d i e n t s  o f  d e n s i t y  o r  t e m p e r a t u r e .  The T e k t r o n i x  Plot-10 p l o t t i n g  

a n  a v e r a g e  e n d p o i n t  d e n s i t y  t h a t  i n c o r p o r a t e s  t h e  boundary c o n d i t i o n .  package was found t o  be  most u s e f u l  t o  a l l o w  t h e  g e n e r a t e d  p r o f i l e s  t o  

Thus f o r  t h e  f i r s t  mesh p o i n t  b e  viewed immediately and a v o i d  t h e  d e l a y s  o f  hand p l o t t i n g ,  when 

where nL is t h e  exper imenta l  b u n d a r y  c o n d i t i o n  a t  t h e  l e f t  boundary. 

One s o l v e s  6.35 f o r  n:, t h e  d e n s i t y  a t  t h e  f i r s t  mesh p o i n t  

which is imposed on t h e  algori thm a t  each  t ime s t e p .  R e l a t i o n s  l i k e  

6.36 a r e  assumed f o r  both t h e  d e n s i t y  and tempera ture  e q u a t i o n s  a t  

e a c h  t i m e  s t e p  a t  t h e  l e f t  and r i g h t  boundary. The i n i t i a l  p r o f i l e  

assumed is s i m p l y  a  s t r a i g h t  l i n e  between t h e  two boundary v a l u e s .  

T h i s  a l g o r i t h m  nas c a r r i e d  ou t  i n  a program w r i t t e n  i n  F o r t r a n  o n  

t h e  P.S.L. Vax computer. ~ x ~ e r i m e n t a l l ~  i t  is f o u n d ' t h a t  t h e  method 

is indeed  s t a b l e  f o r .  any t i s e  s t e d ,  bu t  r e q u i r e s  s t e p s  q f  lo-' s e c .  o r  

l e s s  t o  p r o p e r l y  model. equa t ions  6.20 and 6.24. ~h'is was de te rmined  

by d e c r e a s i n g  t h e  t ime s t e p  A t  u n t i l  t h e  s t e a d y  s t a t e  s o l u t i o n  

comparing p r o f i l e s  t o  a s s e s s  t h e  e f f e c t s  o f  d i f f e r e n t  s c a l i n g  

assumpt ions .  

=me D e ~ e n d e &  Code P e s u l t p  

Cons tan t  m u l t i p l y i n g  f a c t o r s  a r e  a g a i n  i n s e r t e d  i n  t h e  program 

b e f o r e  a l l  of t h e  t r a n s p o r t  c o e f f i c i e n t s  and t h e  v a r i o u s  l o s s  terms s o  

t h a t  t h e  magnitude b u t  n o t  t h e  s c a l i n g  o f  t h e  te rms  can be var ied .  A 

f a c t o r  FC m u l t i p l i e s  t h e  conduct ion  te rm,  FD t h e  c r o s s  P i e l d  p a r t i c l e  

d i f 5 s i o n  te rms ,  FS t h e  p a r a l l e l  l o s s  t e r m  f o r  bo th  t h e  d e n s i t y  

e q u a t i o n  and t h e  t e m p e r a t u r e  e q u a t i o n  when t h e  l o s s  term o f  equa t ion  

6.23 i s  used. I n  bo th  t h e  d e n s i t y  and t e m p e r a t u r e  e q u a t i o n s ,  t h e  

c h a r a c t e r i s t i c  v e l o c i t y  i n  t h e  l o s s  term is t h e  i o n  a c o u s t i c  v e l o c i t y  

and s e p a r a t e  m u l t i p l i e r s  a r e n ' t  r e q u i r e d .  I n  t h e  c a s e  t h a t  t h e  l o s s  

term of e q u a t i o n  6.22 is  used ,  a f a c t o r  FSI m u l t i p l i e s  t h e  p a r a l l e l  

l o s s  term i n  t h e  d e n s i t y  e q u a t i o n ,  and FSE t h e  p a r a l l e l  l o s s  term i n  

t h e  tempera ture  equa t ion .  Here,  u n l i k e  t h e  p r e v i o u s  c a s e ,  t h e  

p a r a l l e l  v e l o c i t y  is n o t  t h e  same i n  b o t h  e q u a t i o n s  and a  s e p a r a t e  

m u l t i p l i e r  is a p p r o p r i a t e .  The a c t u a l  v a l u e s  o f  t h e  t r a n s p o r t  

c o e f f i c i e n t s  used i n  t h e  program, a r e  c a l c u l a t e d  w i t h  t h e  l o c a l  s e l f -  
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c o n s i s t e n t  v a l u e s  o f  d e n s i t y  'and e l e c t r o n  temperature.  When any  o f  

t h e  m u l t i p l i e &  are one ,  t h e  t r a n s p o r t  c o e f f i c i e n t  is one t i m e s  t h e  

t h e o r e t i c a l  va lue .  For  example, f o r  assumed c l a s s i c a l  n e u t r a l  

. dominated t r a n s p o r t ,  FD=1 means Dl=kTiv /m uO2, where Ti i s  assumed 

uniform a t  .1 eV, V -is t h e ' c o l l i s i o n  f requency  o f  i o n s  on  n e u t r a l s  

and t h e  n e u t r a l  d e n s i t y  is t h e  t h e  sqme a s  t h e  exper imenta l  n e u t r a l  

d e n s i t y ,  and ic 'is t h e  i o n  c y c l o t r o n  f requency  w i t h  t h e  l o c a l  

magnetic f i e l d  v a l u e  o f  t h e  experiment.  FS=l means t h e  p a r a l l e l  l o s s  

v e l o c i t y  is t h e  l o c a l  i o n  a c o u s t i c  v e l o c i t y  (kTe/m,)1/2. Bohm . 

t r a n s p o r t  s c a l i n g  d o e s  n o t  seem t o  o c c u r  i n  o u r  experiment, b a s e d  o n  

t h e  r e s u l t s  .of t h e  s t e a d y  s t a t e  program, and iis a  r e s u l t  i s  n o t  t r i e d  

i n  t h e  t ime dependent  c a s e .  R e c a l l  t o o  t h a t  on ly  t h e  r a t i o s  o f  t h e  

cons tan t  m u l t i p l i e r s  is r e l e v a n t ,  and s o  on ly  t h e  r a t i o s  m i l l  be  

d i sp layed  when the' r e s u l t s  are given,  normal l ied  t o  PC. The v a l u e s  

g iven  i n  each c a s e  a r e  t h e  v a l u e s  f o r  which t h e  program most c l o s e l y  

. a g r e e s  wi th  t h e  e x p e r i m e n t a l  d a t a ,  which is a l s o  shown f o r  comparison.  

One l a s t  t o p i c  is o r d e r  b e f o r e  t h e  d i s c u s s i o n  o f  t h e  numer ica l  

s o l u t i o n s ,  t h a t  r e l a t e s  t o  t h e  c h o i c e  o f  t h e  t r a n s p o r t  c o e f f i c i e n t s  i n  

t h e  energy equa t ion .  I n  t h e  p a r t i c l e  d i f f u s i o n  e q u a t i o n  b o t h  t h e  

s teady  s t a t e  numerical  r e s u l t s  and t h e  t h e o r y  o f  Simon s u p p o r t  t h e  

choice  o f  ion-neut ra l  c o l l i s i o n -  dominated s c a l i n g  f o r  Dl. I f  one 

t a k e s  t h e  theory  oP Simon l i t e r a l l y  and a s s m e s  t h a t  t h e  ambipolar  , 

e l e c t r i c  f i e l d  is comple te ly  " s h o r t e d  o u t n  by t h e  d i v e r t o r  p l a t e ,  t h e n  

because t h e r e  is t h e r e f o r e  no c o u p l i n g  between' i o n s  akd e l e c t r o n s ,  t h e  

c r o s s  f i e l d  c o n d u c t i v i t y  and c o n v e c t i o n  should  have t h e  c l a s s i c a l  

e 1 e c t r o ~ : n e u t r a l  . c o l l i s i o n  dominated va lues .  , T h i s  s c a l i n g  w i l l  

c e p t a i n l y  be  t r i e d  i n  t h e  'energy equa t ion .  However,' i f  t h e  d i v e r t o r  

p l a t e  d o e s n ' t  c o m p l e t e l y  e l i m i n a t e  t h e  ambipolar  e l e c t r i c  f i e l d ,  

c o u p l i n g  between i o n s  and e l e c t r o n s  through t h i s  P ie ld  w i l l  e x i s t  to 

some e x t e n t ,  and  t h e  a p p r o p r i a t e  d i f f u s i o n  c o e f f i c i e n t  s c a l l n g  i n  t h e  

c o n v e c t i v e  te rm may b e  t h e  i o n  c l a s s i c a l  v a l u e  o r  some f r a c t i o n  

t h e r e o f .  1 n t u i t i v e l y . t h i s  seems t o  be t h e  most l i k e l y  c a s e .  Because 

o f  t h e  f i n i t e  s h e a t h  p o t e n t i a l  d r o p  ( o r  p a r a l l e l  c o n d u c t i v i t y ) ,  t h e r e  

h a s  t o  be s a n e  r a d i a l  a m b i p o l a r  electric f i e l d  t h a t . i s n V t  s h o r t e d  out .  

There  is a l s o ,  however, an e l e c t r i c  f i e l d  due t o  t h e  tempera ture  

g r a d i e n t .  The d i v e r t o r  p l a t e  is an e q u i p o t e n t i a l ,  s o  u n l e s s  t h e  

s h e a t h  d r o p  is a c o n s t a n t  (which it is  m a n i f e s t l y  n o t  exper imenta l ly )  

t h e n  t h e  t h e r e  w i l l  a l s o  b e  a P i e l d  due t o  t h e  tempera ture  g r a d i e n t .  

Thus t h e  f i e l d  due o n l y  t o  t h e  d i f f e r i n g  d i f f u s i o n  c o e f f i c i e n t s  w i l l  

be  hard  t o  s o r t  o u t .  ( I n  f a c t ,  from the' e i p e r i m e n t a l  measurements o f  

t h e  e l e c t r i c  f i e l d ,  we i n f e r  t h a t  t h e  c o n t r i b u t i o n  due t o  t h e  

tempera ture  g r a d i e n t  and  f i n i t e  s h e a t h  p o t e n t i a l  d rop  d o m i n a t e s  i n  

d e t e r m i n i n g  t h e  e l e c t r i c  f i e l d . )  For completeness,  i o n  c l a s s i c a l  

s c a l i n g  w i l l  a l s o  b e  t r i e d  i n  t h e  c o n d u c t i v i t y  term i n '  t h e  energy 

e q u a t i o n ,  a l t h o u g h  it is  n o t  t h e o r e t i c a l l y  s u p p o r t a b l e  w i t h i n  t h e  

c d n t e x t  of  o u r  model. 

C o e f f i c i e n t s  a p p r o p r i a t e  t o  ion-neut ra l  c o l l i s i o n  dominated 

c l a s s i c a l  t r a n s p o r t  ( h e n c e f o r t h  c a l l e d ,  i o n  c l a s s i c a l  t r a n s p o r t )  i n  

bo th  t h e  ; d e n s i t y  and t e m p e r a t u r e  e q u a t i o n s ,  and t h e  l o s s  term o f  
. " 

e q u a t i o n  6 . 2 3  ( t o  h e  r e f e r r e d  t o  a s  t h e  ambipolar  l o s s  t e r m )  i n  t h e  



temperature equat ion  were t r i e d  f i r s t .  The l o s s  v e l o c i t y  i n  t h e  
I 

dens i ty  equat ion  i n  t h i s  e n t i r e  s ec t ion  is the ion acous t i c  v e l o c i t y .  

The bes t  f i t  r e s u l t s  a r e  shown f o r  a high pressure helium case  (P-lo-3 

t o r r )  and f o r  a low pressure  hydpgen case ( ~ - 5 x 1 0 - ~  t o r r )  i n  

Figs.  6.5 and 6..6. I n  both ca ses  good agreement is ob ta ined  f o r  

va lues  o f  t h e  m u l t i p l i e r s  oP l e s s  than 5. The data  t o  which t h e  

numerical r e s u l t s  a r e  compared is t h e  unshorted a r r ay  case .  A s  was 

seen i n  Chap. 5, i n  no case  do we have data t ha t  one could s a y  is 

t r u l y  ambipolar,  bu t  t h i s  da t a  is nearer  t o  ambipolar than t h e  s h o r t e d  

a r r ay  case .  

Figure 6.7 shows t h e  case  o f  t h e  program with t h e  same 

c o e f f i c i e n t s  a s  t h e  l a s t  case ,  compared t o  the  shor ted  a r r a y  case .  

Again good agreement is obtained with mu l t ip l i e r s  of l e s s  t h a n  5. It 

is  i n t e r e s t i n g  t h a t  us ing the .  "ambipolar" .program (1.e. t h a t  is wi th  

l o s s  terms t h a t  should be appropr ia te  t o  t r u l y  ?bipolar f low) one  can 

still .obta in  agreement with t h e  shorted a r r ay  case. 

Figure 6.8 d i sp l ays  t h e  case where only . t he  l o s s  term i n  t h e  

temperature equat ion  is changed t o  t h e  l o s s  term of equa t ion  6.22, 

which we w i l l  c a l l  t h e  non-ambipolar l o s s  term. The program s o l u t i o n  

is compared t o  t h e  shor ted  a r r ay  data.  The agreement is a g a i n  good 

f o r  t h i s  combination o f  coe f f i en t s  f o r  values of t h e  m u l t i p l i e r s  o f  

l e s s  than 5. Simi l a r ly  t o  t h e  ,previous case, t he  non-ambipolar l o s s  

Pig. 6.5:' The s t eady- s t a t e  s o l u t i o n  t o  t h e  t ime dependent 

t ranspor t .  equation compared t o  t h e h i g h - p r e s s u r e  experimental  

d e n s i t y  (upper curve),and tempera ture  p r o f i l e s .  The da t a  is 

unshorted s t r i p s ,  and ion-neutra l  s c a l i n g  i n  K and D ,  , wi th  - 
t h e  ambipolar l o s s  term. ( F D / F C = ~ . ~ ~ ,  FS/FC=.167) . 

term can y ie ld ' good  agreement with t he  ar ray  unshorted case.  



Fig.  6.6: The steady-state solution t o , t h e  time dependent 

transport equation compared t o  the low pressure experimental 

density (upper curve),and temperature profi les .  The data is : 

unshorted s t r i p s ,  and ion-neutral scaling in K and Dl , v i t h  

- the ambipolar l o s s  term. (FD/F@.33. P S I F e . 6 7 )  
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Fig. 6.8: The steady-state solution t o  the time dependent 

transport equation compared td the. high pressure experimental 

density (upper curve) ,and temperature prof i i e s .  The data .is 

shorted s t r i p s ,  ion-neutral scaling in  K and DL , and the 

non-ambipolar l o s s  term. (FD/FC=..33, FSI/FCP.33. PSE/FCP.33) 
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A s  a t e s t  of t h e  ex te .ns ion  ,of S i m o n l s  t h e o r y  t h a t  was d e s c r i b e d  
I 

e a r l i e r ,  s c a l i n g  o f  t h e  t r a n s p o r t  c o e f f i c i e n t s  f o r  e l e c t r o n - n e u t r a l  

dominated t r a n s p o r t  was i n s e r t e d  i n  t h e  t e m p e r a t u r e  equa t ion ,  f o r  b o t h  

c o n v e c t i o n  and conduction t e r m s ,  w i t h  t h e  p a r a l l e l  l o s s  term 'chosen t o  

b e  non-ambipolar. Good agreement  f o r  t h i s  case could  on ly  be o b t a i n e d  

by m u l t i p l y i n g  t h e  c r o s s '  f i e l d  t h e r m a l  c o n d u c t i v i t y  by a f a c t o r  o f  20, 

as shown i n  Fig.  6.9. The same e f f e c t  c o u l d  be ob ta ined  by 

"enhancing" t h e  n e u t r a l  d e n s i t y  in t h e  program by a f a c t o r  o f  12, as 

shown in Fig.  6.10. In a l l  cases t h e  e l e c t r o n  s c a l i n g  in t h e  

tempera ture  equa t ion  seems t o  b e  t o o  s m a l l .  

I f  now o n l y  t h e  c o n v e c t i v e  p a r t  o f  t h e  t e m p e r a t u r e  equa t ion  h a s  

. i o n  c l a s s i c a l  s c a l i n g  a s .  d i s c u s s e d ,  good agreement can a g a i n  be  

o b t a i n e d  f o r  reasonable  m u l t i p l i e r s  (,i.e. less t h a n  f i v e )  a s  is shown 

i n  Fig.  6.11. T h i s  s c a l i n g  is a l s o  c a p a b l e  o f  y i e l d i n g  &odd agreement 

w i t h  a l l  o f  t h e  e x p e r i m e n t a l  p r o f i l e s ,  e x c e p t  one  taken a t  low s o u r c e  
. * 

g a s  pressure .  The program is s u b j e c t  t o  n u m e r i c a l  i n s t a b i l i t i e s  f o r  

t h e  boundary c o n d i t i o n s  (1.e.  v e r y  l o w  d e n s i t y )  a p p r o p r i a t e  t o  t h i s  

c a s e .  T h i s  is belie-fed t o  b e  a r e s u l t  of o u r  c h o i c e  f o r  handl ing  t h e  

t r a n s p o r t  c o e f f i c i e n t s  i n  t h e  program, a n d  n o t  a f a i l u r e  o f  t h e  model. 

A s .  a  f i n a l  example, t h e  s h e a t h  p o t e n t i a l  'drop was c a l c u l a t e d  

s e l f - c o n s i s t e n t l y  from t h e  e l e c t r o n  t e m p e r a t u r e ,  u s i n g  t h e  c o n d i t i o n  
. . 

o f  a m b i p o l a r i t y  a t  a l l  r a d i i .  The program still converged t o  a s t e a d y  

s t a t e  s o l u t i o n  which, f o r  a p p r o p r i a t e  c o e f f i c i e n t s ,  could be made t o  

look  l i k e  t h e  exper imenta l  p r o f i l e s  when t h e  i o n  c l a s s i c a l  s c a l i n g  was 

used. T h 1 s . h  shown i n  Fig.  6.12. 

. . 



Fig.  6.9: The steady-state solut ion t o  t h e  t ime dependent 

transport equation compared to .  the  high pressure  experimental 

dens i ty  (upper cunre),and temperature p r o f i l e s . . T h e  data is for  

s t r i p s  stmrted, electron-neutral acaling in K and DL , with 

- the  o o a d l p o l a r  l o s s  term. (FD/FC=.OS, FSI/FC=,.OS, FSE/FC=.OS) 
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Fig. 6.10: The s t eady- s t a t e  s o l u t i o n  t o  t h e  time dependent 

t r a n s p o r t  equat ion compared t o  t h e  high pressure  experimental  

d e n s i t y  (upper curve),and temperature p r o f i l e s .  The data  is  f o r  

a t r i p s  shor ted ,  wi th  e lec t ron-neutra l  s ca l ing  in K and D, , and - 
- t h e  non-ambipolar l o s s  term. ( A l l  coe f f i c i en t s= l ,  neu t r a l  dens i ty  

a . f a c t o r  of  12 above t h e  experimental neu t r a l  density.)  
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Fig. 6.11: The steady-state so lu t ion  t o  the  time dependent 

transport equation compared t o  the  high pressure experimental 

dens i ty  (upper curve)',and temperature. p r o f i l e s ,  The data . i s  for  

s t r i p s  shorted, and ion-neutral s ca l ing  in D, and e.lectron-neutral - 
- s ca l ing  in K, with the ambipolar loss ' term.  (FD/FC=.86, FS/FC=.167) 



Fig. 6.12: The steady-state solution to the time dependent 

transport equation compared -to the high pressure experimental 

density (upper curve) ,and temperature profiles.  The data is 

for s t r i p s  unshorted, ion-neutral scaiing in  K and D, , with 

tbe ambipolar l o s s  term, where e+ = a 

( PD/FC=.5. ~ / F ~ = . 1 6 7 )  

- 
Electron Temp. (eV) 



In conclusion, it seems tha t  the  correct '  scal ing f o r  t h e  cross 
. . 

fie1d"diffusion co~ff i ,c ient"fn the density equation and t h e  con,vective 
. . 

part  of the cross f i e ld  energy transport i s  the  ion c l a s s i c a l  value. 

Electron c lass ica l  scaling works well in the conduction term. This 

choice of transport coefficients is supp.orted by the exis tence of a 
. . 

coupling e l e c t r i c  f i e ld  between the ions and t h e  electrons. Electron 

sca l ing  i n  the temperature equation is f a r  too small. Both forms of 

the  energy l o s s  term are  capable of yielding good agreement with t h e  

experimental data f o r  reasonable values of  the mult ipl icat ive factors .  

UnFortunately t h i s  a lso makes it d i f f i c u l t  t o  choose between t h e  loss  

terms. However, it does seem c lear  t h a t  the  one dimensional f low 

model is acceptable f o r  describing the transport i n  a d iver to r ,  a t  

l e a s t  within the  context of the parameter range of our experiment. 
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C h a p t e r  7 

SummarvaCooclusions 

C e r t a i n  o f  t h e  p h y s i c a l  phenomena t h a t  w i l l  occur  ln a tokamak 

divertor have been s i m u l a t e d  i n  t h e  d i v e r t o r  experiments c a r r i e d  o u t  

in t h e  D.C. machine. The d e n s i t y  a n d .  e l e c t r o n  tempera ture  show an 

a n t i c i p a t e d  f a l l  o f f  w i t h  r a d i u s  due t o  t h e  p a r t i c l e  and energy s i n k  

t h a t  t h e  d i v e r t o r  p l a t e  provides , .  i n  comparison v i t h  t h e  p r o f i l e s  

b e f o r e  t h e  p l a t e  was i n s t a l l e d .  On . those  f i e l d  l i n e s  t h a t  do 

i n t e r s e c t  the c o n d u c t i n g  d i v e r t o r  p l a t e ,  we have observed by a v a r i e t y  

of  means t h a t  t h e  t r a n s p o r t  a l o n g  t h e  magnetic f i e l d ,  and t h u s  a l s o  

-3s t h e  magnet ic  f i e l d ,  is ?on-ambipolar. This .  is c o n t r a r y  t o  t h e  

assumption o f  a m b i p o l a r i t y  in most t h e o r e t i c a l  d i v e r t o r  models. We 

-her expec t  t h e  phenomena of.non-ambipolar flow t o  e x i s t  is  a  r e a l  

tnkamak d i v e r t o r  i f  t h e  c r o s s  f i e l d  t r a n s p o r t  is dominated by charged  

p a r t i c l e - n e u t r a l  c o l l i s i o n s .  D i v e r t o r  plasma parameters  and n e u t r a l  

p r e s s u r e s  i n  p r e s e n t  day exper iments  a r e ,  except  .for h i g h e r  i o n  

m a t u r e s ,  n o t  u n l i k e  t h o s e  i n  o u r  experiment. m e r e f o r e ,  non- 

i m b i p l a r  t r a n s p o r t  may e x i s t  i n  them. Expected condi t ions ,  i n  f u t u r e  

tokamak d i v e r t o r s  may a l s o  a l l o w  t h e  e x i s t e n c e  o f  non-ambipolar 

transport. 

Ve observe  a v a r i a t i o n  i n  t h e  parameter  n ( rl=&,/kTe where eS 

Ls t h e  e x p e r L e n t a l l y  measured s h e a t h  p o t e n t i a l  drop and Te t h e  

e l e c t r o n  t e m p e r a t u r e  a t  t h e  same p o i n t )  t h a t  causes  t h e  e l e c t r o n s  t o  

leave  t h e  plasma o v e r  a narrow wid th  n e a r  t h e  d i v e r t o r  p l a t e  edge,  and 

200 

t h e  i o n s  o v e r  a  much broader  width.  T h i s  can s t r o n g l y  a f f e c t  t h e  h e a t  , 
l o a d i n g  d i s t r i b u t i o n  o n  t h e  d i v e r t o r  p l a t e ,  c a u s i n g  an e l e c t r o n  nhot  

s p o t m  where t h e  e l e c t r o n s  h i t  t h e  p l a t e .  

By mounting a  r a d i a l l y  segmented a r r a y  on  t h e  d i v e r t o r  p l a t e ,  we 

t r i e d  t o  remove t h e  non-ambipolar f low by i s o l a t i n g  e a c h  segment 

e l e c t r i c a l l y  from t h e  r e s t  o f  t h e  segments; I n  e f f e c t  e a c h  segment 

was al lowed t o  e l e c t r i c a l l y  " f l o a t n  t o  its own l o c a l  p o t e n t i a l .  Our 

a t t e n p t s  t o  f o r c e  a m b i p o l a r i t y  were o n l y  p a r t i a l l y  s u c c e s s f u l ,  

a l t h o u g h  t h e  mechanism t h a t  a l l o w s  s h o r t i n g  i n  t h e  f l o a t i n g  a r r a y  c a s e  

is n o t  clear. An i n t e r e s t i n g  e x t e n s i o n  o f  t h i s  r e s e a r c h  would answer 

t h e  q u e s t i o n  o f  t h e  e x i s t e n c e  o f  non-ambipolar Plow i n  a  f u l l y  i o n i z e d  

plasma.  Furthermore,  unders tanding  t h e  p h y s i c a l  mechanism t h a t  a l l o w s  

some s h o r t i n g  between a r r a y  s t r i p s  when t h e  e x t e r n a l  s h o r t  i s  removed 

c o u l d  be  r e l e v a n t  t o  t h e  t r a n s p o r t  1.n a l l  d e v i c e s  t h a t  have magnet ic  

f l e l d  l i n e s  t h a t  t e r m i n a t e  on  a  wal l .  I f  f t  d o e s  prove  advantageous  

t o  b e  a b l e  t o  e l i m i n a t e  t h e  e f f e c t s  of non-ambipolar f l o w  e n t i r e l y ,  

t h e  mechanism o f  t h i s  s h o r t i n g  must be  b e t t e r  understood.  

O u r  e f f o r t s  t o  measure t h e  plasma Plow v e l o c i t y  a l o n g  t h e  ' 

m a g n e t i c  f i e l d  and i n t o  t h e  d i v e r t o r  p l a t e  met o n l y  +td a  measure o f  

s u c c e s s .  By p l a c i n g  a  s t r i p e d  p a r t i c l e  c o l l e c t o r  t h e  d i v e r t o i *  

p l a t e  t o  measure r., t h e  p a r t i c l e  f l u x  i n c i d e n t  on t h e  p l a t e ,  and 

d i v i d i n g  by n ,  t h e  d e n s i t y  measured a t  t h e  same p o i n t ,  we hoped t o  g e t  

t h e  plasma flow v e l o c i t y .  Within l a r g e  e r r o r  b a r s ,  t h e  f low v e l o c i t y  . 

d o e s  seem t o  be  always n e a r  t h e  i o n  a c o u s t i c  v e l o c i t y .  The behaviour  

o f  t h e  s t r i p e d  p a r t i c l e  c o l l e c t o r  when t h e  magnetic f i e l d  is 



perpendicular t o  the  s t r i p e s  is another potential area of research i f  

it is  t o  be of diagnost ic  u t i l i t y  in  a s i tuat ion such a s  ours. 

The theories  of Boozer and Simon predict ion density f a l l  off 

scale lengths across  t h e  f i e l d  t h a t  agree qui te  'well with the measured 

local ion density scale  length. Boozer's scaie  length seems t o  be a  

factor  of two too l a r g e ,  and Simon's scale  length a  fac tor  of  three 

too small. 

The numerical so lu t ions  t o  the  transport equations are  very close. 

t o  the observed experimental p rof i l es  for  tbe correct choice of 

transport coef f ic ien t s .  Ion c lass ica l  scaling (1.e. due t o  ion- 

neutral co l l i s ions)  .works best fo r  Dl.in the part ic le  equation and the  

convective term i n  t h e  energy equation. . The thermal conductivity 

charac te r i s t i c  ' o f  electron-neutral dollisions seems t o  be the correct  

one f o r  our experiment. The .fact that ion classical  scal ing works . 

best i n  the convective term means thdt the divertor p la te  'doesn't 

completely nshort  ou tn  . . t h e  . ambipolu e lec t r ic  f i e ld ,  and thus . . t h e  

e l&t ron ,  and ion t ranspor t  a r e  stil l  coupled thmugh t h i s  f i e ld .  The 

ambipolar and non-ambipolar l o s s  terms work equally veil l n  the 

transport equptions . Despite these successes, the change i n  the  

scaling of the transport  from the  shorted array case t o  the unshorted 

case is  n o t ' c l e a r .  Further study of a l l  the mechaiisms t h a t  could 
. - 

explain the observed change tha t  removing the short has on the  

droi i les ,  i s  a l s o  indicated for  extensions of th i s  work. However, the 

flow model does geem t o  be appropriate fo r  our divertor experiment, 

over the whole .of its operating range. 
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