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Executive Summary

This quarterly report shows our recent progress toward the overall objective to

understand the supercritical fluid extraction of hydrocarbons from coal.  Our strategy is to

simulate coal as a high molecular-weight polymeric material by studying the degradation of

polymers under various conditions.  The hypothesis we are testing is that degradation of

such macromolecules is applicable to the decomposition (depolymerization) of the coal

network.

 Polymer degradation and coal liquefaction are influenced strongly by the nature of

the chemical compounds involved in the reaction.  This motivated our investigation of the

effect of mixtures on polymer degradation.  In particular, we formulated a new theory and

obtained new experimental data to show how adding a polymer can increase, decrease, or

leave unchanged the degradation rate of the first polymer.  In the current study, we

examined the degradation of polymer mixtures by developing a detailed radical mechanism

based on Rice-Herzfeld reactions.  The interaction between different polymers occurs by

radicals abstracting hydrogen atoms from either.  Expressions for the degradation rates for

each polymer were obtained by applying distribution kinetics to the MWD of the reacting

radicals and polymers.  As polymers degrade, predominantly  by either chain-end scission

or random-chain scission, three cases are possible for the interactive degradation of two

polymers. Both polymers can degrade by chain-end scission, or by random-chain scission,

or one polymer can degrade by random-chain scission and the other polymer by chain-end

scission.   In addition to developing the theory, we present new experimental data for the

concentration effect of PAMS on polystyrene degradation in solution at 275 °C.
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Abstract

Most research on polymer degradation is for single polymers, even though the

thermal decomposition of polymer mixtures is of interest both practically and theoretically.

Polymer degradation rates depend on the mixture type, and adding a polymer can increase,

decrease, or leave unchanged the degradation rate of the first polymer.  We show how

distribution-kinetics theory, based on molecular-weight distributions (MWDs), provides

expressions for degradation rates of binary polymer mixtures.  The approach accounts for

initiation, termination, hydrogen abstraction, and radical chain scission in the governing

equations for MWDs.  Molecular-weight moments yield expressions for molar and mass

concentrations and rate coefficients for combinations of random and chain-end scission.

Experimental data show the concentration effect of poly(α-methyl styrene) (PAMS) on the

degradation of polystyrene dissolved in mineral oil at 275 °C in a batch reactor.  Samples

analyzed by gel permeation chromatography yielded the time evolution of the MWD.  The

results indicated that, owing to the interaction of mixed radicals with polymer by hydrogen

abstraction, polystyrene degradation rate decreases with increasing PAMS concentration.
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Introduction

 Disposal of plastic wastes has become a worldwide problem and the cost of

conventional disposal is likely to increase (Ng et al., 1995).  Recycling of polymers may be

a viable alternative and thermochemical recycling of polymers has received growing

attention in recent years (Miller, 1994).  Understanding the thermal decomposition of

polymers is also an important issue in polymer science and engineering (Clough et al.,

1996).   Most research has focused on the mechanism of degradation of single polymers.

However, waste streams usually contain mixtures of polymers and it is costly to separate

them prior to degradation (McCaffrey et al., 1996). Thus it is important to study the

degradation of polymer mixtures.  The polymer degradation rate can be modified by the

addition of conventional free-radical initiators, oxidizers or hydrogen donors but it might be

easier to alter the degradation rate by blending two polymers (Gardner et al., 1993).

Degradation studies by pyrolysis of polymer mixtures have reported varied results.

For example, some reports indicated a significant interaction between polystyrene and

polyethylene (Koo and Kim, 1993; Koo et al., 1991; McCaffrey et al., 1996), while others

observed no interaction between these polymers (Roy et al., 1978; Wu et al., 1993).  The

pyrolytic polystyrene degradation rate was significantly enhanced in the presence of

poly(methyl acrylate) and poly(butyl acrylate) at 430 °C (Gardner et al., 1993).  Richards

and Salter (1964), on the other hand, observed that the rate of polystyrene degradation

decreased with increasing molecular weight (MW) of added PAMS.  These reports suggest

the need for an analysis of the underlying reaction mechanisms.

Degradation of polymers in solution has been proposed to ameliorate problems

encountered in commercial applications (Sato et al., 1990).  The degradation of polystyrene

(Murakata et al., 1993; Madras et al., 1996c), poly(styrene-allyl alcohol) (Wang et al.,

1995), poly(methyl methacrylate) (Madras et al., 1996a), PAMS (Madras et al., 1996b) in

solution have been investigated.  No studies on the degradation of polymer mixtures in

solution, however, have been reported.
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In the current study, we examined the degradation of polymer mixtures by

developing a detailed radical mechanism based on Rice-Herzfeld reactions (Nigam et al.,

1994).  The interaction between different polymers occurs by radicals abstracting hydrogen

atoms from either polymer (McCaffrey et al., 1996).  Expressions for the degradation rates

for each polymer were obtained by applying distribution kinetics to the MWD of the

reacting radicals and polymers.  As polymers degrade, predominantly  by either chain-end

scission or random-chain scission, three cases are possible for the interactive degradation

of two polymers. Both polymers can degrade by chain-end scission, or by random-chain

scission, or one polymer can degrade by random-chain scission and the other polymer by

chain-end scission.   In addition to developing a theory, we present new experimental data

for the concentration effect of PAMS on polystyrene degradation in solution at 275 °C.

Experiments

Analysis of MWDs.  The HPLC (Hewlett-Packard 1050) system  consists of a 100 µL

sample loop, a gradient pump, and an on-line variable wavelength ultraviolet (UV)

detector.  Three PLgel columns (Polymer Lab Inc.) (300 mm x 7.5 mm)  packed with

cross-linked poly(styrene-divinyl benzene) with pore sizes of 100, 500, and 104 Å are

used in series.  Tetrahydrofuran (HPLC grade, Fisher Chemicals) was pumped at a

constant flow rate of 1.00 mL/min.   Narrow MW polystyrene standards of MW 162 to

0.93 million (Polymer Lab and Aldrich Chemicals) were used to obtain the calibration

curve of  retention time versus MW (Figure 1), which was stable during the period of the

experiments.  The calibration curve, modeled as a second-order polynomial, indicates a

higher accuracy in the measurement of lower MW polymers.

Polystyrene Degradation.    The thermal decomposition of polystyrene in mineral oil was

conducted in a 100 mL flask equipped with a reflux condenser to ensure the condensation

and retention of volatiles.  To observe a significant effect of PAMS on the conversion,

polystyrene of high MW was chosen.  60 mL of mineral oil (Fisher Chemicals) was heated
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to 275 °C, and various amounts (0 - 0.60 g) of monodisperse PAMS (MW = 11,000,

Scientific Polymer Products), and 0.12 g of monodisperse polystyrene (MW = 330,000,

Aldrich Chemicals) were added.  The temperature of the solution was measured with a

Type K thermocouple (Fisher Chemicals) and controlled within ± 1 °C by a Omega CN-

2042  temperature controller.  Samples of 1.0 mL were taken at 15 minute intervals and

dissolved in 1.0 mL of  tetrahydrofuran, THF (HPLC grade, Fisher Chemicals). The

chromatograph obtained by injecting 100 µL of this solution into the HPLC-GPC system

was converted to MWD.  The peaks of the reacted polystyrene, PAMS, and the oligomers

were distinct, so that moments could be calculated by numerical integration.  Because the

solvent mineral oil is UV invisible, its MWD was determined with a refractive index (RI)

detector. No change in the MWD of mineral oil (Figure 2) was observed when the oil was

heated for 3 hours at 275 °C without polystyrene.

Theoretical Model

According to the Rice-Herzfeld mechanism, polymers can transform without

change in MW by hydrogen abstraction.  Their radicals can also undergo chain scission to

form lower MW products, or undergo addition reactions yielding higher MW products.

Chain scission can occur either at the chain end yielding a specific product, or at a random

position along the chain yielding a range of lower MW products.

Distribution kinetics is a straightforward and effective technique to represent

macromolecular reactions.  Continuous-distribution mass balances are written for the

various steps involved in the radical mechanism (Table 1).  The rate coefficients are here

assumed to be independent of MW, a reasonable assumption at low conversions (Madras et

al., 1996b).  The integro-differential equations obtained from the mass balances can be

solved for MW moments.  These moment equations are usually coupled ordinary

differential equations that, in general, can be solved numerically.
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In the present treatment, two common assumptions simplify the governing

equations.  The  long-chain approximation (LCA) (Nigam et al., 1994; Gavalas, 1966)

postulates that the initiation and termination rates are negligible because such events are

infrequent compared to hydrogen abstraction and propagation-depropagation chain

reactions.  The quasi-stationary state approximation (QSSA) applies when radical

concentrations are extremely small and their rates of change are negligible.  The proposed

scheme, based on the  Rice-Herzfeld (Nigam et al., 1994) concept of chain reactions,

includes the elementary steps of initiation, depropagation, hydrogen abstraction, and

termination.

Case I. One polymer undergoes random-chain scission, the other polymer undergoes

chain-end scission and  both interact with each other.

The degradation rate of polymer A undergoing random-chain scission is influenced

by polymer B undergoing chain-end scission. We represent the reacting polymer A and its

radicals as PA(x) and R
.
(x) and their MWDs as pA(x,t) and r(x,t), respectively, where x

represents the continuous variable, MW.  As the polymer reactants and random scission

products are not distinguished in the distribution kinetics model, a single MWD, pA(x,t),

represents the polymer in the mixture at any time, t.   The initiation-termination reactions

are represented as

kf

  PA(x) ⇔ R
.
(x') + R

.
(x-x') (1.1)

kt

where ⇔ represents a reversible reaction.  The reversible hydrogen abstraction process is

kh

  PA(x)  ⇔ R
.
(x) (1.2)

kH

The depropagation chain reaction is

kb

 R
.
(x)  → PA(x') + R

.
(x-x') (1.3)
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 The polymer B, the chain-end radical, the specific radical, and the specific product

are represented as PB(x), Re
.
(x), Rs

.
(x), Qs(xs), respectively, and their corresponding

MWDs as pB(x,t),  re(x,t),  rs(x,t) and qs(xs,t).  The formation of chain-end radicals by a

reversible random-scission initiation-termination reaction is
            kfs

 PB(x)  ⇔ Re
.
(x) + Re

.
(x - x') (1.4)

           kts
Hydrogen abstraction by the chain-end radical is considered reversible,

           khe

PB(x)  ⇔  Re
.
(x) (1.5)

           kHe

The chain-end radical can undergo radical isomerization via a cyclic transition state to form

a specific radical,
kih

Re
.
(x)   ⇔  Rs

.
(x) (1.6)

kiH

The depropagation reaction yields the specific product and a chain-end radical from a

specific radical,

kbs

Rs
.
(x)   →   Qs(xs) + Re

.
(x-xs) (1.7)

where xs is the MW of the specific product.

The interaction of the two degrading polymers is through hydrogen abstraction

(McCaffrey et al., 1996) represented as a reversible disproportionation reaction.  The end

radical of  polymer B combines with polymer A to form an intermediate radical complex

that undergoes transformation to polymer B and a radical of polymer A,

kd kD

Re
.
(x) +  PA(x')  ⇔  Ri

.
(x + x') ⇔ PB(x) + R

.
(x') (1.8)

         kD kd
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Including the intermediate complex, Ri
.
, facilitates the formulation of the population

balance equations for the reversible disproportionation. If Ri
.
 is ignored in equation 1.8,

the forward and reverse rate coefficients would be  kd and kD, respectively.

With the aid of Table 1, the rate expressions and moments can be formulated.

Based on LCA,  kf , k fs, k t and kts are set to zero.  The population balance equations for

gain (+) and loss (-) terms are

∂pA/∂t = - kh pA(x) + kH r(x) + kb ∫x
∞

r(x') Ω(x,x')dx' - kd pA re
(0)(x)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (1.9)

∂pB/∂t = - khe pB(x) + kHe re(x)  - kd pB r(0)(x) + kD  ∫x
∞

ri(x') Ω(x,x')dx' (1.10)

∂qs/∂t = kbs ∫x
∞

rs(x') δ(x'-xs) dx' (1.11)

∂rs/∂t = kih re(x) - kiH rs(x) - kbs rs(x)  (1.12)

∂re/∂t =  khe pB(x)  - kHe re(x) - kih re(x) + kiH rs(x)

+ kbs  ∫x
∞

rs(x') δ[x-(x'-xs)] dx' - kd pA
(0) re(x)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (1.13)

∂r/∂t =  kh pA(x) - kH r(x) - kb r(x) + kb ∫x
∞

r(x') Ω (x,x') dx' - kd pB
(0) r(x)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (1.14)

∂ri/∂t = kd  ∫0
x
pA(x') re(x-x')dx' + kd  ∫0

x
 pB(x') r(x-x')dx' - 2 kD ri(x) (1.15)

The moments for the polymer, radicals and the monomer, p(n), r(n), q (n), respectively, are

defined as

p(n)(t) = ∫0
∞

 xn p(x,t) dx (1.16)

r(n)(t) = ∫0
∞

 xn r(x,t) dx (1.17)

q(n)(t) = ∫0
∞

 xn q(x,t) dx (1.18)

Applying the moment operation,  ∫0
∞

  [ ]  xn dx, to each balance equation yields

dpA
(n)/dt = - kh pA

(n) + kH r(n) + kb Zn0 r(n)  - kd pA
(n)re

(0)

+ kD Zn0 ri
(n)    (1.19)

dpB
(n)/dt = - khe pB

(n) + kHe re
(n) - kd pB

(n)r(0)   + kD Zn0 ri
(n) (1.20)



94204R11.PDF July 21, 1997 10

dqs
(n)/dt = kbs xs

n rs
(0)   (1.21)

drs
(n)/dt = kih re

(n) - kiH rs
(n)- kbs rs

(n) (1.22)

dre
(n)/dt = khe pB

(n) - kHe re
(n) - kih re

(n) + kiH rs
(n)

+ kbs   ∑ 
j = 0 

n 

 (n
j) (xs)

j(-1)j rs
(n-j) - kd pA

(0)re
(n) + kD Zn0 ri

(n) (1.23)

dr(n)/dt =  kh pA
(n) - kH r(n) -kb r(n) + kb Zn0 r(n) - kd pB

(0) r (n)

+ kD Zn0 ri
(n)  (1.24)

dri
(n)/dt =  kd    ∑ 

j = 0 

n 

 (n
j) re

(n-j) pA
(j) +  kd    ∑ 

j = 0 

n 

 (n
j) r

(n-j) pB
(j)- 2 kD ri

(n) (1.25)

where Zn0 = 1/ (n+1). The initial conditions for moments are

pB
(n)(t=0) = pB0

(n), pA
(n)(t=0) = pA0

(n) and r(n)(t=0) = 0 (1.26)

When QSSA holds,

dr(n)/dt = drs
(n)/dt =dre

(n)/dt =dri
(n)/dt =0 (1.27)

Expressions for the radical concentrations can be obtained by equating the

expressions of the zeroth moments (n = 0 in equations 1.22-1.25) to zero.  Equation 1.22

yields

rs
(0) = re

(0) kih / (kbs + kiH) (1.28)

Equation 1.25 yields

 ri
(0) =  kd (re

(0) pA
(0) +  r(0) pB

(0) ) / (2 kD) (1.29)

Equations 1.23 and 1.24 are solved simultaneously to obtain,

r(0) = pA
(0)(2 kh + kd re

(0)) / (2 kH + kd pB
(0)) (1.30)

re
(0) = pB

(0) (2 khe kH  + kd (khe + kh
 ) pA

(0) ) /   

(2 kHe kH +  kd (kHe 
 pB

(0)+ kH
 pA

(0) )) (1.31)

Because PAMS degrades only by chain-end scission, the zeroth moment (molar

concentration) of the polymer is a constant (Madras et al., 1996b),

dpB
(0)/dt = 0  (1.32)

and therefore,

pB
(0) = pB0

(0) (1.33)
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Substituting equations 1.28-1.31 in equation 1.19 yields

dpA
(0)/dt = kb r

(0)  (1.34)

where  r
(0) and re

(0) are given by equations 1.30, 1.31 with pB
(0) = pB0

(0).  The differential

equation 1.34 can be solved, as discussed in the results and discussion section, when

reasonable assumptions are made for the primary reaction rate coefficients.

The summation of first moments (n = 1) for polymer and radicals (total mass

concentration) must be constant when there are no losses from the reactor.  For n = 1,

equations 1.19-1.25 are added to obtain

d[p(1)+ r(1) + rs
(1) + re

(1) + ri
(1) ]/dt = 0 (1.35)

thus confirming the mass balance.

The proposed mechanism represents the interaction of radicals of two reacting

polymers and shows how the polymer undergoing chain-end scission affects the

degradation rate of the polymer undergoing random-chain scission.  The degradation rate

coefficient is a function of the added polymer concentration, and also depends on the

temperature and pressure.  This can explain the varied results found in experiments for

degradation rates in polymer mixtures.

Case II.  Both polymers undergo random-chain scission and interact with each other.

When polymers like polyethylene and polystyrene are present in a mixture, both

polymers degrade by random-chain scission and interact with each other.  We represent the

reacting polymers A and B as PA(x), PB(x) and their radicals as RA
.
(x),  RB

.
(x).  Their

MWDs are pA(x,t),  pB(x,t) and  rA(x,t), rB(x,t) respectively.  The initiation-termination

reactions are

kfA

  PA(x) ⇔ RA
.
(x') + RA

.
(x-x') (2.1)

ktA

 kfB

  PB(x) ⇔ RB
.
(x') + RB

.
(x-x') (2.2)

ktB
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The reversible hydrogen abstraction reactions are

khA

  PA(x)  ⇔ RA
.
(x) (2.3)

kHA

khB

  PB(x)  ⇔ RB
.
(x) (2.4)

kHB

The depropagation reactions are

kbA

 RA
.
(x)  → PA(x') + RA

.
(x-x') (2.5)

kbB

 RB
.
(x)  → PB(x') + RB

.
(x-x') (2.6)

The interaction between the polymers can be written as

kd kD

RB
.
(x) +  PA(x')  ⇔  Ri

.
(x + x') ⇔ PB(x) + RA

.
(x') (2.7)

         kD kd

The population balance equations (see Table 1) are

∂pA/∂t = - khA pA(x) + kHA rA(x) + kbA ∫x
∞

rA(x') Ω(x,x')dx' - kd pA rB
(0)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (2.8)

∂pB/∂t = - khB pB(x) + kHB rB(x) + kbB ∫x
∞

rB(x') Ω(x,x')dx' - kd pB rA
(0)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (2.9)

∂rA/∂t =  khA pA(x) - kHA rA(x) - kbA rA(x) + kbA ∫x
∞

rA(x') Ω (x,x') dx'

- kd pB
(0) rA(x)  + kD  ∫x

∞
ri(x') Ω(x,x')dx' (2.10)

∂rB/∂t =  khB pB(x) - kHB rB(x) - kbB rB(x) + kbB ∫x
∞

rB(x') Ω (x,x') dx'

- kd pA
(0) rB(x)  + kD  ∫x

∞
ri(x') Ω(x,x')dx' (2.11)

∂ri/∂t = kd  ∫0
x
pA(x') rB(x-x')dx' + kd  ∫0

x
 pB(x') rA(x-x')dx' - 2 kD ri(x) (2.12)

Applying the moment operation,  ∫0
∞

 [ ]  xn dx, to each mass balance equation yields

dpA
(n)/dt = - khA pA

(n) + kHA rA
(n) + kbA Zn0 rA

(n)  - kd pA
(n)rB

(0)
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+ kD Zn0 ri
(n)    (2.13)

dpB
(n)/dt = - khB pB

(n) + kHB rB
(n) + kbB Zn0 rB

(n)  - kd pB
(n)rA

(0)

+ kD Zn0 ri
(n)    (2.14)

drA
(n)/dt =  khA pA

(n) - kHA rA
(n) -kbA rA

(n) + kbA Zn0 rA
(n) - kd pB

(0) rA
 (n)

+ kD Zn0 ri
(n)  (2.15)

drB
(n)/dt =  khB pB

(n) - kHB rA
(n) -kbB rB

(n) + kbB Zn0 rB
(n) - kd pA

(0) rB
 (n)

+ kD Zn0 ri
(n)  (2.16)

dri
(n)/dt =  kd    ∑ 

j = 0 

n 

 (n
j) re

(n-j) pA
(j) +  kd    ∑ 

j = 0 

n 

 (n
j) r

(n-j) pB
(j)- 2 kD ri

(n) (2.17)

Expressions for the radical concentrations can be obtained by equating the

expressions of the zeroth moments (n = 0 in equations 2.15-2.17) to zero (QSSA).

Equation 2.17 yields

 ri
(0) =  kd (rB

(0) pA
(0) +  rA

(0) pB
(0) ) / (2 kD) (2.18)

Equations 2.15 and 2.16 give

rA
(0) = (khA pA

(0)+ kD ri
(0)) / (kHA + kd pB

(0)) (2.19)

rB
(0) = (khB pB

(0)+ kD ri
(0)) / (kHB + kd pA

(0)) (2.20)

Substituting equations 2.18- 2.20 in equations 2.13 and 2.14 yields

dpA
(0)/dt = kbA rA

(0) (2.21)

dpB
(0)/dt = kbB rB

0)
  (2.22)

Expressions for rA
(0)  and rB

(0)  can be obtained by  solving equations 2.19 and 2.20

simultaneously with equation 2.18.  Equations 2.21 and 2.22 show how the degradation

rate of a polymer depends on the concentration of the other polymer in the mixture.  The

degradation rate coefficient is a function of the added polymer concentration, and the

experimental conditions (temperature and pressure).

Case III. Both polymers undergo chain-end scission and interact with each other.

 Certain polymers like PAMS undergo only chain-end scission.  In cases where

both polymers, A and B, degrade by chain-end scission and interact with each other, the
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radical reactions for polymers can be written based on the Rice-Herzfeld mechanism.  The

polymers A and B, the chain-end radical, the specific radical, and the specific product are

represented as PA(x), ReA
.
(x), RsA

.
(x), QsA(xsA) and PB(x), ReB

.
(x), RsB

.
(x), QsB(xsB),

respectively. The formation of chain-end radicals by a reversible random-scission initiation-

termination reaction is
            kfsA

 PA(x)  ⇔ ReA
.
(x) + ReA

.
(x - x') (3.1)

           ktsA
 kfsB

 PB(x)  ⇔ ReB
.
(x) + ReB

.
(x - x') (3.2)

           ktsB

Hydrogen abstraction by the chain-end radical is considered reversible,
kheA

PA(x)  ⇔  ReA
.
(x) (3.3)

           kHeA

           kheB

PB(x)  ⇔  ReB
.
(x) (3.4)

           kHeB

The chain-end radical can undergo radical isomerization via a cyclic transition state to form

a specific radical,
kihA

ReA
.
(x)   ⇔  RsA

.
(x) (3.5)

kiHA
kihB

ReB
.
(x)   ⇔  RsB

.
(x) (3.6)

kihB

The depropagation reaction yields the specific product and a chain-end radical from a

specific radical

kbsA

RsA
.
(x)   →   QsA(xs) + ReA

.
(x-xs) (3.7)

kbsB

RsB
.
(x)   →   QsB(xs) + ReB

.
(x-xs) (3.8)
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where xsA and xsB are the MWs of the specific products of polymer A and B, respectively.

The interaction of the two polymers is given by the disproportionation reaction

kd kD

ReB
.
(x) +  PA(x')  ⇔  Ri

.
(x + x') ⇔ PB(x) + ReA

.
(x') (3.9)

         kD kd

The population balance equations are

∂pA/∂t = - kheA pA(x) + kHeA reA(x)  - kd pA(x) reB
(0)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (3.10)

∂pB/∂t = - kheB pB(x) + kHeB reB(x)  - kd pB (x) reA
(0)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (3.11)

∂qsA/∂t = kbsA ∫x
∞

rsA(x') δ(x'-xs) dx' (3.12)

∂qsB/∂t = kbsB ∫x
∞

rsA(x') δ(x'-xs) dx' 

(3.13)

∂rsA/∂t = kihA reA(x) - kiHA rsA(x) - kbsA rsA(x)  (3.14)

∂rsB/∂t = kihB reB(x) - kiHB rsB(x) - kbsB rsB(x)  (3.15)

∂reA/∂t =  kheA pA(x)  - kHeA reA(x) - kihA reA(x) + kiHA rsA(x)

+ kbsA  ∫x
∞

rsA(x') δ[x-(x'-xs)] dx' - kd pB
(0) reA(x)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (3.16)

∂reB/∂t =  kheB pB(x)  - kHeB reB(x) - kihB reB(x) + kiHB rsB(x)

+ kbsB  ∫x
∞

rsB(x') δ[x-(x'-xs)] dx' - kd pA
(0) reB(x)

+ kD  ∫x
∞

ri(x') Ω(x,x')dx' (3.17)

∂ri/∂t = kd  ∫0
x
pA(x') reB(x-x')dx' + kd  ∫0

x
 pB(x') reA(x-x')dx' - 2 kD ri(x) (3.18)

Applying the moment operation,  ∫0
∞

 

 
[ ]  xn dx, to each mass balance equation yields

dpA
(n)/dt = - kheA pA

(n) + kHeA reA
(n) - kd pA

(n)reB
(0)   + kD Zn0 ri

(n) (3.19)

dpB
(n)/dt = - kheB pB

(n) + kHeB reB
(n) - kd pB

(n)reA
(0)   + kD Zn0 ri

(n) (3.20)
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dqsA
(n)/dt = kbsA xsA

n rsA
(0)   (3.21)

dqsB
(n)/dt = kbsB xsB

n rsB
(0)   (3.22)

drsA
(n)/dt = kihA reA

(n) - kiHA rsA
(n)- kbsA rsA

(n) (3.23)

drsB
(n)/dt = kihB reB

(n) - kiHB rsB
(n)- kbsB rsB

(n) (3.24)

dreA
(n)/dt = kheA pA

(n) - kHeA reA
(n) - kihA reA

(n) + kiHA rsA
(n)

+ kbsA   ∑ 
j = 0 

n 

 (n
j) (xsA)j(-1)j rsA

(n-j) - kd pB
(0)reA

(n) + kD Zn0 ri
(n) (3.25)

dreB
(n)/dt = kheB pB

(n) - kHeB reB
(n) - kihB reB

(n) + kiHB rsB
(n)

+ kbsB   ∑ 
j = 0 

n 

 (n
j) (xsB)j(-1)j rsB

(n-j) - kd pA
(0)reB

(n) + kD Zn0 ri
(n) (3.26)

dri
(n)/dt =  kd    ∑ 

j = 0 

n 

 (n
j) re

(n-j) pA
(j) +  kd    ∑ 

j = 0 

n 

 (n
j) r

(n-j) pB
(j)- 2 kD ri

(n) (3.27)

Expressions for the radical concentrations can be obtained by equating the

expressions of the zeroth moments (n = 0 in equations 3.23-3.27) to zero.  Equations 3.23

and 3.24 yield

rsA
(0) = reA

(0) kihA / (kbsA + kiHA) (3.28)

rsB
(0) = reB

(0) kihB / (kbsB + kiHB) (3.29)

Equating equations 3.25 and 3.26 to zero gives

reA
(0) = (kD ri

(0) +  kheA
 pA

(0) ) / (kd
 pB

(0)
 + kheA) (3.30)

reB
(0) = (kD ri

(0) +  kheB
 pB

(0) ) / (kd
 pA

(0)
 + kheB) (3.31)

where, by equation 3.27,

 ri
(0) =  kd (reB

(0) pA
(0) +  reA

(0) pB
(0) ) / (2 kD) (3.32)

Using these expressions in equations 3.19 and 3.20 yields

dpA
(0)/dt = 0 (3.33)

dpB
(0)/dt = 0 (3.34)

and therefore,

pA
(0) = pA0

(0), pB
(0) = pB0

(0) (3.35)
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This is consistent with chain-end scission kinetics (Madras et al., 1996b), where the zeroth

moment (molar concentration) of the polymer is a constant.  Equations 3.21 and 3.22 are

dqsA
(0)/dt = kbsA rsA

(0)   (3.36)

dqsB
(0)/dt = kbsB rsB

(0)   (3.37)

Expressions for rsA
(0)and rsB

(0)can be obtained by simultaneously solving equations 3.30

and 3.31 with equation 3.32.  Equations 3.36 and 3.37 are coupled ordinary differential

equations that can be solved numerically.  Analytical algebraic solutions are possible for

special value of the rate parameters.  The equations show how the degradation rate of a

polymer depends on the concentration of the other polymer in the mixture.  The degradation

rate coefficient is also a function of temperature and pressure.

 Results and Discussion

 Polymers thermolytically degrade by chain-end scission and/or random-chain

scission.  The polymer interaction is complex and is influenced by the experimental

conditions and polymer type.  For example, Roy et al. (1978) observed no interaction

between polystyrene and polyethylene at pressures higher than 200 mm Hg but observed

interaction at lower pressures. McCaffrey et al. (1993) observed a significant increase in

the thermolytic degradation rate of polyethylene due to the presence of polystyrene.   They

proposed that the interaction was due to hydrogen abstraction from polyethylene by

polystyrene radicals.  Gardner et al. (1993) observed  an eight fold increase in the pyrolytic

chain-end scission rate of polystyrene at 430 °C in the presence of poly(methyl acrylate)

(PMA) or poly(butyl acrylate) (PBA), while the chain-end degradation rates of PBA and

PMA decreased eight fold.  However, PBA or PMA did not affect PAMS degradation rate.

They also concluded that hydrogen abstraction plays an important role in polymer

interactions.

We have proposed degradation mechanisms for three common types of polymer

degradation with interactions by a disproportionation reaction for hydrogen abstraction.

The degradation rate equations (Equations 1.32, 1.34, 2.19, 2.20, 3.36 and 3.37) for
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binary mixtures show that, depending on the particular polymer, another polymer in the

mixture can increase, decrease, or have no effect on degradation rate.  As shown by the

above equations, the interaction would depend on the fundamental radical rate parameters

(and thus temperature and pressure) and the concentration of the polymers in the mixture.

As an example, we have measured the influence of PAMS mass concentration on

polystyrene degradation at 275 °C.  Since polystyrene degrades by random-chain scission

and PAMS degrades by chain-end scission, the polystyrene degradation rate is given by

equation 1.34.  If the rates of the elementary steps are known, this equation can be solved

numerically.  However, reasonable assumptions allow us to obtain an analytical solution

for the polystyrene degradation rate.

The hydrogen abstraction rate by the radicals in equation 1.5 is negligible compared

to the hydrogen abstraction in equation 1.8.  Thus, kHe = 0 and with equation 1.33,

equation 1.31 is

re
(0) = pB0

(0) (2 khe kH  + kd (khe + kh
 ) pA

(0) ) /  (kd kH
 pA

(0) ) (4.1)

The hydrogen abstraction in equation 1.8 is more significant than the hydrogen abstraction

rate in equation 1.2. Thus, we assume

kH << kd pA
(0) /2 (4.2)

Equation 4.1 becomes

re
(0) = pB0

(0) (khe + kh
 )/kH

 (4.3)

Substituting equations 4.3 and 1.30 in equation 1.34 yields

dpA
(0)/dt = kr pA

(0)  (4.4)

whose solution is

pA
(0) (t) = pA0

(0) exp(kr t) (4.5)

and a plot of ln (p(0)/ p0
(0)) is linear in time with slope kr,

kr = (2 kb kh + (2 kb kd (khe+kh) pB0
(0)/ kH))/(2 kH + kd pB0

(0)) (4.6)

Similar to equation 4.2,

kH << kd pB0
(0) /2 (4.7)
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and equation 4.6 yields

kr = (2 kb kh / (kd pB0
(0))) + (kb (khe+kh)/ kH) (4.8)

    = (2 kb kh MB0 / (kd pB0
(1))) + (kb (khe+kh)/ kH) (4.9)

Here, pB0
(1) and MB0 are the initial mass concentration  and the number-average molecular

weight, respectively, of PAMS.

The random-scission degradation rate coefficient, kr, was determined from the

experimental data by analyzing the time dependence of the polymer-mixture MWDs.

Because the mass of specific products formed by polystyrene chain-end scission at 275 °C

for 10 hours is less than 2%  (Madras et al., 1996c), we consider that polystyrene degrades

solely by random-chain scission .

Polystyrene degrades rapidly at low reaction times due to weak links in the polymer

chain caused by side-group asymmetry or chain-branching (Chiantore et al., 1981; Madras

et al., 1996c).  The weak and strong links in polystyrene can be represented by additive

distributions, so that the total molar concentration, pAtot
(0), of the polymer is the sum of the

molar concentrations of the weak, pAw
(0), and strong links, pA

(0) (Madras et al., 1996c).

As the weak link concentration is approximately two orders of magnitude smaller than the

strong link concentration, only the random rate coefficients of strong links are examined in

this study.   The initial molar concentration of the strong links in polystyrene,  pA0
(0), is

determined from the intercept of the regressed line of the pAtot
(0)/pAtot0

(0) data for t ≥ 45

minutes.  The slopes, corresponding to the rate coefficient for random scission, kr , are

determined from the plot of ln (pA
(0)/pA0

(0) ) versus time, as given by equation 4.5 (Figure

3).  The line for zero concentration of PAMS is curved slightly due to a MW-dependent

rate.  Madras et al. (1997) show how data are analyzed when the polystyrene degradation

rate coefficient is a function of MW, i.e., kr(x).  Equation 1.34 explains how the

polystyrene degradation rate coefficient depends on PAMS concentration.  Only zeroth

moments (molar concentrations) are required to derive this key relationship.  The

polystyrene degradation rate coefficient, kr, given by equation 4.9 decreases with
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increasing PAMS mass (or molar) concentration. This is consistent with the experimental

data (inset of Figure 4).

Ratios of the rate parameters can be determined by rewriting equation 4.9,

kr  = k1 + (k2 /pB0
(1)) (4.10)

where k1 =  kb (khe+kh)/ kH  and   k2 =  2  kb kh MB0 / kd.  The slope and intercept of kr

versus 1/pB0
(1) (Figure 4) yield the rate parameters, k1 (= 0.003 min-1) and k2 (= 0.006 g

L-1min-1). For pB0
(1) = 0, equation 4.6 gives kr =  kb kh / kH (= 0.013 min-1 by

experimental data).

  The hypothesized interaction of the degrading polymers is through the free radicals

and their rates of hydrogen abstraction.  When kd = kD = 0, the two polymers react

independently and the moment equations 1.19-1.25, are identical to those derived for a

single polymer undergoing chain-end scission or random-chain scission (Madras and

McCoy, 1997) .  The rate coefficient for random-chain scission of polystyrene is a function

of the PAMS mixture concentration through the fundamental radical rate parameters, kb,

kh, khe, kd, kH, and the initial number-average molecular weight of PAMS (equation 4.10).

The addition of PAMS inhibits the random-chain scission of polystyrene, similar to the

effect on hydrogen-donors on the degradation of polystyrene (Madras and McCoy, 1997).

The results suggest that the interaction between polymers is solely due to hydrogen

abstraction.
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Table 1.  Distribution Kinetics of Primary Reactions.

 Stoichiometric kernels:   Ω(x,x') = 1/x',  Ω(xs, x') = δ(x-xs),  Ω(x-xs, x') = δ[x-(x'-xs)]

Reaction

Type

Primary Reaction Rate Expressions Moment Expressions

(k is independent of MW)

Trans-

formation
R(x) → P(x) ∂p/∂t = - ∂r/∂t =  k r(x,t) dp(n)/dt  = - dr(n)/dt  =  k r(n)(t)

Random-

chain

scission

P(x') → Q(x) +

           R(x' - x)

∂p/∂t = - k p(x,t)

∂q/∂t = k ∫x
∞ 

p(x',t) Ω(x,x')  dx'

= ∂r/∂t

dp(n)/dt  = - k p(n)(t)

dq(n)/dt = k p(n)(t)/(n+1)

= dr(n)/dt

Chain-end

scission
P(x') → Q(xs) +

            R(x' - xs)

xs is the MW of the

specific product

∂p/∂t = - k p(x',t)

∂q/∂t = k ∫x
∞
p(x',t) Ω(xs, x') dx'

∂r/∂t= k∫x
∞

p(x',t) Ω(x-xs, x')

dx'

dp(n)/dt = - k p(n)(t)

dq(n)/dt = - k xsn q(0)(t)

dr(n)/dt = k  ∑ 
j = 0 

n 

 
(n

j) xs
j (-1)j p(n-j)

Addition

reaction

P(x') + Q(x - x') 

→   R(x)

∂p/∂t = - k p(x,t)  ∫0
∞
q(x',t) dx'

∂q/∂t = - k q(x,t)  ∫0
∞
p(x',t) dx'

∂r/∂t =  k ∫0
x
p(x',t) q(x - x',t)

dx'

dp(n)/dt = - k p(n)(t) q(0)(t)

dq(n)/dt = - k q(n)(t) p(0) (t)

dr(n)/dt = k  ∑ 
j = 0 

n 

 (nj) p
(j)(t) q(n-j)
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Figure captions

1.   Calibration curve of retention time, tr , versus log MW (log MW = 13.58 - 0.68 tr +

9.68 x 10 -3  tr2 ).

2. MWD of the inert solvent, mineral oil.

3. Plot of ln (pA
(0)/pA0

(0) ) versus time for polystyrene degradation at 275 °C for four

PAMS concentrations.

● Polystyrene (2/L) only

▲ Polystyrene (2 g/L) + PAMS (2 g/L).

◆ Polystyrene (2 g/L) + PAMS (5 g/L).

■ Polystyrene (2 g/L) + PAMS  (10 g/L).

4.  Effect of PAMS mass concentration, pB0
(1), on the rate coefficient of random chain

scission, kr, of polystyrene at 275 °C plotted as kr versus 1/ pB0
(1), as given by

equation 1.45.  The inset shows  kr versus pB0
(1).
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